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Abstract

To survive on a global market, small and medium size enterprises (SMEs)
require affordable and competitive industrial automation for high qual-
ity flexible manufacturing. This thesis contributes to the development of
robot concepts that fit the needs of SMEs. A major part of the thesis deals
with the modeling of the three degree-of-freedom (DOF) Gantry-Tau par-
allel kinematic robot, which has the potential to fulfill the requirements
on accuracy, mechanical stiffness and conceptual flexibility of a robot for
SMEs. Additionally, concepts that aid the SMEs to achieve the required
accuracy and a more intuitive robot operation were developed and evalu-
ated.
The modeling of the Gantry-Tau robot includes both kinematic and dy-

namic modeling. Based on the nominal kinematic model, kinematic error
models were developed, as well as kinematics for the F1-type Gantry-Tau,
a Gantry-Tau architecture extended to 6 DOF. The modeling was evalu-
ated in kinematic calibration experiments. A rigid body model was derived
and identified, including friction in the actuators. As noticeable flexible
behaviour was observed, the compliance dynamics were identified by black
box modeling.
Kinematic calibration was not only considered for evaluation of the

kinematic models developed, but it was also studied how to automize the
kinematic calibration procedure, so that it can be executed by non-expert
SME staff after a possible geometric reconfiguration of the robot. In the
search of affordable, accurate and reusable measurement devices for kine-
matic calibration in SMEs, the usage of camera vision for kinematic cali-
bration was evaluated.
To make the programming of a robot trajectory fast and intuitive,

lead-through programming was recently introduced. A new concept for
lead-through programming in contact situations is proposed in this the-
sis, where two force sensors are used. While the first sensor is used for
guiding the robot, the second force sensor measures the tool force, which
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Abstract

can prevent damage of the tool or workpiece and can help to keep a steady
contact between tool and surface. The concept was demonstrated in two
example applications.
A possibility to improve the performance for a repeatedly executed

motion is iterative learning control (ILC). An ILC algorithm is evaluated
on the Gantry-Tau robot, which uses an estimate of the tool motion, based
on measurements from an accelerometer mounted at the end-effector plate
and in addition to measurements on the motor side. The performance of
the tool motion was shown to be considerably improved compared to the
case when only motor side measurements are used.
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1

Introduction

1.1 Motivation

To survive on a global market, small and medium size enterprises (SMEs)
need affordable and competitive industrial automation that eases fast de-
ployment and extends available task repertoire. SMEs depend on their
ability to cost-efficiently produce customized products. This requires flex-
ibility, which is often achieved by manual labor. To maintain profitability
on a global market, there is a desire for robots that efficiently can as-
sist human workers. The SMErobot project [SMErobot, 2009] aimed at
developing new robot concepts for SMEs.
Today’s industrial robot concepts are too expensive and not flexible

enough for SMEs, that often perform constantly changing tasks due to
small lot sizes. Typically, industrial robots carry out a repetitive task dur-
ing long time ranges, as e.g., a welding robot in the production line of one
specific automobile type. They are delivered from the robot manufacturer
as an optimized entity and their geometry is not easily adjustable to new
tasks and products. Programming a task is in most cases time-consuming
and involves a robot expert who is familiar with the manufacturer-specific
programming language. Some tasks, e.g., grinding or deburring, require
a high structural stiffness, and are often problematic to execute with the
desired precision with an industrial robot of reasonable size. This is partic-
ularly a problem for serial kinematic geometries, which are today forming
the larger part of industrial robots. An SME might however profit more
from a robot assisting those tasks than e.g., a packaging robot, which
usually does not need increased stiffness nor high accuracy. Addition-
ally, there are more often major security concerns at SMEs about sharing
workspace between humans and robots.
The problem of insufficient structural stiffness may be solved by using
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Chapter 1. Introduction

Figure 1.1 Gantry-Tau prototype developed within the SMErobot project.

parallel instead of serial kinematic robots. The usage of parallel kine-
matic manipulators (PKMs) is despite their high performance potential
still relatively uncommon. PKMs are in general stiffer in relation to in-
ertia and more accurate than serial robots. They can be built with less
moving weight and therefore reach higher accelerations with less motor
power [Merlet, 2000]. The high stiffness makes PKMs interesting candi-
dates for a wide range of typical SME tasks such as grinding, deburring
and cutting. An inconvenience is that most parallel robots have a smaller
workspace than typical serial manipulators, meaning lower cost efficiency.
An increasing interest in parallel robot geometries was initiated al-

ready in the 1960s by the Stewart-Gough platform [Stewart, 1965]. How-
ever, it was not until the Delta structure was invented [Clavel, 1991] that
PKMs were introduced in a larger scale in industrial applications. An
example of the growing use of parallel robots in industry is the ABB Flex-
picker [ABB, 2009], which is based on the Delta structure. The Delta
structure has centralized placement of the actuators, which enables pick-
and-place applications with accelerations up to 12 g. However, the Delta
structure is only used in applications with small payload and a relatively
small working range.
A remaining challenge regarding parallel robots is to find a mechanical

structure useful for high performance applications [Brogårdh, 2002]. The
Gantry-Tau configuration [Johannesson et al., 2003], illustrated in Fig-
ure 1.1, is designed to have a large workspace-to-footprint ratio compared
to other parallel robots, while still being stiff in relation to its inertia
compared to a serial robot.
Besides the large accessible workspace in relation to its footprint, the
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1.1 Motivation

Gantry-Tau PKM has also the potential to meet the specific needs of
SMEs. A modular robot which is reconfigurable according to varying tasks
is needed. The Gantry-Tau PKM is promising in this regard. It is possible
to be implemented in a modular way so that the framework can be ad-
justed to specific tasks [Dressler et al., 2007]. Links can easily be replaced
by longer or shorter ones, and the linear actuators can be moved in space
by adjusting the framework, thus making reconfiguration possible.
An important step in developing new robot structures is accurate kine-

matic and dynamic modeling. The modularity of the robot and the possible
robot assembly and reconfiguration by SME staff may lead to kinematic er-
rors which decrease the positioning accuracy. Therefore, an accurate kine-
matic model able to cope with potential assembling errors is needed. With
the cartesian repeatability of one of the prototypes developed measured to
13 µm [Crothers et al., 2010], accurate kinematic models are also needed
to fully exploit the Gantry-Tau’s accuracy potential. Another possible ap-
plication sector for the Gantry-Tau besides SMEs is aerospace industry, as
the parallel structure and arbitrarily extendable linear guideways make
it convenient for machining large components with very high accuracy. To
meet the accuracy requirements in aerospace industry, kinematic error
models need to be developed.
Kinematic and dynamic high speed control, to exploit the high achiev-

able accelerations of the Gantry-Tau robot, requires also accurate dynamic
models of the manipulator [Murray et al., 1994]. Despite the robot’s high
stiffness, flexible behaviour is observable at high frequencies. A rigid body
model is thus important for improving the control performance in general,
but not sufficient at high speed.
Simulations are essential to investigate the benefits and limits of robot

design and control. One simulation program used is Modelica [Modelica,
2011], which is an object-oriented modeling language. An advantage of
Modelica is that models from one domain easily can be extended with
models from other domains, e.g., extending a mechanical robot model with
a controller or an actuator. Modelica is also advantageous during the de-
sign process as the obtained models can be used for various purposes
such as simulation and controller design. Together with additional files
provided by Dymola [Dynasim, 2009], a commercial Modelica implementa-
tion, C-files generated for simulation can be used for hardware-in-the-loop
simulations, e.g., for actual control of the robot. Optimica [Åkesson, 2008]
is a Modelica language extension for solving optimization problems, facil-
itating thus to use an existing Modelica model e.g., for optimal control.
With the Gantry-Tau as new, SME suitable type of robot, some prob-

lems still remain to be solved before robots can enter SMEs on a large
scale. Problems can arise for SMEs because every reconfiguration of a
robot requires a new kinematic calibration and such recalibrations tend

13



Chapter 1. Introduction

to be difficult for non-expert SME staff. It is thus a matter of cost re-
duction for an SME to have an easy-to-use calibration procedure, which
does neither require specific skills nor subcontracting with an external
company. Tools are needed to assist the non-expert SME staff to execute
repeated kinematic calibrations.
Together with tools for supporting the calibration process, new ways of

calibrating robots using low-cost sensors have to be found. SMEs cannot
afford laser trackers or other expensive measurement equipment. Sensors
that can be used both for calibration and feedback control are preferable.
Also new, more intuitive ways of robot programming are needed for

SME staff. They don’t have the time and knowledge to program robots
using a programming language like ABB’s RAPID. Lead-through pro-
gramming has recently been introduced for this purpose. In the SMEr-
obot project, it was examined how to combine lead-through programming
with intuitive programming instructions. Unlike with manual labor, the
operator usually has no feedback of the force between tool and workpiece.
Consequences might be tool or workpiece damage and difficulties to keep
a steady contact. An additional force sensor can solve this problem.
However, with only lead-through programming, the high accuracy re-

quired by certain applications can often not be achieved. One possible
solution is to use the lead-through programming rather as a calibration
between robot tool and workpiece and then to process the desired tra-
jectory further based on the workpiece’s CAD design. Another solution to
improve accuracy may be iterative learning control (ILC). The desired tra-
jectory is traversed repeatedly and each time, the control signal is changed
slightly in order to successively improve the performance. Often, ILC is
carried out based on the motor angle measurements available, whereas
the tool trajectory is the principal control objective. At high speeds, where
flexible behaviour is pronounced, this can lead to suboptimal tool perfor-
mance. Measurements of the tool motion in an industrial environment
are either too expensive for SMEs or mechanically interfering with the
application. A way to benefit from tool motion feedback is to use a sen-
sor measuring the tool motion indirectly, e.g., an accelerometer mounted
on the end-effector plate, together with an observer to estimate the tool
motion.
This thesis tries to provide a part of the research necessary to help

SMEs becoming more competitive by using efficient, flexibly deployable
robot technology. A large part of the thesis focuses on the Gantry-Tau
robot as a promising new robot structure for this purpose. Additionally,
problems related to a more flexible, easier-to-use robot concept are ad-
dressed.

14



1.2 Outline and Contribution

1.2 Outline and Contribution

Chapter 2: The Gantry-Tau Robot and Prototypes

The Gantry-Tau robot is positioned among related parallel robot archi-
tectures and its development summarized in view of recent parallel robot
trends. The Gantry-Tau prototypes used for experiments in this thesis are
shortly described.
The Gantry-Tau structure was invented by Torgny Broghårdh. The

prototypes were developed within the [SMErobot, 2009] and [MONROE,
2012].

Chapter 3: Software Support for Modeling and Control

An extended ABB IRC5 controller presented here allowed to implement
customized controllers in the experiments in Chapters 6 – 8. Using Mod-
elica robot models together with Modelica based tools for various stages of
robot development and control is discussed and illustrated by examples.
The ABB IRC5 extension was developed and implemented by Anders

Blomdell, Anders Robertsson and Klas Nilsson in close cooperation with
ABB Robotics. A Simulink Gantry-Tau kinematics library for usage with
the extended controller was implemented by Johan Friman based on the
author’s previous work and under her supervision. The Modelica models of
the Gantry-Tau robot and examples involving these models are exclusively
the author’s work. The Simulink controller for ILC was implemented to-
gether with Johanna Wallén.

Chapter 4: Kinematic Modeling

Based on the nominal kinematics by [Johannesson et al., 2003], kinematic
error models and kinematic models for extended Gantry-Tau geometries
were developed. The validity of the nominal model assumptions was ex-
perimentally examined and the influences of the imperfections on the
robot’s accuracy studied with the aid of a geometric method presented in
Appendix A.
The kinematic models presented are exclusively the author’s work as

well as the method in Appendix A. All experiments and evaluations were
carried out by the author. The algorithm for finding all forward kinematics
solutions of a hexapod robot was implemented by Kalle Åström from the
Centre for Mathematical Sciences at Lund University.

Chapter 5: Kinematic Calibration

The kinematic models presented in Chapter 4 were validated by kine-
matic calibration and the maximum achievable accuracy of the Gantry-
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Chapter 1. Introduction

Tau prototypes was examined. In search of suitable methods for assisting
non-experts to perform kinematic calibration, vision based calibration was
studied and an automated calibration method is presented.
The stereo vision script was implemented by Carl Olsson and Karl

Åström from the Centre for Mathematical Sciences at Lund University.
The actual image processing using stereo vision was done by Carl Olsson,
while the image processing for testing the automated calibration method
using only mono vision was done by the author. The laser tracker mea-
surements for the D1 prototype calibration were assisted by [Hexagon
Metrology, 2012]. All other work including experiments planning, execu-
tion and evaluation was done by the author.

Chapter 6: Dynamic Modeling

Rigid body modeling and identification are presented as well as black box
modeling of the Gantry-Tau compliance dynamics.
The rigid body model was developed and identified by the author. The

first compliance dynamic models were identified by Marzia Cescon for her
master’s thesis [Cescon, 2008]. For the joint article [Cescon et al., 2009],
Marzia’s findings were complemented by results from laser tracker mea-
surements performed together with the author. Models for estimation and
ILC tuning were identified by the author together with Johanna Wallén.

Chapter 7: Iterative Learning Control

Observer-based ILC was applied to the Gantry-Tau robot. Measurements
from an accelerometer mounted on the end-effector plate were used to
estimate the end-effector motion and to update the control signal based
on the end-effector rather than the actuator motion. The method was
successfully tested in experiments and compared to other approaches.
The observer-based ILC approach was developed by Johanna Wallén.

She also derived the conditions for stability and convergence of the ILC
algorithm. Identification as well as ILC experiments were prepared, car-
ried out and evaluated jointly by the author and Johanna Wallén at the
Robot Lab in Lund. Even though a sharp distinction is difficult between
Johannas’s and the author’s contribution to the experiments, there was
naturally a tendency that Johanna with her expertise in ILC contributed
more to ILC related steps, like tuning of the ILC algorithm, and the au-
thor contributed more in parts that required Gantry-Tau or experimental
setup knowledge, like implementation of sensor drivers or interpretation
of the results.

Chapter 8: Lead-through Programming with Tool Force Feedback

A novel concept for lead-through programming using two force sensors
was developed and successfully tested in two example applications. While
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1.2 Outline and Contribution

the first sensor is used to lead the robot along a desired trajectory, the
second sensor is used to control the contact force between tool and object
in order to prevent damage and to keep a steady contact. The concept was
tested in a surface tracking and a peg-in-hole experiment.
The author developed the new force control concept presented and car-

ried out all experiments including the controller implementation.
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2

The Gantry-Tau Robot and

Prototypes

This chapter describes the Gantry-Tau robot in the context of related PKM
architectures. After an introduction of the Gantry-Tau in Section 2.1, an
overview of the Gantry-Tau’s development and similar manipulators is
given in Section 2.2. The four different Gantry-Tau prototypes which were
used for experiments are shortly presented in Section 2.3.

2.1 The Gantry-Tau Manipulator

The Gantry-Tau manipulator (Figures 2.1 and 2.2) is in its basic form a
3 degree of freedom (DOF) parallel kinematic robot. It has three kinematic
chains actuated by prismatic joints. The prismatic joints are implemented
as carts moving on linear guideways and are connected to the end-effector
plate via link clusters and passive spherical joints, alternatively a spher-
ical and a universal joint. The altogether six links are grouped in a 3-2-1
configuration. In the following, the word “arm” denotes a complete kine-
matic chain consisting of linear actuator, link cluster, passive spherical
joints and end-effector plate. The robot arms and their components are
named according to their number of links, e.g., arm 2 is the kinematic
chain with two links, driven by cart 2. The positioning of the spheri-
cal joints on end-effector plate and carts according to the so-called Tau
configuration is such that the links within one link cluster form parallelo-
grams. This and the parallelism of the linear guideways assure a constant
end-effector orientation, so that the 3 DOF are purely translational. The
Gantry-Tau robot has, unlike most other parallel robots, a large workspace
to footprint ratio. The workspace has no internal singularities.
The Gantry-Tau robot was first named in [Johannesson et al., 2003],
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Figure 2.1 RobotStudio animation of the T2 Gantry-Tau prototype (see Sec-
tion 2.3). Besides the basic 3 DOF structure illustrated also in Figure 2.2, the joint
support plates on carts 2 and 3 can be reoriented giving the robot altogether 6 DOF.
Additionally, the carts are driven by double motors to avoid backlash.

where the kinematics and an optimization of the workspace are described.
A benchmark of the Gantry-Tau performance is presented in [Crothers
et al., 2010]. The mean omnidirectional repeatability of a Gantry-Tau pro-
totype measured at the 3 DOF end-effector plate was found to be 13µm.
The corresponding actuator value is with 12µm of the same order of mag-
nitude and thus actuator errors are not adding up at the end-effector as is
the case for serial robots. The stiffness of the same Gantry-Tau prototype
was typically between 2Nµm−1 to 4Nµm−1. In [Cescon et al., 2009], iden-
tification of the compliance dynamics of another Gantry-Tau prototype is
presented. A lowest resonance frequency of 14Hz was found in this work.
Study results for related robots and the development of the Gantry-Tau
robot are described in Section 2.2.
Several possibilities exist to extend the Gantry-Tau’s 3 DOF for tasks

requiring a higher DOF. Two of the prototypes constructed within the
SMErobot project have been extended with a 2 DOF serial wrist. Even
though the wrists were constructed in a lightweight way, a serial wrist
risks to compromise the advantages of parallel kinematics like high ac-
curacy, stiffness and acceleration. Another possibility is to reorient the
joint support plates on the carts. This Gantry-Tau version, presented in
Section 2.3 as the F1 prototype, enables a reorientation of 15○ to 30○ and
has the full advantages of a parallel structure. Five purely parallel DOF
can also be achieved by mounting two of the links of arm 2 and 3 on
extra carts moving on guideways 2 and 3, respectively, as shown in Fig-

20



2.1 The Gantry-Tau Manipulator

arm 1

arm 2

arm 3

z

x y

q1

q2

q3

Figure 2.2 Schema of the Gantry-Tau robot with global coordinate system, actu-
ator positions qi, i= {1,2,3}, and kinematic chain notation.

Figure 2.3 Proposal of extension to 5 DOF with two additional carts.

ure 2.3. In [Dressler et al., 2007], the end-effector reorientation limit with
the studied geometry was identified as approximately 5○.
Figure 2.4 shows the Gantry-Tau’s workspace cross section for one of

the prototypes presented in Section 2.3. The coordinate system is as shown
in Figure 2.2. The robot has link lengths of 1.8m to 2m, giving a cross-
section of the workspace in the yz-plane of approximately 1m$1m. In the
x-direction, the guideway length determines the workspace dimension.
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Figure 2.4 Workspace cross section for the L1 Gantry-Tau prototype presented
in Section 2.3 with coordinate system as in Figure 2.2. The three small squares
represent the guideways. In the light grey area the inverse kinematics has a solution,
inside the dark grey area, also the ball joint angles are within a 40○ limit.

2.2 Development and Related Architectures

Parallel Robots with Tau Configuration

A new family of parallel kinematic robots developed at ABB Robotics was
first presented in [Brogårdh, 2000]. Instead of grouping six links in a 2-2-
2 configuration as for the Delta parallel robot [Clavel, 1988], the links are
clustered in a 3-2-1 configuration. The inspiration to the name Tau came
from an early version of the Scara type of Tau robot described below, in
which the motor shafts were arranged in such a way that they formed the
letter τ , in the same way as the motor shafts in the Delta structure form
the letter ∆.
The Tau configured arm system can be driven by prismatic or rota-

tional actuators. Two different sorts of Tau robots have been realized: A
Scara and a Gantry version. The Tau configuration robots are patented
by ABB [Brogårdh, 1996].
The first parallel kinematic robot with the Tau configuration was a

Scara type Tau (Figure 2.5). Kinematic and dynamic analysis of this robot
was presented in [Cui et al., 2005] and [Zhu et al., 2005]. A performance
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comparison with other robots can be found in [Crothers et al., 2010]. A
variant of the Scara Tau with a triangular three-link arm is studied in
[Isaksson et al., 2010]. It has an improved, i.e., reduced, dependence be-
tween end-effector position and orientation. In [Isaksson et al., 2012], the
Scara Tau concept is extended to the 6 DOF octahedral Hexarot robot.
The first Gantry-Tau prototype was built at the University of Queens-

land, Australia in 2004. This Gantry-Tau has, unlike the Gantry-Tau in
this thesis, a triangular 3-link arm and consequently a variable end-
effector plate orientation. To distinguish it from the Gantry-Tau version
this thesis is based on, it will be called Queensland Gantry-Tau in the
following, while Gantry-Tau without further specification will denote the
version with constant end-effector orientation.
According to [Hovland et al., 2007b], the triangular link has several

advantages. It enables a reconfiguration of the robot, i.e., a change of the
assembly mode by flipping the links to the other side of the carts. The
spherical joint offsets on the actuator side are reduced and the robot has
a larger reach at the workspace limits. The constant end-effector plate
orientation can lead to collisions between links and plate. This is however
not an issue for the prototypes in Section 2.3, as the spherical joints used
reach their limits before a collision is at hand.
The first version of the Queensland Gantry-Tau had 3 DOF [Williams

et al., 2006]. Later, the links were exchanged with two of the links be-
ing prismatic joints, so that the new version had 5 DOF [Murray et al.,
2006]. The triangular arm and the end-effector plate design, which in-
cludes a sixth DOF, make a reconfiguration possible [Murray et al., 2008],
enlarging thus the workspace. In [Hovland et al., 2007a], the benefits of
exchanging the single link arm of the 3 DOF version with a telescopic
actuator were evaluated. With the redundant actuation, higher stiffness
can be achieved.
[Williams et al., 2006] presented a 3 DOF kinematic error model and

calibration; a 5 DOF inverse kinematic model was derived in [Murray
et al., 2006]. Collisions between links and end-effector plate reduce the
workspace in both cases, but can partially be avoided by an improved end-
effector plate design. The 5 DOF version of the Queensland Gantry-Tau
allows reorientations of approximately 30○ in the whole workspace.
In [Tyapin et al., 2007] a geometrical method was presented to calcu-

late the workspace volume and the volume of the unreachable workspace.
The latter occurs in the center of the workspace for reconfigurable Gantry-
Tau robots with sufficiently short linear actuators. Link lengths and lin-
ear guideway positioning were optimized for a maximal workspace. The
workspace to footprint ratio for the Gantry-Tau prototype was found to be
2.7, which is large for a parallel robot. In [Tyapin et al., 2008], the opti-
mization was extended by considering the lowest resonance frequency.

23



Chapter 2. The Gantry-Tau Robot and Prototypes

Figure 2.5 Animation (left) and prototype (right) of the Scara Tau robot developed
by ABB Robotics.

A dynamic rigid-body model of the Gantry-Tau was verified by experi-
ments in [Hovland et al., 2007b]. This model includes also friction caused
by the link forces. Static and dynamic stiffness was treated e.g., in [Tyapin
et al., 2008]. With optimized geometric design, the lowest calculated res-
onance frequency was larger than 45Hz, while in [Hovland et al., 2007b],
the lowest measured resonance frequency was 13.5Hz. The measurement
was however done with the earlier, obviously less stiffer 3 DOF prototype.
The stiffness modeling assumes flexible links and joints, while the frame-
work and actuators are perfectly stiff. In [Brogårdh et al., 2005], it was
found that the stiffness of the framework did not match the high stiffness
of the links and spherical joints, which were five times stiffer than those
in [Tyapin et al., 2008].
A way of reconfiguring the 5 DOF Gantry-Tau without passing through

singularities was shown in [Murray et al., 2008].

Related Parallel Robots

The most common parallel robot in scientific literature is undoubtedly
the Stewart platform [Stewart, 1965], see Figure 2.6. An article search for
“Stewart platform” in the Lund University Library database gives 25149
results, whereas a search for “Delta robot” only 3665. In spite of inten-
sive research, the Stewart platform has only found its way to industry in
small number and very specific applications, e.g., as a positioning device
[Symétrie, 2012]. The Delta robot dominates the industrial usage of par-
allel robots. At the 2012 Automatica fair in Munich [Automatica, 2012], a
view in the online catalogue shows that out of 251 robotics exhibitors, ten
companies offer parallel kinematic robots, of which five a Delta robot. In
the 50 years since the first appearance of parallel robots, they have thus
only reached limited application. The most successful parallel robot, the
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Figure 2.6 Stewart platform with link lengths Li and spherical joint positions Ai
on the base plate and Bi on the end-effector plate, i= {1,2,3,4,5,6}.

Delta, is mostly used for pick-and-place applications and thus only taking
advantage of the PKM’s high acceleration, but not of the in general high
stiffness and accuracy. Other PKMs like the Tricept [Siciliano, 1999; S.L.,
2012], a hybrid serial-parallel robot for machining applications, are used
in limited numbers. This may have made it difficult to obtain funding
and convince companies to invest in yet another new PKM structure, the
Gantry-Tau robot.
The reason for the Stewart platform’s dominant presence in literature

is maybe its generality. Being a 6 DOF hexapod robot, i.e., a robot with
six links, many results can be used for similar architectures, e.g., for the
Gantry-Tau kinematics in Section 4.5. While the Stewart platform has
actuated links, the 6 DOF Hexaglide [Honegger et al., 1997] robot has six
prismatic actuators moving the links’ base points. The actuators are copla-
nar, and the workspace typically small. Clustering the six links, robots of
lower than 6 DOF can be designed. Besides the Gantry-Tau robot with
its 3-2-1 configuration, the Triglide [Budde et al., 2008] is another 3 DOF
robot, which has a 2-2-2 clustering of the links and prismatic actuators
moving the links’ base points.

2.3 Gantry-Tau Prototypes

The following prototypes, which were used in the research presented in
this thesis, were constructed within the SMErobot and MONROE [MON-
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ROE, 2012] projects. The links consist of carbon fibre tubes. High stiffness
spherical joints (115 kNmm−1 for the full size Gantry-Tau prototypes)
were developed during the SMErobot project and further enhanced in
the MONROE project. All prototypes are controlled by kinematics imple-
mented by the author, or based on the author’s work for the Java con-
trolled T1.

The T1/T2 Gantry-Tau

The T1, see Figure 2.7(a) for an early version, is a small tabletop prototype
for teaching and research at Lund University. Various versions with con-
tinuously increasing size and improved performance were built. At first,
it had the basic 3 DOF structure, but the newest version has 6 parallel
DOF like the F1 below and is referred to as T2 (Figure 2.1). The control
of the T1 prototype was implemented in real-time Java [Robertz et al.,
2007].

The D1 Gantry-Tau

The D1, see Figure 2.7(b), is a large size prototype developed by ABB
Robotics, Güdel AG and Lund University. It was located at various sites,
among others at CTI Sheffield, where calibration measurements and ap-
plication tests were performed. Besides the basic 3 DOF Gantry-Tau struc-
ture, a lightweight 2 DOF serial wrist is mounted. It is controlled by a
standard industrial ABB IRC5 controller with kinematics modules writ-
ten by the author.

The L1/L2 Gantry-Tau

The L1, see Figure 2.7(c), is a somewhat smaller, pre-prototype version of
the D1 robot located at Lund University. The first version had aluminum
links which were later exchanged for stiffer carbon fibre links. By the end
of 2008, a 2 DOF serial wrist was mounted. In 2010, the L1 Gantry-Tau
was reconstructed with stiffer guideways and is referred to as L2 since
then. Like the D1, it is controlled by ABB IRC5, but with the possibility to
customize the controller [Blomdell et al., 2010]. Most of the experiments
presented in this thesis such as calibration, dynamic identification and
ILC were performed on the L1 robot.
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(a) T1 Gantry-Tau. (b) D1 Gantry-Tau.

(c) L1 Gantry-Tau. (d) F1 Gantry-Tau.

Figure 2.7 The Gantry-Tau prototypes.

The F1 Gantry-Tau

The F1, see Figure 2.7(d), has vertically mounted guideways. The joint
attachment plates on the carts can be reoriented such that it has 6 parallel
DOF. To increase positioning accuracy and remove backlash, the carts are
actuated by double motors. It was mounted at Güdel AG in Switzerland
and is now located at Lund University. The robot is controlled by the
ISG-kernel software [ISG, 2012].
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3

Software Support for

Modeling and Control

3.1 Introduction

Flexible software tools are needed to support robotics research. At differ-
ent stages of robot development, tools for modeling and simulation are
required. For testing new motion control concepts, a high-bandwidth con-
troller with an interface to external sensors is needed. Higher level con-
cepts like trajectory optimization or model-based control might require
interaction between different tools. Ideally, results, models and data can
be interchanged between the different development stages. This means
that either one tool comprises several purposes, or that several tools can
interact and exchange data and/or models.
Different tools were used in the work presented in this thesis. This

chapter intends to give some information on the nonstandard robot control
system used and its possible usage together with other tools. In particular,
Modelica based software and the Gantry-Tau modeling in the Modelica
language done within the scope of this thesis will be addressed.
The remainder of the chapter is organized as follows: Section 3.2 de-

scribes the robot control system, Section 3.3 explains how Modelica mod-
els can be reused beyond pure simulation and e.g., interfaced with the
extended IRC5 controller and Section 3.4 presents the Gantry-Tau model-
ing done in the Modelica language. Section 3.5 gives examples on how to
use the software tools presented for iterative learning control, kinematic
calibration and trajectory optimization.
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Figure 3.1 Structure of the extended ABB IRC5 control system.

3.2 An Extended ABB IRC5 Controller

To develop and test new robot control concepts, an open control interface
with the possibility to connect computers for low level sensors control is
needed. Today’s industrial robot control systems are mostly highly opti-
mized, closed systems without the possibility for high-bandwidth exter-
nal sensing and interfaces for customized controllers. Below, an extended
standard industrial ABB IRC5 controller [Blomdell et al., 2005; Blomdell
et al., 2010] developed at Lund University and used for experiments pre-
sented in this thesis is described.
Figure 3.1 gives an overview of the extended controller structure. The

ABB IRC5 controller is shown in the left of the picture. The standard
version consists roughly of the main controller and an axis controller for
each robot. The main controller includes path planning and trajectory
generation from RAPID programs or manual jogging commands and sends
motor reference values to the axis controller. The specially built IRC5
version used here contains an extra module that can communicate both
with the internal IRC5 and external controllers. The values sent from
main to axis controller can be read (submit state) and modified (obtain
state) by the controller extension with a sampling time of 4ms. Based
on measurement signals received from the main controller, the reference
values for the axis control can be modified based on customized control
laws.
The customized controller communicating with the IRC5 system runs

on a Xenomai Linux PC [Xenomai, 2012]. It can be implemented using
Simulink and translated to C-code using Simulink Coder [MathWorks,
2012]. Besides standard Simulink blocks, more complex relations like kine-
matics, can be modeled using S-functions. Thus a Gantry-Tau kinematics
library for Simulink was implemented [Friman, 2010] based on the au-
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thor’s IRC5 kinematics implementation. In Section 3.5, an example of
such a controller modeled in Simulink is presented.
The Opcom user interface allows communication with the IRC5 sys-

tem. From here, the customized controller can be loaded, submit and ob-
tain states controlled and controller parameters changed. Via the Lab-
Comm/ORCA protocol [LabComm, 2010], data can be exchanged with the
customized Simulink controller. This is mainly used for reading external
sensors synchronized with the Simulink controller, but can as well be
used for two-way communication applications like the haptic interface in
[Eriksson and Welander, 2009].
An important property of the controller extension presented is the

preservation of IRC5 safety functions. As well for safety reasons, it is
preferable wherever possible that the external Simulink controller modi-
fies the motor position and velocity reference for the axis controller instead
of skipping the axis controller and modifying the motor torque reference
directly.

3.3 Modelica-Based Robot Modeling and Control

Modelica [Modelica, 2011] is an object-oriented modeling language effi-
cient in modeling complex multi-domain systems. Modelica is equation
based, i.e., instead of solving for the differential equations and describ-
ing a system in explicit form, the equations are stated in implicit form.
Causality between different submodels is not required, as it is e.g., in
Simulink.
Below, the example of a general robot model illustrates the structure

of Modelica models, which roughly consist of two sections. In the first
section, all model parameters and variables are defined, with type (e.g.,
motortorque), name (e.g., tau) and eventually additional identifiers like
input. The second section, indicated by the key word equation, contains
the differential-algebraic equations describing the system.

model robotmodel

parameterSet p;

toolpose tcp;

toolvel vtcp;

toolacc atcp;

jointpos q;

jointvel vq;

jointacc aq;

input motortorque tau;
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equation

// relations between tool and joint coordinates

0 = f_kin(tcp,q,p);

0 = f_vel(tcp,vtcp,q,vq,p);

0 = f_acc(tcp,vtcp,atcp,q,vq,aq,p);

// force/torque balance

0 = f_t(tau,tcp,vtcp,atcp,q,vq,aq,p);

// state equations

der(tcp) = vtcp;

der(vtcp) = atcp;

end robotmodel;

In this example, the motor torques were chosen as input signals to the
robot model and the variables referring to the tool center point (TCP) as
states, but this can easily be changed. Apart from writing the model equa-
tions by hand, various libraries exist, e.g., the MultiBody library [Otter
et al., 2003] for rigid body systems. Tools like Dymola [Dynasim, 2009]
offer a graphical user interface, so that a robot can intuitively be con-
structed by connecting links and joints. An advantage for PKM modeling
is that with the MultiBody library, no special attention needs to be taken
to kinematic redundancy or closed kinematic chains [Otter et al., 2003].
Modelica robot models are conveniently used for simulation. Models

can easily be extended, e.g., a model of the rigid body structure of the
robot with motors or a controller. If needed, models can be migrated to
other tools, as described in e.g., [Frenkel et al., 2009]. The Gantry-Tau
rigid body dynamics presented in Chapter 6 were extracted from a Mod-
elica model using a tool described in [Dressler et al., 2009]. In [Thümmel
et al., 2001], a feedforward signal for robot control was obtained by Model-
ica simulations of the inverse robot model. The usage of nonlinear inverse
models in general for control by hardware-in-the-loop simulations of Mod-
elica models was presented in [Thümmel et al., 2005]. In [Pedreira Carabel
and Zambrano García, 2011], a two-wheeled self-balancing vehicle is mod-
eled using Modelica and by the aid of Dymola, a controller is designed and
code for real-time control generated. How the inverse dynamic Modelica
model of a parallel robot can be used for hardware-in-the-loop simula-
tion control is described in [Krabbes and Meißner, 2006]. [Dressler et al.,
2009] describes modeling and control of the Gantry-Tau robot using the
Modelica language.
Optimica [Åkesson, 2008] is a recently developed Modelica extension

for describing optimization problems. A new class optimization is intro-
duced together with an additional section constraint. The code example
below illustrates the basic features of Optimica. For a better overview,
many constraints and boundary conditions that need to be specified in a
real application, such as start and end pose of the robot, were omitted.
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Gantry-Tau model

filter_q2

filter_q1

filter_q3

multiplex3_1deMultiplex3_1
q

tau

Figure 3.2 Example model used for S-function generation: An inverse dynami-
cal model of the Gantry-Tau robot is constructed from the forward dynamic model
(“Gantry-Tau model”). The 3 filters to the left are necessary to make the inverse
model causal. Note how the robot model is connected to an additional block to invert
the signal direction.

optimization opt_robot (

objective = cost(finalTime),

startTime = 0,

finalTime = 1)

robotmodel robot;

Real cost;

equation

der(cost) = f(robot.tau);

constraint

robot.tau <= 1;

robot.tau >= -1;

robot.vtcp(finalTime) = 0;

end opt_robot;

Optimica also enables the formulation of minimum time problems by
setting finalTime(free=true) and including it in the cost. JModelica.org
[JModelica, 2010; Åkesson et al., 2010] is an open source tool for simulation
and optimization based on the Modelica and Optimica languages. For user
interaction, the Python language [Python, 2011] is utilized. In robotics,
Optimica can be used e.g., for optimal control or calibration as shown in
Section 3.5.
In combination with the extended robot control system presented in

the previous section, Modelica models can be used for real-time control.
An S-function in the Matlab/Simulink controller is then associated to the
Modelica model. The C-code required by the S-function can be generated
using e.g., Dymola. Figure 3.2 shows an example model used for C-code
generation for the inverse robot dynamics feedforward control, see Chap-
ter 6.
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Figure 3.3 Modelica model of full Gantry-Tau forward kinematics with six links.

3.4 Gantry-Tau Modeling in Modelica

A library including the different parts of the Gantry-Tau robot and Gantry-
Tau models for different purposes was implemented in Modelica and the
MultiBody library. The library contains the mechanical parts like models
for the actuators, the end-effector plate or the 2 DOF wrist, parameter
sets for the different prototypes and robot models.
It is difficult to have one single model for all purposes, but simple to

adapt the basic robot structure accordingly. Separate models are needed
e.g., for inverse and forward kinematics. The prismatic joints in the for-
ward kinematics model need to be active, i.e., include an input signal for
the reference position. For the inverse kinematics, the end-effector posi-
tion is given and the joint positions need to be determined. Therefore, the
prismatic joints need to be passive, i.e., their position is not determined
by a reference input but in relation to other robot parts connected in the
same kinematic chain.
As the end-effector orientation is constant for all cart positions, it is

sufficient to consider one link per kinematic chain, see Chapter 4. In ad-
dition to a full model with six links (Figure 3.3), a simplified Gantry-Tau
model has been implemented (Figure 3.4). Here the end-effector orienta-
tion is kept constant by an additional block which contains three passive,
serially connected prismatic joints aligned with the three principal coordi-
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Figure 3.4 Modelica model of a simplified Gantry-Tau kinematics. The lowermost
block in the model prevents the end-effector from changing orientation, and thus
the model requires only three links instead of six.

nate axes. Each of the three kinematic chains visible in Figure 3.4 consists
of a model for guideway and cart positioned in the base coordinate sys-
tem by a FixedTranslation block and a link connected to the end-effector
plate. The cart positions are the model’s input signals.
The full Gantry-Tau model in Figure 3.3 can be used for modeling the

kinematic error model presented in Section 4.4. It is possible to appoint
different lengths to the links within one cluster or to modify the spher-
ical joint placement so that it is not according to the Tau configuration
any more, thus causing a variable end-effector orientation. With simply
adding three rotational joints between guideways and links, a F1-type
Gantry-Tau can be modeled. The model shown here is a forward kinemat-
ics model. It is more difficult to construct a working, full six-link inverse
kinematic model. As the kinematic error model still has only three trans-
lational DOF, the end-effector position has to be specified without locking
the orientation. This can in principle be done putting a spherical joint
between the end-effector plate and a block specifying the position, but
the resulting equation system could not be solved. To obtain a working
model, customized equation systems should be utilized rather than stan-
dard parts.
The model used for extraction of the dynamic model equations is shown

in Figure 3.5. The nominal, simplified kinematics with only three links
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Figure 3.5 Modelica model of Gantry-Tau with actuator torques used for extrac-
tion of rigid body dynamic equations.

is used here. Instead of appointing the robot’s actuator positions as in
Figure 3.3, a force in direction of the actuator axis is applied to each cart.
Friction has to be added manually to the robot models. The commonly

adopted combination of Coulomb and viscous friction might pose problems
with some tools as JModelica.org, as it is discontinuous around zero ve-
locity. In that case, it can be approximated by a piecewise linear function,
see Figure 3.6. Another possibility, if possible, is to constrain the joint
movement in one direction and use a linear friction model. In [Krabbes
and Meißner, 2006], the friction force was filtered to avoid this problem.
The same limitations and approaches are applicable for more advanced
friction models, e.g., containing the Stribeck effect.
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Figure 3.6 Illustration of the friction force approximation for the Modelica
Gantry-Tau model. The original discontinuous model with Coulomb and viscous
friction (dotted) together with the continuous, piecewise linear model (solid) and
the linear approximation for positive velocities (dashed/solid). For better visibility,
the Coulomb friction coefficients were slightly modified between the models.

3.5 Application Examples

Iterative Learning Control

Below, the controller extension presented is illustrated by an ILC appli-
cation. Here, only the usage of the extended robot controller is addressed,
whereas the experimental results are discussed in detail in Chapter 7.
Even if this example does not reflect the full potential in adding com-
plex controllers including e.g., stateflow diagrams for mode changes, it
captures the main communication flow and relates to the described mod-
ularity of the system.
When applying ILC, the robot is to “learn” a specific motion. This is

done by modifying the control signal with small corrective terms calcu-
lated from the control errors every time a motion is performed. Alterna-
tively to the control signal, the ILC can act on the reference signal to
an inner controller. Thus, the motion should converge iteratively to the
desired reference trajectory.
Of the signals which can be modified by the external controller, the

control signal which is acting most directly on each motor is the motor
torque reference. For the ILC experiments however, the corrective terms
are added to the motor-angle reference. The derivative of the ILC input
signal is added to the motor angular velocity reference. Without limiting
the ILC performance, this is a considerably safer choice than modifying
the torque references.
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 addpath /opt/robot/matlab/;

% addpath /opt/robot/matlab/irb/mex/;

addpath /home/robot/project/extctrl/irc5/simulink

addpath ’/opt/matlab/matlab−R2008a/toolbox/fixedpoint/fixedpoint’

%GTP mex files

addpath /home/f04jfr/Documents/mex/mex_GTP_L1

addpath /home/f04jfr/Documents/mex

addpath /home/f04jfr/Documents/

DOF=6; h=0.004; samptimeS4C=h; samptimeIRC5 = h;

K_fz=1/50;

f_activate=0;

A = 0.01; % 1 cm circle

w = 1; % circle frequency

max_track_speed=0.001;

track_speed = 0.01;

T = 2*A/max_track_speed;

K=1;

% convert motor rad to [mm mm mm deg detg ?]

motor2arm_conv=diag([1000/400 1000/400 1000/400 180/(pi*80) 180/(pi*80) 1]);

arm2motor_conv = diag([400/1000 400/1000 400/1000  (pi*80)/180 (pi*80)/180 1])

disp(’init done’)
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Figure 3.7 Example: Simulink model for ILC: The model contains the standard
input and output signals from and to the IRC5 system and an input from an exter-
nal linear encoder (heidenhain). The reference signal is generated from the user
interface input f_activate, and the correction terms are read from a file, generated
by the ILC-algorithm.
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Figure 3.7 shows the Matlab/Simulink ILC implementation. The ILC
references and corrective terms are added to the constant, internal IRC5
values for motor position and velocity references. The external controller
can in principle also be used together with a reference trajectory from
the IRC5 main controller, e.g., given by a RAPID program. However, it is
more convenient for the synchronization between the reference trajectory
and the corrective terms to control the complete motion in the external
controller. The only external sensor in this experiment is a linear encoder
to measure the arm side position. The ILC experiment can be started
manually by the user in the Opcom user interface via a switch parameter.
The switch parameter (f_activate) is implemented as a modifiable

parameter and the experiment thus started from the Opcom user inter-
face. The reading of reference trajectory and corrective terms from a file
are synchronized with this parameter.
For the reference trajectory, here a filtered sine signal was chosen. The

synchronization with the f_activate switch is here done by integrating
f_activate, which is set to 1 to start the experiment. This creates a time
signals t, which is fed into a sin(t) block. A saturation block on the time
signal terminates the sine after an appropriate number of cycles. A more
flexible way would be to read the reference from a file, as described below
for the corrective terms.
The corrective terms are calculated offline and written to a file. A C-

program was written that uses the LabComm protocol to connect to the
ORCA client. It receives the f_activate signal, and when it switches to 1,
it opens the specified file and starts to send the corrective values to the
ORCA client with the same sampling interval it receives f_activate from
the ORCA client.
Any additional sensor, such as the high-resolution linear encoder in

this example, can communicate with the ORCA client in a similar way.
A C-program sets up the connection and sends the measurement data to
the ORCA client. To ensure exact synchronization of the sampling, the
sending can be adjusted to data reception from the ORCA client.

Kinematic Calibration with Optimica

The procedure of kinematic calibration is explained in detail in Chap-
ter 5. Here, the aspects of using Optimica for kinematic calibration are
considered.
Calibration of the nominal 3 DOF Gantry-Tau kinematics determines

altogether 21 kinematic parameters. For that, the end-effector position
T =(X ,Y,Z) is measured for a number N of actuator positions (q1,q2,q3).
The optimized parameters minimize a cost function based on the equations
describing the kinematics.
As the MultiBody Library is not yet compatible with Optimica, a so-

38



3.5 Application Examples

called flat Modelica model for optimization had to be generated, i.e., a
model with only one hierarchy level. For that, the model equations can
be extracted automatically from the MultiBody model as described above
in Section 3.3. With the measured data and a subset of these equations
describing the kinematics, a model for optimization is then generated as
follows. Of course, the model below can easily be written manually, but
an automated method simplifies modifications as e.g., for a new prototype
with new nominal parameters or for a modified kinematic structure.

model GTPKinCalib

parameter Real q1[N] = {data}; // Reference

parameter Real q2[N] = {data}; // actuator

parameter Real q3[N] = {data}; // positions

parameter Real X[N] = {data}; // Measured

parameter Real Y[N] = {data}; // end-effector

parameter Real Z[N] = {data}; // positions

// Kinematic parameters

parameter Real L1; // Length link 1

parameter Real sA1[3]; // Offset actuator 1

parameter Real v1[3]; // Axis actuator 1

parameter Real L2; // Length link 2

. . .

Real f1[N];

Real f2[N];

Real f3[N];

Real cost;

equation

for i in 1:N loop

f1[i] = Residual kinematic constraint link 1, measurement i;

f2[i] = Residual kinematic constraint link 2, measurement i;

f3[i] = Residual kinematic constraint link 3, measurement i;

end for;

cost = f1[1]2+f2[1]2+f3[1]2+ . . .;

end GTPKinCalib;

The variable cost is then minimized using Optimica. The L1 proto-
type’s end-effector position T = (X ,Y,Z) was recorded for 176 robot poses
with known actuator positions (q1,q2,q3) using a laser tracker. Figure 3.8
shows the calibration results. The calibrated model has a mean absolute
tool positioning error of about 140µm.
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Figure 3.8 Positioning accuracy of the L1 Gantry-Tau after calibration: Histogram
of absolute positioning error measured at TCP.

Optimal Trajectory Generation with Optimica

The usage of Optimica for dynamic optimization applications like mo-
tion planning is illustrated by a comparison of direct trajectory planning
[Choset et al., 2005] and optimal path tracking [Pfeiffer and Johanni,
1987; Verscheure et al., 2009]. For direct trajectory planning, the complete
motion is optimized in one step, whereas for optimal path tracking, the
motion along a given path is optimized. Optimica was first used for opti-
mal robot control in [Hast et al., 2009]. The speed along a path recorded by
lead-through programming was optimized, subject to torque constraints,
along the concept of [Dahl, 1992].
With a simple change in the Modelica model, the robot motion can

be restricted to a given path. Thus, no penalty for deviating from the
path has to be added to the cost function. The code example below from
the equation section illustrates the modification for a robot with three
translational DOF.

// state equations

der(tcp.x) = dtcp.x;

der(tcp.y) = dtcp.y;

der(tcp.z) = dtcp.z;

der(tcp.dx) = ddtcp.x;

der(tcp.dy) = ddtcp.y;

der(tcp.dz) = ddtcp.z;
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The original code above is replaced with the lines below. The number of
states is reduced from six to two. Instead of declaring all three motor
torques as input signals, only one of the torques is an input, and the
other two torque signals are treated as dependent variables.

// state equations

der(tcp.x) = dtcp.x;

der(tcp.dx) = ddtcp.x;

// new algebraic equations

tcp.y = f_y(tcp.x);

tcp.z = f_z(tcp.x);

tcp.dy = f_dy(tcp.dx);

tcp.dz = f_dz(tcp.dx);

tcp.ddy = f_ddy(tcp.ddx);

tcp.ddz = f_ddz(tcp.ddx);

The motion between two given poses is optimized for the Gantry-Tau
robot. A free optimization of the complete trajectory is compared to opti-
mizing along a linear Cartesian path between the poses. In both cases,
constraints on the motor torques are considered. In both start and end
pose, velocities and accelerations are zero. The cost function C is a sum
of the total time duration TFinal and a weighted term proportional to the
energy used.

C = TFinal +w
3

∑
i=1

∫

τ 2i dt

Results with different values for w are presented below, including the
minimum time problem for w= 0. The path tracking is optimized for w= 0.
As initial guess, the same linear motion between start and end pose with
a trapezoidal velocity profile was used for all cases.
Figures 3.9 – 3.10 and Table 3.1 show the results. For the minimum

time problem and a free path, all three motor torques are at their max-
imal values for the largest part of the motion. For the path constrained
optimization, motor 3 is at its maximum value. This is consistent with mo-
tor 3 traveling the largest distance. With increasing energy term in the
cost function, the torques decrease towards the path constrained case. The
time optimal path saves around 0.07 s, that is 7 %, compared to the linear
path, but to the cost of nearly twice the energy. The increasing number
of iterations with decreasing w for the direct trajectory optimization can
be explained by a comparison with the optimal paths in Figure 3.9. The
differences in number of iterations in Table 3.1 correlates with how close
the optimized paths were to the initial guess trajectory.
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Table 3.1 Direct versus path constrained optimization.

Final Energy Number of

Time [s] ∑
∫

τ 2i dt Iterations

Direct trajectory optimization with weight w

w = 0 0.9074 103.8448 199

w = 0.001 0.9191 77.0024 53

w = 0.01 0.9968 50.1301 26

Path constrained optimization

0.97612 57.32659 70
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Figure 3.9 Optimized TCP path. Path constrained optimization (lightest gray
shade) and direct optimization with w= 0.001, w= 0.01 and w= 0 (increasing dark-
ness of gray shade with decreasing w).
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Figure 3.10 Optimized motor torques for the TCP paths in Figure 3.9.
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4

Kinematic Modeling

The kinematic modeling presented in this chapter is an important basis
for Chapter 5 on kinematic calibration. First, a brief summary of parallel
robot kinematics and the nominal kinematic model of the basic 3 DOF
Gantry-Tau robot is given. Then, the validity of the nominal model is
discussed based on measurements and the influence of modeling errors
on the Cartesian positioning accuracy studied. Based on the results, er-
ror kinematic modeling of the Gantry-Tau robot is studied. The chapter
concludes with kinematic modeling of the extended 6 DOF Gantry-Tau
structure.

4.1 Preliminaries

The kinematics of a robot describes the relation between the actuator
positions q and the end-effector (tool) pose (T ,RT ) with position T =
(Tx,Ty,Tz)T and orientation RT . Further, the kinematics is a function
of the kinematic parameter set s and possibly a configuration state c to
distinguish between several solutions if more than one exist. Unlike for
serial robots, for parallel robots the forward kinematics

(T ,RT ) = ffk(q,s,c) (4.1)

is in general more difficult to solve than the inverse kinematics

q= fik(T ,RT ,s,c) (4.2)

The configuration state c comprehends both forward and inverse kinemat-
ics configuration, which are possibly independent from each other. General
solution methods exist [Merlet, 2000]; analytic or geometric methods for
the inverse kinematics and iterative methods for the forward kinemat-
ics. The kinematic constraint for each kinematic chain i connecting the
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Figure 4.1 Schematic Gantry-Tau PKM with parameter and variable notation
exemplified on arm 1.

basis with actuators (attachment point Ai) and the end-effector (attach-
ment point Bi) often plays a central roll. For many PKMs including the
Gantry-Tau it can be written in the form

Li ⋅ui = Ai(qi)− Bi(T ,R) (4.3)

where ui is the unitary vector along link i with length Li. In many cases
the kinematic constraint is used as a scalar equation

L2i = qAi(qi)− Bi(T ,R)q2 (4.4)

For some PKMs, e.g., the Stewart platform, the attachment point Ai on
the base side of kinematic chain i is fix and it is rather the vector along
the link, Li ⋅ui, that depends on qi.

4.2 Nominal Kinematic Model and Validity

Nominal Kinematic Model

The nominal kinematics of the Gantry-Tau PKM was first described by
[Johannesson et al., 2003].
Figure 4.1 illustrates the notation used for geometric parameters and

variables. Linear guideways and link clusters are numbered according
to the number of links in the kinematic chain. Two different coordinate
frames are used: The global frame and the end-effector frame.
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Figure 4.2 Schema of simplified Gantry-Tau.

For each link j of arm i, the spherical joint positions Ai j and Bi j in
the kinematic constraint (4.3) or (4.4) can be expressed as

Ai j = A0i j+ qi ⋅v (4.5)
Bi j = T+RT ⋅ B0i j (4.6)

where A0i j is the spherical joint position associated with qi = 0, v the
direction of the guideways, and B0i j the (constant) spherical joint position
given in the end-effector frame.
The kinematic chain i = 1 has only one link, link 1. Chain 2 has two

links, 2a and 2b, and chain 3 three links, 3a, 3b and 3c.
Thanks to the Tau-configuration, the orientation of the end-effector

plate is constant and the 3 DOF of the robot are completely translational.
It is therefore sufficient to consider the simplified geometry in Figure 4.2
with one link representing each cluster. The spherical joint positions of
the simplified robot are then

Ai = (A0i j −RT ⋅ B0i j)+ qi ⋅v= Asi + qi ⋅v (4.7)
Bi = T (4.8)

with Asi as the spherical joint position associated with qi = 0 of the sim-
plified robot. As the links within a cluster form parallelograms, (4.7) and
(4.8) are valid for any link of that cluster. Now the model has only three
links, i= {1,2,3}. The kinematic constraint equation for link i

L2i = qAsi + qi ⋅v−Tq2 (4.9)
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can then easily and independently for each kinematic chain be solved for
qi to solve the inverse kinematics.
The forward kinematics problem consists in solving the three equa-

tions (4.9) for the end-effector position T , its orientation RT being con-
stant and known. This problem, which is equivalent to intersecting 3
spheres, is called trilateration and is well-known in many other domains
[Coope, 2000]. In [Johannesson et al., 2003], a stepwise geometric solution
for the Gantry-Tau forward kinematics is suggested. Another possibility
is to solve the equations with the aid of a symbolic computation tool like
Maple.
For the nominal forward kinematics, two solutions exist. The end-

effector can be on either side of the actuators. For the inverse kinematic
problem, for each link cluster two solutions exist, altogether 23 = 8 solu-
tions. When only one particular solution is desired, e.g., when using the
kinematic model for control, a configuration state c has to decide which
one of the solutions is wanted. Note, however, that the configuration state
resulting from forward kinematics is not related to the inverse kinematics
configuration.
The workspace of the simplified robot, i.e., all robot poses where a

mathematical solution of the kinematics exists, is reduced for the real six
link robot, not only by limits of the passive and active joints, but also
by possible collisions between the links and the framework or with the
end-effector plate. For reconfiguration, i.e., moving from one kinematic
solution to the other, it is as well often a problem to find a trajectory that
does not pass through singularities. The Gantry-Tau prototypes treated
in this thesis cannot move from one configuration to the other. However,
the Queensland Gantry-Tau can reconfigure [Murray et al., 2008] as well
as other PKMs with a similar structure, e.g., the Triglide [Budde et al.,
2008]. While the Queensland Gantry-Tau can reconfigure kinematically,
i.e., without passing through a singularity, the Triglide has to use its
inertia to traverse a singularity when reconfiguring. A reconfiguration
without passing singularities is much preferred as the robot is controllable
along the complete path.

Modeling Assumptions

The nominal kinematics relies on the following assumptions:

• The spherical joints are positioned on the carts and on the end-
effector plate according to the Tau configuration.

• The guideways are linear and parallel to each other.

• All links within one cluster have equal length.
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Table 4.1 Actuator accuracy: Residuals qeq in (4.10).

Prototype D1 L1

Actuator 1 2 3 1 2 3

mean [µm] 32 77 54 163 76 116

std [µm] 14 36 18 87 47 62

These assumptions assure the links within one cluster building up
parallelograms and the end-effector thus keeping a constant orientation.
In the following, measurements are presented in order to assess how well
these assumptions hold in practice. The consequences of the results on
the kinematics and Cartesian positioning accuracy are then discussed.
The analysis focuses on the linearity of the tracks and the deviation of the
end-effector orientation from its constant nominal orientation. Section 4.3
will then study in more detail how modeling errors influence the Cartesian
positioning accuracy.

Linearity of guideways Based on the linear actuator model (4.7), the
position of a point P attached to one of the carts as the cart moves along
the guideway can be expressed as

P(q) = P(q0 = 0)+ q ⋅v+ e (4.10)

where e is the modeling error.
Measurements to evaluate the actuator linearity were performed on

the L1 and D1 Gantry-Tau prototypes. Using a laser tracker [Leica Geosys-
tems, 2009], with a corner cube reflector for D1 and a cateye reflector for
L1, the three-dimensional cart position was measured along the guideways
keeping the yz-position of the end-effector constant, with the coordinate
system according to Figure 4.2. For the L1 prototype, the guideway mea-
surements were repeated for a different end-effector yz-position and thus
different link angles to investigate the influence of small load changes on
the cart position. The reflectors were mounted as close as possible to the
spherical joint centers.
Table 4.1 shows the residuals qeq from (4.10) for the measurement data

for both prototypes. The mean norm of the residuals differs considerable
between the actuators and prototypes and lies between 32µm to 77µm for
the D1 prototype and between 76µm to 163µm for the L1 prototype. The
standard deviation is approximately half of the mean value.
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In Figure 4.4, the modeling error of the D1 prototype is divided into
two parts:

• A part projected on the actuator axis

eq = eT ⋅v (4.11)

This part may be caused by bad positioning or errors in the trans-
mission.

• A part orthogonal to it
e⊥ = e− eq (4.12)

This part of the error may be caused by the guideway lacking stiff-
ness or straightness.

It can be seen that actuator 2, and to a lower degree actuator 3, exhibit
a cyclic error along the actuator axis. A plausible reason for this might be
mechanical imperfection of the transmission. As the cycle length between
the teeth of the rack- and pinion transmission was much shorter than the
measurement resolution of 50mm, aliasing effects can be presumed. An-
other source of error could be the motor angle sensor for the robot servo.
Even though resolvers are considered to give very accurate angle measure-
ments, amplitude deviations and imperfect quadrature of the resolver may
cause the effect of a small additive sinusoidal error [Hanselman, 1991].
However, the D1 prototype was unfortunately not available to repeat the
measurements on with a higher resolution. To investigate the qualitative
behavior and risk of aliasing, measurements were instead made on the
L2-prototype, which has a similar motor and transmission system as the
D1-prototype.
The cart position for a linear actuator of the L2-robot was measured

with a length gauge (Heidenhain ST 3078 [Heidenhain, 2010]) and a lin-
ear actuator model with respect to the motor angles was estimated by the
least squares method to (a sequence) of motions along the rail. Figure 4.3
shows the error e between the externals measurement and the linear actu-
ator model for uni-directional and bi-directional motions, respectively. The
measurements supports the occurrence of periodic patterns with shorter
period(s) than the measurement grid used for the calibration. One can
also get a good estimate of the width of the backlash in the transmis-
sion (( 40µm) from the measurements of the bi-directional motion, see
Figure 4.3 (lower plot).
Another influence on P’s position can be forces acting on a cart. That

might be load changes, which are not present during the measurements,
or even if the other two carts are moved to another position, the gravity
force transmitted in the link changes and might affect the cart. To study
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Figure 4.3 Error measurements for the L2-prototype. (Upper) Actuator model
error e, uni-directional motion. (Lower) Actuator model error e, bi-directional motion.
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Figure 4.4 Actuator accuracy for D1 prototype: Residuals e in (4.10), eq projected
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Figure 4.5 Actuator accuracy for L1 prototype: Residuals e in (4.10) for actuator
1, x (blue), y (green), z (red) and norm (turquoise). The squares show the residuals
of data with the end-effector having a different position in the plane orthogonal
to the actuators. The values are given in the measurement frame with the y-axis
approximately along the actuators and the z-axis upwards.

this influence, L1 measurements with different yz-position of the end-
effector were performed. Figure 4.5 shows the results. The solid lines show
the residuals qeq of the data used for modeling, i.e., calculated with the
optimized P0 and v, from data with one constant yz-position. The squares
are the model residuals of data from a second experiment where the end-
effector’s position in the yz-plane was changed, but the same P0 and v
as with the solid lines are used. The measured cart position varied up
to 100µm. The experiment results suggest that even small load changes
caused by a redistribution of the gravity force may give rise to substantial
deviations from the actuator model.
These experiments give an indication about how large errors can be

expected in the modeling of Ai in (4.7). However, there are other possible
errors that cannot be identified with the measurements performed.
As the measurements were only three-dimensional, they cannot de-

tect a shifting orientation of a cart along the guideway. Therefore, the
reflectors were placed as near as possible to the spherical joints.
Other problems that might affect the actuators are e.g., backlash, wear,

temperature or deformations. To eliminate the influence of backlash in
the measurements, the carts were moved only in one direction. Other
prototypes, namely F1 and T2, have linear actuators driven by double
motors to eliminate backlash altogether.

End-effector orientation For each of 176 TCP poses lying on a grid
filling the D1 robot’s workspace, the position and orientation of the 3 DOF
end-effector were recorded with a laser tracker and T-Mac [Leica Geosys-
tems, 2009]. Figure 4.6 illustrates the measurement setup and poses.
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Figure 4.6 Schema of simplified Gantry-Tau with measurement points and corre-
sponding laser tracker positioning. Here, only every second measurement point layer
is shown for better visibility (first layer to the left in the figure). The coordinate
system is scaled in [m].

Errors in the end-effector orientation can have different causes. If the
carts on the guideways have a varying orientation, the end-effector orien-
tation will vary as the end-effector moves in parallel to the actuator axes.
If the links of the robot are such that they cause orientation errors, e.g.,
having different lengths of incorrect joint placements, the orientation er-
ror will be the same as the end-effector moves in parallel to the actuator
axes, as the links of the robot do not move relatively to each other.
Figure 4.7 shows the end-effector orientation represented as ZYZ Euler

angles (α ,β ,γ ) along the grid. The maximal Euler angle variations lie
between 0.1○ (α ) and 0.5○ (β ). The repeating pattern exhibited can be
associated with the six grid layers orthogonal to the actuator axes that
the end-effector is traversing. The robot is alternatively moving forward
in one layer and then traversing backwards along the same path for the
next layer, see Figure 4.6. The pattern in Figure 4.7 indicates that the
TCP orientation errors are mainly caused by the links. The end-effector
orientation varies only little for positions with the same yz-coordinates,
i.e., for a movement parallel to the actuator axes. but more within one
layer, i.e., for positions with different yz-coordinates. Together with the
manner in which the grid is traversed, this creates the regular pattern. If
the cart orientations varied along the guideways, the end-effector would
change its orientation when moving in parallel to the actuators.
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Figure 4.7 Orientation error: ZYZ Euler angles of end-effector plate orientation
measured along a grid (Figure 4.6). The pattern corresponding to the grid point
layers is marked out for layers 1 and 2.

4.3 Influence of Modeling Errors on Positioning Accuracy

This section relates the modeling errors found in the previous section
to the Cartesian positioning accuracy of the Gantry-Tau robot using the
method described in Appendix A.

Related Work

In [Kim and Choi, 2000], a distinction is made between forward error
bound analysis, which consists in finding the end-effector errors given a
bound on the joint errors, and inverse error bound analysis, where the
joint tolerance limits given a maximal possible end-effector error are de-
termined. The accuracy of hexapod parallel robots, in particular the Stew-
art platform, has been studied extensively. An early example is [Wang and
Masory, 1993], where an error model of the Stewart platform using the
Denavit-Hartenberg convention is developed and the end-effector pose de-
viation from the desired trajectory is studied, given random errors which
lie within the manufacturing tolerances by simulating the nominal in-
verse and error forward kinematics. In [Wang and Ehmann, 2002], an
automated error analysis system is developed for computation and graph-
ical illustration of the influences of geometrical errors on the end-effector
pose accuracy of the Stewart platform. In [Merlet and Daney, 2005], it is
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Table 4.2 Assumed actuator errors for simulation study. All values in [µm].

Actuator i Case 1 Case 2

ei,x = ei,y = ei,z ei,x ei,y = ei,z
1 32 11 28

2 77 58 38

3 54 19 47

described how to find robot dimensions that guarantee a given end-effector
accuracy with bounded manufacturing errors and actuator accuracy using
interval analysis of the kinematic Jacobian matrix. Recent work includes
accuracy analysis using a force-based method based on the kinetostatic
dualism [Pott et al., 2007], particle swarm optimization [Hui and Feng,
2009] or Edgeworth series and information entropy [Du et al., 2010]. Even
though most studies are performed on purely geometrical errors, [Mer-
let, 2000] gives examples of other work on thermal, dynamic or gravity
induced errors.

Accuracy Analysis

In the following, two different scenarios are simulated, based on the D1
prototype geometry and accuracies found previously. The Cartesian po-
sitioning error in a workspace slice orthogonal to the actuator axes is
examined. First, it is assumed that the actuator positioning error is equal
in all direction, i.e., the real spherical joint position Ai lies inside a sphere
around the modeled position. This actuator modeling error has the same
influence on the Cartesian accuracy as a length error in the correspond-
ing link. Second, it is assumed that the error is not equal in all directions,
but that the error along the actuator axis differs from the error orthog-
onal to it. The actuator has not the same mechanical properties in all
directions, and the error along the actuator axis depends on additional
factors like the transmission and the position control, which motivates
this choice. Measurements of these two error components are shown in
Figure 4.4. The real spherical joint position Ai lies then inside an ellip-
soid with axes (ei,x, ei,y, ei,z) aligned with the base coordinate directions.
Table 4.2 summarizes the assumed actuator modeling errors. The analy-
sis method considers only errors in the actuator modeling and is based on
the nominal kinematics with only three links, i.e., it is not examined how
other modeling errors, e.g., in the link lengths within one cluster, affect
the end-effector position and orientation. Such an analysis can be carried
out using the kinematic error model in Section 4.4.
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Figure 4.8 End-effector accuracy in a yz-workspace section: Level plot of maxi-
mum possible positioning error [m] for case 1. The black squares indicate the actu-
ator positions. The area examined is very roughly limited by the robot framework
(left and upper edge of the figure).

Figure 4.8 shows the maximum possible Cartesian error for case 1.
The values differ between 140µm to 230µm, which is considerable larger
than the actuator modeling error. The smallest values are reached at the
workspace edge in the lower right corner of the figure. In the workspace
center, there is a saddle point with an error of approximately 0.2mm.
The maximum error is largest close to the actuators in the lower left and
upper right corner of the figure. The shape of the Cartesian error bounds
was also studied. As shown in Appendix A, it can be approximated by a
parallelepiped. By comparing the area of the three pairs of parallelogram
faces, which are orthogonal to one of the links each, one can see if the error
is dominant in a certain direction or within a certain plane. Figure 4.9
shows that the error is most dominant in the plane orthogonal to link 1,
which is expected since actuator 1 exhibits the smallest modeling error.
Figure 4.10 shows the maximum possible Cartesian positioning error

for case 2. The values vary between 90µm and 170µm. The largest actu-
ator modeling error is in the actuator axis direction of actuator 2. This
matches with the tool error being largest in proximity of guideway 2,
where link 2 is close to being parallel to guideway 2.
Parallel robots are commonly considered as more accurate than serial

robots, and it is sometimes said that their geometric errors compensate
for each other rather than adding up as for serial robots. The results
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Figure 4.9 Geometry of Cartesian error bounds: Area of the parallelogram faces
of the parallelepiped approximation along the dashed line in Figure 4.8. Faces or-
thogonal to link 1 (solid), link 2 (dashed-dotted) and link 3 (dashed).
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Figure 4.10 End-effector accuracy on a yz-workspace section: Level plot of maxi-
mum possible positioning error [m] for case 2. The black squares indicate the actu-
ator positions. The area examined is very roughly limited by the robot framework
(left and upper edge of the figure).
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4.4 Kinematic Error Model

show that in the worst case, the Cartesian error can be a multiple of the
error of each arm. The results here should be seen as a motivation for
the kinematic error modeling in the following section. In order to assess
the Gantry-Tau’s sensitivity to modeling errors properly, a more thorough
study has to be performed, including more aspects than only the actuators
and a comparison with other methods.

4.4 Kinematic Error Model

Kinematic error models for numerous parallel manipulator architectures
were presented in the past. An early example is [Wang and Masory, 1993],
which presents a kinematic error model for a Stewart platform. In [Cui
et al., 2005] and [Williams et al., 2006] error kinematic models for the
Scara Tau and the Queensland Gantry-Tau robot, respectively, are pre-
sented. To the author’s knowledge, the models presented were often ver-
ified by simulations and few results on the kinematic accuracy from ex-
perimental measurements exist.
In the following, kinematic error models are discussed with a focus

on the linear guideways and the link clusters. The error kinematic model
for the guideways concentrates on arbitrary actuator axes as in [Williams
et al., 2006]. A more prototype-specific model for non-linear actuators is
presented in Chapter 5 in connection with the calibration of the kinematic
error model.

Actuators

The nominal kinematic model assumes that the actuators are perfectly
linear and parallel to each other. Assuming an arbitrary orientation of
guideway i instead of all guideways being perfectly parallel, the position Ai
of cart i can be expressed as

Ai = A0i + qi ⋅vi (4.13)

where vi is the unit vector along the guideway in positive qi direction,
which is now different for each guideway.
This change does not affect the kinematics solution method, except for

exchanging v with vi. The stepwise geometric method [Johannesson et al.,
2003] can be applied to solve the forward kinematic problem if the cart
positions are modified according to (4.13) and the inverse kinematics can
still be solved independently for each actuator. The inverse and forward
kinematic problems have the same number of solutions as in the case of
parallel articulator axes.
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However, the simplified kinematic model is based on the Tau configu-
ration and constant end-effector orientation. Errors in the guideway ori-
entation are most likely caused by imprecise mounting of the guideways,
inherent in the basic concept of a reconfigurable robot structure for SMEs.
Especially the usage of box joints [BoxJoint, 2011] for the frameworks of
the L1 and T1 prototypes, which eases reconfiguration of the robot, makes
small orientation errors around the z- or y-axes, see Figure 4.1, more prob-
able than for an elaborated CAD design with accurately drilled holes for
mounting the framework. With errors in the guideway orientation, the ori-
entation of the carts and link geometry will not be the intended one and
it is probable that the links do not form exact parallelograms any more.
That might cause the end-effector to have a varying orientation across
the workspace, and the simplified kinematic model is not valid any more.
Even if the resulting end-effector orientation is constant, it might not be
the intended one. Not all guideways affect the end-effector orientation.
Link cluster 1 has no influence on it, while link clusters 2 and 3, which
form a parallelogram and a prism with triangular base, respectively, de-
termine the end-effector orientation.
If only the commanded actuator positions qi and the 3-dimensional

end-effector position data are used for calibration, it is not possible to
identify the orientation of the end-effector.
The kinematic error model of the Queensland Gantry-Tau presented in

[Williams et al., 2006] adopts two-dimensional orientation and position-
ing errors for each guideway, while it does not discuss the end-effector
orientation errors that may likely be caused by imprecise mounting of the
guideways.
In this work, positioning errors of the guideways were not explicitely

taken into account because the mathematical description of the robot kine-
matics does not change and a kinematic calibration identifies the changed
parameters directly without the need of an additional parameter describ-
ing the deviation from the nominal parameter. The kinematic error model
of the links presented below takes cart and end-effector orientation errors
into account. The guideway model presented above assumes still perfectly
linear actuators. In Chapter 5 a nonlinear guideway model will be pre-
sented.

Link clusters

This section presents a kinematic model describing errors in the link clus-
ters. For this, all six links have been taken into account instead of only
three. Varying end-effector orientation errors can arise if the links in one
cluster have slightly different lengths or if the joint placement on the carts
and on the end-effector is not according to the Tau configuration.
The kinematic constraint equation for link j of arm i and for any
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4.5 Kinematics of the F1-type Gantry-Tau

actuator model Ai j(qi) is then

L2i j −q Ai j(qi)−(T+RT ⋅ B0i j) q2 = 0 (4.14)

Assuming a linear actuator with Ai j(qi) according to equation (4.5),
the inverse kinematics is as easy to solve as the nominal kinematics. More
advanced actuator models might require iterative solutions.
As the value of Ai j is known, the forward kinematics can be solved with

any actuator model using an iterative Newton-Raphson scheme [Merlet,
2000]. A minimal representation X of the end-effector pose (T ,RT ), in
this case with ZYZ Euler angles instead of the rotation matrix RT , is
updated every iteration k according to

Xk+1 = Xk+(
� fik
�X )

−1
k (q− fik(Xk,s,c)) (4.15)

until the absolute joint error pq− fik(Xk,s,c)p is sufficiently small. This
solution was implemented and used for the work presented in Section 5.3.
In principle, the inverse kinematics fik can be exchanged for that of

any other hexapod robot with the same link lengths and end-effector plate
geometry. Consequently, some results on the Stewart platform kinematics
are also valid for the Gantry-Tau kinematics. These results are discussed
in Section 4.5 together with the forward kinematics of the F1-type Gantry-
Tau, which is solved in a similar manner. As the F1-type kinematics were
used for real-time control, a more thorough examination of the iterative
algorithm was required compared to the kinematic error model presented
here.

4.5 Kinematics of the F1-type Gantry-Tau

The F1-type Gantry-Tau robot has an extended kinematic structure de-
veloped by Adam Nilsson in cooperation with Güdel AG [Nilsson, 2011].
The spherical joints on carts 2 and 3 are mounted on a rotating plate.
For cart 3, this plate can also tilt. Figures 4.11 and 4.12 illustrate the ex-
tended architecture and the notation for the joint variables. The rotation
axes for q4 and q5 are parallel to each other. Unlike for a fully parallel
robot having only one actuated joint per kinematic chain, arm 2 is now a
serial combination of a prismatic and a rotational actuator and arm 3 a
combination of a prismatic and two rotational actuators.
The T2 prototype has the same structure for the parallel kinematic

wrist, but its linear actuators are arranged horizontally instead of ver-
tically. An often utilized convention is to arrange the z-axis of the base
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Figure 4.11 Schematic overview of the F1-type Gantry-Tau robot. The prismatic
actuators move along the indicated axes q1 to q3, the rotational actuators rotate
around the axes q4 to q6.

coordinate sytem vertically. This was applied here for the F1 kinematics,
rather than using a coordinate system with its x-axis aligned with the
linear actuators as for the horizontally arranged Gantry-Tau robots. The
coordinate systems for the F1 robot differ therefore from the coordinate
systems used in the rest of the thesis. The z-axis is vertical and parallel
to the linear actuator axes, and the xy-plane is arranged horizontally and
orthogonal to the linear actuator axes.
Other hybrid robot structures with serial and parallel parts are often

a serial combination of parallel or serial structures as presented in e.g.,
[Tanev, 2000]. The D1 and L1 prototypes with the serial wrist are such
serial combinations, while the idea of extending the Gantry-Tau’s DOF us-
ing extra carts on the guideways, which is shortly presented in Chapter 2
in Figure 2.3, is still a purely parallel robot. A version of the Queensland
Gantry-Tau was extended to 5 DOF by exchanging one link in each of
clusters 2 and 3 by a prismatic joint [Murray et al., 2006], resulting thus
like the F1-type Gantry-Tau in a parallel combination of serial chains.
The F1’s combination of serial and parallel kinematics makes it dif-

ficult to find a completely analytic solution for both forward and inverse
kinematics. If the plate rotations q4 and q5 are synchronized such that
q4 = −q5, end-effector orientation and position can be considered sepa-
rately and an analytic kinematic solution can be found. In this case, the
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Figure 4.12 Illustration of the kinematic chains of the F1-type Gantry-Tau robot.
Actuated joints are marked with black boxes, passive joints with grey boxes.

F1 robot has only 5 instead of 6 DOF. For the general 6 DOF case, iter-
ative solutions have to be used for both forward and inverse kinematics.
The remainder of this section discusses the analytic 5 DOF kinematics
and the iterative 6 DOF kinematics.
All kinematics presented below require the calculation of the spher-

ical joint positions on the end-effector plate and on the carts. For the
end-effector plate, the relation does not change with now six actuators,
whereas for the joints on the carts, more complex kinematic chains need
to be considered for arms 2 and 3. As an alternative to the customized
coordinate systems used here, standard parametrizations like the Denavit-
Hartenberg convention [Hartenberg and Denavit, 1955] can be used.

[A1 1 ]T = H1(q1) ⋅
[

A
bj
1 1

]T (4.16)

[A2 j 1 ]T = H2(q2,q4) ⋅
[
A
bj
2 j 1

]T
, j = {a,b} (4.17)

[A3 j 1 ]T = H3(q3,q5,q6) ⋅
[
A
bj
3 j 1

]T
, j = {a,b,c} (4.18)

Bi j = T+RT ⋅ B0i j (4.19)

where Abji j is the ball joint position on cart i and Hi is the homogeneous
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Figure 4.13 Illustration of the local coordinate systems for arm 1 (left) and arm 2
(right). Observe that for arm 2, the coordinate system S2 is attached to the cart,
but not to the rotating plate, i.e., the ball joint positions are constant with respect
to a coordinate system that rotates around the y-axis of S2.

coordinate transform between the moving coordinate frame attached to
the corresponding cart and the global frame. In contrast to A0i j in (4.5),
A
bj
i j is not expressed in the global frame, but in a coordinate frame fixed
to the moving joint plate, and thus has a constant value. The parameters
and coordinate systems are illustrated in Figures 4.13 and 4.14.

Arm 1 As no rotational joint is involved, (4.5) is valid and

H1(q1) =
[
I A01+ q1 ⋅v1

0 1

]

(4.20)

Without loss of generality, it is assumed that Abj1 = 0. The guideway base
point A01 corresponds in that case to the ball joint center position for q1= 0.

Arm 2 Instead of the ball joint center as in (4.5) and (4.20), A02 refers
here to the origin of the coordinate system S2 for q2 = 0. The orientation
of S2 in the global frame is defined by R1u2 , see Figure 4.13.

H2(q2, q4) =
[
R1u2 ⋅Rq4 A02+ q2 ⋅v2

0 1

]

(4.21)

Without loss of generality, the coordinate frame S2 is chosen such that q4
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Figure 4.14 Illustration of the local coordinate systems for arm 3. The y-axis of
the frame 1S3 defines the rotation of joint q5 (left) and the x-axis of the frame 2S3
the rotation of joint q6. To better be able to distinguish between the two coordinate
systems, in the left picture, the coordinate axes of 1S3 are drawn in solid lines and
in the right picture the axes of 2S3. The axes of the second coordinate system are
drawn in dashed lines.

rotates around its y-axis, so that

Rq4 =






cos q4 0 sinq4
0 1 0

−sin q4 0 cos q4




 (4.22)

Arm 3 Similar to arm 2, A03 and R1u3 refer for q3 = 0 to the origin and
orientation, respectively, of the coordinate system 1S3, which defines the
q5 rotation by its y-axis. The location of the coordinate system 2S3 with
respect to 1S3 is determined by the offset r3 and orientation R2u3 .

H3(q3,q5,q6)=
[
R1u3 ⋅Rq5 ⋅R2u3 ⋅Rq6 A03+ q3 ⋅v3+R1u3 ⋅Rq5 ⋅ r3

0 1

]

(4.23)

Unlike q4 and q5, which are rotations around the y-axis, the convention
for q6 was defined such that it rotates around the x-axis of 2S3, so that

Rq6 =






1 0 0

0 cos q6 −sin q6
0 sin q6 cos q6




 (4.24)
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Figure 4.15 Relation of end-effector orientation and rotational joint positions for
5 DOF kinematics: If q4 = −q5, the end-effector rotation around its y-axis corre-
sponds exactly to the q4 rotation. The end-effector’s rotation around its z-axis corre-
sponds to the q6 rotation. For the 5 DOF case, the end-effector cannot rotate around
its x-axis, which is orthogonal to the image plane.

Implicit 5 DOF Kinematics

If the rotational joints q4 and q5 move equally such that q4 = −q5, end-
effector position and orientation can be considered separately. The end-
effector orientation is then directly related to the joint values (q4,q5,q6)
as illustrated in Figure 4.15. Knowing the end-effector orientation and
(q4,q5,q6), structural parameters s3DOF for a corresponding 3 DOF Gantry-
Tau robot can be calculated and the 3 DOF kinematics can be solved.
The inverse kinematics is then

(q4,q5,q6) = fik, rot(RT ,s5DOF)
s3DOF = fs(s5DOF,RT ,(q4,q5,q6)) (4.25)

(q1,q2,q3) = fik, 3DOF(T ,s3DOF,c)

and the forward kinematics

RT = ffk, rot((q4,q5,q6),s5DOF)
s3DOF = fs(s5DOF,RT ,(q4,q5,q6)) (4.26)
T = ffk, 3DOF((q1,q2,q3),s3DOF,c)

For the rotational part of the kinematics, only one solution exists, as
the rotational joint values correspond directly to the end-effector rotation
around the x and y-axes. As before, the 3 DOF Gantry Tau kinematics has
several solutions, two for the forward kinematics and 23 = 8 for the inverse
kinematics, determined by the configuration state c. These numbers de-
scribe however the mathematical solutions to the 3 DOF kinematics. The
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full six-link robot may not be capable of reaching all 3 DOF solutions, but
then, more solutions may be found with the full 6 DOF kinematics.
The constraint q4 = −q5 prevents the end-effector to rotate around it

x-axis, so that it has only two rotational DOF. Another consequence is that
the link clusters do not twist, i.e., the links always form parallelograms.

Iterative Inverse 6-DOF Kinematics

For solving the inverse kinematics, the actuated joint positions for a given
end-effector position and orientation are calculated. As before, this can be
done separately for each kinematic chain. For arm 1, an analytical solution
analog to the 3 DOF kinematics exists.
The inverse kinematics of arms 2 and 3 is solved using a standard

Newton-Raphson iterative algorithm. The procedure is exemplified for
arm 3. The joint variables Q = (q3,q5,q6) are updated according to

Qk+1 = Qk+
�Q
�e ⋅ ek (4.27)

until a sufficiently small error residual ek is obtained, with

ek =






L23a−qB3a− A3a(Qk)q2
L23b−qB3b− A3b(Qk)q2
L23c−qB3c− A3c(Qk)q2




 (4.28)

The term ∆Qk =
�Q
�e ⋅ ek for updating Q is calculated by solving the linear

equation system
�e
�Q∆Qk = ek (4.29)

or by using the pseudoinverse of the matrix
�e
�Q .

In particular for a stable real-time usage, it is important to know that
the algorithm always converges to the desired solution. Although theoret-
ical results on the convergence of the Newton-Raphson algorithm exist, it
is in practice very difficult to determine analytically how many real so-
lutions, or assembly modes, the F1-type inverse kinematics has and how
large the domain of convergence around these solutions are. An examina-
tion of the convergence thus relies on numerical simulations. The inverse
kinematics presented were implemented and successfully used for real-
time control. The iterative inverse kinematics was, as often implemented,
running at a high sampling rate, and using the solution from the previous
sample as initial condition for the next sample to preserve the configura-
tion.

65



Chapter 4. Kinematic Modeling

Iterative Forward 6-DOF Kinematics

The F1 forward kinematics can be solved in a similar way as the six-
links error kinematics from Section 4.4. As mentioned in Section 4.4, once
the ball joint positions Ai j have been calculated with (4.16) – (4.18), any
hexapod forward kinematics can be used to calculate the end-effector pose.
Instead of using the actual F1-type kinematics or the available six-link
error kinematics, the Stewart platform kinematics was chosen. Besides
the numerous available research results, it has the advantage that the
inverse kinematics, which has to be calculated in every iteration, always
has a solution.
Similar to (4.15), the algorithm is formulated as

Xk+1 = Xk+JSP (L−ABk) (4.30)

where X = (T ,α ,β ,γ )T is a minimal representation of the end-effector
pose using ZYZ Euler angles. L = (L1,L2a,L2b,L3a,L3b,L3c)T is the con-
stant vector of all six link lengths and ABk the vector of the distances
(Bi j(Xk)− Ai j) between the six ball joint pairs for a given end-effector
pose Xk at iteration k calculated with (4.16) – (4.19). The row of the
Stewart platform’s inverse Jacobian matrix J−1SP corresponding to link i j
is calculated as in [Merlet, 2000]


 ABTij

qABi jq
ATTij ⋅

�RT
�α ⋅ Bi j

qABi jq

ATTij ⋅
�RT
�β

⋅ Bi j

qABi jq

ATTij ⋅
�RT
�γ ⋅ Bi j

qABi jq



 (4.31)

where ABi j = Bi j − Ai j is the vector along link i j and ATi j = T − Ai j is
the vector between the end-effector frame’s origin and ball joint i j. As for
the inverse kinematics algorithm for arm 2 and 3, the term JSP (L−ABk)
is calculated either using the pseudoinverse of J−1SP or by solving a linear
equation system.
To obtain fast convergence with a good initial value X0, which is close

to the desired solution, the implicit 5 DOF kinematics is used.

X0 = ffk, 5DOF(q5DOF) (4.32)

The assumption q4 =−q5 is assured by

q5DOF = [q1,q2,q3,
q4− q5
2
,
q5− q4
2
,q6] (4.33)

There exist as well other schemes to solve the forward kinematics, e.g.,
interval analysis [Merlet, 2000], which were not considered here.
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Assembly Modes

For a stable real-time control, it is important that the algorithms converge
fast, and that they converge to the desired solution. The inverse kinematics
is calculated at the control system’s sampling rate, and the control system
architecture is often such that the previous value is available, which gives
a close enough start value for each iteration. Therefore, only the forward
kinematics is examined further here.
Numerous publications treat the Stewart platform forward kinematics.

Several studies, as e.g., [Raghavan, 1993], found that there exist 40 solu-
tions, or assembly modes, for a general Stewart platform, but that some
solutions may be complex valued. In [Dietmaier, 1998], a method to change
the geometry of a given Stewart platform such that it has 40 real solutions
is presented. In [Husty, 1996], it is shown how algebraic manipulations
of the forward kinematic problem lead to a 40th order univariate poly-
nomial. In [Innocenti, 2001] an improved method is presented, which is
faster and more accurate.
It is difficult to derive general, analytical results regarding the conver-

gence of the forward kinematics presented above. Such studies often rely,
at least partially, on numerical simulations. In [Merlet, 2000], the domain
of convergence of a parallel robot is examined using Kantorovitch’s theo-
rem [Miel, 1981]. This was done for only one specific pose, and additional
simulations showed that the convergence domain was much larger than
the bound the theorem gave.
The forward kinematics presented above was successfully tested using

a trajectory through 200 poses chosen for the calibration experiment in
Section 5.4. To get additional insight in the F1-type kinematics, the num-
ber and location of assembly modes were studied for a few poses. With
none of the previous forward kinematics implementations readily avail-
able to obtain all 40 solutions, a new algorithm was implemented by Karl
Åström from the Mathematic Imaging Group at Lund University and is
described below.

Problem formulation The forward kinematics of the Stewart platform,
see Figure 2.6, can be phrased as solving a system of polynomial equations
in several unknowns. Assume that the coordinates of the six points on the
platform are given with respect to the unknown end-effector coordinate
system as (B1,B2,B3,B4,B5,B6), and that the six points attached to the
base are known to be (A1,A2,A3,A4,A5,A6), expressed in the base coordi-
nate system. The end-effector plate is connected to the base with six links
of known lengths (L1,L2,L3,L4,L5,L6). The forward kinematics are given
by the rotation matrix RT and the translation vector T =(Tx,Ty,Tz)T such
that

qAi−(T+RT ⋅ Bi)q = Li (4.34)
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This can be converted into a polynomial equation by squaring the equa-
tions and by parametrizing the rotation matrix. We chose to parametrize
RT using a quaternion vector (a,b,c,d), i.e.,

RT =






a2+ b2− c2−d2 2bc−2ad 2ac+2bd
2ad+2bc a2− b2+ c2−d2 2cd−2ab
2bd−2ac 2ab+2cd a2− b2− c2+d2






which is a rotation matrix for a2+ b2+ c2+d2 = 1. The four elements of
a quaternion can be parameterized as (cos(θ

2 ), sin(θ
2 ) ⋅n), corresponding

to a rotation of angle θ around the unit vector n = (nx,ny,nz)T . The six
squared equations become

ATi Ai+TTT+ BTi Bi−2ATi T +2BTi RTT−2ATi RT Bi− L2i = 0 (4.35)

Without loss of generality, one may assume that A1 = B1 = 0. This makes
the first equation particularly simple.

TTT − L21 = 0 (4.36)

By subtracting this equation from the remaining five equations, the TTT
term can be removed. The resulting system of seven equations is

a2+ b2+ c2+d2−1= 0
TTT − L21 = 0 (4.37)

Ki−2ATi T+2BTi RTT −2ATi RTT Bi = 0, i= 2,3,4,5,6

with the constant Ki = ATi Ai+ BTi Bi+ L21− L2i . The equation system de-
pends on the seven unknowns (a, b ,c ,d ,Tx ,Ty ,Tz).
The actual implementation uses a slightly different choice of variables.

However, for better understanding, a notation in line with the kinematic
description presented in this thesis was used here.

Solving polynomial systems A solution technique in Matlab was im-
plemented, along with [Stewénius, 2005; Byröd et al., 2009]. The tech-
nique is based on forming an expanded set of equations, by multiplying
the original seven equations with a number of monomials, i.e., one-term
polynomials. Typically, low order monomials up to a certain degree are
used. All expanded equations are then expressed as Cm = 0 with the
sparse coefficient matrix C and the monomial vector m. Using numerical
linear algebra, it is possible to express higher order monomials in terms of
certain low-order basis monomials. In this particular solver, the number
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of base monomials are 80. This number corresponds to the 40 solutions of
the Stewart platform forward kinematics, where each solution is counted
twice, because the two quaternions (a,b,c,d) and (−a,−b,−c,−d) result
in the same rotation matrix RT . The next step is to calculate the so-called
action matrix M of the linear mapping Tm0 : p ]→ pm0 for some mono-
mial m0. The columns of the action matrix are given by the image of the
80 basis monomials (b1, . . . ,b80). The image of a basis monomial is either
another basis monomial, i.e., bjm0 = bi, or a higher order monomial. If
the image is a basis monomial, the j ’th column of the action matrix is
zero except in row i, i.e., Mi,j = 1 and Mk,j = 0,∀k ,= i. If the image is a
higher order monomial, it can be expressed by the basis monomials, i.e.,
bim0 = ∑80k=1α kbk. Then the j ’th column of M is defined by Mkj = α k.
The solutions to the original equations can then be calculated from the
eigenvectors and eigenvalues of the action matrix M .

Simulations The solver implementation was tested on a set of 50 end-
effector poses. For each of the 50 poses, the joint positions corresponding to
the nominal configuration were calculated by the inverse kinematics. With
the solver, alternative assembly modes were determined by finding all so-
lutions to the forward kinematics for the calculated joint positions. The
choice of end-effector poses was performed with the method described in
Section 5.4 for chosing poses for kinematic calibration. Figure 4.16 shows
the xy-coordinates of the end-effector poses together with the F1 proto-
type’s workspace in a plane orthogonal to the actuators.
The solver does not always return the total number of 80 solutions that

the problem theoretically has, see Figure 4.17. For one out of the 50 poses,
only 18 solutions were found. For four poses, there were problems with
the accuracy of the solutions.
For finding a reason for the numerical problems, besides the forward

kinematics solution being complex in general, the influence of the Gantry-
Tau’s architecture on the numerical properties of the solver has to be
examined. The links of a Stewart platform are typically rather evenly
distributed along the base plate edge, while the Gantry-Tau’s links are
clustered into three groups. The Gantry-Tau’s end-effector plate is much
smaller than the triangle defined by the three carts. This triangle corre-
sponds to the Stewart platform’s base plate, which is often only slightly
larger than the end-effector plate. However, the focus of this study was not
to develop a new forward kinematics solver compared to the one presented
in [Innocenti, 2001], but to examine the number and location of assembly
modes of the F1-type Gantry-Tau.
A closer examination was done of the four poses for which 16 real so-

lutions were found. As mentioned above, each solution is counted twice,
because the same orientation can be represented by two different quater-
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Figure 4.16 Robot poses for assembly mode study: The end-effector positions
(black crosses) in the xy-plane orthogonal to the actuators. Each of the marked
positions corresponds however to several of the 50 poses, which have equal xy-
coordinates but a different z-coordinate and a different orientation. The grey area
shows the kinematic workspace of the F1 prototype for the nominal end-effector ori-
entation with q4 = q5 = q6 = 0. The ball joint limits of 45○ were taken into account,
but possible collisions of the end-effector and/or links with the framework were not
considered. The black squares indicate the guideway positions.
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Figure 4.17 Histogram of found number of solutions found for each of the 50 poses:
Total number of solutions (upper) and number of real solutions (lower). The the-
oretical number of 80 solutions was only returned for 16 poses. For one pose, only
18 solutions were returned by the solver, which is not shown in the histogram.
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Figure 4.18 Assembly modes for one of the studied nominal poses: All eight as-
sembly modes (left) with the nominal configuration (black). Detail of the lower four
assembly modes (right) with only the end-effector plates, one of the corners attached
to arm 2 is indicated by a small line to illustrate the orientation.

nions, (a,b,c,d) and (−a,−b,−c,−d). For the studied poses, the eight re-
sulting assembly modes formed two groups, each with four end-effector
poses located close to each other. These two groups are related to the
two solutions of the 3 DOF forward kinematics. Figure 4.18 illustrates
the resulting solutions for one of the poses. Even though the end-effector
positions within one group are close to each other, it can be seen in the
right of the figure that the orientations within one group differ. Most of
these found solutions correspond however to unfeasible link configura-
tions, e.g., with crossed links, which cannot be reached from the original
robot configuration without a re-assembly of the links.
Although the low number of poses studied here does not allow conclu-

sions on the complete kinematic workspace, the results give an indication
that other solutions of the forward kinematics differ at least in their ori-
entation sufficiently from the desired configuration. With the chosen start
value calculated by the implicit 5 DOF kinematics, a convergence to an
undesired solution is unlikely. Furthermore, the forward kinematics algo-
rithm implemented was successfully used in real-time control.
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4.6 Conclusion

Based on an examination of the nominal model validity and a study
of the resulting end-effector accuracy, a kinematic error model of the
3 DOF Gantry-Tau robot was presented. Kinematics for the 6 DOF F1-
type Gantry-Tau were developed and algorithms for the solution of inverse
and forward kinematics proposed. The number of assembly modes of the
F1-type Gantry-Tau was examined.
Gantry-Tau kinematics including the kinematic Jacobian (see Chap-

ter 6) were integrated in the ABB IRC5 controller software in cooperation
with ABB Robotics. The same implementation was used for generation of
Simulink S-functions and for an external IRC5 kinematics module, which
can be activated to replace the internal IRC5 kinematics for development
purposes. The F1-type kinematic were integrated in the ISG kernel soft-
ware within the MONROE project.
For a high accuracy Gantry-Tau robot in industrial applications, the

error modeling presented has to be further improved, in particular error
models for the extended 5 DOF Gantry-Tau with serial wrist and the
F1-type Gantry-Tau must be developed in the future.
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5

Kinematic Calibration

This chapter covers several aspects of kinematic calibration. In general,
the purpose of kinematic calibration is to increase the kinematic accuracy
of the robot, which is affected by manufacturing tolerances. However, with
the application of reconfigurable robots in SMEs, new challenges arise.
Reconfigurations require repeated kinematic calibrations, affordable by
SMEs. For that, the calibration has to be automated, so that non-expert
staff can execute it, and rely on low cost measurement equipment afford-
able by SMEs.
After a summary of related work in Section 5.1, Sections 5.2 to 5.4

focus mainly on the calibration of different kinematic models derived in
Chapter 4. Section 5.5 discusses camera vision for kinematic calibration
and Section 5.6 presents a method for automated kinematic calibration.
Section 5.7 concludes the chapter.

5.1 Related Work

Kinematic calibration of parallel robots has different requirements from
serial robot calibration, e.g., in terms of sensor workspace [Merlet, 2000].
Three types of kinematic calibration can be distinguished: External, con-
strained and self-calibration.
External calibration relies on measurements by a separate device,

identifying fully or partially the pose of the end-effector or other robot
parts. Most measurement devices can be categorized as either mechanical
or optical systems. Mechanical measurement systems are often physically
connected to the robot. Examples are the wire-based system presented in
[Tavolieri et al., 2002], or a double-ball-bar system [Huang et al., 2006],
which is delivering only partial pose information. The alternative is to
use optical measurement devices as laser trackers or computer vision in-
cluding appropriate image processing software. In [Renaud et al., 2006]
a vision system for kinematic calibration is proposed and its accuracy is
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evaluated to approximately 10 µm for position and 0.0015○ for orienta-
tion, respectively. This proves adequate computer vision to be competitive
to laser trackers regarding accuracy. A common way to perform vision-
aided calibration is to mount a target with known pattern geometry on
the robot end-effector and to take images of the target with a camera
fixed in the robot environment as in [Renaud et al., 2006]. It is as well
possible to mount the camera on the robot flange and to take images of a
target fix in the environment [Motta et al., 2001]. A method presented in
[Renaud et al., 2005] relies on the observation of the robot’s leg direction
and no robot-mounted target is necessary. The image processing can be
performed manually, e.g., using a camera calibration toolbox for Matlab
[Bouguet, 2007], or more preferably in an automated way as presented
in [Renaud, 2003].
For constrained calibration, the movement of the end-effector or of

other robot parts is restricted mechanically as in [Daney, 1999]. A disad-
vantage of this method is that the mechanical constraint might be difficult
to mount or may even damage the robot. The mechanical constraint might
as well lack the stiffness to apply the geometric constraint with the accu-
racy required for a good calibration result.
Self-calibration is suitable for robots that can be equipped with redun-

dant sensors, located in the passive joints or in other robot parts as in
[Baron and Angeles, 2000; Merlet, 1993]. By the use of additional sen-
sors, the kinematic model and the calibration problem can be simplified.
In [Miermeister and Pott, 2012], a method using force sensors to perform
self-calibration of cable-driven PKMs is presented.
Different forms of the kinematic model can be used for calibration. In

[Everett, 1989], the objective function to minimize is based on the forward
kinematics. For PKMs, the forward kinematics is difficult to solve and
might not have a solution for all possible values of the kinematic parame-
ters, obtained while iterating towards the optimal solution. The existence
of a solution might as well be a problem for the inverse kinematics, but to
a lower degree if at all for the closure equations. In [Renaud et al., 2006]
it is concluded that for the H4 PKM, the usage of the the implicit closure
equation is slightly preferable to the inverse kinematics.
For a successful calibration, a good sensitivity of the parameters to-

wards the model and chosen data is important [Merlet, 2000]. As the
sensitivity is dependent on many aspects, e.g., the robot architecture and
actual dimensions, it is difficult to compare calibration results directly.
Before calibrating a robot, it is necessary to examine which parameters
are identifiable [Renaud et al., 2006]. Observability of geometric param-
eters may also depend on the calibration method chosen [Merlet, 2000].
In [Besnard and Khalil, 2001] a method is presented for determining the
identifiable parameters of a parallel robot. In [Renaud et al., 2003] a crite-
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ria for selecting calibration poses with a maximum sensitivity is proposed
and compared to several alternative criteria. An important question is also
how many measurements need to be taken for an accurate result. In [Bai
and Teo, 2002] it was found that the maximum accuracy was reached with
ten six-dimensional pose measurements and could not be improved fur-
ther with more measurements. The considered problem was to determine
12 parameters, and the measurement device’s accuracy was 0.1mm.
The calibration of a modular robot is studied in [Ji and Li, 1999]and it

is proposed to calibrate complete, unchangeable modules beforehand, e.g.,
at the manufacturer, and to determine only the geometric parameters
changed by the reconfiguration.

5.2 Introduction and Nominal Kinematic Model

This section discusses the procedure of the Gantry-Tau calibration in gen-
eral and illustrates it with the calibration of the nominal kinematic model.
The Gantry-Tau kinematics was identified by external calibration, i.e.,

using measurements of the end-effector pose. The Gantry-Tau prototypes
do not have any built-in redundant sensors for self-calibration, and the
Gantry-Tau architecture and large workspace make it difficult to im-
mobilize parts of the robot for constrained calibration. Optical measure-
ment devices, laser trackers and camera vision, were used to record the
end-effector pose. For the ideal, simplified kinematic model (4.9), 3-D
measurements of the end-effector position are sufficient, but for the er-
ror model (4.14) and the F1-type kinematics, 6-D measurements of end-
effector position and orientation are necessary.
The minimum number of measurements necessary depends on the

number of parameters of the kinematic model to be calibrated. Optimizing
the number of measurements to obtain a maximum accuracy with as few
measurements as possible is an important issue for a fast automated kine-
matic calibration. The choice of measurement poses has to be optimized
with the aid of an appropriate criteria [Renaud et al., 2003]. This work
focuses however on other aspects of calibration. Therefore, in most cases,
no measurement pose optimization was performed and a large number of
measurement poses were chosen as grid corner points distributed evenly
in the complete Cartesian workspace of the robot.
Given a set of N joint positions qk and the corresponding measured

end-effector poses (Tm,k,RT ,m,k), the kinematic parameter set s is iden-
tified by minimizing a cost function V based on the kinematic closure
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equations for each link j = {1,.. .6}

min
s
V (qk,(Tm,k,RT ,m,k),s)

=min
s

6

∑
j=1

N

∑
k=1
(qA j,k(qk,s)− Bj,k(Tm,k,RT ,m,k,s)q2− L j(s)2)2 (5.1)

For the simplified nominal kinematic model (4.9), the cost function V
considers only three links and the end-effector position

V =
3

∑
j=1

N

∑
k=1

(

qAsj+ qj,k ⋅v−Tm,kq2− L2j
)2

(5.2)

In contrast to the forward or inverse kinematics, the closure equation has
for the Gantry-Tau robot the advantage that it always has a real valued
solution for any real values of the kinematic parameters. On the other
hand, the optimal parameters based on the closure equation might not be
exactly the ones that minimize the inverse or forward kinematics error.
Although the chosen objective function V (s) is not convex on the domain
R
n, with the set s consisting of n parameters, it is assumed that the
nominal values as initial values are close enough to the optimum that the
algorithm does not iterate towards an undesired local minimum.
The end-effector poses (Tm,k, RT ,m,k) are given in the coordinate frame

of the measurement device, while the nominal kinematic parameters are
expressed in the robot frame. Rather than optimizing the transformations
between the different coordinate systems together with the kinematic pa-
rameters as suggested in [Renaud et al., 2006], we determine the optimal
parameters in the measurement frame. The robot frame can then be found
with the aid of the optimal parameters, e.g., the base frame x axis along
the identified actuator axes. To obtain a good initial guess, the nominal
parameters s0 are transformed with Hmbrb and H

mt
re . H

mb
rb is the transfor-

mation between robot base and measurement device base frame and Hmtre
between the robot end-effector and the frame of the measurement target,
which is mounted on the end-effector, such that

(Tm,k,RT ,m,k) ( Hmbrb ffk(qk,s0,c) Hremt (5.3)

For the 3 DOF Gantry-Tau, only 3-D measurements of the end-effector
position are necessary and (5.3) simplifies to

Tm,k ( Hmbrb ffk, tr(qk,s0,c) (5.4)
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with only the translational part ffk, tr of the forward kinematics. The offset
between end-effector frame and measurement target origin cannot be iden-
tified with a constant end-effector orientation. Consequently, the identi-
fied parameters Asi and calibrated forward kinematics relate to the target
origin. With a subsequent wrist or tool-workpiece calibration, this offset
can however be identified or compensated for.
For evaluation, the measurements are divided such that each second

grid point is used for calibration and the remaining points for evaluation.
In that way, both measurement sets are distributed over the complete
Cartesian workspace of the robot. The resulting accuracy is evaluated
using the forward kinematics:

ek = qTm,k− ffk, tr(qk,sopt,c)q (5.5)

where ek is the absolute positioning error and sopt the identified kine-
matic parameters. For the F1-type kinematics and the kinematic error
model, corresponding orientation errors are considered using an angular
representation of the end-effector orientation.
In the remainder of this section, kinematic calibration of the 3 DOF

part of the L1 prototype is discussed. Measurements were taken with
a laser tracker [Leica Geosystems, 2009] and appropriate reflector for
3-D position measurements. Altogether 779 end-effector positions were
recorded and despite the exceeding number, the complete set was used for
calibration and evaluation.
The kinematic model of the ideal Gantry-Tau has 15 scalar parame-

ters: Li, Asi , i= {1,2,3}, and the guideway direction v. With v consisting
of three scalar parameters, i.e., not being a unit vector, an adjusting factor
for a not perfectly known gear box transmission is included. A modified
nominal model that allows for nonparallel guideways, similar to the er-
ror kinematic model presented in [Williams et al., 2006], is however both
more accurate and more practical to calibrate. With each guideway having
its own direction vi, each kinematic chain can be studied and calibrated
separately. The modified nominal model has thus 21 parameters: Li, Asi
and vi, i= {1,2,3}.
Table 5.1 shows the identified kinematic parameters for both kine-

matic models. For the ideal model, the guideway directions were identi-
fied separately and assumed known. These earlier measurements showed
that the guideways of the L1 prototype deviate around 0.1○ from being
parallel to each other. Figure 5.1 shows the absolute positioning error ac-
cording to (5.5) for the evaluation data. The absolute positioning accuracy
is improved considerably by using the modified nominal model. For the
ideal model, the positioning errors were mostly smaller than 1.5mm with
two peaks above 2mm and a mean value of 0.7mm. The modified nominal
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Figure 5.1 Absolute positioning error ek for ideal kinematic model (dashed) and
modified nominal model with nonparallel tracks (solid) for the L1 prototype. The
regular peaks for the ideal kinematic model correspond to positions close to the
workspace limit.

model gives a mean positioning error 0.23mm and is mostly below 0.5mm.
For both models, the error along the actuator axes is smaller along the
actuator direction than in the plane orthogonal to it. The overall u-shaped
form of the curve for the ideal model in Figure 5.1 is due to a better data
fit in the center of the workspace, where the imaginary, perfectly parallel
guideways intersect with the actual, slightly misaligned guideways. The
regular peaks in the curve for the ideal kinematic model correspond to
poses close to the workspace boundary, where the angle between links
and guideways is largest and an actuator modeling error therefore has
largest influence. The measurement poses are arranged in 12 grid layers
orthogonal to the guideways’ axes, which is the global x-axis, i.e., with an
increasing measurement point index, the x coordinate of the end-effector
position increases.
The architecture of the Gantry-Tau’s framework has a large influence

on how difficult it is to achieve accurate, parallel mounting of the guide-
ways. A modular construction of the framework and the possible recon-
figuration by non-expert staff makes a misalignment probable. As the
geometry of the end-effector plate and the carts match to a parallel ar-
rangement of the actuators, the misalignment might modify the Tau con-
figuration and thus cause the end-effector orientation to vary around the
workspace. In this case, the simplified kinematic model considering only
three links is not valid any more, and an error kinematic model as pre-
sented in Sections 4.4 and 5.3 is required.
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Table 5.1 Nominal model calibration results for the L1 prototype, given in mea-
surement frame.

i Li [m] Asi [m] vi [–]

N
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el 1 2.0613






−1.8093
3.5095

0.0041




 –
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5.3 A Prototype-Optimized Error Model

In the previous section, the mean absolute positioning error of the L1 pro-
totype after calibration of the nominal model was shown to be around
200µm. Measurements on the D1 prototype show that the robot’s repeata-
bility is considerably higher. In [Crothers et al., 2010], the omni-directional
repeatability of the TCP was shown to be 13µm in the mean, with a max-
imum of 50 µm. To benefit to a larger extent from the Gantry-Tau robot’s
high accuracy, a kinematic error model was developed in Section 4.4. The
kinematic error models of the Scara Tau and Queensland Gantry-Tau
robots presented in [Cui et al., 2005] and [Williams et al., 2006], respec-
tively, were validated by simulation. This section presents calibration of

79



Chapter 5. Kinematic Calibration

the kinematic error model developed in Section 4.4. The actuator model
is further developed to improve accuracy. The focus lies on identifying the
maximum achievable end-effector positioning accuracy for the D1 pro-
totype in practice. Additionally, a parameter sensitivity analysis is per-
formed.

Measurements

The following measurement sets were recorded using a laser tracker with a
Leica T-Mac and a corner cube reflector, respectively [Leica Geosystems,
2009]. With the T-Mac, both position and orientation can be measured,
whereas with the corner cube reflector it is only the position.

1. For each of 176 TCP poses lying on a grid filling the robot workspace,
the position and orientation of the 3 DOF end-effector were recorded
with the T-Mac.

2. Independently from the above measurements, and with a new laser
tracker positioning and thus expressed in a different coordinate sys-
tem, the cart position and orientation were measured for 28 points
along the guideways with the T-Mac for each of the three carts.
During these measurements, all carts were moved equally much,
so that the configuration of the links, i.e., the angles between the
link clusters, and consequently the load on the carts did not change
throughout the measurements. The TCP was located in the center
of the workspace in yz-plane.

3. In addition to the above actuator measurements, and with a third
laser tracker positioning, the cart positions were recorded with a cor-
ner cube reflector while the TCP was moving to a set of 150 random
poses.

Actuator Modeling

To examine the actuator linearity and positioning accuracy, measurement
set 2 was evaluated. Figure 5.2 shows the absolute value of the residuals
qǫiq when fitting a linear function according to (4.13) between commanded
cart positions qi(k) and k-th measurements Am, i(k) for cart i= {1,2,3}

Am, i(k) = A0i + qi(k) ⋅vi+ ǫi(k) (5.6)

It can be seen that the linearity varies among the carts. The largest de-
viations are obtained for cart 2 and were between 25µm and 140µm.
In order to model these variations more accurately, measurements with
a higher spatial resolution along the guideway are necessary. The carts
were mounted on roller blocks and driven by a rack-and-pinion system.

80



5.3 A Prototype-Optimized Error Model

−800 −600 −400 −200 0 200 400 600 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

qref [mm]

E
rr
or
[m
m
]

Figure 5.2 Linearity error of the D1 prototype actuators: Absolute value of residu-
als when fitting a linear function to the movement of cart 1 (solid), cart 2 (dashed)
and cart 3 (dashed-dotted). Along the abscissa, the commanded cart position is
shown.

According to the manufacturer, variations in cart position are expected
with a period corresponding to the the length between the rack teeth,
which is much shorter than the resolution of the measurements. Nev-
ertheless, an attempt was made to derive actuator models based on the
limited measurement available.
In Figure 5.3, the residuals are decomposed as defined by (4.11) and

(4.12) into a part parallel to the guideway direction, i.e., projected on the
actuator axis, and a part orthogonal to it, i.e., the distance of the measured
point to the modeled guideway, and shown with the respective values for
measurement set 3. The angle, i.e., where on a circle around the actuator
axis with a given distance the measured point was, is not shown here. The
laser tracker position was different for measurement sets 2 and 3 and the
exact coordinate transformation between the two sets can be determined
except for the angle around the actuator axis.
It can be seen that cart 2, and to a smaller extent cart 3, has a shift-

ing error along the guideway direction. With only 28 measurement points
along the guideway it is not possible to identify a spatial high frequency
variation of the residuals along the guideway axis. It was impossible to
perform further measurements within the scope of this work, since the
robot was dismantled after the measurements. Cart 1 is most linear and
least sensitive to the small load changes induced by different TCP posi-
tions in the yz plane, which are present in measurement set 3 (grey stars).
Actuator 2 exhibits the largest errors. The difference between measure-
ments 2 (black line) and 3 (grey stars) is larger for the orthogonal errors
than for the errors parallel to the actuator axis.
A piecewise linear model using measurement set 2 was adopted instead

of the nominal model (5.6). As the 28 measurements per cart did not cover
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Figure 5.3 Linearity errors of the D1 prototype actuators: Residuals when fitting
a linear function to the movement of cart 1 (left), cart 2 (center) and cart 3 (right).
The upper row shows the residual vectors projected on the track direction, the lower
row the absolute value of the residual component orthogonal to the track direction.
The solid lines correspond to a TCP movement parallel to the track directions, while
the grey stars represent measurements taken while the TCP was moving randomly
through the workspace.

the complete length of the guideway, the model is only valid within the
measured range from −650mm to 700mm. The cart position Ai for the
commanded actuator position qi is interpolated linearly between the two
cart measurements Am, i(k) and Am, i(k+1) whose corresponding actuator
positions qi(k) and qi(k+1) are closest to qi

pwAi (qi) = Am, i(k) +
qi− qi(k)

qi(k+1)− qi(k)
( Am, i(k+1) − Am, i(k) ) (5.7)

In (5.7) pwAi is, unlike Ai in (5.6), expressed in the coordinate system
used for measurement set 2. Instead of optimizing the actuator direction
vi and offset sA0i as for the nominal model, the coordinate frame trans-
formation pwHi between the guideway i and the TCP measurement frame
has to be calibrated. The reflector was for practical reasons not mounted
at the spherical joint center, but provided that the cart’s orientation is
constant along the guideway, the translation between joint center and re-
flector is constant in the global frame and is included in the coordinate
frame transformation mentioned above. This was confirmed by measure-
ments: The orientation of the carts when moving along the guideways for
data set 2 did change at most 0.03○.
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5.3 A Prototype-Optimized Error Model

Table 5.2 Cost functions for the kinematic models 1 to 4 sketched in Figure 5.4.

Model Cost function Vi for kinematic chain i

1 ∑Nk=1(q Tm,k−(sA0i + qi,k ⋅vi) q22 − L2i )2

2 ∑Nk=1(q Tm,k− pwHsi ⋅ pwAi(qi,k) q22 − L2i )2

3 ∑Nk=1(q (Tm,k+RT ,m,k ⋅ B0i )−(A0i + qi,k ⋅vi) q22 − L2i )2

4 ∑Nk=1(q (Tm,k+RT ,m,k ⋅ B0i )− pwHi ⋅
pwAi(qi,k) q22 − L2i )2

(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5

Figure 5.4 Illustration of the kinematic models compared.

Calibration Results

Different combinations of actuator and link cluster models are evaluated
in the following. Figure 5.4 illustrates the different models. Model 1 is the
simplified, nominal kinematics with linear actuators and only three links.
Model 2 includes the piecewise linear actuator models, combined with the
simplified three-link structure. Model 3 assumes linear actuators and a
six-link structure, where one distinct linear path (5.7) is considered for
each of the spherical joints connected to the six links. Model 4 combines
the six-link structure model with the piecewise linear actuator model,
even here with one distinct path per link. To obtain the highest possible
accuracy, a fifth model was introduced which uses for each arm the most
accurate model: Linear models for actuators 1 and 3 and a piecewise linear
model for actuator 2.
The cost function for the kinematic calibration was based on the closure

equation (4.9) for the simplified link model and (4.14) for the six-link
model, respectively, with (5.6) or (5.7) for the actuator model. Table 5.2
specifies the cost functions for models 1 to 4, and gives thus as well an
illustration of the kinematic models and parameters used. Note that the
coordinate transformation pwHsi includes in contrast to

pwHi the ball joint
position B0i on the end-effector, similarly to

sA0i and A
0
i . Each link was

optimized individually.
The measurements available for calibration and validation consist of

measurement set 1 with 176 TCP poses. Removing the robot poses whose
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Table 5.3 Absolute TCP positioning error of the D1 prototype.

Model 1 2 3 4 5

Mean [µm] 140 120 110 100 90

Max [µm] 410 440 260 340 240
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Figure 5.5 Modeling errors of end-effector orientation for the D1 prototype given
in ZYZ Euler angles (α ,β ,γ ) for model 3 (solid), model 4 (dashed) and model 5
(dashed-dotted). The remaining errors are roughly 10% of the end-effector orienta-
tion variations shown in Figure 4.7.

joint positions exceed the range of the piecewise linear actuator models
and reserving half of the measurements for validation, 61 measurement
poses were available for calibration.
Table 5.3 shows the absolute TCP positioning error of models 1 to

5. The mean positioning error was decreased from 140µm (model 1) to
90 µm (model 5) and the highest peak decreased from 410µm (model 1)
and 440µm (model 2) to 240µm (model 5).
Tables 5.8 and 5.9 at the end of this chapter show the calibrated pa-

rameters for models 1 to 4. Model 5 is a combination of model 3 (kinematic
chains 1 and 3) and model 4 (kinematic chain 2). For models 1 and 3, the
actuator offsets sAi and directions vi are given, while for models 2 and
4, the coordinate frame transformations between the track measurements
from set 2 and the TCP measurements from set 1 are given.
Figure 5.5 shows the modeling errors of the end-effector orientation
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5.3 A Prototype-Optimized Error Model

for models 3 to 5. All six-link models with capture the varying orientation
with only small errors. This is in accordance with the assumptions that
the orientation errors are caused by kinematic errors in the links, end-
effector or ball joints, and not because of variations of the orientation of
the carts as explained in Section 4.2.

Parameter Sensitivity Analysis

The sensitivity of the end-effector positioning and orientation error on
the kinematic parameters was examined. Based on the optimized param-
eters, each of the 60 parameters of model 5 was changed with ±5$10−5.
For each parameter, the changes in end-effector positioning (Sj,pos), ori-
entation (Sj,rot) and of the cost function (Sj,cost) are accumulated for all
validation points and shown in Table 5.10 at the end of this chapter

Sj,pos =
N

∑
j=1
(q Tj −T+j q2+q Tj −T−j q) (5.8)

where Tj is the end-effector position for the identified model and for the
validation point j and T+j and T

−
j the corresponding positions for the mod-

ified models. Similarly, the orientation changes, expressed in ZYZ Euler
angles, are accumulated in Sj,rot and the cost function contribution of each
measurement point in Sj,cost.
Besides Table 5.10, Figures 5.6 and 5.7 show the variations in the cost

function and the end-effector pose per validation pose, divided into positive
and negative changes, for selected parameters. Within the given range of [-
650mm, 700mm] for the actuators, the modified actuator directions vi, i=
{1,2,3}, result in the smallest positioning changes. The rotation matrix of
the transformation pwH2 between the two different laser tracker positions
gives larger variations, as the distance between laser tracker and the cart
position magnifies the modification by 5$10−5. For both the joint offsets
on the carts and on the end-effector plate, the cost function is much more
sensitive to the x-component than to the y- and z-components. The link
lengths Li, see Figure 5.6 for L1, exhibit the largest sensitivity.

Discussion

Considering Figure 5.2, it appears reasonable that actuator 1 gains the
least by a piecewise linear instead of a linear actuator modeling, while
improved results may be expected for actuators 2 and 3, where actua-
tor 2 is the least linear with a large error along the actuator direction.
On the other hand, only few actuator measurements were available for
the modeling, and the actuator model for joint positions between these
measurements is not definitely known. The ball joint position may vary
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Figure 5.6 Sensitivity with respect to L1: Changed cost (lower) and absolute
positioning error qeq (upper) for increasing (dashed) and decreasing (dashed-dotted)
L1 with 50µm. The original cost is shown in grey; the maximum positioning error
peak can be found in the cost function for arm 1, but not in the other arms’ cost
functions.
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Figure 5.7 Changed orientation errors for increasing (dashed) and decreasing
(dashed-dotted) B2b,x about 50µm; original angular error of Model 5 shown in grey.

86



5.3 A Prototype-Optimized Error Model

considerable from the model, in particular if the actuator has large errors
in general. From this point of view, it appears rather unexpected that
arm 2 is modeled more accurately with the piecewise actuator model.
For actuator 2, the measured position for one commanded cart position

varied significantly for different link angles , i.e., if the other two carts
were in different positions. This may be due to lacking stiffness, which
causes the cart to move with a changed load from the links and makes it
difficult to model the actuator as presented. Since the structural stiffness
was not modeled, this error source could not be compensated for.
A comparison with Tables 5.8 and 5.9 shows as expected that a piece-

wise linear modeling of cart 1 does not decrease the cost function, but on
the contrary increases it somewhat. The results for cart 2 in Figure 5.2 in-
dicate that a piecewise linear actuator model would not catch the cart posi-
tion’s dependency on the TCP’s yz-position. Nevertheless, the cost function
could be decreased by using a piecewise linear actuator model. In model 4,
link 2b has a slightly lower cost function than link 2a. This can be ex-
plained by the fact that the T-Mac was mounted closer to the link 2b ball
joint during the measurements, which model thus the link 2b ball joint
movement better than that of the link 2a joint on the same cart. The cost
function of cart 3 on the other hand decreases when including a piecewise
linear actuator model. While the cost function for link 3c in cart 3, which
was the one nearest to the T-Mac during measurements, could be reduced
somewhat from model 3 with linear actuators to model 4, the cost func-
tions for links 3a and 3b increased to 2.6 and 4.2 times, respectively, their
values for model 3.
Even though the resulting accuracy is still approximately ten times

the D1 robot’s repeatability and may be further improved, these results
show the potential of an improved actuator modeling, where attention
to the exact position of all spherical joints on a cart, the dependency
on the movement and position of the other carts and stiffness should be
paid. Using actuator measurements of a higher spatial resolution, a more
complex model may improve the accuracy. For the cyclic behaviour found
for actuators 2 and 3, a sinusoidal model might be suitable. However, with
the few measurements available, more complex models resulted in a lower
accuracy.
A comparison of the arms shows that the cost of arm 3 is in general

about a factor ten lower than that of arms 1 and 2, among which arm 1
tends to perform worse than arm 2. An explanation for this may be, to-
gether with the actuator performance from Figure 5.2, that in general,
the more links an arm consists of, the stiffer it is.
The kinematic error model of the arm structure gave better results

than the nominal model in all cases except for cart 3.
The models including all six links (models 3 to 5) manage to capture
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the varying end-effector orientation. Overall, the modeling is better for the
end-effector orientation and gives a higher error reduction for the end-
effector orientation than for the end-effector positioning. Another point
worth to note is that the angular errors of the nominal kinematics, see
Figure 4.7, exhibit a repeating pattern, which may be caused by errors in
the link structure modeling, whereas the positioning errors do not exhibit
any pattern. This may indicate that the remaining positioning errors can
be decreased further by a better actuator modeling. The peak positioning
error increases for the models with a piecewise linear actuator modeling,
which may indicate that the corresponding pose, which is at the edge of
the robot workspace, is particularly sensitive to the actuator modeling.
The parameter sensitivity analysis shows that more attention needs

to be paid to the excitation of the different parameters by the chosen
measurement points. In particular, the TCP measurement points should
cover a larger range in x-direction to give a better excitation for the track
directions vi.

Conclusion and future work

A kinematic error model of the D1 Gantry-Tau robot was calibrated. The
main purpose was to evaluate the maximum possible TCP positioning
accuracy which varied from 140µm to 90µm between the different models.
To increase accuracy, a piecewise linear model of the prismatic actuators
was developed. Different combinations of nominal kinematics and error
kinematic model parts were evaluated by their calibration results.
With stiffness modeling taking into account the gravity-induced axial

forces in the links and the elasticities in links and joints, and with addi-
tional measurements on the actuators, with a higher positional resolution,
the positioning error can be reduced even further in the future to fully
benefit from the Gantry-Tau’s high accuracy. For accurate movements at
high speed, dynamic modeling of the Gantry-Tau will be developed further.

5.4 Calibration of the F1-type Gantry-Tau

Kinematic calibration of the F1-type Gantry-Tau is considerably more
challenging than the calibration of the basic 3 DOF Gantry-Tau robot.
For the 3 DOF Gantry-Tau, the measurement poses were distributed on
a regular grid throughout the workspace. For the 6 DOF F1 Gantry-Tau,
practical reasons make such a simple strategy difficult, because an ex-
ceedingly large data set would be necessary to cover the workspace with a
reasonable small grid interval. The F1-type kinematics with their parallel
combinations of serial kinematic chains are more complex, both to model
and to calibrate.
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Besides the additional rotational joints, the differences to the L1 and
D1 prototypes are that the guideways are equipped with double motors
and are mounted vertically instead of horizontally. This section examines
how these differences influence the kinematic accuracy. The calibration
measurements were performed with aluminum links mounted instead of
the original carbon fibre links, which were still in production at the time
of the measurements.

Pose Selection and Measurements

For the 6 DOF F1 prototype, an elaborate choice of measurement points
is required. The measurement poses for the 3 DOF Gantry-Tau were dis-
tributed evenly in the complete workspace along the corners of a regular
grid. This possibly suboptimal choice of poses was compensated for by a
relatively high number of measurements, as an optimization of the num-
ber of measurements was not the focus of the work. A similar approach
for 6 DOF with a reasonable coverage of the workspace would however
result in an impracticably large amount of measurements.
From a grid of 6 DOF poses filling the F1 prototype’s workspace, the

200 best calibration poses were chosen. With a grid length of 25 cm and
10○, respectively, 1347 grid poses were found to lie within the kinematic
workspace. From this set, 200 poses were then chosen using the condition
number based criteria

Ck = cond(Js,k), (5.9)

where Js is the Jacobian matrix, i.e., the partial derivative of the cost
function with respect to the kinematic parameters, and Js,k the Jaco-
bian matrix without the row corresponding to measurement pose k. In
[Williams et al., 2006], the criteria for the Queensland Gantry-Tau cali-
bration was based on the lowest singular value instead of the condition
number. The poses with the largest Ck are chosen for calibration. In [Re-
naud et al., 2003] several pose selection criteria are compared and it is
concluded that the criteria chosen here does not reduce measurement
noise influence optimally. However, this is not expected to affect the cal-
ibration results noticeably as a laser tracker was used for very accurate
measurements. Due to the large workspace of the Gantry-Tau and the
computational cost of the iterative inverse kinematics, the distances be-
tween the grid points are rather large, resulting in only four to six values
per dimension. However, the aim of the measurement pose selection was
more to make a sensible choice than to optimize the location of a minimal
set of poses.
The end-effector poses were measured in 6 DOF with a laser tracker

and a T-Mac target [Leica Geosystems, 2009]. Of the 200 selected poses,
185 were inside the laser tracker’s measurement range.
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Parameters and Optimization

As for the 3 DOF Gantry-Tau, each kinematic chain can be calibrated
separately. Unlike for the D1 error kinematic model in Section 5.3, here,
the links of one arm are calibrated together for a minimum number of
parameters. For the D1, each link within one arm had its own guideway
parameters expressed by (A0i , vi) or pwHi with i= {1, 2a, 2b, 3a, 3b, 3c} to
achieve a higher accuracy.
For the linear actuators, the gear ratio can be adjusted with the length

of the identified direction vector vi. The rotational joints are driven by ball
screws. The nonlinear relation between the actuator position in [mm] and
the joint angle in radians is assumed to be perfectly known.
Orientations are expressed by quaternions to avoid the singularities

in angular representations. The inconvenience of using quaternions for
optimization is having four instead of a minimal set of three parameters.
Obtaining a unit quaternion can be assured by adding a corresponding
nonlinear constraint to the optimization problem. In [Schmidt and Nie-
mann, 2001] other possibilities of treating quaternions in an optimization
are discussed. A method is presented that parameterizes a quaternion
with only three scalar parameters as the deviation on the unit sphere in R

4

from an initial guess of the quaternion. However, for the F1 calibration,
the best results were obtained for a free optimization of the quaternion,
i.e., with optimizing all four parameters without additional constraint.
The three kinematic chains have due to the varying number of actu-

ators a different number of parameters, and the calibration has a differ-
ent level of complexity. An analysis of the parameter identifiability as in
[Besnard and Khalil, 2001; Khalil et al., 2000] using the QR factorization
of the Jacobian matrix of the cost function was carried out. The param-
eters used are described in Section 4.5 with illustrations in Figures 4.13
and 4.14. Figure 5.8 illustrates the base and end-effector frames of the
F1 prototype.
Arm 1 has ten scalar parameters, similar to the kinematic error model:

The link length L1, the guideway base point A01, the ball joint position on
the end-effector plate B01 and the actuator axis v1. All ten parameters can
be identified independently with the chosen measurement poses. The cost
function for kinematic chain 1 is

V1 =
N

∑
k=1

(

q (Tm,k+RT ,m,k ⋅ B01 )−(A01+ q1,k ⋅v1) q2− L21
)2

(5.10)

The arm 2 kinematics is described in Section 4.5 by altogether 24 scalar
parameters: The guideway base point A02 and direction v2, the orienta-
tion 1u2 of the rotational joint q4 with respect to the base frame, the ball
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Figure 5.8 Robot base frame and end-effector frame of the F1 Gantry-Tau.

joint positions Abji on cart 2, the link lengths Li and the ball joint po-
sitions B0i on the end-effector plate, i = {2a, 2b}. The orientation 1u2 is
parameterized as a quaternion and describes the orientation of the co-
ordinate frame S2, which defines the q4 rotation by its y-axis. The cost
function is

V2 = ∑
i∈

{2a,2b}

N

∑
k=1

(

q(Tm,k+RT ,m,k ⋅ B0i )−

(A02+ q2,k ⋅v2+R1u2 ⋅Rq4 ⋅ A
bj
i )q2− L2i

)2
(5.11)

where R1u2 is the rotation matrix associated with the quaternion
1u2 and

Rq4 the rotation matrix associated to the rotational joint q4. An iden-
tifiability analysis showed that the y- and z-components of Abj2b cannot
be determined uniquely. The reason for this is that the origin position
of S2 along the q4 axis and its orientation around the same axis are not
uniquely defined. The non-identifiable parameters and the parameters
they depend on are shown in Table 5.4. The column of the cost Jacobian
matrix corresponding to the redundant parameter is a linear combination
of the columns corresponding to the dependent parameters given in the
table. Or, a modified redundant parameter can be compensated for with a
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Table 5.4 Non-identifiable parameters and dependencies for the nominal param-
eter values. The components of positions and quaternions are indicated in paren-
theses, e.g., (x) for the x-coordinate or (1) for the first element of a quaternion.

Redundant Dependent parameters

parameter

A
bj
2b(y) A02(x), A02(y), A

bj
2a(y)

A
bj
2b(z) A

bj
2a(x), A

bj
2a(z), A

bj
2b(x), 1u2(2), 1u2(3)

r3(y) A03(x), A03(y)
2u3(2) r3(x), 1u3(2), 1u3(3), 2u3(1)
A
bj
3c(x) r3(x), Abj3a(x), A

bj
3b(x)

A
bj
3c(z) A

bj
3a(z), A

bj
3b(z), A

bj
3c(y), 2u3(3), 2u3(4)

suitable change in the dependent parameters, resulting in the same robot
geometry.
Arm 3 is the most complex one, with kinematics described by 38 scalar

parameters. In comparison to arm 2, it has additional parameters corre-
sponding to the third link and parameters describing the geometry of
the q6 axis: Offset r3 and orientation 2u3 of the coordinate frame 2S3
with respect to frame 1S3, see Figure 4.14. The identifiability analysis
showed that, like for arm 2, the position the coordinate systems attached
to joints q5 and q6 along the joint rotation axis is not uniquely determined,
as well as the orientation around the same axis. The redundant parame-
ters and the dependencies to the remaining parameters can be found in
Table 5.4. The cost function for arm 3 is

V3 = ∑
i∈

{3a,3b,3c}

N

∑
k=1

(

q(Tm,k+RT ,m,k ⋅ B0i )−

(A03+ q3,k ⋅v3+R1u3 ⋅Rq5 ⋅ (r3+R2u3 ⋅Rq6 ⋅ A
bj
i ))q2− L2i

)2
(5.12)

The optimization was carried out with standard Matlab algorithms.
For a faster convergence, the analytic gradients were provided and a man-
ual normalization of the variables implemented. To avoid the parameter
redundancy, Abj2b(y), r3(y), r3(z), A

bj
3c(x) and A

bj
3c(z) were fixed to their

nominal values and Abj2b(z) was set equal to A
bj
2a(z).
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Results

Table 5.5 and Figures 5.9 and 5.10 show the identified parameters and
end-effector positioning error of the optimized model. In Table 5.5, for each
link j, the mean absolute value of the length error over all N measurement
poses k is given as

eL, j =
1
N

N

∑
k=1

∣
∣qA j,k− Bj,kq− L j

∣
∣ (5.13)

Arm 1 has the lowest value of 33 µm, while chain 3 has the largest errors
of up to 100µm, especially for link 3c, which has its attachment point
furthest away from the q6 axis.
The resulting mean absolute end-effector positioning error is 240 µm,

see Figure 5.9. This is considerably lower than the corresponding mean
value of 62mm for the nominal parameters, based however on the manual,
low accuracy measurements of the linear guideway positions. The angular
error was reduced from maximal values of 6.7○ to maximal values of 0.2○.
A principal component analysis shows in which direction the end-

effector positioning error is largest. For that, the values were transformed
from the laser tracker frame to the robot coordinate system shown in Fig-
ure 5.8. The error covariance is calculated from the matrix E, whose k-th
row is the three-dimensional positioning error qTm,k− ffk(qk, sopt, c)q for
measurement k. The eigenvalues of the resulting covariance matrix ETE
show then how large the error is in the directions given by the eigenvec-
tors of the matrix. For the optimized model, the matrix D containing the
eigenvalues and the matrix W with the eigenvectors are

D =






2.34 0 0

0 4.17 0

0 0 7.52




 , W =






0.27 0.72 0.74

−0.36 −0.62 0.69

0.90 −0.44 0.07






The results show that the error is lowest roughly in the direction parallel
to the linear actuators, which is along the z-axis for the F1 robot’s base
frame. The error is largest in the direction (0.74,0.69,0.07)T .

Discussion

The end-effector positioning accuracy was reduced significantly from a
mean value of 62mm to 240µm for the position and from 6.7○ to 0.2○ for
the maximal ZYZ Euler angle error. Even though the 3 DOF D1 prototype
has a better accuracy with a positioning error of 140 µm for the nominal
model, the F1 prototype has a more complex kinematic structure, which
can increase the number of possible geometric errors, and thus decrease
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Figure 5.9 Absolute positioning error ek for identified F1 model. The correspond-
ing mean value for the nominal parameters was 62mm.
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Figure 5.10 Angular errors (eα , eβ , eγ ) for the identified F1 model, represented
in ZYZ Euler angles. The corresponding values for the nominal parameters reached
up to 6.7○.
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5.4 Calibration of the F1-type Gantry-Tau

Table 5.5 Identified parameters of the F1 prototype calibration. All lengths and
position values are given in [mm], where the base frame was the laser tracker frame.
Parameters in grey were fixed during the optimization to avoid redundancy.
i 1 2a 2b 3a 3b 3c

Li 1922.58 1501.86 1504.27 1501.99 1501.19 1505.24
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the accuracy. The link length errors in Table 5.5 show that the more
complex the kinematic chain was, the larger the link length error was.
The values within one link cluster are similar except for link 3c. As the
link had a larger distance to the q6 rotation axis compared to links 3a
and 3b, a recalibration of the ball screw geometry was attempted, which
did however not improve the results.
Another measurement series recorded on the same day, before the

measurements used for calibration in this section, indicate a larger end-
effector repeatability error at that occasion than the 1 µm to 5µm which
were succesfully demonstrated at the Automatica Fair 2012 in Munich.
A factor that might have had a negative influence on repeatability and

accuracy was the usage of aluminum links instead of the much stiffer,
original carbon fibre links. However, as the F1 prototype has a vertical
direction of the linear actuators and the weight of the end-effector plate
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and T-Mac target was small, the influence was probably minor. The ver-
tical arrangement of the guideways and the resulting advantage that the
gravity force is along the stiffest direction of the robot, were not improving
the robot accuracy compared to the prototypes with horizontally arranged
linear actuators.
The end-effector positioning error is smaller along the direction of the

double-motor controlled linear actuators. However, as the principal com-
ponent analysis shows, only by a factor of 2–3. A kinematic error model
of arms 2 and 3 has to be developed in order to take advantage of the
accuracy of the linear actuators and increase the positioning accuracy of
the robot in general.
As no additional constraints on the quaternion parameters was intro-

duced, the resulting parameters do not represent an orientation in the
strict sense. The norm of the three quaternion parameters identified is
between 0.9741 and 1.0028. The calibration algorithm should be improved
to handle unit quaternions efficiently.

5.5 Calibration Using Camera Vision

Camera vision has advantages over other measurement devices used in
kinematic calibration, in particular in view of automated calibration ex-
ecuted by non-experts in SMEs. Mechanical measurement systems like
the wire-based system presented in [Tavolieri et al., 2002] might be diffi-
cult to setup and handle. Moreover, as the device needs to be physically
connected to the robot, it is difficult to exploit it further for industrial ap-
plications and needs thus to be stored away between calibrations. Laser
trackers are highly accurate, but very expensive. A solution is therefore
to use computer vision including appropriate image processing software.
Vision is being used in robotics for various applications, e.g., as feed-

back in control or for kinematic calibration. In previous work kinematic
calibration of robots using vision has been performed by determining the
location of a pattern plate [Renaud et al., 2006] mounted on the robot or
by observing the robot’s legs [Renaud et al., 2004; Andreff and Dressler,
2008]. In most cases, a single camera is used. Stereo or multi-camera vi-
sion has the potential to improve the measurement accuracy, as the depth
information is increased.
This section evaluates the use of camera vision for kinematic calibra-

tion, in particular for automated calibration of the Gantry-Tau robot. A
method for automated robot pose reconstruction from image data of two
cameras is presented as well as an evaluation of the method’s accuracy
compared to laser tracker measurements, including a comparison of the
accuracy of the calibrated model.
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5.5 Calibration Using Camera Vision

Cameras

Figure 5.11 L1 prototype with camera setup for stereo vision.

Automated Image Processing Algorithm

Below, the automated pattern detection algorithm used for kinematic cal-
ibration in this work and developed by Carl Olsson and Karl Åström at
the Mathematic Imaging Group, Lund University, is presented.
Figure 5.11 shows the experimental setup with the L1 prototype. Two

synchronized firewire cameras are mounted on the wall in front of the
robot end-effector. A special tool with a calibration pattern consisting of
five black squares is mounted on the end-effector. Changing the distance
and angle between the cameras, the measurement accuracy and range can
be adjusted.
The algorithm consists of three steps: First, the calibration pattern

is localized in the images. Next, the relative orientation between camera
frame and calibration pattern is determined, so that the 3-D calibration
pattern position can be estimated in the third step. The version of the
algorithm which was used for the work in this thesis returns the positions
in a pixel-based coordinate system. Consequently, the results have to be
scaled to metric units before they can be used for robot calibration.

Pattern detection The automated detection of the pattern is based on a
sequence of algorithms with increased computational complexity working
on decreased portions of the image.
First, the image background is estimated using a median image of

ten images throughout the entire sequence of calibration poses, see Fig-
ure 5.12. In later steps, only the foreground, i.e., pixels with a minimum
deviation from the median, needs to be processed.
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Figure 5.12 Median images used for background estimation.

Figure 5.13 Validation of the square candidates. A yellow cross indicates a square
candidate which failed validation, whereas a green cross indicates a successfully
validated square.

Next, the image foreground is searched for elements resembling black
squares using spatial derivatives. The result is typically that roughly 500
such square candidates are found in an image.
These square candidates are then validated by finding the positions

and normals of all four edges of the square. The result is typically that
roughly ten such squares remain after validation, see Figure 5.13. A yellow
cross indicates a square candidate that failed the validation, whereas a
green cross indicates a successfully detected square.
Each of the squares is then used to hypothesize the calibration pat-

tern position. A validation based on searching for all 20 sides of the five
black squares is made using sub-pixel edge detection [Åström and Hey-
den, 1999]. Typically, the pattern position is uniquely determined after
this step. Figure 5.14 shows the detected pattern.
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5.5 Calibration Using Camera Vision

Figure 5.14 The detected chessboard pattern.

Relative orientation between cameras and robot Each corner point
of the calibration pattern, as seen in both views for each calibration posi-
tion, is used to estimate the relative orientation of the cameras. Standard
algorithms for finding initial estimates based on five [Stewénius et al.,
2006], six [Philip, 1998] or eight points [Longuet-Higgins, 1981] have been
tried. Bundle adjustment [McGlone et al., 2004] is then used to estimate
the parameters with a minimal reprojection error. It is assumed that the
local optimum that we find is the global one.

Calibration pattern position Once the relative orientation between
the cameras and the calibration pattern is known, the center point of
the calibration pattern is estimated, together with an estimate of its co-
variance, by intersection [McGlone et al., 2004]. Figure 5.15 shows the
resulting reconstruction of the scene. The arrows represent the camera
positions and orientations, the blue stars are the reconstructed TCP posi-
tions, and the red lines represent the movement of the robot end-effector.

Scaling to metric units The algorithm returns the TCP positions
given in a pixel-based coordinate frame. In order to use the measure-
ments for robot calibration, the results need to be scaled to metric units.
To identify the scaling factor, several possibilities exist. The simplest, but
maybe not most accurate way is to measure an object with known dimen-
sion in an image. It is however advantageous to use the already identified
TCP measurements. As earlier measurements proved a sufficiently par-
allel alignment of the linear actuators and identified the transmission
factor accurately, the fact can be used that the TCP measurement poses
are arranged at the corners of a grid aligned with the robot base frame
axes. Even though the exact yz-position of the TCP poses with respect to
the robot frame is not known before an accurate kinematic calibration is
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Figure 5.15 The resulting reconstruction of the measured end-effector poses (blue
stars). The arrows represent the camera positions and orientations. Coordinate sys-
tem see Figure 5.16.

made, the distance of the points in the x-direction is known and can be
used to find the scaling factor.

Accuracy Evaluation

To evaluate the accuracy of the automated stereo vision measurement
system, simultaneous measurements with the vision system and a laser
tracker were performed on the L1 prototype. Figure 5.16 illustrates the
experiment setup and coordinate frames. A set of 282 robot poses was
chosen for calibration. The image processing was able to automatically
detect the calibration pattern in 125 out of the 282 images. It is worth
to note that a first measurement run resulted in images which were too
dark for the automated pattern detection script. This indicates that in
case of an industrial application, special care has to be taken to good
illumination of the robot cell. In the following, the measurements of laser
tracker and vision system are compared directly as well as in terms of
calibration results.

Measurement accuracy Figures 5.17 and 5.18 compare the vision sys-
tem and laser tracker measurements. The mean absolute value of the dif-
ference between the measurements is 1.7mm. This is much higher than
the laser tracker’s accuracy of a approximately 10 µm in this case, so that
the difference between the measurements can be regarded as the vision
system’s measurement error. Figure 5.18 shows that the measurement er-
ror is depending on the end-effector position within the workspace, and
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Figure 5.16 Experimental setup overview. Laser tracker and stereo vision system
with the corresponding coordinate frames.

it is considerable smaller in the center than at the borders of the robot
workspace or image. The error is to a large part in the xz-plane of the
laser tracker, see Figure 5.16. This means that the error is smallest along
the depth direction of the cameras, which is usually, at least for a sin-
gle camera, the weakest direction for reconstructing 3-D positions from
2-D images. On the other hand, this was the direction that was used for
finding the scaling factor, and errors might have been compensated for
by adjusting the scaling. However, if the laser tracker measurements are
used for finding the scaling factor, very similar results are obtained with
only a minimal improvement of the measurement accuracy.

Calibration accuracy A calibration was performed with laser tracker
and vision system measurements, respectively, to study the accuracy of
the resulting models. As the laser tracker measures much more accurately
than the vision system, the laser tracker data was used for evaluation in
both cases. As usual, every second of the measurements along the grid
was used for calibration and the remaining measurements for evaluation.
Figure 5.19 shows the resulting positioning accuracy and Table 5.6

the identified parameters. For the vision data, the mean positioning error
is 1.5mm and the pose dependency is very similar to the measurement
error in Figure 5.18. The mean positioning error for the laser tracker based
calibration is 125µm. For comparison, the robot’s unidirectional Cartesian
repeatability was evaluated between two consecutive runs to be at most
68 µm. The parameters in Table 5.6 differ up to 9mm between the two
calibrations.
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Figure 5.17 Histogram of absolute measurement error for stereo vision system,
compared to the laser tracker measurements.
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Figure 5.18 Measured wrist mount positions (stars) with three-dimensional mea-
surement errors scaled by 20 (lines), given in the laser tracker frame, see Fig-
ure 5.16.
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Figure 5.19 Absolute positioning error ek for the L1 prototype model identified
using vision data (solid) and laser tracker data (dashed). The corresponding mean
values are 1.7mm and 125µm for vision and laser tracker data, respectively.

Discussion

This section evaluated the use of an automated stereo vision system for
kinematic calibration of the Gantry Tau robot. The system is easy to use
and thus convenient for non expert SME staff. A concern in an industrial
context might be the dependence on good lighting conditions.
The mean absolute measurement error of the vision system was eval-

uated to 1.7mm. Positioning and measurement errors are to a large part
systematic, see e.g., Figure 5.18. The resulting errors in the kinematic
model can therefore not be compensated for by more measurements, and
the model’s end-effector positioning accuracy is only slightly better than
the measurement accuracy.
In [Dressler et al., 2008], kinematic calibration of the Gantry-Tau robot

was performed using only one camera. A mean absolute positioning error
of 2.28mm was obtained, with errors mostly below 3mm. This indicates
nevertheless a major improvement of the stereo vision method used here.
However, for a future usage, the origin of the measurement errors has

to be studied further. Accuracy can be improved with a better camera
modeling, and a better camera. The accuracy can be further improved
with an optimization of the camera positioning with respect to the robot’s
workspace, such that the pattern plate covers a part as large as possible of
the image, but still such that the complete end-effector workspace can be
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Table 5.6 Identified parameters [m] of the L1 prototype, given in the laser tracker
frame.
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recorded. This may however have practical limitations if a permanently
installed camera is used. Another possibility may be to use even more
than two cameras with overlapping views.
The camera vision system presented was used for automated estima-

tion of the TCP position. Another possible application could be dynamic
tracking, which can optionally be used for feedback control.
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Camera

Figure 5.20 L1 prototype with mounted pattern plate for calibration using a cam-
era mounted to the left of the window. The picture shows as well other experiment
equipment narrowing the Gantry-Tau’s workspace, e.g., an IRB 2400 robot.

5.6 Automated Calibration

The intended, but not exclusive application of the automated calibration
method presented is to enable non-expert users perform kinematic cali-
bration after reconfiguring a modular robot. A tool developed assists ex-
periment preparation, measurement execution and optimization, and is
experimentally tested. The tool performs exactly the same steps as an ex-
pert would do, but the challenge is to transfer the expert’s knowledge and
experience to numbers in order to assure a successful outcome.

Algorithm

In [Ji and Li, 1999] it was suggested to recalibrate only changed kinematic
parameters after reconfiguring a modular robot. In spite of the larger
number of parameters, the calibration of the complete kinematic model
was adopted here. As models never simulate reality perfectly, a parameter
value once identified might not be equal to the real geometric property
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Figure 5.21 Flow of the calibration algorithm with the measurement point selec-
tion presented.

and may no longer give an optimal accuracy of the kinematic model after
reconfiguration.
Figure 5.21 shows the flow of the developed method. In the first step,

the measurement poses are selected according to the chosen measure-
ment device and the robot’s a priori workspace. This workspace is based
on initial knowledge of the approximate values of the kinematic parame-
ters, resulting e.g., from a tool optimizing the robot geometry for a specific
task. Next, a simulated calibration evaluates whether the choice of mea-
surement poses results in accurate parameters. The tool then generates
a trajectory in a form readable by the robot controller, and the kinematic
calibration is performed.
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Workspace calculation With the aid of a priori kinematic parame-
ters, the robot’s working range is calculated. These parameters can result
from manual measurements or as a nominal parameter output from an
optimization tool which reconfigures the robot geometry according to a
new desired task. The kinematic workspace, i.e., all poses for which the
inverse kinematics problem has a solution, is reduced by actuator and pas-
sive spherical joint limits, as well as Cartesian limits preventing collisions
of end-effector and robot framework. The working range is determined by
a grid search in a maximally conceivable workspace, which is roughly
determined by the a priori parameters and the room dimensions.

Safety zones The resulting kinematic working range can additionally
be narrowed by obstacles such as walls or other equipment in the work-
shop, see Figure 5.20. Grid points colliding with obstacles are deleted from
the workspace. In doing so, even the dimensions of extra equipment, such
as a pattern plate for calibration with a camera, has to be considered.
To prevent damage of the robot due to the uncertainty of the a pri-

ori parameters, the working range for calibration excludes a safety zone
around obstacles, in the range of the spherical joint angles and at the
limit of the kinematic working range.

Measurable area The resulting working range is then intersected with
the area the measurement device can record. This area is not exclusively
determined by the measurement device’s properties, but can possibly be
narrowed by occultations for optical devices or collisions for mechanically
connected devices. The measurement accuracy can vary around the mea-
surable area, e.g., with the distance between the end-effector and measur-
ing device, or with respect to the angle between a target and a camera’s
optical axis. If applicable, this dependency has to be taken into account
to utilize the best achievable measurement accuracy. Here, a camera with
fixed position and orientation is considered, with the pose and intrinsic
camera parameters assumed to be known beforehand. Using a pinhole
model of the camera, the tool tests for each workspace point whether the
projection of the complete calibration pattern is inside the picture bound-
aries.

Measurement poses The measurement poses, i.e., the robot configu-
rations in which the camera takes an image, are then distributed in a
regular pattern over the remaining workspace obtained by intersecting
the robot workspace and the recordable area. This is achieved by esti-
mating the volume of the workspace and calculating a new grid constant
based on a desired number of measurement points.

107



Chapter 5. Kinematic Calibration

Simulation and experiment Using the a priori parameters, the choice
of measurement poses is evaluated both by examining the Jacobian matrix
of the cost function and by a simulated kinematic calibration.
The Jacobian matrix J is calculated, i.e., the partial derivative of the

cost function with respect to the kinematic parameters for the chosen
measurement points. For evaluating the Jacobian matrix, the criterion
presented in [Nahvi and Hollerbach, 1996] was adapted and approved if

σ 2max
σmin

= σmax
cond(J) < C (5.14)

where σmax and σmin represent the largest and smallest singular value of
the Jacobian matrix, respectively, and cond(J) is the conditioning num-
ber. Compared to other criteria, (5.14) is more sensitive to calibration
errors. The threshold constant C is to be chosen according to the robot
architecture and selected as 200 here.
The simulated calibration is performed with assumptions on measure-

ment noise according to the chosen device. The resulting parameters are
compared to the a priori parameters.
If the evaluation of the Jacobian matrix and the results of the optimiza-

tion are approved, the real calibration is executed, if not, the procedure is
repeated with more measurement points.
It is questionable that choosing more measurement points is result-

ing in a more accurate calibration in all cases. All parameters might not
be identifiable, depending on the measurement device and the modified
parameter values. Another possibility is that the area covered by the mea-
surement device is not large enough to give accurate results for all pa-
rameters. An analysis on the identifiability of the kinematic parameters
should be included in a later version of the tool.

Calibration results

An experiment was performed on the L1 prototype to validate the method
presented. Table 5.7 shows the robot’s a-priori kinematic parameters, pre-
viously determined using a measuring tape. The measurements for the
validation experiment were performed using a camera and processed with
a camera calibration toolbox for Matlab [Bouguet, 2007]. To be able to pre-
cisely transform results from the camera frame to the robot frame, a robot
frame different from the convention in this thesis was defined: The x-axis
was chosen along the axis of actuator 3 and the z-axis was intersecting
with the axis of actuator 1. The origin was defined such that sA3 = 0.
Figure 5.22 shows the robot’s kinematic workspace identified, together

with the region in which the grid search was executed. The kinematic
workspace was calculated using the a priori parameters resulting from
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Table 5.7 Kinematic parameters of the L1 prototype, all values except for the
dimensionless actuator direction vi given in [m] in the robot base frame defined:
The x-axis was chosen along the axis of actuator 3 and the z-axis is intersecting
with the axis of actuator 1. The origin was defined such that sA3 = 0.
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manual measurements, see Table 5.7. A grid with 10 cm interval was
used. The spherical joint angles were limited to 30○, which resulted in
a safety interval of nearly 15○. The cart movement was limited to ±1m
from their initial position. The safety distance from the workspace limit
was 10 cm, but is not taken into account in Figure 5.22.
In Figure 5.20, the obstacles present in the robot lab at Lund Univer-

sity can be seen, such as experiment equipment and an ABB IRB 2400
robot. Areas corresponding to these obstacles were eliminated from the
workspace. Figure 5.23 shows the remaining workspace points as well
as the obstacle regions. They correspond to an experiment table, the ABB
IRB 2400 robot, experiment equipment behind the robot and a palette with
various workpiece samples in the corner of the room. The ratio between
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Figure 5.22 Kinematic workspace of the L1 robot (red star cloud), taking into
account joint limits. The approximate actuator positions and links are represented
by the thick lines. The unconstrained initial workspace, for which the grid search
was performed, is indicated by the black wire-box.

the workspace remaining for calibration and the kinematic workspace in
Figure 5.22 is 0.4.
Figure 5.24 shows the area which is covered by the camera view in

relation to the robot workspace calculated above. The measurable area
was estimated based on a pinhole camera model. The intrinsic camera
parameters as well as the approximate camera pose in relation to the robot
were determined beforehand. As can be seen, the camera could record the
complete robot workspace.
The desired number of measurement points was 100, which included

50 measurements for model validation. This is a sufficient number to esti-
mate seven parameters for each arm independently. However, the optimal
number of measurements, which is likely to depend on the measurement
device, should be identified, which was however not the focus here.
Next, the measurement points for the calibration were chosen, see

Figure 5.24. For that, the workspace was filled with a new grid with
a spacing of 0.1367m, which was calculated using the desired number
of measurement points, 100, and an estimation of the workspace volume.
112 Measurement points were obtained, for which the joint positions were
calculated using the a priori parameters.
Next, a simulated kinematic calibration showed that the kinematic pa-
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Figure 5.23 Remaining workspace points after eliminating the points which were
colliding with obstacles or which were too close to the kinematic workspace limit.
The obstacle regions are marked as blue boxes inside the maximally conceivable
workspace, marked with a black box. The ratio between the remaining workspace
and the kinematic workspace in Figure 5.22 is 0.4.
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Figure 5.24 The measurement points chosen together with the area covered by
the camera view.
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Figure 5.25 View out of the camera: The robot with the calibration pattern (to the
right in the picture). To the left in the picture, obstacles, e.g., experiment equipment
and and ABB IRB 2400 robot can be seen.

rameters can be estimated sufficiently well with the chosen measurement
points. The evaluation of the Jacobian matrix, which was done for each
arm separately, gave singular values between 0.3 and 64.
The RAPID program generated by the software tool was executed on

the robot controller and simultaneously, the images were recorded by the
camera, see Figure 5.25. The image processing was done manually using
a camera calibration toolbox for Matlab [Bouguet, 2007], as the automated
vision system described in Section 5.5 was not yet available. Every second
measurement point was used for the parameter optimization, the remain-
ing points to validate the kinematic model.
The calibrated parameters are listed in Table 5.7. Figure 5.26 shows

the absolute end-effector positioning error. The error was of the same
order of magnitude as the camera’s measurement accuracy. It reached
9.5mm at one point but was mostly below 3mm, its mean value being
2.3mm. The peaks were distributed randomly in the robot’s workspace
and do not correspond to a certain direction or region in the workspace,
even though they appear to form a pattern in the figure.

Discussion

Section 5.5 evaluated the measurement accuracy of a stereo vision system
with two cameras, which were identical to the one used here, to approx-
imately 1.7mm and identified the end-effector’s mean absolute position-
ing error of the L1 Gantry-Tau as 125µm. It can thus be expected that
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Figure 5.26 Absolute end-effector positioning error ek of the identified kinematic
model for the L1 robot.

an important part of the positioning error in Figure 5.26 was due to the
camera’s measurement uncertainty rather than caused by the kinematic
modeling error. Comparing the calibrated parameters L2 and L3 in Ta-
bles 5.6 and 5.7 shows differences of approximately 5mm between the
values identified using laser tracker measurements and the values iden-
tified in this section. However, it is difficult to tell if these rather large
errors are caused by an inadequate choice of the measurement poses or by
inaccurate camera measurements. For that, the single camera vision has
to be evaluated and the automated calibration method performed using a
more accurate measurement device, which was not available at the time
of the experiments.
The advantage of the method presented is the automated selection of

measurement points. This makes it possible to execute calibration without
choosing appropriate measurement poses manually and thus, kinematic
calibration can be performed by non-experts. When selecting the mea-
surement points, the tool has to find a compromise between safety and
spreading the measurement points as wide as possible and thus probably
obtaining a more accurate calibration result. Comparing Figures 5.22 and
5.23, it can be seen that the workspace is reduced considerably. Moreover,
a 15○ safety interval for the joint angles seems rather large. During the
experiment, some joints approached their mechanical limit up to about
10○ at a few poses, whereas collisions were not risked. Mechanical touch
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sensors can prevent damage of the joints, but triggering one of the sensors
leads to experiment interruptions and possibly fewer measurements.
In principle, the calibration method presented can be applied for any

kind of robot or measurement device. Both the calculation of the mea-
surable space of the camera and the robot’s kinematic model can be ex-
changed for corresponding calculations for other robots or measurement
devices. Such adaptations include also the determination of how different
robot geometries influence different parameter and criteria values. The
range of singular values and condition numbers of the Jacobian matrix in
which the optimization gives a good result may vary from robot to robot.
Different robot geometries may also have a different workspace edge sen-
sitivity on parameter changes and thus need a different safety zone.
Further research might include a tool for camera pose optimization.

For a freely movable camera, the tool could easily be adapted to calculate
a pose where the largest possible area of the robot workspace could be
recorded. For a partly movable camera, the tool could, for example, opti-
mize the orientation. This tool would then need to include an assistance
for the camera placement, e.g., the superposition of the camera picture
with a calculated desired picture. The tool could also support other types
of measurement tools.
A possibility to increase the calibration accuracy would be to deter-

mine more measurement points than needed and then choose an optimal
set of poses, both with respect to the number and the location. Optimizing
the location can easily be done by examining the influence of a certain
measurement point on the singular values of the Jacobian matrix, which
is already calculated for the measurement poses chosen for calibration. It
would as well be interesting to have an estimate of the model accuracy,
both before and after calibration. Before calibration it would allow changes
to be made before executing the calibration if the desired accuracy can-
not be achieved, e.g., by increasing the number of measuring points or
choosing a more accurate measuring device.

5.7 Conclusion

This chapter focuses on two aspects of kinematic calibration: Evaluation of
the kinematic modeling in Chapter 4 and supporting non-expert operators
calibrating a reconfigurable robot.
The resulting Cartesian positioning accuracy, which was experimen-

tally evaluated for different prototypes and kinematic models, has mean
values between 90µm and 230µm. With a kinematic error model, the
orientation error for the D1 prototype was below 0.05○, which is approxi-
mately ten times less than for the nominal model. There is however still
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room for improvement, as the D1 prototype’s omnidirectional Cartesian
end-effector repeatability of 15 µm proves. Results indicate that improve-
ments can be made by a more thorough actuator modeling, by taking into
account stiffness modeling and possibly by arm-side measurements for the
linear actuators or dual-motor control.
A stereo vision system, which has the advantage of being an affordable

measurement device possibly reusable for other applications, gave in prin-
ciple good results. However, the measurement accuracy has to be further
studied and improved. A method to lead non-expert operators through
kinematic calibration of a reconfigurable robot was successfully tested.
In ongoing projects, the kinematic calibration of the L2 and F1 proto-

types is studied.

115



Chapter 5. Kinematic Calibration

Table 5.8 Calibration results for the kinematic error model of the D1 prototype
in Section 5.3: Models 1 and 2.

Model Link Li [m] Actuator Actuator Final cost

offset orientation
sA0i [m] vi

1 1 2.04423






−3.12999
−4.88145
0.70473











0.99779

−0.06634
−0.00530




 5.458e-06

2 2.04292






−3.07865
−3.47376
0.66795











0.99752

−0.06598
−0.00544




 3.661e-06

3 2.04350






−3.13955
−4.81373
−0.68032











0.99769

−0.06603
−0.00509




 3.515e-07

Frame Frame Euler

offset [m] angles [deg]

2 1 2.04423






1.81040

−4.29494
−0.08075











137.94642

−0.49443
0.36210




 5.506e-06

2 2.04291






1.41419

−3.86450
0.08531











149.73731

−0.85832
0.30077




 2.4647e-06

3 2.04350






0.53097

−2.08460
0.03851











167.03480

−0.41249
0.06433




 5.5341e-07
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Table 5.9 Calibration results for the kinematic error model of the D1 prototype
in Section 5.3: Models 3 and 4.

Model Link Li [m] B0i [m] Act. offset Act. orient. Final cost

A0i [m] vi

3 1 2.04422






−0.04871
−0.05363
−0.10361











−3.18514
−4.96829
0.77830











0.99773

−0.06636
−0.00544




 2.5339e-06

2a 2.04291






−0.05079
−0.11527
−0.08175











−3.13100
−3.52723
0.79856











0.99761

−0.06584
−0.00544




 2.9384e-06

2b 2.04294






−0.05864
0.00230

0.13871











−3.12578
−3.33374
0.64030











0.99744

−0.06589
−0.00562




 2.8946e-06

3a 2.04351






−0.18926
−0.09046
0.04200











−3.32073
−4.73900
−0.59428











0.99766

−0.06600
−0.00515




 4.4596e-07

3b 2.04352






−0.04625
−0.00142
−0.14303











−3.19764
−4.94939
−0.65117











0.99764

−0.06607
−0.00507




 3.108e-07

3c 2.04352






−0.05438
0.11726

0.07666











−3.19209
−4.75506
−0.80852











0.99774

−0.06597
−0.00507




 5.6626e-07

Frame Frame Euler
offset [m] angles [deg]

4 1 2.04422






−0.04871
−0.05363
−0.10361











1.75525

−4.38178
−0.00718











137.94642

−0.49443
0.36210




 2.6253e-06

2a 2.04291






−0.05079
−0.11524
−0.08174











1.36183

−3.91799
0.21592











149.73731

−0.85832
0.30077




 1.6629e-06

2b 2.04294






−0.05865
0.00234

0.13867











1.36706

−3.72450
0.05766











149.73731

−0.85832
0.30077




 1.5159e-06

3a 2.04351






−0.18926
−0.09045
0.04202











0.34979

−2.00983
0.12452











167.03480

−0.41249
0.06433




 1.1687e-06

3b 2.04353






−0.04625
−0.00144
−0.14303











0.47288

−2.22024
0.06763











167.03480

−0.41249
0.06433




 1.3091e-06

3c 2.04353






−0.05434
0.11733

0.07667











0.47844

−2.02590
−0.08971











167.03480

−0.41249
0.06433




 4.3551e-07
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Table 5.10 Results of the parameter sensitivity study in Section 5.3: Offset{x,y,z}
and “Orient.{1,2,3}” refer to the actuator offset and orientation parameters, respec-
tively. For arms 1 and 3, the corresponding parameters are A0i and vi, respectively,
i= {1, 3a, 3b, 3c}. For arm 2, the offset and orientation are described by the position
and orientation of pwHi , respectively, with the orientation expressed by ZYZ Euler
angles. The accumulated changes Sj,pos , Sj,rot and Sj,cost of the TCP position, TCP
orientation and cost function, respectively, are defined as in (5.8) for Sj,pos .

Link 1 2a 2b 3a 3b 3c

TCP position change Sj,pos
Li 11.6 5.9 3.8 2.0 5.6 2.9
Bi,x 9.1 5.1 3.4 1.6 4.6 2.4
Bi,y 3.2 2.3 1.4 0.8 2.3 1.2
Bi,z 5.7 1.2 0.8 0.7 1.9 1.0
Offsetx 9.5 4.9 3.2 1.7 4.8 2.5
Offsety 4.2 2.0 1.3 0.6 1.9 0.9
Offsetz 4.4 2.1 1.4 0.6 1.7 0.9
Orient.1 2.7 7.0 4.5 0.5 1.3 0.7
Orient.2 1.3 5.9 3.7 0.2 0.5 0.2
Orient.3 1.3 3.6 2.2 0.2 0.5 0.3

TCP orientation change Sj,rot
Li 3.7e-05 0.048 0.048 0.038 0.049 0.05
Bi,x 2.9e-05 0.042 0.042 0.031 0.04 0.042
Bi,y 1.2e-05 0.018 0.018 0.015 0.019 0.019
Bi,z 1.8e-05 0.0094 0.0094 0.013 0.017 0.017
Offsetx 3e-05 0.04 0.04 0.033 0.042 0.044
Offsety 1.3e-05 0.015 0.015 0.012 0.017 0.016
Offsetz 1.6e-05 0.017 0.017 0.011 0.014 0.014
Orient.1 8.5e-06 0.053 0.053 0.009 0.012 0.012
Orient.2 3.9e-06 0.046 0.046 0.0032 0.0043 0.0042
Orient.3 4.8e-06 0.028 0.027 0.003 0.0039 0.0039

Cost function change Sj,cost
Li 8.2e-06 7.4e-06 8.2e-06 5.8e-06 5.3e-06 5.8e-06
Bi,x 6e-06 6.2e-06 7e-06 4.3e-06 3.9e-06 4.4e-06
Bi,y 2.1e-06 2.3e-06 2.7e-06 1.8e-06 1.4e-06 1.9e-06
Bi,z 3.9e-06 1.2e-06 1.5e-06 1.4e-06 1.2e-06 1.6e-06
Offsetx 6.2e-06 5.9e-06 6.6e-06 4.6e-06 4.2e-06 4.7e-06
Offsety 2.8e-06 2e-06 2.4e-06 1.3e-06 1.1e-06 1.5e-06
Offsetz 3e-06 2.2e-06 2.6e-06 1.4e-06 1e-06 1.4e-06
Orient.1 1.5e-06 1e-05 1.1e-05 9.7e-07 7.8e-07 1e-06
Orient.2 8.6e-07 8.7e-06 9e-06 3.2e-07 2.5e-07 3.6e-07
Orient.3 8.8e-07 4e-06 4.5e-06 3.5e-07 2.4e-07 3.5e-07
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Dynamic Modeling

To fully exploit the high accelerations achievable by parallel robots, ac-
curate dynamic models for model-based control are essential. A high-
bandwidth robot-workpiece interaction requires a stiff robot without reso-
nances in the concerned frequency interval. It is therefore important not
only to identify accurate rigid-body models, but also to study the compli-
ance dynamics for force-controlled applications like grinding. This chapter
presents a rigid body model of the Gantry-Tau robot as well as results on
the compliance dynamics.

6.1 Related Work and Background

The dynamic model of an open-chain robot manipulator can be expressed
as

M(θ)θ̈ +C(θ ,θ̇)θ̇ +N(θ ,θ̇ ) = Γ (6.1)
where θ ∈R

n is the vector of the n joint variables and Γ ∈R
n the vector of

actuator torques [Murray et al., 1994]. M(θ) ∈R
n$n is the inertia matrix,

C(θ ,θ̇ ) ∈ R
n$n the Coriolis matrix and N(θ ,θ̇ ) ∈ R

n describes the non-
inertial forces on the joints, e.g., gravity or friction. The inverse dynamic
model of parallel robots is expressed in a similar form, but rather as
a function of the end-effector variables than the joint variables [Merlet,
2000].
A general solution for closed-loop manipulator dynamics was presented

in [Khalil and Ibrahim, 2007]. The dynamic model of a parallel robot with
m arms can be written as

Γ = JTP

(

Fp+
m

∑
i=1
JTvi J

−T
i Hi

)

(6.2)

119



Chapter 6. Dynamic Modeling

where

JP is the kinematic Jacobian matrix of the robot

Fp is the vector of forces and moments acting on the end-effector plate

Jvi relates the velocities of the end-effector and arm i

Ji is the kinematic Jacobian of arm i

Hi is the inverse dynamic model of arm i

Elastic dynamic models of Stewart platforms were developed in e.g.,
[Lee and Geng, 1993; Zhaocai and Yueqing, 2008]. In [Abdellatif et al.,
2007], friction modeling in both active and passive joints of parallel robots
was presented.
The modeling of [Khalil and Ibrahim, 2007] was also applied in [Lyzell

and Hovland, 2007; Hovland et al., 2007b], where a dynamic rigid body
model of the Queensland Gantry-Tau, including friction in the case of
the second paper, was verified in experiments. Elastic dynamic model-
ing of the Queensland Gantry-Tau is presented in [Tyapin et al., 2008].
The master’s thesis [Cescon, 2008] studies compliance models of the L1
Gantry-Tau prototype.
For experimental identification of the dynamics, the choice of a tra-

jectory exciting all parameters is important. While [Nabat et al., 2006]
heuristically chose a combination of slow motion for friction identification
and fast motion for inertia identification, [Farhat et al., 2008] parame-
terized the trajectory with finite Fourier series in the joint space and
minimized the condition number of the observation matrix. Cartesian and
passive joint limits add nonlinear constraints to the optimization problem.
There exist various model-based robot control schemes utilizing a dy-

namic of the robot, see e.g., Figure 6.1. In [Murray et al., 1994], a summary
of the computed torque control law can be found. It combines a feedfor-
ward term calculated by the inverse dynamic model and a feedback PD
controller. In [Vivas et al., 2005], the performances of a computed torque
control law, a PID controller and model predictive control (MPC) were
compared when applied to a parallel robot. Various publications consider
the usage of the inverse dynamics modeled in Modelica for feedforward
control [Thümmel et al., 2001; Krabbes and Meißner, 2006].
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Robot
Inverse

Inverse
Dynamics

KinematicsTd

−1

Controller
qm

qd
++

Figure 6.1 Control scheme with inverse dynamic model for feedforward compen-
sation and feedback controller. Td denotes the desired TCP trajectory, qd the corre-
sponding desired actuator trajectory and qm the measured actuator positions.

6.2 Rigid Body Model

The dynamic model of the Gantry-Tau robot was obtained in an automated
way from a Modelica model as described in [Dressler et al., 2009]. The
nominal 3 DOF Gantry-Tau robot with parallel actuator axes was modeled
using the MultiBody library [Otter et al., 2003]. Carts, links and end-
effector plate are represented by point masses in their center of gravity.
A link cluster is represented by one link with the mass of all links of the
cluster. The spherical joints are modeled without inertia, but the weight
of the joints is added to the masses of carts and end-effector plate. The
model includes kinematics and dynamics of the Gantry-Tau as a rigid
body system. Elasticities were not taken into account. Friction was not
considered at this stage, but is manually added to the actuator forces in
the next section. From the Modelica model, the following four types of
equation systems are obtained. Where not indicated, the parameter and
variable notation introduced in Chapter 4 is used. The global x-axis is
assumed to be aligned with the actuator axes, i.e., v in (6.4) is equal to
(1,0,0)T .

1. The kinematic constraint equations for arms 1 to 3 are given by

L2i −(∆X 2i +∆Y2i +∆Z2i ) = 0 (6.3)

where the vector along link i is






∆X i

∆Yi

∆Zi




= T−(sAi+ qi ⋅v) (6.4)

and the end-effector position is T = (Tx,Ty,Tz)T .
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2. The inverse velocity Jacobian, relating joint and Cartesian velocities
is

J−1 =











1
∆Y1
∆X1

∆Z1
∆X1

1
∆Y2
∆X2

∆Z2
∆X2

1
∆Y3
∆X3

∆Z3
∆X3











(6.5)

3. The relation between joint and Cartesian accelerations is

T̈ = J






q̈1

q̈2

q̈3




−






∆X1 ∆Y1 ∆Z1

∆X2 ∆Y2 ∆Z2

∆X3 ∆Y3 ∆Z3






−1




(Ṫx− q̇1)2+ Ṫ2y + Ṫ2z
(Ṫx− q̇2)2+ Ṫ2y + Ṫ2z
(Ṫx− q̇3)2+ Ṫ2y + Ṫ2z






(6.6)

4. The dynamic equations are then

M1






T̈x

T̈y

T̈z




+M2






q̈1

q̈2

q̈3




+G = J−T






f1

f2

f3




 (6.7)

where fi is the force acting on cart i and

M1 =

















mp+
3

∑
i=1

ma, i

2
0 0

3

∑
i=1

ma, i

4
∆Yi
∆X i

mp+
3

∑
i=1

ma, i

4
0

3

∑
i=1

ma, i

4
∆Zi
∆X i

0 mp+
3

∑
i=1

ma, i

4
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M2(:, i) =













mc, i+
ma, i

2

∆Yi
∆X i

(mc, i+
ma, i

4
)

∆Zi
∆X i

(mc, i+
ma, i

4
)













G =�








0

0

mp+
3

∑
i=1

ma, i

2







, i= {1,2,3}

The masses of cart i, link cluster i and end-effector plate are mc, i,
ma, i and mp, respectively, and � is the gravitational acceleration.

Friction Modeling

Coulomb and viscous friction in the actuators were added to the dynamic
model generated from the Modelica model. The force fi on cart i in (6.7)
is then

fi = τ i− fc,i sign(q̇i)− fv,i q̇i (6.8)
with τ i being the actuator torque, fc,i the Coulomb friction coefficient and
fv,i the viscous friction coefficient. Friction in the passive spherical joints
is not considered.
The friction model was verified with a similar method as presented

in [Marton and Lantos, 2009]. The actuators were moved with constant
velocity and the actuator torque measured to obtain the curve exemplified
in Figure 6.2.
In the case of all carts moving with the same constant velocity, i.e.,

actuator and Cartesian accelerations are zero, the actuator torques τ i are
calculated as






τ1

τ2

τ3




= JT ⋅G+






fc,1 sign(q̇1)+ fv,1 q̇1
fc,2 sign(q̇2)+ fv,2 q̇2
fc,3 sign(q̇3)+ fv,3 q̇3




 (6.9)

With this method, the viscous friction coefficients can be determined
uniquely. If symmetrical Coulomb friction is assumed, i.e., the Coulomb
friction term is the same for both positive and negative velocities, the
Coulomb friction coefficients and the accumulated end-effector and link
masses are also uniquely determined. Without this assumption, the dot-
ted line in Figure 6.2 marking the gravity term can be moved vertically
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τ

v

Gravity

Coulomb friction

Viscous friction

Coulomb friction

Viscous friction

Figure 6.2 Relation between constant cart velocity v and actuator torque τ for
friction identification experiments.

thus changing the Coulomb friction terms but still resulting in the same
τ (v) curve. As the friction modeling had a more qualitative character to
validate the model structure, the robot was not taken apart to measure
the gravity force.
In [Hovland et al., 2007b] it is described how the actuator friction of

the Queensland Gantry-Tau was measured without mounted arm system,
thus overcoming the problem of the gravity term. A so-called saddle fric-
tion term, caused by moments of the link forces, was also introduced.
To identify the friction coefficients, the actuator torques were recorded

for 15 different actuator velocities up to 1ms−1. The end-effector position
for these measurements was constant in the yz-plane and is indicated
with a star in Figure 6.3. To study the influence of the link angles and
to evaluate the validity of the model in the complete robot workspace,
measurements were as well taken in other end-effector positions shown
in Figure 6.3. Unsymmetrical friction was assumed, i.e., different friction
coefficients for negative and positive actuator velocity were adopted. The
gravity term was chosen such that the Coulomb friction was as symmetric
as possible.
Figure 6.4 and Table 6.1 show the identification results. The accumu-

lated masses, i.e., mp+∑3i=1
ma, i
2 , were determined to 22.38kg. Except for

the viscous friction fv,3 of actuator 3, the coefficients for positive and neg-
ative velocities vary considerably. The behaviour of actuator 3 is the most
linear one, i.e., the measurement data fits best to the identified piece-
wise linear model in Figure 6.2. Actuator 2 is the least sensitive to the
end-effector position and link angles. This can be explained by Table 6.2,
which shows how the gravity force is divided between the actuators for
the different end-effector positions. Actuator 2 has a much smaller dis-
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Table 6.1 Identified coefficients for Coulomb friction (subscript c) and viscous
friction (subscript v). The superscript indicates negative (−) and positive (+) veloc-
ities.

Actuator i f−c,i [N] f+c,i [N] f−v,i [kg/s] f+v,i [kg/s]
1 145.69 189.12 158.01 205.03

2 119.23 262.59 133.76 190.00

3 177.22 239.06 197.52 185.94

−1.5 −1 −0.5 0

0.5

1

1.5

2

y axis [m]

z
ax
is
[m
]

Actuator 1

Actuator 2

Actuator 3

Figure 6.3 End-effector positions in yz workspace section used for friction iden-
tification; the symbols used correspond to the ones used for the measurement data
in Figure 6.4; the thick squares indicate the guideway positions.

tributed load from the end-effector and link weights than the remaining
two actuators and is therefore less sensitive to the link angles. The end-
effector position in the lower left corner indicated by a diamond (◊) differs
most from the identified model for actuators 1 and 3. Table 6.2 shows that
the gravity contribution for this end-effector position is higher for actua-
tors 1 and 3 than for the other end-effector positions. Similarly as shown
in [Hovland et al., 2007b], a different link angle and load can modify the
friction behaviour of the actuator.
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Table 6.2 Contribution JT ⋅G in [N] of gravity to actuator forces for the end-
effector positions shown in Figure 6.3.

Actuator i ∗ � ○ ◊ +
1 -176.9 -159.1 -180.3 -261.8 -201.6

2 -14.6 -23.7 -3.6 -21.5 -33.7

3 191.5 182.8 183.9 283.3 235.3

−1 −0.5 0 0.5 1
−600

−400

−200

0

200

−1 −0.5 0 0.5 1
−400

−200

0

200

400

−1 −0.5 0 0.5 1
−500

0

500

1000

Actuator velocity [ms−1]

τ
1
[N
]

τ
2
[N
]

τ
3
[N
]

Figure 6.4 Friction modeling for the three actuators: The curves show the motor
torques as in Figure 6.2, including both friction and a contribution of the gravity
force. The solid curves are the identified models and the measurement data is rep-
resented by the symbols (⋆,◊,�,○,+), corresponding to the end-effector positions in
Figure 6.3. The model was identified using the center position only (⋆), the remain-
ing measurements were compensated for the different gravity contribution.
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Table 6.3 Identified model parameters and sum of residuals ei = ∑Nk=0(τ i,k,mod−
τ i,k,meas)2 between modeled actuator torque τ i,,̨mod and measured actuator torque
τ i,k,meas for actuator i and measurement k over all N measurements. The perfor-
mance of the non-symmetric function model from Table 6.1 was tested with the
friction parameters marked with ⋆. The grey 0 indicates that the corresponding
parameter was not taken into account.

Model mp Arm i mc, i fc, i fv, ei

[kg] [kg] [N] [kg/s] [107 (Nm)2]
1 8.76 1 14.33 152.13 0 1.11

2 14.05 259.09 0 2.33

3 38.10 291.24 0 1.98

2 9.13 1 13.58 128.62 102.43 1.03

2 13.64 145.13 355.25 1.29

3 38.23 194.57 388.77 1.05

3 8.79 1 13.85 ⋆ ⋆ 2.38

2 14.85 ⋆ ⋆ 3.07

3 38.47 ⋆ ⋆ 1.77

4 9.67 1 12.51 109.97 ⋆ 1.11

2 12.73 207.13 ⋆ 1.60

3 37.70 243.75 ⋆ 1.31

Identification of Inertial Parameters

The dynamic model (6.9) includes seven masses for end-effector plate
(mp), carts (mc,i) and links (ma,i) and six friction parameters for the
active joints ( fc,i and fv,i), i= {1,2,3}. An experiment combining fast and
slow motion was performed. Using least squares estimation, several mod-
els including different combinations of masses and friction parameters
were identified. Table 6.3 presents the identified models. Figures 6.5 and
6.6 show the data fit for identification and evaluation data, respectively.
For the inertial parameters, the best results were obtained for only

estimating end-effector plate and cart masses and neglecting the link
masses. Some of the link masses were even erroneously identified as neg-
ative when including them in the estimation. As the links are made of
carbon fibre and therefore very light-weight, their acceleration force is for
any motion very small. An explanation may be that the link acceleration
term rather tries to compensate for unmodeled forces, e.g., friction in the
passive joints, than model the small link inertial forces.

127



Chapter 6. Dynamic Modeling

0 2 4 6 8 10

−500

0

500

0 2 4 6 8 10

−500

0

500

0 2 4 6 8 10

−500

0

500

Time [s]

τ
1
[N
m
]

τ
2
[N
m
]

τ
3
[N
m
]

Figure 6.5 Fit for estimation data: Measured torque (black) for actuators 1 to 3
with torque calculated by Model 2 in Table 6.3 (grey).

The best data fit was achieved for a model with symmetric Coulomb
and viscous friction terms (Model 2). The asymmetric friction models from
above, which were identified at a separate occasion, gave a worse data
fit. Attempts to identify different friction parameters for negative and
positive velocities resulted in unrealistic values for the end-effector mass
and/or the corresponding friction parameters. That might be an indication
that the motion performed for identification did not excite the end-effector
inertia sufficiently.
Figure 6.6 shows the model output for Model 2 and the measured

actuator torque for a slow validation motion, in which the end-effector
was traversing a 1 cm circle. Due to the slow velocity, the friction forces
dominate clearly. At such low velocities, the friction force is subject to
the Stribeck effect, which was not included in the model and thus causes
modeling errors. For actuator 1, the Coulomb friction level does not coin-
cide between model and measurement. Also, the modeled torque seems to
miss a hardly noticeable sinusoidal trend, which could be an underesti-
mated viscous friction force, as the velocity curve in Figure 6.7 suggests.
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Figure 6.6 Model validation with a slow circular motion. Measured (black) and
modeled (grey) torque for actuators 1 to 3. The oscillations in the modeled torque
when changing direction are due to measurement noise. The high-frequency noise
causes the velocity signal and consequently the modeled Coulomb friction to change
sign when close to 0.

For actuator 2, the modeled torque follows the measurements closely. For
actuator 3, it seems that the basis torque level, i.e., the Coulomb friction
force, is estimated accurately, but that a slight linear trend is missed in
the model. A comparison with the cart velocities in Figure 6.7 indicates
that the linear trend is not related to the actuator movement, but either
to an underestimation of the end-effector inertia or to unmodeled effects.

Discussion

The friction in the Gantry-Tau linear guideways was shown to be ade-
quately modeled by Coulomb friction and viscous damping. It can be seen
in Figure 6.4 that a different end-effector positioning changes the friction
coefficients only slightly. A comparison of the friction coefficients in Ta-
bles 6.1 and 6.3 shows that the identification results differ between the
two experiments. Especially the viscous friction coefficients for Model 2
are larger than the corresponding coefficients identified in the designated
friction experiments in Table 6.1. The two experiments were performed
with one year’s interval, and other factors as temperature and lubrication
can influence the friction model. The results of the friction modeling are
therefore mostly qualitative.
The identification of the complete dynamic model gave satisfactory re-

129



Chapter 6. Dynamic Modeling

0 2 4 6 8 10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

 

 

Time [s]

V
el
oc
it
y
[m
s−
1
]

Figure 6.7 Velocity for carts 1 (solid), 2 (dashed) and 3 (dotted).

sults. The identified model is sufficiently good to be used for e.g., model-
based control and feedforward control, even though the actuator torques
are not followed with a high accuracy. The model can certainly be improved
by modifying the identification trajectory for an optimized parameter ex-
citation. The results still show the validity of the dynamic rigid model
presented.

6.3 Compliance Dynamics

Parallel robots are generally considered as stiffer than serial robots. In
[Tyapin et al., 2008], the resonance frequency of the Queensland Gantry-
Tau is calculated to be larger than 50Hz. However, the findings in [Cescon,
2008] and experiences from the ILC experiments in Chapter 7 showed no-
table compliant behaviour with lower resonance frequencies for the L1 pro-
totype. A rigid body model is thus not sufficient for model-based control
at higher frequencies. A flexible dynamics model is required to access the
performance in applications like force control. A new modeling compared
to [Cescon et al., 2009] was required to fit more specifically the needs for
ILC, but as well because of the serial wrist, which had been added since
the first experiments and thus had changed the dynamic properties.
First, a study of the actuator dynamics is shortly presented, and then

the dynamics of the complete L1 prototype is discussed. The work pre-
sented was mainly done for the ILC experiments presented in Chapter 7
and is completed by the findings presented in [Cescon et al., 2009] and
[Cescon, 2008].
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Figure 6.8 L1 prototype with camera tracking system (left) and actuator detail
with tracking target (right).

The identification is based on measurements using linear encoders
[Heidenhain, 2010]. The experimental set-up is described more in detail
in Section 7.3. For additional measurements, a laser tracker [Leica Geosys-
tems, 2009] and a camera vision system as shown in Figure 6.8 were used.
The vision tracking system is based on the one described in [Olsson, 2007]
and was enhanced in [Cescon, 2008] with a predictor to be able to track
higher velocities. The vision system and linear encoders are sampled at
250Hz via the extended robot control system presented in Chapter 3. The
laser tracker has a sampling rate of 1kHz. The linear encoders and laser
tracker have an accuracy in the order of 1 µm and 10µm, respectively.
The vision system’s accuracy depends on the distance between camera
and target.

Actuator Models

The L1 prototype, like most industrial robots, has its actuator position
measured from the motor side, with so-called co-located measurements.
To identify the dynamics of only the mechanical arm structure, it would
be necessary to both measure the end-effector and the arm-side actuator
movement. As not enough sensors were available for that, the actuator
dynamics were studied separately. Additionally, the identified actuator
models were used for the motor-side ILC in Chapter 7.
The ILC algorithms require models with the position reference as in-

put, i.e., models of the controlled, closed-loop system. Therefore, single-
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input-single-output (SISO) models for the three actuators, with motor-
angle reference as input and measured motor angle as output, were de-
rived

qm = Ga, i(q) qr, i= {1,2,3} (6.10)
where q without subscript denotes the forward shift operator. This should
not be confused with qr and qm, which represent the reference and the
measurement of the actuator position, respectively.
In order to disregard the non-linear coupling effects between the ac-

tuators, all three actuators performed the same motion simultaneously,
such that the tool was moving in the x-direction in parallel to the actuator
axes, and the passive ball joints did not change their angles. This proce-
dure facilitates obtaining linear SISO models, but it limits as well the
validity of the identified models for movements involving coupling effects.
The tuning of the very simple ILC algorithm used for motor-side ILC in

Chapter 7 only requires the system’s stationary gain and delay, and exper-
imental results prove that delayed first order systems adequately model
the controlled motors. Three step response experiments with amplitudes
of 1mm, 1.5mm and 2mm, respectively, were performed. This choice is
motivated by the ILC experiments described in Chapter 7, where the robot
makes small movements within a few millimeters from the end-effector
position and thus also chosen here.
The three motor models are identified using data from all three step

response experiments, resulting in

Ga,1(q) = q−5
0.03527

1−0.9647q−1

Ga,2(q) = q−5
0.03425

1−0.9656q−1 (6.11)

Ga,3(q) = q−5
0.02748

1−0.9728q−1

The sampling time of the identified discrete-time systems is 4ms. The con-
trolled linear actuators have a bandwidth of approximately 1.1Hz. Note
that this does not directly correspond to the tracking performance, where
e.g., feedforward control is applied. Also, with a better tuning of the posi-
tion and speed controllers, a much faster response could be obtained. The
models for actuator 1 and actuator 2 are close to each other, while the
model for actuator 3 is somewhat different. An explanation for that might
be that, as identification experiments in Section 6.2 showed, cart 3 is
heavier than the other two carts. The controlled actuators can be approxi-
mated by a low-pass filter. The five samples delay are presumably caused
by internal data communication in the L1 prototype’s IRC5 system.
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Figure 6.9 Model validation: Measured and modeled actuator positions together
with position reference for all 3 actuators.

The models are validated using the part of the data from the 1.5mm
step response experiment which has not been used for identification. Fig-
ure 6.9 shows a good approximation of the controlled motors with a delayed
first order system. However, even if different data is used for identification
and validation, still the same simple movement is performed. A validation
with the rectilinear ILC trajectory from Chapter 7 shows that the identi-
fied models are too slow for modeling the robot performing this different
type of movement, where stronger coupling effects appear between the
actuators, which were not modeled here.
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Table 6.4 Results of resonance frequency measurement for the L1 prototype.

Lowest resonance frequency in

x-direction y-direction

Force x 7.4Hz 7.3Hz–7.5Hz

direction y 10.4Hz–10.7Hz 11.4Hz–11.5Hz

Modeling of the Complete Robot Structure

Resonance frequency To determine the new resonance frequency of
the L1 robot including the serial wrist, impulse response experiments
were performed. A force impulse was applied to the 3 DOF end-effector
plate, and the resulting position was measured with the linear encoder
in x- and y-direction. Different experiments were carried out with a force
applied along the x- and y-direction, respectively.
When the force was applied in x-direction, a resonance of 7.4Hz was

observed in x-direction, while the end-effector started a vibration with
a frequency between 11.4Hz and 11.9Hz in y-direction, which after a
few oscillations turned into a 7.3Hz–7.5Hz vibration. When the force was
applied in y-direction, the resonance frequency in y-direction was between
11.4Hz and 11.5Hz, and the resonance frequency in x-direction between
10.4Hz and 10.7Hz. Table 6.4 summarizes the results.

Linear black box models Besides knowledge about the robot proper-
ties in general, the models were needed for tuning the ILC filters and de-
signing a Kalman filter for estimating the tool position. A pseudo random
binary sequence (PRBS) signal with an amplitude of 1mm and adjustable
frequency content was added to each of the motor references. The tool po-
sition was measured by the Heidenhain linear gauges as described for the
resonance experiments above. No compensation of the friction was made,
which makes it more difficult to obtain accurate models.
Two different models were identified. The output signal for both models

is the tool position in the measured x- and y-directions. In contrast to the
notation introduced for the Gantry-Tau kinematics, the measured tool
position is denoted zm, which is in line with the notation utilized for ILC.
As input signal for one model, the xy-reference for the tool position, zr, is
used.

zm(t) = Gr(q) ⋅ zr(t) (6.12)

Another possibility is to use the actuator position measurements trans-
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Figure 6.10 Bode diagrams: Model from tool position reference to measured tool
position (solid), model from tool position calculated by kinematics to measured tool
position (dashed).

formed to the tool side by the forward kinematics, zc.

zm(t) = Gc(q) ⋅ zc(t) (6.13)

This signal has no direct physical correspondence, but can be considered
closer connected to the output signal and the resulting model performs
better for estimation than models with the actuator positions as input sig-
nals. Figure 6.10 shows the Bode plots of the two models which are used
for the ILC tuning and the Kalman estimator. The resonances around
10Hz can clearly be seen. The model from tool position reference to mea-
sured tool position was a seventh order model and the model from the
tool position calculated by kinematics to the measured tool position was
a tenth order model.

Black box models of robot without wrist Different experiments were
made for subspace-based identification of the L1 dynamics before the wrist
was added. Cart 3 was performing a motion of overlayed sinus signals
while the other actuators were standing still and the tool motion tracked
by the vision system. Additionally, an experiment similar to the resonance
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Figure 6.11 Bode diagram of the estimated 12th order model based on laser
tracker measurements.

frequency experiments described above was carried out. A force impulse
was applied to the end-effector while the tool motion was measured with
a laser tracker.
From the experiment where only cart 3 was moved, a forth order model

with a pair of complex poles within the unit circle corresponding to a fre-
quency of 14Hz was obtained. This model was transformed into a phys-
ically meaningful form as described later in this section. From the laser
tracker measurements, a 12th order model was estimated and showed
closely spaced resonances centered around a frequency of 100 rad s−1, or
16Hz, see Figures 6.11 and 6.12. Figure 6.13 shows the impulse response
of the identified model. More impulse response experiments were per-
formed resulting in very similar resonances [Cescon et al., 2009].

Physical modeling An black box model identified above was fit to the
physically meaningful form in the Laplace domain

X (s) = (M s2+D s+ K ) B U (s) (6.14)

in order to identify the inertia M , the damping D and the stiffness K ,
with X being the position and U the input signal. The matrix B is relating
the input signal to the physical spring-damper system. A description of
how this was done can be found in [Cescon et al., 2009].
From the fourth order model based on vision measurements from the
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Figure 6.12 Pole-zero map for the 12th order model based on the laser tracker
data with poles(’x’) and zeros(’o’).

experiment where only cart 3 was moved, the matrices were identified as

K = 103
[−3.7326 −1.5671
6.9209 0.5560

]

This is a positive definite matrix, which has the eigenvalues (−1.5883±
2.4996i) ⋅103. The inertia and damping matrices were identified as

M =
[
0.0278 −0.0331
−0.1759 0.3086

]

, D =
[
3.7432 −4.7826
−9.7408 −3.4976

]

Further, the generalized eigenvalue problem

det(Mλ + K ) = 0 (6.15)

determined the resonance modes ±
√

λ to 14Hz and 103Hz, matching the
results found above.

Discussion

The compliance dynamics of the L1 Gantry-Tau prototype was identified
based on two types of experiments: The robot structure compliance was
excited by force impulses applied to the end-effector and by moving one or
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Figure 6.13 Impulse response of the identified 12th order model (red) compared
with the laser tracker measurements (blue). The laser tracker’s sampling rate was
1kHz.

several actuators. Experiments were carried out both without and later
with a mounted wrist.
The main result is that the resonance frequency is much lower than

expected, approximately 10Hz and 15Hz, with and without wrist, respec-
tively. Both type of experiments are consistent in this frequency range.
For high-bandwidth applications like force control, it is crucial to iden-

tify the elasticities to further optimize the Gantry-Tau design for these
applications. The newly developed spherical joints are extremely stiff and
a comparison of motor-side and arm-side measurements on the actuators
shows considerably less flexibility than the tool motion. Thus, the flexibil-
ity can be assumed to lie in the links and the framework. In Figures 5.20
or 6.8 one can see a long lever from cart 2 to link cluster 2, which con-
siderably decreases the stiffness and introduces unnecessary flexibility.
For the L2 prototype, this has been significantly improved in addition to
stiffer spherical joints and links.
A physical parameterization of one of the black box models gave posi-

tive definite stiffness and inertia matrices, but the damping matrix has,
despite a positive trace, a negative determinant, which is difficult to in-
terpret.
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6.4 Conclusion

This chapter presented dynamic modeling results of the Gantry-Tau robot.
Both rigid body dynamics and compliance dynamics were modeled. It was
found that the lowest resonance frequency is roughly between 10Hz and
16Hz, and thus that for high-bandwidth applications, the compliances
cannot be neglected.
The results in this chapter have been an important input for the design

of the L2 prototype. First experimental results for the L2 prototype indi-
cate an improved stiffness and improved dynamical properties compared
to the L1 prototype.
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Iterative Learning Control

This chapter presents experimental results of ILC applied to the Gantry-
Tau robot. The ILC algorithm is based on estimates of the robot tool posi-
tion. The tuning of the estimator and the ILC algorithm is based on the
dynamic models developed in Chapter 6. Learning is enabled up to and
above the robot’s dominating resonance frequencies.

7.1 Introduction and Related Work

Chapters 5 and 6 present kinematic calibration and the identification
of dynamic models of the Gantry-Tau robot. Accurate modeling is nec-
essary for using parallel robots in applications where the present serial
robot technology is unsatisfactory. To achieve high accuracy, kinemati-
cally as well as dynamically, expensive high precision measurement de-
vices, components and assembly are often necessary. In particular for a
reconfigurable robot used at SMEs for small production lots, this is not
cost-efficient. A possibility for handling this situation could be to use ILC
to compensate for errors. ILC is a control method that compensates for
repetitive errors, and originates from the robotics field. Since the first
academic publications in 1984 [Arimoto et al., 1984; Casalino and Bar-
tolini, 1984; Craig, 1984], it has developed into an intense research area
as can be seen in the survey papers [Bristow et al., 2006; Ahn et al., 2007]
among others.
ILC algorithms for robots can easily be made based on motor angle

measurements, as they are in general the only measurements available
in commercial robot systems. The control objective is however to follow
a desired tool path. At high velocities, the flexibility of the robot struc-
ture gains more importance, and the tool accuracy is coupled to a lower
degree to the joint accuracy. A difficulty in industrial applications is to
measure the actual tool position. High precision measurement devices
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are either very expensive, e.g., laser trackers, or need to be in physical
contact with the end-effector, which is disturbing for the industrial ap-
plication. Cheaper optical solutions, e.g., cameras, suffer from possible
occultations. It is therefore preferable to use additional sensors, e.g., ac-
celerometers, in combination with signal processing algorithms to obtain
accurate estimates of the relevant signals [Norrlöf and Karlsson, 2005].
These estimates can then be used in the ILC algorithm to improve the
tool performance and hence be able to compensate for errors originating
from the flexible robot structure, as well as rigid body dynamic errors.
This chapter presents experimental results of ILC using tool position

estimates, applied to the Gantry-Tau robot. For comparison and evalua-
tion, experiments with ILC based on motor angle measurements and tool
position measurements were performed as well. The estimates are derived
from motor angle and tool acceleration measurements and two estimation
methods are compared: Complementary filtering and Kalman filtering.
The learning is often limited to frequencies below the resonance, which

limits the accuracy at high frequencies. In the experiments presented
in this thesis, learning is enabled up to and above the first dominant
resonance frequency of the robot.
Only in a few earlier studies, ILC is applied to PKMs. In [Abdellatif

et al., 2006; Abdellatif and Heimann, 2010], linear ILC algorithms are
applied to the direct-driven hexapod PaLiDA. The main objective was
to increase accuracy of high velocity motions. The ILC algorithms were
based on the measured motor positions and the tool performance was
evaluated by transforming the actuator positions by the forward kinemat-
ics. In [Cheung and Hung, 2009] an ILC algorithm based on measured
joint positions is applied to a planar parallel manipulator prototype with
a small workspace (4 cm $ 2 cm) intended for semiconductor packaging.
The ILC algorithm was intended to reduce the error at lower frequencies,
and therefore the higher frequency contents of the control signal are re-
moved by an appropriate filter, in order not to excite the robot at around
the resonance frequencies. A high-precision laser measurement system
provided measurements of the resulting tool position. In [Burdet et al.,
2001] ILC algorithms based on measured motor angles were applied to a
3 DOF and two 2 DOF parallel robots. To overcome the problem with a
flexible robot structure, the learning algorithm has a low bandwidth to
prevent instability. Another example for ILC based on measured motor
angles applied to a parallel robot, here a 3-PRPS platform, can be found
in [Chuang and Chang, 2001].
Estimation and ILC have been combined in few publications. In [Rat-

cliffe et al., 2006] norm-optimal ILC is performed on a gantry robot, using
the system states estimated by an observer. In [Gunnarsson et al., 2007]
ILC was carried out on a flexible 1 DOF robot arm. The ILC algorithm
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uses an arm-side estimate based on motor angle and arm-side acceleration
measurements. In [Schöllig and D’Andrea, 2009] the error of a state-space
model, linearized along the desired trajectory, is estimated by a Kalman
filter in the iteration-domain. The ILC input signal is derived by min-
imizing the deviation of the states from the desired trajectory. Another
example is [Tayebi and Xu, 2003], where the estimated states for a class
of time-varying nonlinear systems are used in an ILC algorithm.
The above references concentrate on specific estimation and ILC algo-

rithms. This chapter presents experimental results based on the previous
work [Wallén et al., 2009; Wallén et al., 2011], where the main focus was
to obtain a good estimate of the controlled variable, usually the tool pose,
by using sensor fusion.

7.2 Theoretical Background

ILC Algorithms

The following section summarizes the ILC algorithm presented in [Wallén,
2011]. ILC is applied to the following discrete-time LTI system

yk(t) = Try(q)r(t)+Tuy(q)uk(t)
zk(t) = Trz(q)r(t)+Tuz(q)uk(t)

(7.1)

with measured variable yk and controlled variable zk at iteration k, and
the forward shift operator q. The reference input variable is denoted r,
which is independent of the current iteration, and uk is an iteration de-
pendent input, which is modified by the ILC algorithm. The equations are
assumed to describe a stable closed loop system, stabilized by a controller.
A linear discrete-time ILC algorithm is applied according to

uk+1(t) = Q(q)
(
uk(t)+ L(q)ǫk(t)

)
(7.2)

with possibly non-causal ILC filters Q and L. The error ǫk in the ILC
update equation is given by

ǫk(t) = r(t)− ẑk(t) (7.3)

using the estimate ẑk of the controlled variable given by

ẑk(t) = Fr(q)r(t)+ Fu(q)uk(t)+ Fy(q)yk(t) (7.4)

with the stable filters Fr, Fu and Fy.
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The system (7.1) and ILC algorithm (7.2) can be expressed in matrix
form, similarly to the descriptions in [Phan and Longman, 1988; Moore,
1998]

yk = Tryr+Tuyuk

zk = Trzr+Tuzuk
(7.5)

The ILC algorithm (7.2) in matrix form is

uk+1 =Q(uk+Lǫk)
ǫk = r− ẑk

(7.6)

with the estimate
ẑk = Frr+Fuuk+Fyyk (7.7)

The vectors r,uk, yk, zk and ẑk are N-sample sequences of the correspond-
ing signals, e.g., the reference sequence r is

r = ( r(0) . . . r((N−1)Ts))T (7.8)

where Ts is the system’s sampling time. The transfer operators in (7.1)
are replaced by the system matrices Try, Tuy, Trz, Tuz, Fr, Fu and Fy,
composed by pulse response coefficients. E.g., The matrix Try is formed
by the pulse response coefficients �Try , t∈ {0,.. . ,(N−1)Ts} of the transfer
operator Try. This results in the Toeplitz matrix

Try =









�Try(0) 0 ... 0

�Try(1) �Try(0) 0

...
. . .

...

�Try(N−1) �Try(N−2) . . . �Try(0)









(7.9)

In the experiments, the filter L is chosen as L(q) =γ qδ , with a learning
gain γ and a time shift of δ samples. This non-causal filter is implemented
by letting

ǫk(t) = ǫk
(
Ts(N−1)

)
, t> Ts(N−1)

which in matrix form is represented as

L=

















0 ... 0 γ 0 ... 0

0 .. . 0 0 γ . . . 0
...

. . .

0 .. . 0 0 0 .. . γ

0 ... 0 0 0 ... γ

...
...

...

0 .. . 0 0 0 .. . γ

















. (7.10)
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Q is chosen as a non-causal filter with zero-phase characteristics. A stan-
dard way to carry out such filtering is to use a causal filter Q̄, and per-
form forward-backward filtering in order to obtain a zero-phase filter. The
lower-triangular Toeplitz matrix Q̄ is created similarly as in (7.9) from
the pulse response coefficients of the filter Q̄, giving

¯̄Q= Q̄TQ̄ (7.11)

A more detailed discussion of the ILC implementation can be found in
[Wallén et al., 2010].
As explained in more detail below in Section 7.3, the ILC algorithm

is only applied to a central part of the trajectory. This central part is
preceded and followed by a phase where the ILC control signal is weighted
in time-domain. The weight coefficients during this n samples long phase
is given by the vector

w = (w(1) . . . w(n))T (7.12)

The matrix Q in (7.6) is now obtained as

Q=Qw
¯̄Q (7.13)

with
Qw = diag(0,.. .0, w1, . . .wr, 1,. . .1, wr, . . .w1, 0,. . .0) (7.14)

Stability and convergence of the system described is discussed in [Wal-
lén et al., 2011]. The system (7.5) controlled by the ILC algorithm (7.6)
using the estimate (7.7) is stable if and only if

ρ
(

Q
(
I−L(Fu+FyTuy)

))

< 1 (7.15)

where ρ(⋅) denotes the spectral radius of a matrix and I the identity
matrix. If the system (7.5) controlled by the ILC algorithm (7.6) fulfills

σ̄
(

Q
(
I−L(Fu+FyTuy)

))

< 1 (7.16)

that is, if the largest singular value is smaller than one, then the system is
stable and uk converges to the limit value u∞ with monotone exponential
convergence.

Tool Position Estimation

Two different estimation methods were used, complementary filtering and
a Kalman filter. Because of the measurement equipment limitations de-
scribed in Section 7.3, he tool position estimate ẑ included, like the tool
position measurement, only the x- and y-coordinates. The models and ob-
servers were tuned and evaluated based on the specific trajectory chosen
for the ILC experiments.
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Complementary filter A pair of filters is called a complementary filter
if the sum of their transfer functions is 1 for all frequencies. Complemen-
tary filtering is used to fuse noisy measurements of the same physical
variable from two sensors with different frequency characteristics, i.e.,
measurements y1 with high frequency noise and measurements y2 with
low frequency noise. A low-pass filter G can then be used to filter y1,
which is a good estimate at low frequencies. The measurements y2, which
are a good estimate at high frequencies, are filtered with the high-pass
filter (1−G), i.e., the complement to G. The estimate ŷ is then the sum
of the two filtered signals [Higgins, 1975].
This simple estimation technique is a common sensor fusion technique

for the combination of gyro and accelerometer signals in flight control
industry. In [Higgins, 1975] its relation to the steady-state Kalman filter
for a class of filtering problems is discussed. No details about the noise
processes are considered in complementary filtering, and the filters are
derived based on a simple analysis in the frequency domain. A similar kind
of filter pairs is widely used in communication systems [Vaidyanathan,
1993], however there the sum of the transfer functions does not necessarily
have zero phase, since many communication systems can handle time
delays.
In the present application, the tool position should be estimated from

the motor positions and from measurements by an accelerometer mounted
on the end-effector plate. Transformed by the forward kinematics, the
motor position measurements result in ẑc, which is a good tool position
estimate for low frequencies. The estimate ẑa is obtained by double inte-
gration of the accelerometer output and is a sufficiently good tool position
estimate for higher frequencies. These two estimates are then combined
to the tool position estimate ẑ as

ẑ(t) = G(q) ẑc(t)+
(
1−G(q)

)
ẑa(t) (7.17)

The filter G is a low pass filter with zero-phase characteristics. This is
achieved by applying a second order Butterworth filter in both forward and
reverse direction using the Matlab function filtfilt, [Matlab, 2011]. The
cutoff frequencies fn for the x- and y-directions are tuned experimentally
by inspection to

fn = (4.50 2.63)T Hz (7.18)
A similar approach with double integration and high-pass filtering of

the accelerometer signal is used in [Nordström, 2006]. Simulation exam-
ples and experimental evaluation prove that the industrial robot control
is improved by using an accelerometer as an additional sensor.
In Figure 7.1 the resulting tool position estimation error e= z− ẑ is

shown. The actual tool position z is measured by length gauges in x- and

145



Chapter 7. Iterative Learning Control

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

x
 [

m
m

]

Estimation error

 

 

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

Time [s]

y
 [

m
m

]

kinematics

comp. filter

Kalman

Figure 7.1 Estimation errors for different tool position estimates using forward
kinematics (’kinematics’, dashed), complementary filter (’comp. filter’, black solid)
and Kalman filter (’Kalman’, grey solid).

y-direction. The error of the estimate (7.17) is compared to the error when
using the estimate ẑc, which relies only on motor position measurements.
The usage of the complementary filter together with the additional sen-
sor mounted on the end-effector plate, the accelerometer, decreases the
estimation error, especially in the y-direction. The main reason for this
is the flexibility of the robot in y-direction compared to the much stiffer
x-direction.

Kalman filter The stationary Kalman filter estimating the tool po-
sition is based on the identified model (6.13) from Section 6.3, which is
extended to include the accelerometer measurements. The model is de-
scribed in discrete-time state-space form as

x(t+Ts) = Ax(t)+ Bu(t)
z(t) = Cx(t) (7.19)

The input u consists of the measured motor positions transformed by the
forward kinematics to corresponding tool positions. The output z is the
tool position, which is measured by length gauges in the xy-direction.
New states for the tool velocity (xv) and acceleration (xa) are introduced
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using the forward Euler approximation for the time derivative:

xv(t+Ts) (
z(t+Ts)− z(t)

Ts
= C

(
Ax(t)+ Bu(t)

)
−Cx(t)

Ts
(7.20)

Together with a corresponding expression for xa, a state-space model with
the extended state vector x̄ and state-space matrices Ā, B̄, C̄ is obtained






x(t+Ts)
xv(t+Ts)
xa(t+Ts)






︸ ︷︷ ︸

x̄(t+Ts)
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A 0 0
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Ts
C(A− I) 0 0

1
T2s
C(A− I) − 1

Ts
I 0









︸ ︷︷ ︸

Ā
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︸ ︷︷ ︸
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(7.21)
The output of the extended model consists of the measured variable y and
the controlled variable z.
A Kalman filter can now be designed to estimate the tool position z

ˆ̄x(t+Ts) = Ā ˆ̄x(t)+ B̄ u(t)+ K
(
y(t)− C̄ ˆ̄x(t)

)

ẑ(t) = (C 0 0) ˆ̄x(t) (7.22)

Like in model (7.21), the input u consists of the actuator positions trans-
formed by the forward kinematics to a corresponding tool position. The
measurement y is the tool acceleration. The observer gain K is determined
by solving the corresponding Riccati-equation described e.g., in [Åström
and Wittenmark, 1997]. The matrices R1 and R2 correspond to the process
and measurement noise variance, respectively. The covariance matrix R2
is based on the output error covariance of model (7.21). The covariance
matrix R1 is then chosen as R1 = rI. The factor r is determined by in-
spection to minimize the estimation error and has to be rather small in
order to avoid drift in the estimate. Figure 7.1 compares the resulting
Kalman filter estimation error to the corresponding errors of estimates ẑc
and complementary filter estimate ẑ. The Kalman filter performs slightly
better than the complementary filter. It is likely that the quality of the
estimate can be further increased by using a better, possibly nonlinear
model.
For a Kalman filter estimating the tool position based on accelerometer

data, the tool acceleration has to be one of the output signals. However,
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better results are obtained when the model is manually extended with
states corresponding to the acceleration, compared to fitting a black-box
model to measured accelerometer data. A reason for this might be the
rather noisy accelerometer signal.

7.3 Experiment Description

Experimental Setup and System

Robot The experiments were performed on the L1 prototype in Lund.
Only the parallel 3 DOF part of the robot was used, i.e., the serial wrist
was fixed during the experiments. The robot controller is described in
Chapters 2 and 3: A standard industrial ABB IRC5 system is extended
with the possibility to change reference signals sent between main and
axis computers and read synchronized sensor values. For the ILC experi-
ments, a driver was implemented that reads values from a file, synchro-
nized with the external controller. The robot is only controlled by the motor
position controllers, independently for each motor. The lack of an inverse
dynamic model for feedforward control or any other compensation of the
coupling effects between the actuators leads to repeating control errors
for repeated tasks, which can be compensated for by ILC.

3 DOF accelerometer A Freescale accelerometer [Freescale, 2010] is
mounted on the 3 DOF wrist holder plate of the robot, see Figure 7.2(b).
The accelerometer can measure translational accelerations in 3 DOF up
to a bandwidth of 300Hz within a range of ±1.5 g. The standard deviation
of the measurement noise for the different channels is measured to be ap-
proximately 0.07ms−2. The orientation of the accelerometer with respect
to the robot tool frame was difficult to determine with a good accuracy.
The accelerometer was mounted on the wrist holder, which can not re-
orient but only move in 3 DOF, such that the gravity force could not be
used for identifying the accelerometer orientation. An end-effector motion
along the tool frame axes with a sufficiently high acceleration induces os-
cillations in the robot structure, which makes it difficult to identify these
directions.

Heidenhain length gauges Two Heidenhain length gauges ST 3078
[Heidenhain, 2010]mounted on a support frame were used to measure the
end-effector position, see Figure 7.2. As only two gauges were available,
it was decided to measure the motion in xy-direction, i.e., the horizontal
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(a) Robot. (b) External sensors.

Figure 7.2 Experimental set-up: L1 robot with the sensor support frame (left)
and end-effector with mounted 3 DOF accelerometer (right, upper white circle) and
the Heidenhain length gauges (right, lower white circle).

motion. The directions orthogonal to the guideways, the y- and z-direction,
have similar dynamic properties compared to the x-axis, which is parallel
to the guideways. In that way it was possible to capture the difference.
The measurement range, 30mm x- and y-direction, respectively, is located
around the end-effector position in the workspace center chosen for ILC
and the identification experiments in Chapter 6. The gauges actually mea-
sure the motion of a metal block attached to the 2 DOF serial wrist, which
was assumed to be stiff enough, and not directly on the 3 DOF wrist holder
platform. The gauges have a nominal accuracy of ±1µm. However, several
error sources might decrease the accuracy, like unknown sensor dynam-
ics, friction between the sensor tip and metal block or oscillations in the
support frame of the gauges. The sensor tip engraved traces into the metal
block in the course of repeated experiments. However, the traces were mi-
nor and changing the block during an experiment would have changed the
experiment conditions.

System overview and signals Figure 7.3 gives a schematic overview
of the robot system and signals, which are as well listed in Table 7.1.
Experiments presented in Section 6.3 showed that the dynamics between
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Figure 7.3 Robot system with signals according to Table 7.1. Signals available
(measurements or input signals) in black, actual tool position z(t), which is not
available, in grey.

the motor-side and the arm-side position of the linear actuators can be
neglected compared to the dynamics of the robot link structure. In the
following, no distinction between the two signals will therefore be made
and only the arm side will be considered. Thus, qm denotes the measured
arm-side actuator position, which is obtained by scaling the motor position
measurement by the gear ratio. Similarly qr is the arm-side reference
position of the actuators, which is in practice sent to the robot controller
as motor-side reference scaled by the gear ratio. The actuator reference qr
is obtained from the tool position reference zr via the inverse kinematics.
With the forward kinematics and the measured actuator positions qm,
an estimate zc of the tool position is obtained. This estimate is valid for
low velocities, where the robot’s mechanical flexibility has only a minor
influence. The two external sensors, length gauges and accelerometer,
output the measured tool acceleration am and position zm. Due to the
limited number of length gauges, zm is only two-dimensional. The sensor
input and actual tool position z, in grey in Figure 7.3, is not known.

Experiments

Trajectory As the tool position could only be measured within a square
of 30mm$30mm in the xy-plane, a horizontal motion within a 10mm
square was chosen as reference trajectory. Figure 7.5 shows the rectilinear
tool path. The motion starts at the indicated point in negative y-direction.
To excite the robot flexibilities maximally, the velocity reference was set
to zero in the corners of the tool path and the velocity was chosen as
high as possible. With a nominal reference tool velocity of 100mms−1, the
velocity profile created by the IRC5 path generator reached a maximum
tool velocity slightly below 100mms−1.
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Table 7.1 Signal description.

Signal Description

qr Actuator position reference (arm side)
qm Measured actuator position (calculated to arm side)
zr Tool position reference

z Tool position

zc Calculated tool position

zm Measured tool position

am Measured tool acceleration

The ILC algorithm is not applied to the entire movement, but only to a
central part of the trajectory which is preceded by a so-called lead-in part
and followed by a lead-out part. This decreases the influence of varying
initial conditions. Even though a pause to calculate the new ILC signal
guarantees that no oscillations are propagated between iterations, and
the motors are carefully reset to the same initial position before each iter-
ation, the motor torque profile occasionally varied when the robot motion
was started from stand-still. Lead-in is as well useful in practical appli-
cations, e.g., laser cutting, where a constant tool velocity along the path
is important. The potential of lead-in is however not fully used here, as
the reference velocity in the corners is zero. To have the ILC algorithm
cover the complete rectilinear figure, the path is traversed in two consec-
utive rounds. The length of the lead-in and lead-out parts is chosen as
100 ⋅Ts = 0.4 s. The time-domain weighting of the ILC input signal during
lead-in and lead-out is performed with a weighting vector (Figure 7.4)
with coefficients taken from a 200-point Tukey window with α = 0.95 ac-
cording to the definition in [Harris, 1978].

ILC algorithms applied The ILC algorithms applied modify the actu-
ator position and velocity references sent to the axis controllers. It would
as well be possible to modify directly the motor torque reference, but as
it is considerably more intuitive to anticipate instabilities by examining
the modified position reference, this solution was chosen. The ILC algo-
rithm determines a modified actuator position reference, which is then
differentiated and added to the actuator velocity reference.

151



Chapter 7. Iterative Learning Control

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Weighting coefficients

Sampling index

Figure 7.4 Weighting coefficients for time-domain weighting of the ILC input
signal.

ILC algorithms based on three different signals are compared:

1) Actuator position measurements, ǫk = qr− qm,k
2) Estimates of tool position, ǫk = zr− ẑk
3) Measurements of tool position, ǫk = zr− zm,k

where ǫk is the error in (7.2), qm,k the measured actuator positions and
ẑk and zm,k the estimated and measured tool position, respectively, in
iteration k. The tool position estimates for Case 2 are obtained using

A) Complementary filtering according to (7.17)
B) Kalman filtering according to (7.22)

Evaluation The performance of the ILC algorithms is evaluated by the
control error at iteration k in relation to the initial error at iteration k= 0,
when no ILC is applied.
For ILC based on actuator position measurements, the initial error is

eq,0 = qr− qm,0 (7.23)

Similarly the initial control error of the tool position is

ez,0 = zr− zm,0 (7.24)

where eq,k ∈ R
3 is a three-dimensional vector with values for all three

actuators, while ez,k ∈ R
2 is a two-dimensional vector containing the x-

and y-components of the error.
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The 2-norm reduction of the error at iteration k is given in percentage
of the initial error, as in

ēn,k = 100 ⋅
qen,kq2
qen,0q2

[%] (7.25)

where n symbolizes actuator (q) or tool position (z), respectively. ēn,k is
based on the trajectory part where the ILC algorithm is fully applied, i.e.,
the lead-in and lead-out parts where the ILC input signal is weighted are
not included.

System Performance

In the following, the control performance of the robot system without ILC
and the repeatability are studied.

Control error Figure 7.5 compares the control performance when the
robot traversed the reference path, first with a very low nominal velocity
of 10mms−1 and then with the higher nominal of 100mms−1 velocity
chosen for the ILC experiments.
Despite the low velocity, Figure 7.5(a) shows that position errors re-

mained, especially after passing a corner. Besides possible oscillations in
the links, which might have been induced by the robot’s acceleration, an-
other possible explanation of the errors may be friction in the motors and
drivelines. The oscillatory behaviour, which was especially pronounced in
the lower left corner, could be explained by static friction between the
length gauge sensor tip and the metal block attached to the robot.
At high velocity, the position error was larger. This can be explained

both by dynamic effects, which are not compensated for, and a larger con-
trol error at motor level. As is discussed in Chapter 6, the robot is stiffer
in the x-direction, while it has a dominant resonance at around 11.5Hz
in the y-direction in this operating point. This coincides with the ten-
dency of the overshoot after corners in x-direction being smaller than in
y-direction. It can as well be seen in Figure 7.5(a) that the robot mo-
tion differed between the two consecutive turns the path was traversed.
The differences are visible for the edge along which the motion is started
and the succeeding one. For the edge where the motion starts, the refer-
ence velocity profiles differ clearly between the turns, which explains the
differences. The following edge has however the same reference velocity
profile in both turns, and the resulting differences confirm the necessity
of adding a lead-in phase to the ILC experiment.
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Figure 7.5 Control performance of the robot for low (v= 10mms−1, 7.5(a)) and
high (v=100mms−1, 7.5(b)) velocity. The motion starts next to the indicated point
in negative y-direction. Reference zr (black) and measured tool position zm (grey).
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Figure 7.6 Repeatability experiments: Actuator position differences between iter-
ation k= 0 and iterations k= 2. . .5 according to (7.26). The curve for each iteration
k= 2. . .5 is plotted in a different shade of grey.

Repeatability A good dynamic repeatability is crucial for ILC experi-
ments, since the ILC algorithm can only correct the repeatable error part.
Five identical experiments were performed to evaluate the repeatability.
Figure 7.6 illustrates the actuator position differences between exper-

iment 1 and j as

erep(t) = qm,1(t)− qm, j(t), j = 2,.. . ,5 (7.26)

As can be seen, the non-repeatable error parts are small compared
to the complete control error, which is an order of magnitude larger, see
compare Figure 7.5. A larger part of the control error can thus possibly
be eliminated by ILC. Static friction might explain the non-repeatability
partially. Different motor torques observed when standing still in the same
robot configuration support this explanation. The controllers require then
a varying amount of time to integrate the torques to overcome the static
friction.

155



Chapter 7. Iterative Learning Control

7.4 Results

Below, the ILC experiment results are summarized. ILC based on actu-
ator position measurements (Case 1), tool position estimates (Case 2A
and Case 2B) and tool position measurements (Case 3) are compared.
Even though it is difficult to measure the tool position in industrial ap-
plications, Case 3 was performed to find a lower limit on the control error
given the experiment setup and ILC algorithm (7.2) and supposing perfect
estimates. The ILC experiment based on actuator position measurements
was performed five times to assess repeatability. Besides an evaluation
of the resulting control error according to (7.25), the stability of the ILC
algorithm and the choice of filter Q in (7.2) are considered in each case.
The filter L in (7.2) is for all experiments chosen as L = γ qδ . The time
shift δ = 5 and the learning gain γ = 0.9 are chosen based on the system’s
time delay and static gain.

Case 1: ILC Based on Actuator Position Measurements

Algorithm and stability To each of the three actuators, an ILC algo-
rithm according to (7.2) is applied. The error ǫk(t) is based on the actuator
positions and references, so that (7.3) becomes

ǫk(t) = qr(t)− qm,k(t)

In this case, the measured variable yk is the same as the controlled vari-
able zk. The system description (7.1) consists of only one equation

qm,k(t) = Tqrqm(q)qr(t)+Tuqm(q)uk(t)

and the estimation of the controlled variable reduces to qm = qm, i.e.,
Fr = Fu = 0, Fy = 1 in (7.4). The ILC input signal uk is added to the ac-
tuator references qr, so that Tqrqm = Tuqm . As the three actuator mod-
els (6.11) are similar to each other, the same filter Q is applied to all
actuators. The causal filter Q̄, which is applied forward and backwards to
give zero-phase characteristics as explained in Section 7.2, is chosen as a
second-order Butterworth filter with cutoff frequency fn = 10Hz.
After transforming required filters to matrix form, the criterion (7.16)

for stability and monotone convergence

σ̄ i = σ̄
(
Q(I−LTuqm,i)

)
< 1 (7.27)

can be evaluated resulting in the following maximum singular values

σ̄1 ( 0.90, σ̄2 ( 0.91, σ̄3 ( 0.93 (7.28)
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Figure 7.7 Case 1: Actuator control error (7.25)

for actuators 1 to 3. The matrices include the trajectory part fully corrected
as well as the lead-in and lead-out parts. As the maximum singular values
are below 1, the ILC algorithm is stable and converges monotonically.

Results Figures 7.7 and 7.8 show the resulting actuator control errors
when applying the ILC algorithm for 10 iterations. Figure 7.7 shows that
the relative error (7.25) is reduced to about 2 % of the initial error after
five iterations, similarly for all 3 actuators. Figure 7.8 compares the initial
error to the error at iteration 10.
The fast convergence is important in industrial applications, where

time constraints are present. A small effort giving a substantial error
reduction after only a few iterations is often sufficient.
The corresponding tool performance is shown in Figures 7.9 to 7.11.

Figure 7.9 shows the tool error zr(t)− zm(t) for iterations k = 0 and 10.
Even though the error is visibly reduced, especially in x-direction, a com-
parison with Figure 7.8 shows that the tool error decreases less than on
the motor side. This can also be seen in Figure 7.10, which shows the
tool path in the xy-plane for iteration k = 10. While the actuator posi-
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Figure 7.8 Case 1: Actuator control error after 10 iterations (black) compared to
the initial error (grey). The ILC algorithm is fully applied between t = 1.6−4.1s,
preceded by a lead-in phase and followed by a lead-out phase.

tions transformed by the forward kinematics follow the reference closely,
the measured tool position exhibits overshoots, mostly in y-direction. Fig-
ure 7.11 shows the relative error for iterations 0 to 10 on the tool side. The
error in x-direction being reduced to 13 % of the initial error, whereas the
error in y-direction is only decreased to 36 %.
The comparison between Figures 7.5(a) and 7.5(b) indicates that the

influence of compliance dynamics is relatively small for low velocities,
while it is important for the high velocity chosen for the ILC experiments.
Thus, the tested ILC algorithm shows good results on the motor side, and
would probably show results with a comparable accuracy on the tool side
if a lower velocity would have been chosen. Using the actuator positions
can be interpreted as using the estimate ẑc, which is an accurate estimate
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Figure 7.9 Case 1: Tool-side error after k= 10 iterations compared to the initial
error for k= 0.

for low velocities. However, the elasticities in the link structure cause a
dynamic tool behaviour that is not observable from the actuator position
measurements and cannot be compensated for with the current ILC algo-
rithm. As the robot is much stiffer in x-direction than in y- and z-direction,
the error in x-direction is corrected to a higher degree than in y-direction.
Kinematic errors can neither be observed from actuator measurements
nor be corrected with the current ILC algorithm. Therefore, for further
tool position improvements, more information on the tool position, either
by measurement or observation, is needed.

Repeatability An ILC experiment was repeated five times based on
the same iteration k= 0, i.e., each iteration k= 1 was performed with the
same u1 based on the same ǫ0. The resulting relative errors are shown
in Figure 7.12 for the motor side and in Figure 7.13 for the tool side.
The spread shown in Figure 7.12 may explain the slightly non-monotone
convergence seen e.g., in Figure 7.7.
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Figure 7.10 Case 1: Tool performance at iteration 10. Tool reference path (black),
actuator positions transformed by forward kinematics (dark grey) and tool position
measurements (light grey).
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Figure 7.11 Case 1: Error (7.25) on tool side.
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Figure 7.12 Case 1: Spread of error measure (7.25) on motor side for five experi-
ments with identical inputs at first iteration.
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Figure 7.13 Case 1: Spread of error measure (7.25) on tool side for five experi-
ments with identical inputs at first iteration.
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Case 2: ILC Based on Tool Position Estimates

The ILC algorithm presented here is based on tool position estimates of
a complementary filter (Case 2A) and a Kalman filter (Case 2B) using
accelerometer and motor position measurements.

Algorithm and stability The ILC algorithm is applied on the tool side,
i.e., the error ǫk(t) is now based on the tool position estimate ẑk(t) in x-
and y-direction:

ǫk(t) = zr(t)− ẑk(t)
The system description (7.1) consists of equations for the measured vari-
able yk(t) = xa(t), the tool acceleration, and the controlled variable z(t),
the tool position. The estimator (7.4) is not as trivial as in the previous
case, where Fr, Fu and Fy are according to the observer descriptions (7.17)
and (7.22).
The tuning of the filter Q in (7.2) is based on the identification ex-

periments in Section 6.3. The robot has a distinct resonance at 11.5Hz
in the y-direction and a not so pronounced resonance at 7.4Hz in the
x-direction. If the filter Q̄ is chosen as a low pass filter like in the previ-
ous case, the cutoff frequency has to be below the resonance frequencies
of the closed-loop system to give a stable algorithm. This follows from the
convergence analysis in frequency domain as described in e.g., [Norrlöf
and Gunnarsson, 2002]. To correct also for errors at higher frequencies,
Q is designed in a different way. The filter Q is tuned to be robust to
large model errors especially around the resonance frequencies. Due to
high frequency measurement noise, learning up to 30 Hz is chosen, which
is above the lowest resonance frequencies of the system. The choice of Q is
experimentally evaluated for both Case 2A and Case 2B to give a good er-
ror reduction. In Figure 7.14, the magnitude pQ̄−1p is shown together with
the magnitude p1− L(Fr + FyTuy)p for the x- and y-direction, respectively.
The robustness around the resonance frequencies of the system can be
seen, together with the low-pass characteristics of the filter Q̄ for higher
frequencies.
The stability and convergence criterion (7.16) results in

σ̄Case 2A ( 0.86
σ̄Case 2B ( 0.93

Results In Figure 7.15 the tool performance can be seen for Case 2A.
Similar results are achieved for Case 2B, and these figures are therefore
omitted. Figure 7.16 and Table 7.2 summarize the resulting relative er-
ror (7.25) for all ILC approaches. It can be seen that the error on the tool
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Table 7.2 Error reduction on the tool side: Mean value of the tool-side error in x-
and y-direction for iterations k= 5 to k= 10 relative to the initial value for k= 0 as
in (7.25).

Case 1 Case 2A Case 2B Case 3

x 13.3% 12.6% 13.3% 10.3%
y 36.1% 23.9% 25.2% 24.9%
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Figure 7.14 Case 2A, 2B: pQ̄−1(eiω )p is illustrated together with the magnitude
p1− L(eiω )(Fr(eiω )+ Fy(eiω )Tuy(eiω ))p in the x- and y-direction respectively.

side was decreased by using tool position estimates instead of actuator
position measurements in Case 1. However, it is difficult to compare the
approaches quantitatively, as different ILC algorithms were tuned and ap-
plied to different systems. Another tuning could for example give a slightly
smaller error in x-direction and result in a larger error in y-direction. It
can as well be seen that the improvement from Case 1 to Case 2 is larger
in y-direction than in x-direction. This is explained with the robot be-
ing stiffer in x-direction, so most of the errors in the x-direction can be
compensated for by actuator measurements. For the y-direction, the ac-
celerometer signal can give more information about the tool position than
from the actuator measurements, which improves the performance in that
direction to a higher degree.
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Figure 7.15 Case 2A: Tool performance after 10 iterations, reference path (refer-
ence, black) and measured tool position (measured, grey).
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Figure 7.16 Relative error (7.25) on tool side.
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Case 3: ILC Based on Tool Position Measurements

Algorithm and stability Like in Case 1, the measured and controlled
variables are the same, but here they are the tool position in x- and y-
direction. The error ǫk(t) is

ǫk(t) = zr(t)− zm,k(t)

The estimator (7.4) simplifies to ẑk(t) = yk(t) = zk(t) with Fr = 0, Fu = 0
and Fy= 1.
The filter Q is designed in the same manner as in Case 2. It is robust to

modeling errors, especially around the resonance frequency, and corrects
for errors up to 30 Hz. The tuning is based on the model identified in
Section 6.3, which describes the closed-loop system from tool reference to
tool position. The filter is experimentally evaluated to give a good error
reduction. In Figure 7.17, the inverse pQ̄−1p is shown together with the
relation p1− L(Fu+ FyTuy)p for the x- and y-direction, respectively.
The criterion (7.16) for monotone convergence of the ILC algorithm

results in
σ̄
(
Q(I−LTuz)

)
( 0.95< 1

Results The resulting performance of the robot tool is shown in Fig-
ure 7.18. In Figure 7.16 and Table 7.2 it can be seen that the relative
error (7.25) is slightly improved when using tool measurements instead
of estimates. As mentioned previously, it is difficult to compare the exper-
imental results for the different approaches quantitatively.

7.5 Conclusion

Three different ILC approaches were experimentally evaluated on the
Gantry-Tau robot. The ILC algorithm was based on three different sig-
nals: Actuator position measurements, tool position estimates and tool
position measurements. The tool position estimates were derived by both
a complementary filter and a Kalman filter. In the experiments, the tool
position was also measured, but only used for evaluation.
The experiments prove that the tool performance can be improved us-

ing estimates of the tool position instead of the standardly available motor
measurements. The used additional sensor, an accelerometer mounted at
the end-effector plate, is of low cost and does not obstruct the industrial
application. This would however be the problem for the third ILC ap-
proach, which was evaluated with the purpose to find a lower limit on
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Figure 7.17 Case 3: Illustration of choice of filter Q̄, when tuned based on the
model identified. The inverse pQ̄−1p is illustrated together with the relation p1−LTuzp
in x- and y-direction, respectively.
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Figure 7.18 Case 3: Tool performance after 10 iterations.
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the resulting accuracy with the given algorithms and robot system than
in view of an industrial application.
The test trajectory was traversed at a relatively high velocity with

respect to the robot’s resonance frequencies, and the tuning of the ILC
filters included learning above the resonance frequencies of the robot. The
performance in the experiments is limited rather by the flexible behaviour
of the robot than by the ILC algorithm in connection with the tool position
observer.
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8

Lead-Through Programming

with Tool Force Feedback

8.1 Introduction

Robot programming today is mostly a cumbersome task requiring knowl-
edge of robotics and robot manufacturer specific programming languages.
Robots are to a large part utilized in large size companies, performing the
same programmed movement for very long time spans, as e.g., a weld-
ing robot in automobile industry. To be able to use robots in SMEs, robot
programming needs to be faster and more intuitive, so that it can be per-
formed by SME staff and and which entitles robots to be used also for
small lot size production applications. Lead-through programming, i.e.,
using force feedback to manually guide the robot tool along a desired tra-
jectory or to certain distinct points in the workspace, is an intuitive and
fast way of robot programming.
However, using just one force sensor for guiding the robot along the

desired trajectory may lead to varying forces between tool and work object
or even to occasionally losing contact with the work object. A remedy to
this is the usage of a second force sensor for feedback and control of the
tool force. Controlling and thus limiting the tool force with lead-through
programming protects the tool and work object and enables a smoother
guiding along the desired trajectory. As a deformation of the tool is avoided
in this way, a higher accuracy can be achieved, e.g., in applications where
lead-through is used for measurements or calibration of the workpiece
position.
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8.2 Related Work

An overview of force control is given e.g., in [Yoshikawa, 2000] and [Sicil-
iano and Villani, 1999], where a distinction is made between direct and
indirect force control. A very common approach of indirect force control is
impedance control [Hogan, 1984]. Direct force control is often combined
with position control in a hybrid approach like presented in [Craig and
Raibert, 1979].
Several approaches to ease robot programming using force control and

human demonstration have been implemented in the past. In [Asada and
Izumi, 1989] it is described how position and force of the tool are measured
when an operator performs a task. The measured data is then processed
into a robot program for hybrid positon/force control, or as in [Asada
and Asari, 1988], where an impedance control law is identified from the
measurements. In this case, the tool is not mounted on the robot during
demonstration.
In [Hirzinger and Landzettel, 1985] a flexibly applicable system for

robot learning is described. A sensor ball [Heindl and Hirzinger, 1983]
containing a force/torque sensor, which can optionally be mounted on the
robot, is used to move the robot. The robot is equipped with a second force
sensor mounted on the wrist. The wrist sensor can be used to control or to
record the tool force, but it is unclear whether the authors controlled the
tool force in the teaching phase. The wrist force sensor can be exchanged,
e.g., with an inductive distance sensor, whose data is then transformed
to a corresponding “pseudo-force” measurement. No experiment data is
presented.
In [Wang et al., 2008] and [Pan and Zhang, 2008], lead-through teach-

ing is used to record a few characteristic points on the path to program.
In a second phase, the complete path is recorded in a contour following
process, in which the recorded points give shape information to better cope
with edges etc. In [Pan and Zhang, 2008], in the application after teach-
ing, the robot deformation due to the machining forces is compensated
for to increase accuracy. In [Pan and Zhang, 2008], it is mentioned that
changing the tool orientation with lead-through teaching was difficult and
therefore only the translational DOF were changeable by lead-through,
the orientation was changed by jogging the robot using the joystick. In
[Qi et al., 2009], a Stewart-platform-based measurement device is used
instead of a force/torque sensor for lead-through teaching. The robot fol-
lows the motion exercised on the so-called RoboPuppet such that it keeps
a constant configuration. In [Grunwald et al., 2003] a lightweight robot
with implemented lead-through teaching is presented. The torque sen-
sors added to all robot joints are used for lead-through teaching instead
of a wrist mounted force/torque sensor. Today, lead-through teaching is

169



Chapter 8. Lead-Through Programming with Tool Force Feedback

available as a standard option for many industrial robot systems, e.g., [Ge
et al., 2008].
The idea to use both a tool force sensor and an additional force sensor

for human/robot co-manipulation is attractive also for medical applica-
tions. [Kumar et al., 2000] implemented a one-dimensional tool force con-
trol, where the desired tool tip force is scaled down from the tool handle
force input of the human operator. [Cagneau et al., 2008] present force
amplification control of a 4 DOF surgical robot giving the surgeon force
feedback from the force between tool and organ. [Lamy et al., 2010] trans-
fer the idea of force amplification to other applications where the robot
assists a human in tasks where large forces are needed.
In robotics, sensor fusion of force and other signals is an interest-

ing topic. [Hosoda et al., 1998] and [Xiao et al., 2000] combine the force
measurement with visual servoing and implement a hybrid position/force
control.
In the two master’s theses [Friman, 2010] and [Gustafsson, 2008],

lead-through programming using two force sensors was implemented. In
[Gustafsson, 2008], impedance control on a force value which is a combina-
tion of the two sensor measurements is performed. In [Friman, 2010], the
control switches between impedance control using the lead sensor mea-
surement and direct force control of the tool force measurement with a PI
controller. Both master’s theses consider only 3 translational DOF.
[Yoshikawa and Sudou, 1993] extended the hybrid position/force con-

trol with an online estimation of an unknown constraint based on force
and velocity measurements corresponding to the directions of normal and
friction force, respectively. An example for the recognition of different con-
tact types can be found in [Meeussen et al., 2007].

8.3 Control Concept

Similar to hybrid position/force control, the basic control concept is to
separately control subspaces of SE(3) with different controllers utilizing
feedback from different sensors. Instead of visual and force feedback as
in [Hosoda et al., 1998], two force sensors are used.
The sensor placement is according to Figure 8.1. As follows the reason-

ing in [Lamy et al., 2010], this force sensor placement is the best suitable
for this application, as the respective sensors measure directly the forces
between the robot and operator and tool, respectively.
Figure 8.2 gives a rough overview of the lead-through control structure.

Typically, at the beginning of a lead-through teaching procedure, the robot
tool is not in contact with the workpiece. The operator moves the tool
towards the workpiece, performs the desired trajectory on the workpiece
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Figure 8.1 Force sensor placement

after taking contact, and then moves the robot back to a position in free
space. Lead-through programming in free space requires different control
compared to when the robot tool is in contact with the workpiece surface.
As illustrated in Figure 8.2, the contact state, i.e., if the tool is in contact
with the workpiece, determines which control law to use. Note that it
is possible to have other than the two illustrated states if the tool and
workpiece are such that the type of geometric constraint changes along
the desired trajectory. A classification of contact types can be found in
e.g., [Meeussen et al., 2007].
Based on the force measurements from the tool sensor, Ft = [ ft,τ t], and

the handle sensor, Fh = [ fh,τh], and the corresponding control laws Ct and
Ch, the two tool velocity references V htool and V

t
tool are calculated

V htool = Ch(Fh) (8.1)
V ttool = Ct(Ft) (8.2)

The full 6 DOF velocity references V htool and V
t
tool are then, depending on

the contact state c, projected into the chosen subspaces of SE(3) by Ph
and Pt and the sum of both signals is then applied to the controlled robot

Vtool = Ph(V htool,c)+ Pt(V ttool,c) (8.3)

The control concept presented is independent of the actual, chosen con-
troller implementations. In this work, a simple P controller (tool force
control Ct) and an impedance controller without position term (handle
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Figure 8.2 Lead-through control overview

force control Ch) were used to illustrate the concept.

V ttool(tk) = K ⋅ (Freft − Ft(tk)) (8.4)

V htool(tk+1) =
Ts

q−1 A
h
tool(tk) (8.5)

Ahtool(tk) = M−1 (Fh(tk)−D ⋅Vtool(tk)) (8.6)

where K is the gain matrix of the P-controller, Freft the tool force reference,
Ts = 4ms the sampling time and q the forward shift operator. The accel-
eration reference Ahtool is integrated to obtain the corresponding velocity
reference. M and D are mass and damping matrices, respectively. The ap-
plied tool velocity reference Vtool is used for velocity feedback rather than
a measured real velocity value, as the bandwidth of the robot servo con-
trol was much faster than the lead-through control and the reference was
considered a better estimate than the noisy joint velocity measurements
transformed by the kinematics. As the impedance controller contains an
integrator and the applicable velocity reference was limited for safety
reasons, feedback of the applied velocity reference avoids wind-up and
transient impulses with contact state changes. The modified impedance
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controller was then

V htool(tk+1) =
Ts

q−1

(

Ahtool(tk)−
1
Ts
(V htool(tk)− Ph(V htool(tk)))

)

(8.7)

where the projection Ph includes as well a safety saturation of the signal.
In a typical case where lead-through programming is used, the geo-

metric constraints of the tool are at most partially known. It is therefore
desirable to estimate these constraints. Experiments showed that better
results are obtained when friction tangential to the surface is not consid-
ered as in [Yoshikawa and Sudou, 1993], but only the normal force. The
reason for this are low velocities with noisy measurements. Depending on
the type of contact, the geometric constraint can be uniquely determined.
An example is a point contact between a tool tip and one surface where
the surface normal vector can be uniquely determined. In case of a tool
tip constrained by more than one surface, e.g., a tool tip should be moved
along a groove with triangular cross section, it is difficult to determine
the constraints only by tool force measurements.
It is therefore not possible to implement one single controller (8.1)–

(8.3) which is applicable for all possible cases. The projection laws Ph and
Pt have to be manually adjusted for specific use cases, as will be demon-
strated in the two example tasks in Section 8.4. As already mentioned in
[Pan and Zhang, 2008] and which our experiments confirmed, orientation
is more difficult to efficiently control by lead-through. We therefore only
modified the orientation by the tool force controller.

8.4 Experiments

The force control concept presented was verified in two example applica-
tions. The first application of following a surface with a rolling tool was
limited to the 3 translational DOFs. For a full 6 DOF application, the
peg-in-hole problem was chosen.

Experimental Setup

The experiments were performed on a ABB IRB 140 robot controlled by
the extended IRC5 system described in Chapter 3. The force sensors were
mounted as shown in Figure 8.3. The tool sensor was a JR3 load cell [JR3
Inc, 2012], the handle sensor an ATI nano 25 [ATI Industrial Automation,
2012] sensor, both measuring force and torque in 6 DOF.

Surface Tracking

The first example task is to follow an unknown surface with a rolling con-
tact point. An industrial application for this case might be measuring or
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JR3 tool sensor ATI handle sensor

Figure 8.3 IRB 140 robot with tool and handle sensors (occluded by a plate rep-
resenting the handle) and drilling tool with match as dummy drill

calibrating a workpiece, gluing or welding. For this application case, the
robot was only controlled in 3 translational DOF, i.e., the tool orientation
was kept constant. The surface-following functionality may be achieved
using lead-through with an industrial robot system, but our concept pro-
vides separation of the operator’s push-forces and the allowed contact and
tool forces.
The contact plane can be defined by a point and a normal vector.

While the point or positioning of the surface was not known to the lead-
through controller, a nominal normal vector nn = (0,0,1)T was assumed
to be known. The lead-through controller estimated the normal vector
during contact and took into account small variations from the nominal
normal vector. Of course, the operator, forming the outermost control loop
with the robot system, benefits from visual feedback which gives a rough
estimation of the surface properties.
Surfaces with different properties were tested. For a safe comparison

of lead-through programming with and without tool force sensing, a very
compliant surface was chosen: A cardboard with rather compliant surface
was chosen. To test the normal vector estimation, a metal plate was added
on top of the box to give a more even and better defined surface.
The lead-through controller was implemented as follows: In case of

contact, the tool force was controlled in the surface normal direction n,
and the space orthogonal to the normal vector was controlled by the lead
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force. The tool orientation was kept constant.

Ph

(

V htool =
[
vhtool

ω htool

])

=







[
vhtool

0

]

,

[
vhtool−

(
nT ⋅vhtool

)
⋅n

0

]

,

no contact

contact

(8.8)

Pt

(

V ttool =
[
vttool

ω ttool

])

=







[
0

0

]

,

[(
nT ⋅vttool

)
⋅n

0

]

,

no contact

contact

(8.9)

The tool force reference was set to Freft = 2 ⋅nN. In this way, once contact
is established between tool and surface, it is evenly kept while the tool can
be moved in the surface tangential space by applying force on the handle.
Contact can be released by applying a force larger than a specified limit
in the surface normal direction.
To compensate for the change of the surface normal direction, the nor-

mal direction was estimated and corrections were made within an angle
of ϕ L from the assumed normal direction.

n=







nest =
ft

q ftq
, arccos(nTn ⋅nest) <ϕ L

nn, arccos(nTn ⋅nest) >ϕ L

(8.10)

In Figure 8.4a comparison of lead-through programming with and
without tool force control, respectively, is shown. The correction range ϕ l
was 10○ and a plain cardboard box was used as surface. Without tool force
control, it is difficult to keep contact with the surface, while with tool force
control, contact is kept and the force successfully controlled. Without tool
force control, peaks in the tool force when taking contact reach up to 7N.
Of course the lead-through programming performance can be improved by
a more skilled operator, but the advantage of the second sensor is evident.
In a second experiment, the normal vector estimation was studied. A

metal plate was added on top of the cardboard box to achieve a more
plane surface. At the same time, the range within which the surface’s
normal vector was corrected for was varied from 0○ to 10○. As Figure 8.5
shows, oscillations with a frequency of 68Hz appeared in contrast to the
experiment with only the cardboard box. The oscillation amplitude was
slightly increasing with increased correction range. For a 10○ correction
range, the oscillations were close to cause loose of contact.
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Figure 8.4 Surface tracking: Tool position and tool force in z direction. Without
tool force control (upper) and with tool force control (lower).

Peg in Hole

Figure 8.3 shows the setup for this experiment. As a drill dummy, a 9.5 cm
long match was used. The cross section of the match had 3mm edges. The
match was docked into a wooden block with holes in different sizes. The
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Figure 8.5 Surface tracking: Tool force in z direction. Rangeϕ L for correcting nor-
mal vector varying from nominal direction 10○ (upper), 5○ (center) and 0○ (lower).

smallest hole, which was used for the data presented, had a diameter of
4mm. Figure 8.6 shows the wooden block with a match used. The match
length axis was misaligned with the hole’s length axis.
Pre-experiments showed that is was difficult to efficiently control the

tool orientation by lead-through. Therefore, the lead-through in this exper-
iment was limited to the three translational DOF using the lead-through
control law (8.8). The orientation is only controlled in contact state and
then completely without projections by the tool force controller:

Pt

(

V ttool =
[
vttool

ω ttool

])

=







[
0

0

]

, no contact

[(
nT ⋅vttool

)
⋅n

ω ttool

]

, contact

(8.11)

The tool force/torque reference was set to 0N and 0Nm, respectively.
Unlike in the surface tracking case, where a continuous contact was de-
sired, this leads to the tool being pushed away if it touches a geometric
constraint. A consequence of this is that the hole has to be slightly larger
than the peg in order not to be rejected from the hole. For the 3mm match
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Figure 8.6 Wooden block and match used for peg-in-hole experiments

and 4mm hole, no problems were encountered.
As a cylindrical tool is inserted in a cylindrical hole, the rotation

around the length axis of tool and hole is not determined by the geomet-
ric constraint. With the current control implementation, the orientation of
the robot tool around this axis is therefore arbitrary, or rather determined
by measurement noise, during the experiment. This could be prevented
in several ways with estimating the axis direction of the hole. The ori-
entation around this axis can then be locked, specified or controlled by
lead-through. However, the reorientation was not large and no problems
arose during the experiments.
Figures 8.7–8.9 show the recorded data. Figure 8.7 shows the tool

force and torque which is successfully controlled to zero exhibiting a few
peaks of the force in z-direction when the tool is hitting the wooden block
and the torque in y-direction, which is created by the misalignment of
match and hole. Figure 8.8 shows the TCP trajectory as calculated by the
joint positions and robot kinematics. It should be kept in mind here that
the match is very compliant and the deviations from a straight vertical
line are mostly due to a deformation of the match. Finally, Figure 8.9
shows the tool frame’s ZYZ Euler angles. It can be seen that after the
reorientation phase between t= 20 s and t= 70 s, when the tool is aligned
with the hole, the changed orientation remains; it is not controllable by
lead-through programming.
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Figure 8.7 Tool force (upper) and torque (lower) in base frame x- (solid), y-
(dashed) and z- (dotted) directions.
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Figure 8.8 Tool trajectory in base frame as calculated by forward kinematics
and joint positions. Deviations from a straight vertical line are mostly due to the
deformation of the very compliant match.

179



Chapter 8. Lead-Through Programming with Tool Force Feedback

0 20 40 60 80 100 120
−60

−40

−20

0 20 40 60 80 100 120
123

124

125

0 20 40 60 80 100 120
−180

−160

−140

α
[○ ]

β
[○ ]

γ
[○ ]

Time [s]

Figure 8.9 Tool frame ZYZ Euler angles.

8.5 Discussion

Lead-through control using tool force feedback from a second force sensor
was successfully tested for two example use cases. The control concept
was to use sensor fusion and to control different subspaces of SE(3) by
different sensor feedback.
In the first example application of moving along a surface, contact

with the surface was steadily kept with a contact force of 2N, while the
operator was moving the tool in the tangential space of the surface.
For the second test with a metal plate on top of the cardboard box,

oscillations were observed. As the focus of the experiment was to prove
the control principle and not to optimize a specific force control imple-
mentation, oscillations can be avoided by a force control implementation
which is more robust to varying contact stiffness.
In a typical lead-through application, the geometric constraints are

not perfectly known. In the surface tracking application, the height of the
workpiece is detected by the contact force that is built up and successfully
limited. The normal vector estimation was done according to simple state-
of-the-art methods, only using the tool force measurement. [Yoshikawa and
Sudou, 1993] used also the tool velocity to deduct the friction force from
the measurement and obtain the pure contact force. Here, the raw velocity
measurement was so noisy that the simpler method gave more accurate
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results. The normal vector estimate is however still corrupted by the force
measurement noise, which is the cause for the oscillations in Figure 8.5
increasing with increasing confidence in the estimated normal vector. By
better signal filtering, a more advanced estimator or the additional usage
of tool position data, the constraint estimation can be improved.
The surface tracking was performed only in 3 DOF with constant tool

orientation. For surfaces with more curvature, e.g., a pump house, it would
be possible to adjust the tool orientation so that it is orthogonal to the
surface. For that, a better normal vector estimation is essential.
In the second example application, a match is successfully inserted into

a hole, with match and hole being misaligned at experiment start. The
difference of the diameters of hole and match leave around 1mm space.
The tool trajectory in Figure 8.8 varies more than this 1mm from a

straight line. The reason for this is that the match is compliant and is
deformed, while the tool trajectory is calculated by the robot kinematics
from the measured joint positions.
The flexibility of the match increases the difficulty of the task, as

the contact forces created are smaller than if a metal drill is used. The
smaller forces lead to a lower signal-to-noise-ratio, which limits the control
bandwidth.
A simple solution was chosen for the control of the orientational DOFs

leading to one orientational DOF being undefined. This was not posing
any problem in the experiment and can be solved by the remedies proposed
in Section 8.4.
The advantage of lead-through programming compared to other robot

assembly concepts is the human operator. He/she is the controller in the
outermost control loop and has easy visual and sensual feedback and
experience that cannot be put into a program or controller.
In the chosen examples, very simple contact scenarios were tested. Us-

ing e.g., a disc grinder instead of a rolling tool causes different geometric
constraints. It is possible to demonstrate the task using a dummy tool.
In case of demonstration with a real tool, the process forces need to be
considered as well.
To accomplish a good 6 DOF lead-through control, accurate calibration

of the force sensors and a high signal-to-noise-ratio of the force signals is
important. These factors limit the bandwidth of the lead-through control,
i.e., how fast the robot can be moved by the operator.
Other sensors for lead-through control, e.g., joysticks, have also been

suggested in the literature, see e.g., [Hirzinger and Landzettel, 1985].
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8.6 Conclusion

This chapter presented a lead-through programming concept using two
force sensors and successfully demonstrated the control principle in prac-
tise by experiments for two different use cases. The control principle is to
perform sensor fusion with the two force signals and to control, similar as
in hybrid position/force control, different subspaces of SE(3) by projecting
the sensor data to different subspaces.
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9

Conclusions

9.1 Summary

The overall objective of this thesis is the development of robot concepts
that fit the needs of SMEs. With the Gantry-Tau robot, a novel paral-
lel kinematic robot was presented, which has the potential to fulfill the
requirements of accuracy, mechanical stiffness and conceptual flexibility.
A major part of this thesis deals with modeling and identification of the
Gantry-Tau’s kinematic and dynamic properties. Concepts that aid the
SMEs to achieve the required accuracy and a more intuitive robot opera-
tion were developed and experimentally evaluated. The SMErobot project,
an initiative joining several European robot manufacturers, research in-
stitutes and universities, aimed at developing such robot concepts and
additional aspects were presented within the project [SMErobot, 2009].
The modularity aspects and the integration of software and hardware of
the Gantry-Tau concept were then further studied in the MONROE project
within the ECHORD project [MONROE, 2012; ECHORD, 2012].

Modeling

Both kinematic and dynamic modeling of the Gantry-Tau robot were pre-
sented. A previously known nominal kinematic model was generalized
and developed into a kinematic error model to achieve improved accuracy.
The static tool positioning accuracy of the D1 prototype could thus be
improved from 140µm to 90µm. A rigid-body model including friction in
the active joints was presented together with identification results. The
inverse dynamic model gives satisfactory results for slow motions and can
thus be used for model-based feedforward compensation at low velocities.
However, notable compliant behaviour was observed at higher frequen-
cies. Modal and frequency analysis of the identified compliance revealed
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resonance frequencies between 10Hz and 16Hz. A possible explanation
for the source of these elasticities might be that the framework is lacking
stiffness, but also that the mechanical design of the arm cluster mounting
on the carts was shown to be too compliant. This has been important in-
formation for the development of newer, improved prototype versions. The
black box models were sucessfully used for model-based ILC.
A library of Gantry-Tau models was also implemented in the Model-

ica language. Several application examples demonstrate how easily these
Modelica models can be further used for simulation, real-time control, or
optimization.

Calibration

Work on kinematic calibration was carried out with two main goals: To im-
prove the static positioning accuracy, and to enable non-expert SME staff
to execute kinematic calibration after a robot reconfiguration. The kine-
matic modeling assumptions were verified by measurements and the re-
sults were incorporated in the development of the kinematic error model.
A method for automated kinematic calibration has been implemented and
was sucessfully tested. This method facilitates a geometric reconfigura-
tion of robots at SMEs, as it enables kinematic calibration to be executed
by the non-expert SME staff. In the search for affordable sensors, calibra-
tion based on camera vision was assessed. A stereo vision system including
automated image processing was shown to improve the measurement ac-
curacy from 2.3mm for a single camera to 1.7mm for stereo vision. With
better, but still affordable equipment and an optimization of the method,
the accuracy can be further improved.

Iterative Learning Control (ILC)

ILC based on an estimate of the tool position was evaluated and applied to
the Gantry-Tau robot. Three different approaches were tested: ILC based
on motor angle measurements, on tool position measurements and on the
estimated tool position. It was shown that the dynamic positioning perfor-
mace of the end-effector can be improved by using tool position estimates
instead of motor angle measurements. Direct measurements of the tool
position are however usually not available in an industrial setting. There-
fore, measurements from an accelerometer mounted at the end-effector
plate were successfully used to estimate the tool motion. ILC based on
direct measurements of the tool motion was carried out to evaluate the
maximum achievable accuracy using the method and proved a good per-
formance of the estimation based ILC with only slightly larger remaining
errors. For estimating the tool position based on motor angle and ac-
celerometer measurements, a complementary filter gave similar results
as a Kalman filter. With enhanced dynamic modeling, the performance
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of the Kalman filter and observer-based ILC can be further improved.
Learning was applied up to and above the robot’s resonance frequency.

Lead-through Programming

A new force control concept was presented and tested, a concept that en-
ables fast and intuitive robot programming in contact situations. Usually,
lead-through programming relies on one force sensor, which the operator
uses to control the robot motion. A lead-through control concept was pre-
sented which uses a second force sensor to give tool force feedback. This
protects the tool and/or the workpiece from deformation or damage, makes
it easier to keep continuous contact and helps estimating the geometric
contact constraint, thus leading the tool along the desired trajectory. The
lead-through control was successfully tested in two example applications;
surface tracking and a peg-in-hole application.

9.2 Future Work

The modeling presented in this thesis identified the kinematic and dy-
namic properties of the Gantry-Tau robot in general and specifically for
some of the prototypes. Although the results seem promising and the
Gantry-Tau robot seems to be a suitable robot for the usage in SMEs,
the modeling revealed sources of geometric errors and elasticities not pre-
viously known. This gained knowledge should be used, both to develop
better prototypes, but also to derive and identify better kinematic and
dynamic models. Some of the results were already used in the ongoing
development of the T2 and L2 prototypes.
The further development of robot concepts for SMEs is continued after

the SMErobot project with a new European project, SMErobotics [SMEr-
obotics, 2012].
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A

A Method for Pose Accuracy

Analysis

This chapter presents a geometric method for estimating the Cartesian
positioning error of the Gantry-Tau robot due to actuator or link modeling
errors based on the nominal kinematic model. The method is used to
study the influence of actuator accuracy on the end-effector accuracy in
Section 4.3.

A.1 Related Work

Solving the forward kinematics of the ideal Gantry-Tau robot consists of
intersecting three spheres, a problem well known in many other domains
as trilateration. Often, the application is to determine the position of an
object like an airplane [Manolakis, 1996], mobile robot [Thomas and Ros,
2005] or wireless network node [Yang and Liu, 2010], knowing the distance
of the object to three or more reference stations. Another well-known ap-
plication is the Global Positioning System (GPS).
Numerous references treat the accuracy and error propagation of tri-

lateration. Mostly errors in the range measurements (or link lengths of
the robot), but also in the station (or cart) position are considered. Like
described in [Coope, 2000], a problem that might occur in localization is
that the spheres do not intersect at all. This is especially the case if the
object is close to the plane defined by the three stations and the range
measurements are noisy. In [Coope, 2000], it is suggested to solve this
with a least square approximation of the best position estimate. However,
for the Gantry-Tau robot, the spheres will usually intersect, as the ball
joints are reaching their limit long before the carts would be far enough
from each other to construct this case. In [Manolakis, 1996] it is shown
how the range measurement errors with zero mean value and given co-
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variance matrix propagate to the position estimate. Expressions for the
position estimate bias and covariance matrix are developed by expand-
ing the position estimate into a Taylor series around the solution for zero
measurement errors. Similarly, the position estimate error due to errors in
the station positions is derived in [Manolakis and Cox, 1998]. In [Thomas
and Ros, 2005], both range measurement and station position errors are
treated. Assuming only station location errors with zero-mean value and
the same, uncorrelated variance for each coordinate direction, the vari-
ance for the position error is determined, which is shown to have zero
mean value. The analysis of range measurement errors is equivalent to
that in [Manolakis, 1996].
The geometric method presented here tries to give a more intuitive

understanding on how the errors propagate and where and in what direc-
tions they affect the positioning accuracy the most.

A.2 Ellipsoidal Base Point Error

The base point position errors are often assumed equal in all three co-
ordinate directions. However, for the Gantry-Tau robot, this assumption
does not hold. The error in the actuator axis direction, i.e., the joint posi-
tioning error, has other causes than an error orthogonal to this direction.
Depending on the implementation of the linear guideway and framework,
there may as well be a weak direction orthogonal to the linear axis, along
which the error might be larger. Therefore, an ellipsoid-formed position
error is assumed. The main axes of the ellipsoid do not necessarily lie
along the chosen coordinate axes.
For each arm i = {1,2,3}, the spherical joint center Ai on cart i is

assumed to lie on or inside the ellipsoid EAi , centered around the nominal
spherical joint center Ani and with axes (ri,1 ⋅ui,1, ri,2 ⋅ui,2, ri,3 ⋅ui,3). SAi
denotes the set of all possible positions for Ai, i.e., the interior and surface
of ellipsoid EAi .
The exact forward kinematics solution is the intersection of the three

spheres with center Ani and radius Li. The set S
B
i of all possible positions

of the detached end-effector joint Bi of link i with length Li and base
point Ai can be described as

SBi = {Bi p ppAi− Bipp = Li, Ai ∈ SAi } (A.1)

The boundaries of the set SBi can be approximated by the two ellipsoids
EB, li and EB,ui with the center Ani and the axes ((Li−ri,1) ⋅ui,1, (Li−ri,2) ⋅
ui,2, (Li− ri,3) ⋅ui,3) and ((Li+ ri,1) ⋅ui,1, (Li+ ri,2) ⋅ui,2, (Li+ ri,3) ⋅ui,3),
respectively. The exact boundaries coincide with the given ellipsoids for
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the main axes directions. The exact SBi is slightly larger than the set
limited by the ellipsoids, which is denoted SBi in the following.
The Cartesian positioning error is then defined by the intersection

of SB1 , S
B
2 and S

B
3 . The eight corner points T

j , j = 1..8 of the resulting
shape ST can be calculated by intersecting all possible combinations of the
limiting ellipsoids. As the intersection point of three ellipsoids is difficult
to calculate analytically, an iterative algorithm illustrated in Figure A.1
was implemented:

1. As a start value for the intersection point, the nominal end-effector
position, Tn, is chosen.

2. Calculate the projections of the current intersection point estimate
on each of the three ellipsoids, i.e., find the point where the half-line
through the current intersection estimate starting in the ellipsoid’s
center intersects the ellipsoid.

3. If the distances between the three projection points are sufficiently
small, stop, else continue.

4. Linearize the ellipsoids at the projection points calculated in Step 2.

5. The new intersection point estimate is the intersection of the lin-
earizations calculated in Step 4.

6. Continue with Step 2.

The algorithm converges as illustrated in Figure A.1 in case of a suf-
ficiently close start value, i.e., not a point on the opposite side of one of
the ellipsoids.
Usually, Li≫ ri,j ,( j = 1,2,3), and the curved boundaries of ST can be

approximated by planes. Size and shape of ST can then be determined by
its eight corner points.
If the ellipsoidal modeling errors are dominant in the direction of the

actuator axes directions, the resulting end-effector positioning error can
as well be calculated with the kinematic Jacobian matrix.

A.3 Link Length Error

In case the joint position errors are equal in all directions, i.e., if ri,1 =
ri,2 = ri,3 = ri, the ellipsoids EAi are spheres. The eight corner points of the
intersection shape ST can now be calculated analytically using the forward
kinematics with changed link length parameters Li± ri, i= {1,2,3}.
The same resulting geometry ST of the end-effector error is obtained

for errors ±ri of the link length Li.
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T
j
k

T
j
k+1

Figure A.1 Planar illustration of algorithm: To calculate the next estimate T j
k+1

of the intersection point of the ellipses with centers in A1 and A2, first the current
estimate T j

k
is projected on the ellipses. T j

k+1 is then found by intersecting the
linearizations in the projection points.

A1 A2

L1 L2

r1 r2

Figure A.2 Planar illustration of the end-effector accuracy’s dependence on actu-
ator accuracy: The spherical joint position Ai on cart i is known to be within a circle
with radius ri; the position of the other link-end is then limited by the circle lines
indicated in red (nominal position on dashed red lines). The exact end-effector limits
obtained by intersecting the respective limits for link 1 and 2 can be approximated
by the parallelogram indicated in black.
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A.4 Parallelepiped Approximation

As mentioned in Sect. A.2, the curved boundaries of ST can be approxi-
mated by planes for Li≫ ri,j , which is usually the case. For joint position
errors which are equal in all direction, i.e., Ai lie inside a sphere with
radius ri, planes of ST which lie opposite to each other are parallel, and
ST is a parallelepiped. In the following, the case of spherically shaped
errors is treated.
The shape of the parallelepiped approximation gives information about

the maximum Cartesian positioning error and its direction. The maximum
error lies in the direction of one of the 4 parallelepiped diagonals.
Figure A.3 illustrates the problem’s geometry. The nominal base joint

centers Ani form a pyramid with the top T
n. Each of the three parallel par-

allelogram pairs Fi = {Fi1,Fi2}, which are the faces of the parallelepiped,
is orthogonal to one of the links Li. The distance between the planes Fi1
and Fi2 is hi = 2 ri. The angle between two faces Fi and Fj is equal to
the top angle α k of pyramid side Sk, i ,= j ,= k. The angle β k, that the
pyramid sides Si and Sj enclose, is equal to one of the angles in the par-
allelograms Fk1 or Fk1. With the aid of these relations, the diagonals can
be calculated.
For given ri, the influences of the kinematic parameters and the end-

effector pose on the worst case error can now be derived. If the links Li
are orthogonal to each other, the parallelepiped’s faces are rectangles and
the diagonals equal. In consequence, the worst case error is minimal in
this case. Changing the angles α i in either direction increases the length
of the longest diagonal and thus the worst case positioning error.
For ellipsoidally shaped joint position errors, the distance between the

upper and the lower limit for the position of a decoupled link end varies,
and the tangential planes of the limits are not perfectly parallel to each
other. However, as Li ≫ ri,j , the SBi in (A.1) look very much like those
for the spherically shaped errors, and the tangential planes can approxi-
mately be considered as parallel.
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A1
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A3

L1

L3
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S2

S3

F3

F1

Figure A.3 Illustration of parallelepiped approximation: The spherical joint posi-
tions Ai on the carts form a pyramid with the TCP. The surface Si with top angle α i
is the pyramid side opposite to link i. The angle β i is the angle between the two
pyramid sides intersecting in link i. The pair of parallelepiped faces Fi is orthogonal
to link i.
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