
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

Åkesson, Johan; Braun, Willi; Lindholm, Petter; Bachmann, Bernhard

Published in:
Proceedings of the 9th International Modelica Conference

DOI:
10.3384/ecp12076185

2012

Link to publication

Citation for published version (APA):
Åkesson, J., Braun, W., Lindholm, P., & Bachmann, B. (2012). Generation of Sparse Jacobians for the Function
Mock-Up Interface 2.0. In Proceedings of the 9th International Modelica Conference (pp. 185-196). The
Modelica Association. https://doi.org/10.3384/ecp12076185

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.3384/ecp12076185
https://portal.research.lu.se/en/publications/6e0a9c45-b7a4-47da-9fd5-d6e7064e994d
https://doi.org/10.3384/ecp12076185

Generation of Sparse Jacobians for
the Function Mock-Up Interface 2.0

J. Åkessona,c, W. Braund , P. Lindholmb, B. Bachmannd

aLund University, Department of Automatic Control, Lund, Sweden
bLund University, Department of Mathematics, Lund, Sweden

cModelon AB, Lund, Sweden
dUniversity of Applied Sciences Bielefeld, Bielefeld, Germany

Abstract

Derivatives, or Jacobians, are commonly required by
numerical algorithms. Access to accurate Jacobians
often improves the performance and robustness of al-
gorithms, and in addition, efficient implementation of
Jacobian computations can reduce the over-all exe-
cution time. In this paper, we present methods for
computing Jacobians in the context of the Functional
Mock-up Interface (FMI), and Modelica. Two pro-
totype implementations, in JModelica.org and Open-
Modelica are presented and compared in industrial as
well as synthetic benchmarks.

Keywords: FMI; Analytic Jacobians; Automatic
Differentiation; JModelica.org; OpenModelica;

1 Introduction

Algorithms for solving computational problems nu-
merically often require access to derivatives, or ap-
proximations thereof. Examples include simulation
algorithms, where implicit integration schemes use
derivative information in Newton type algorithms, op-
timization algorithms, where derivatives are used to
compute search directions, and steady-state solvers.
The quality of the derivatives typically affects perfor-
mance and robustness of such algorithms. Often, the
execution time is strongly affected by the calculation
time of Jacobians.

During the last two years, the Functional Mock-up
Interface 1 (FMI) standard has had a strong impact
amongst software tools for modeling and simulation.
The goal of the standard is to promote model reuse and
tool interoperability by providing a tool and language
independent exchange format for models in compiled
or source code form. Following the introduction of

1https://fmi-standard.org/

FMI 1.0 in January 2010, the next version of the stan-
dard, FMI 2.0, will support sparse Jacobians, in order
to enable increased efficiency of algorithms supporting
FMI. The target of this extension is to provide deriva-
tive information for two different use cases of Func-
tional Mock-up Units (FMUs). The first use case is
simulation of a single FMU. In this case, sparse Ja-
cobians for the model equations enable increased effi-
ciency of iterative integration algorithms. The second
use case is the composition of multiple FMUs, poten-
tially blended also by elements from a modeling lan-
guage such as Modelica, where directional derivatives
are useful in order to efficiently construct Jacobians
for systems of equations spanning several FMUs.

In this paper, we describe methods for generating
sparse Jacobians and directional derivatives to fulfill
the corresponding requirements of FMI 2.0. The meth-
ods are described in the context of compilation of
Modelica models into FMUs, although the employed
techniques are generally applicable to other model de-
scription formats. Two prototype implementations,
one in OpenModelica2 and one in JModelica.org3 are
presented. The implementations of sparse Jacobians in
the respective tools are compared based on industrial
benchmark models.

The paper is organized as follows. In Section 2,
material on FMI, Jacobians and differentiation tech-
niques are provided. Section 3 describes two different
implementations of sparse Jacobians in JModelica.org
and OpenModelica respectively. Benchmark results
are provided in Section 4, and the paper ends with a
summary and conclusions in Section 5.

2http://www.openmodelica.org
3http://www.jmodelica.org

2 Background

2.1 The Functional Mock-up Interface

FMI emerged as a new standard resulting from the
ITEA2 project MODELISAR, in 2010. The standard
is a response to the industrial need to connect differ-
ent environments for modeling, simulation and control
system design. Commonly, different tools are used for
different applications, whereas simulation analysis at
the system integration level requires tools to be con-
nected. FMI provides the means to perform such inte-
grated simulation analysis.

FMI specifies an XML format for model interface
information and a C API for model execution. The
XML format, specified by an XML schema, contains
information about model variables, including names,
units and types, as well as model meta data. The
C API, on the other hand, contains C functions for
data management, e.g., setting and retrieving param-
eter values, and evaluation of the model equations.
The implementation of the C API may be provided in
source code format, or more commonly as a compiled
dynamically linked library.

FMI comes in two different flavors: FMI for Model
Exchange (FMI-ME) [2] and FMI for Co-Simulation
(FMI-CS) [3]. FMI-ME exposes a hybrid Ordinary
Differential Equation (ODE), which may integrated
stand-alone or which may be incorporated in a com-
posite dynamic model in a simulation environment.
The FMI-ME C API exposes functions for computa-
tion of the derivatives of the ODE, and accordingly,
in FMI-ME the integration algorithm is provided by
the importing application. FMI-CS, on the other hand,
specifies that the integration algorithm is included in
the FMU, and the FMU-CS C API provides functions
for integrating the dynamics of the contained ODE for
a specified period of time.

The FMI standard is supported by several model-
ing and simulation tools, including Dymola, Simula-
tionX, JModelica.org and OpenModelica. Also, there
are FMI interfaces to MATLAB, National Instruments
Veristand and several additional tools.

FMI 2.0 is a unification of the Model Exchange
and Co-simulation standards and contains several im-
provements. One of those are the sparse Jacobians,
which are also topic of this paper. The sparse Jacobian
interface in FMI 2.0 consists of three different parts:

• A C API function for evaluation of directional
derivatives of the model equations.

• A C API function for evaluation of sparse Jaco-

bian matrices corresponding to the ODE repre-
sentation of an FMU.

• A section in the XML document contained in an
FMU providing the incidence pattern for the Ja-
cobian matrices.

In this paper, algorithms for generating this function-
ality are discussed.

2.2 Causalization of DAEs

In the first step of the compilation process in a Model-
ica tool chain, a compiler front-end transforms Model-
ica source code into a flat representation, consisting
essentially of lists of variables, functions, equations
and algorithms. Based on this model representation,
symbolic operations such as alias elimination and in-
dex reduction are applied, in order to reduce the size
of the model and to ensure that the resulting Differen-
tial Algebraic Equation (DAE) is of index 1. In this
section, we outline the following steps that are of par-
ticular relevance for the generation of Jacobians. In
particular, the causalization procedure, i.e., transfor-
mation of an index-1 DAE into an equivalent ODE, as
required by the FMI standard, is discussed.

FMI specifies Jacobians and directional deriva-
tives with respect to the continuous model equations.
Therefore, without lack of generality, and for clarity of
the presentation, only the continuous part of the DAE
is considered in the following.

We consider index-1 DAEs in form of

F(ẋ(t),x(t),u(t),w(t)) = 0, t ∈ [t0, t f]

x(0) = x0
(1)

where ẋ(t) ∈ Rnx are the state derivatives, x(t) ∈ Rnx is
the state, u(t) ∈ Rnu are the inputs and w(t) ∈ Rnw are
the vector of algebraic variables. The initial conditions
of DAE state is given by x0. Introducing z = (ẋ w),
denoting the unknowns of the DAE, and v = (x u), de-
noting the known variables, the DAE written

F(z,v) = 0 (2)

The conceptual idea of DAE causalization commonly
used in Modelica tools is then to compute the inverse
relationship of F

z = G(v), (3)

and the ODE may then be written

ẋ = f (x,u)

y = h(x,u)
(4)

where y are the outputs of the system. Note that the
algebraic variables are considered to be internal to
the ODE in this representation. In general, there is
no closed expression for the functions f and g, but
rather, iterative techniques, e.g., Newton’s method, is
employed to solve algebraic loops for z.

Modelica models are typically of large scale but
sparse in the sense that each model equation contains
references only to a small number of equations. In or-
der to exploit this structure, graph algorithms can be
employed. Two commonly used algorithms that are
used for this purpose are matching algorithms, e.g., the
Hopcroft Karp algorithm, and Tarjan’s algorithms for
computing strong components, [4]. The result of Tar-
jan’s algorithm is then used to permute the variables
and equations of the DAE into Block Lower Triangu-
lar (BLT) form.

Let us consider a DAE with five equations and five
unknowns, i.e., F ∈ R5 and z ∈ R5, where the DAE
equations are given by

F1(z1,z5,v) = 0

F2(z3,v) = 0

F3(z1,z2,z3,z4,v) = 0 (5)

F4(z1,z3,z5,v) = 0

F5(z2,z5,v) = 0

Note that the variables v = [x,u] are known and need
not be considered in the following analysis. The de-
pendence of the z-variables can be shown in the fol-
lowing incidence matrix,

z1 z2 z3 z4 z5
F1 ∗ 0 0 0 ∗
F2 0 0 ∗ 0 0
F3 ∗ ∗ ∗ ∗ 0
F4 ∗ 0 ∗ 0 ∗
F5 0 ∗ 0 0 ∗

(6)

A * in the incidence matrix at row i and column j de-
notes that the residual function Fi contains a reference
to the variable z j. Application of the BLT procedure,
now yields the following DAE system

z3 z1 z5 z2 z4
F2 1 0 0 0 0
F4 1 1 1 0 0
F1 0 1 1 0 0
F5 0 0 1 1 0
F3 1 1 0 1 1

(7)

The implicit DAE system (5) is now given by a se-
quence of assignment statements and implicit systems

of equations

z̄1 := g1(v)

F̄2(z̄1, z̄2,v) = 0

F̄3(z̄2, z̄3,v) = 0

z̄4 := g4(z̄1, z̄2, z̄3,v)

(8)

where z̄1 = z3, z̄2 = (z1 z5)
T , z̄3 = z2, z̄4 = z4. The

functions g1 and g2 corresponds to explicit solutions
of the corresponding DAE equations, whereas F̄2 =
(F4 F1)

T and F̄3 = F5 corresponds to implicit (systems
of) equations that require iteration. It is typical for
Modelica models to contain only a small number of
implicit systems of equations and a large number of
trivial, e.g., linear equations that may be solved sym-
bolically.

For a general DAE, the BLT procedure results in a
sequence of scalar and non-scalar equation blocks on
the form

F̄1(z̄1,v) = 0
...

F̄i(z̄1, ...,zi,v) = 0
...

F̄b(z̄1, ...,zb,v) = 0

(9)

where the unknown of each residual F̄i is z̄i. Further,
some of the residual functions may be solved explicitly
by symbolic manipulation and the remaining blocks
needs the to be solved by iterative methods.

Computation of the sequence of solved and non-
solved blocks (9), given values of the known variables
in v then produces the corresponding state derivative
and algebraic vectors contained in z. Accordingly, the
DAE has been causalized in to an ODE on the form
(4).

2.3 Computation of Jacobians

The Jacobian of a vector valued function f (x) ∈ Rm,
x ∈ Rn is given by

∂ f
∂x

=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 (10)

A useful tool when computing Jacobians is directional
derivatives. The directional derivative of a vector val-
ued function f (x) is defined by

d f =
∂ f
∂x
·dx, (11)

where dx ∈ Rn represents the direction in which the
directional derivative, denoted d f ∈ Rm, is evaluated.
dx is also referred to as a seed vector.

In the following, directional derivatives will be used
extensively to construct Jacobians. A straight forward,
although naive, approach to construct a Jacobian from
directional derivative evaluations is as follows. Using
the identity matrix I of dimension n, and the unit vec-
tors e1 . . .en we have that

∂ f
∂x

=
∂ f
∂x

I =
∂ f
∂x

(
e1, . . . en

)
=(

∂ f
∂x · e1 . . . ∂ f

∂x · en

)
. (12)

Using this relation, a Jacobian with n columns may be
constructed from n evaluations of directional deriva-
tives. In Section 2.7, an overview of methods to ex-
plore sparsity to improve efficiency in this respect will
be given.

There are three widely used methods for computing
Jacobians, namely finite difference methods, symbolic
differentiation and automatic (or algorithmic) differ-
entiation.

2.4 Finite Difference Approximation

In the finite difference method, a numerical approxi-
mation of the directional derivative of a vector valued
function f is calculated using the formula

∂ f (x)
∂x
· ei =

f (x+ eih)− f (x)
h

. (13)

where h is the increment. On one hand, even if the
increment is chosen optimal in nature of that method is
an accuracy error ε , which is the sum of εt + εr where
εt is the truncation error and εr the round-off error. The
truncation error εt |ḣ̇ f (x)| is the result of the Taylor-
series truncation. The round-off error εr ε f | f (x)/h|
where ε f is the fractional accuracy ε f ≥ εm depends
on machine accuracy εm. On the other hand, it is easy
to implement and also almost applicable.

2.5 Symbolic Differentiation

In general the “calculus” of symbolic derivatives is
done by difference quotients. where the derivative of a
function is the limit

∂ f
∂x

= lim
h→0

f (x+h)− f (x)
h

(14)

difference quotients. This is also the way the basic dif-
ferentiation rules are found. From a practical view the

“calculus” of the symbolic derivatives is done by ap-
plying basic differentiation rules and table of deriva-
tives for common functions on the expressions to find
the formulas for the derivatives. Since a Modelica
model results during the compilation in symbolic ex-
pressions which are manipulated to simplify the orig-
inal system. So it is quite typical for a Modelica Tool
to use symbolical methods also for the differentiation.
Finding the symbolic formula may take time, space
and a symbolic kernel for simplifications, but once de-
termined it’s fast to evaluate them [7]. A further draw-
back is that symbolic differentiation is not applicable
on algorithms (with for-loops and branches).

2.6 Automatic Differentiation

Automatic Differentiation (AD) is a method for com-
puting derivatives with machine precision, which is
applicable to expressions as well as algorithmic func-
tions [1]. The key idea in AD techniques is to prop-
agate derivative information through a sequence of
atomic operations, which is represented by an expres-
sion graph. Computation of a sequence of AD oper-
ations results in the evaluation of a directional deriva-
tive with respect to a given seed vector.

There are two different modes of operation of AD—
forward and reverse. The forward mode AD is con-
ceptually simple, and is based on forward propagation
of values and derivatives through an expression graph.
The result of a forward AD sweep is a vector corre-
sponding to the Jacobian multiplied by the seed vector.
Commonly, Jacobian matrices are constructed from a
number of forward AD evaluations.

The reverse AD technique is more involved than the
forward mode, and includes a forward and a backward
evaluation sweep over the expression graph, and the
result is a vector corresponding to the seed vector mul-
tiplied by the Jacobians. This mode of operation is
particularly useful in the case of scalar functions that
depends on many independent variables—in this case,
reverse AD is referred to the cheap gradient computa-
tion. Reverse AD is also commonly used to construct
higher-order derivatives, e.g., Hessian matrices in op-
timization applications.

Implementation of AD tools comes two different
flavors: Operator Overloading (OO) and Source Code
Transformation (SCT). In OO tools, the expression
graph is represented by data structures that are repeat-
edly traversed during forward and reverse mode eval-
uations. This strategy has been popularized by tools

such as CppAD4 and ADOL-C5 which both enable
AD to be applied to C code with minor modifications.
Tools in this category are typically based on operator
overloading, e.g., in C++, to construct a data structure
referred to as a tape, which is then used as a basis for
derivative computations. Tools based on the SCT ap-
proach, on the other hand, generate code that, when
executed, compute derivatives. The ADIFOR6 pack-
age falls into this category.

In this paper, forward mode AD using the SCT tech-
nique will be used. The remainder of this section will
therefore focus on explaining this methods.

A key to understanding forward AD, is the observa-
tion that expressions can be evaluated, and differenti-
ated, by considering a sequence of atomic operations.
The elementary arithmetic operations can be differen-
tiated by applying the derivation rules

d
dx

(u(x)± v(x)) =
du
dx
± dv

dx
d
dx

(u(x)v(x)) = u(x)
dv
dx

+ v(x)
du
dx

d
dx

(u
v

)
=

v(x)du
dx −u(x) dv

dx
v(x)2

In addition, the chain rule

d
dx

φ(u(x)) =
dφ

du
du
dx

applies to the elementary arithmetic functions, such as
sin, cos etc.

In the following example, we illustrate how these
building blocks are used to apply the forward AD tech-
nique. We consider the function

f (x1,x2) = x1 · x2 + sin(x1), (15)

for which we would like to compute the directional
derivative according to relation (11). Assuming the
seed vector dx = (1 0)T , it follows that

d f =
∂ f
∂x

dx =
(

∂ f
∂x1

∂ f
∂x2

)
·
(

1
0

)
=

∂ f
∂x1

. (16)

Using the seed vector in (16), f (x) will be differenti-
ated with respect to x1.

The expression graph corresponding to the function
in (15) is shown in Figure 1.

In the figure, the leaves represent the independent
variables and the root node represents the function it-
self.

4http://www.coin-or.org/CppAD/
5http://www.coin-or.org/projects/ADOL-C.xml
6http://www.mcs.anl.gov/research/projects/adifor/

x1 1 x2 2

sin 3 × 4

+ 5

f (x1,x2) 6

Figure 1: Expression graph of the function (15)

A forward AD sweep is performed as follows. The
computation sequence starts at the independent vari-
ables. Intermediate variables, vi:s, are introduced to
hold the value of each node, and in addition, variables
for the derivative values of each node, di, are intro-
duced. The expression of a particular variable vi is
given by the corresponding node type, i.e., arithmetic
operation, and the derivative value, di, is given by dif-
ferentiation of the same operation. Application of this
procedure to the function (15) gives the following se-
quence of operations.

v1 := x1

d1 := dx1

v2 := x2

d2 := dx2

v3 := sin(v1)

d3 := d1 · cos(v1)

v4 := v1 · v2

d4 := d1 · v2 + v1 ·d2

v5 := v3 + v4

d5 := d3 +d4

v6 := v5

d6 := d5

The variable v6 now holds the value of the function it-
self and d6 holds the value of the directional derivative.
Note that the evaluation is done for particular values of
the independent variables, in this case x1 and x2, and
seed values, dx1 and dx2. Note that auxiliary variables
v1, v2, d1 and d2 are introduced here for clarity.

2.7 Exploiting Sparsity

Modelica models, also after the causalization proce-
dure described above, are often sparse, i.e., each equa-

tion of a model depends only on a fraction of the to-
tal number of variables. Exploiting sparsity of Mod-
elica models can be done in two different contexts.
Firstly, the efficiency of computation of Jacobian ma-
trices based on directional derivative evaluations can
be much improved by considering sparsity. This strat-
egy is called compression and will be described briefly
in this section. Secondly, a simulation environment
importing an FMU providing sparse Jacobians may
utilize this information to improve the performance of
numerical algorithms. A typical example of such al-
gorithms are sparse linear solvers, e.g., UMFPACK7,
CSparse8 and PARDISO9. This usage is, however, not
related to the procedures required to generate Jaco-
bians, and it is therefore beyond the scope of this pa-
per.

As noted above, a naive method for evaluation di-
rectional derivatives to generate Jacobian matrices is
to simply make one such evaluation for each column
of the Jacobian, with seed vectors corresponding to the
unit vectors of appropriate dimension. If the Jacobian
is sparse, however, the number of evaluations can be
drastically reduced, by observing that several columns
can be computed in a single directional derivative eval-
uation if the sparsity patterns of these columns do not
overlap. As an example, consider the incidence ma-
trix (6). Here, we note that columns four and five does
not contain overlapping entries, and they can therefore
be computed by one single directional derivative eval-
uation with the seed vector chosen as the sum of the
corresponding unit vectors. Note also that this strat-
egy is applicable to all three differentiation methods
described above: finite differences, AD and symbolic
differentiation.

While this strategy is simple to implement, comput-
ing a column grouping of minimal size is well known
to be an NP-hard problem—this problem corresponds
precisely to the graph coloring problem [5, 6]. There
are, however, efficient algorithms capable of comput-
ing practically useful approximations of the optimal
solutions. Specific algorithms will be discussed in
Section 3.

7http://www.cise.ufl.edu/research/sparse/

umfpack/
8http://people.sc.fsu.edu/~jburkardt/c_src/

csparse/csparse.html
9http://www.pardiso-project.org/

3 Computation of Jacobians for
Modelica Models

In Section 2.2, it was shown how a DAE is transformed
into an ODE by means of the BLT transformation. In
this section, methods for computing the Jacobians of
the resulting ODE (4) are presented. We consider

∂ z
∂v

=

(
∂ ẋ
∂v
∂y
∂v

)
=

(
∂ ẋ
∂x

∂ ẋ
∂u

∂w
∂x

∂w
∂u

)
=

(
A B
C D

)
(17)

In this section, we present two methods for comput-
ing the matrices A, B, C and D by means of direc-
tional derivatives. One of the methods, which is im-
plemented in JModelica.org, relies on a forward AD
implementation in an SCT setting, whereas the other
method, which is implemented in OpenModelica, re-
lies on symbolic differentiation and symbolic expres-
sion simplification. In addition, an algorithm for com-
puting the sparsity pattern of the Jacobian matrices,
which is common for both methods, is presented.

The key idea in this section is the following. Differ-
entiating the DAE (2) yields the relation

∂F
∂ z

dz+
∂F
∂v

dv = 0, (18)

where dv is the input seed vector and dz works as the
directional derivative of the relation (3) with respect to
the direction dv. By solving the system of equations
(18) for a particular seed dv, the directional derivative
of the DAE is obtained. It is important to note that
the system of equations to be solved is linear in the
unknowns, dz, and thus does not require iteration.

The Jacobian matrices are then constructed from re-
peated evaluation of directional derivatives. In addi-
tion, coloring algorithms and compression is used to
reduce the number of directional derivative evaluations
in both implementations.

Evaluation of Jacobians based on the compression
of the columns requires access to sparsity pattern, as
stated in Section 2.7. The determination of the spar-
sity pattern for a Modelica model could be done by
means of graph theory. Since the non-zero values in
a Jacobian expresses which output variable has a con-
nection to which input variable. Thus the determina-
tion problem could be formulated as a st-connectivity
problem in a directed graph, where input variables are
the sources and the output variables are the sinks. The
st-connectivity is a decision problem that asks if the
vertex t is reachable from the vertex s, particular which
output variable is connected to which input variable.
Specific algorithms for this purpose will be discussed
below.

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cise.ufl.edu/research/sparse/umfpack/
http://people.sc.fsu.edu/~jburkardt/c_src/csparse/csparse.html
http://people.sc.fsu.edu/~jburkardt/c_src/csparse/csparse.html
http://www.pardiso-project.org/

3.1 Implementation of Directional Deriva-
tives in JModelica.org

The performance of the approach outlined above can
be improved significantly by exploiting the BLT struc-
ture described in Section 2.2. In particular, forward
AD may be applied directly to the sequence of compu-
tations given in (9). In the implementation in JModel-
ica.org, C code corresponding to a forward AD sweep
over the sequence of BLT blocks is generated. The
symbolic expression graphs in the compiler is a ba-
sis for the code generation. As noted in Section 2.2,
there are two kinds of blocks produced by the BLT
transformation, i.e solved equation blocks and non-
solved equation blocks requiring iterative numerical
solution. Below, we explain how directional deriva-
tives are propagated in these two cases.

3.1.1 Propagation of Directional Derivatives in
Equation Blocks

For blocks corresponding to solved equation blocks of
the form

z̄i := gi(z̄1, . . . , z̄i−1,v) (19)

it is straight forward to apply the forward AD ap-
proach. In this case, AD code is simply generated bas-
ing on the expression graph for gi, in order to produce
the directional derivative

dz̄i =
∂gi

∂ z̄1
dz̄1 + . . .+

∂gi

∂ z̄1−i
dz̄i−1 +

∂gi

∂v
dv. (20)

Note that the input seed dv and the directional deriva-
tives for previous blocks, z̄i, . . . z̄i−1 are known at this
point in the computation sequence. Commonly, the ex-
pression gi does not depend on all previous vectors of
unknowns, z̄1, . . . , z̄i−1, a property which is exploited
in the implementation.

For a block corresponding to a system of equations,
the block residual is given by

F̄i(z̄1, . . . ,zi,v) = 0. (21)

In order to compute the directional derivative, dz̄i, for
such a block, the residual equation is differentiated to
yield

∂ F̄i

∂ z̄1
dz̄1 + · · ·+

∂ F̄i

∂ z̄i
dz̄i +

∂ F̄i

∂v
dv = 0 (22)

which in turn gives the linear system

∂ F̄i

∂ z̄i
dz̄i =−

i−1

∑
k=1

∂ F̄i

∂ z̄k
dz̄k−

∂ F̄i

∂v
dv (23)

to be solved for dz̄i. All Jacobians in this relation are
generated to C code using forward AD. Note that the
system Jacobian of the linear system (23) is provided
also to the Newton solver that computes the solution
of the system of equations (21). Therefore, this code is
reused in the computation of the directional derivative
of the block.

3.1.2 Computation of Sparsity Patterns

Computation of sparsity patterns for the Jacobian ma-
trices A, B, C and D is a non-trivial problem, because
of the sequence of operations required to compute the
state derivatives x and the algebraic variables w. In
comparison, computation of the Jacobian matrix of a
DAE system (2) is straightforward and can be done by
simply collecting references to unknown variables in
each residual equation. As noted above, the problem
of computing sparsity patterns for the ODE Jacobian
is a connectivity problem, where the dependencies of
the dependent variables z of the independent variables
contained in v need to be computed.

The BLT form of the DAE offers means to compute
the required sparsity patterns for the ODE Jacobians.
While the general form of a block in the BLT sequence
is

F̄i(z̄1, ...,zi,v) = 0, (24)

particular blocks typically do not depend on all vari-
ables in z1, . . .zi and in v. In order to reflect this situa-
tion, we introduce the notation

F̃i(z̃i,zi, ṽi) = 0, (25)

where z̃i contains the variables in the z vector upon
which the equation block residual F̃i depends. ṽi is de-
fined correspondingly. As a first approximation, which
will be relaxed in the following, we assume that all
variables solved for in the block i, i.e., zi, depends
on all variables in z̃i and in ṽi. Clearly, this relation-
ship defines the direct dependency of zi on ṽi. Now,
the dependency of zi on the variables contained in
ṽ1, . . . , ṽi−1 is given implicitly by z̃i. The connectiv-
ity graph of the BLT form reveals these dependencies.
Edges in this graph corresponds to non-zero entries in
the lower left part of the transformed incidence matrix,
below the block diagonal. In the connectivity graph,
dependency information is propagated top-down in the
sequence of blocks. For each block, the complete set
of variables in v upon which the block depends is col-
lected from the predecessors in the dependency graph.

For a block consisting of a system of equations, the
assumption that all variables solved for in the block,

zi, depends on all variables in z̃i may lead to an over-
estimation of the sparsity pattern. Specifically, since
the sparsity pattern of the inverse of a sparse matrix
may also be sparse, the computation may result in non-
zero entries which are in fact structural zeros. In or-
der to take this into account, the sparsity pattern of
the inverse of the corresponding block Jacobian may
be computed, [8]. The result of this analysis is then
taken into account when variable dependencies are
computed. Note that this analysis remains to be im-
plemented in JModelica.org

3.2 Implementation of Directional Deriva-
tives in OpenModelica

The directional derivatives in OpenModelica are gen-
erated basically by setup a new symbolic equation sys-
tem inside the OMC with the differentiated equations.
This system contains the desired partial derivatives dz̄
as unknowns, the seed vector dv̄ and all other variables
from the original system are considered as known. The
resulting equation system is the desired one as in equa-
tion (18).

This approach differs from the previously published
procedure (see [10]), in a way that now each equation
is derived only once. This leads to linearity in the com-
pilation time and in the generated code size.

All methods mentioned in section 2 are used for
the differentiation of the original system. Equations
are differentiated symbolically, algorithm sections and
Modelica functions without an derivative annotation
are differentiate by the forward AD approach and ex-
ternal functions, where nothing else is possible, are
differentiated numerically.

The generated equation system is then optimized
like the original system. In detail it is transformed
to an explicit form with the BLT machinery of Open-
Modelica, further expression-based simplification are
done and some common sub-expressions are filtered.
The resulting equation system is then written to the C-
Code.

For the purpose of generating the four matrices in
(17) for each matrix one new equation system is gener-
ated with the corresponding variables. Note therefore
the original system is filtered for the necessary equa-
tions.

The exploration of the sparsity pattern for a fast
evaluation of the compressed Jacobians is applied on
the generated directional derivatives. A detailed de-
scription of the algorithms used for that task in Open-
Modelica can be found in [9].

3.3 Comparison of Implementations

The implementations in OpenModelica and in JMod-
elica.org share common characteristics, but there are
also differences. Both algorithms are based on gen-
eration of C code that evaluates directional deriva-
tives, which in turn are used to compute Jacobians.
Also, both algorithms rely on compression for reduc-
ing the number of directional derivative evaluations.
The computation of sparsity patterns for the ODE Ja-
cobians also proceeds in the same manner.

The main difference between the implementations
is rather the way in which the directional derivatives
are generated. In the JModelica.org implementation,
the same BLT structure as for the underlying ODE is
used. Code generation is done by traversing the BLT
structure in a separate code generation pass and for-
ward AD code is then generated for solved equations
and systems of equations, as described in 3.1. In the
OpenModelica implementation, on the other hand, a
new data structure containing all model equations in
symbolically differentiated form is first constructed.
The symbolic kernel of the compiler is then invoked to
simplify the differentiated equations, and a new BLT
structure is computed prior to code generation.

Both approaches have advantages and disadvan-
tages. In the JModelica.org implementation, no new
data structures are created, which reduces memory
consumption. Also, since the same BLT structure as
for the underlying ODE is used, Jacobians for systems
of equations corresponding to algebraic loops are gen-
erated. These, in turn are useful also in case of apply-
ing iterative techniques to solve algebraic loops. The
main advantage of the OpenModelica implementation
is that symbolic simplifications done by the compiler
can yield simpler code that is faster to execute. Also,
since a new BLT computation is done, properties of
the new, differentiated system of equations may be ex-
plored in order to further speed up Jacobian computa-
tions.

4 Benchmarks

Three different aspects are considered in the bench-
marks presented in this section, namely, i) model com-
pilation time, ii) generated code size, and iii) Jaco-
bian evaluation time. In the case of model compila-
tion time, both the time spent in the respective Model-
ica compilers, OpenModelica and JModelica.org, and
the time spent in the C compiler, gcc in both cases,
when compiling the generated code is measured. This

measure seems to be the most interesting for the user,
since both phases are included in the model compila-
tion time from a user’s perspective. As for the size
of the generated code, only the size of the code that
is generated by the Modelica compilers is measured,
i.e., no code originating from run-time systems or sim-
ilar is included. Finally, the time for 1000 Jacobian
evaluations is measured and the mean evaluation times
are reported. In all benchmarks, the system Jacobian,
i.e., the Jacobian of the derivatives with respect to the
states, is evaluated.

It is worth noting that the benchmarks in this sec-
tion does not only reflect the particular details of the
respective Jacobian evaluation strategies. In particu-
lar, the measurements are biased by other code op-
timization strategies in the compilers, including alias
elimination, symbolic processing, tearing, and the ef-
ficiency of non-linear solvers used to solve algebraic
loops. In addition, the compilation time measure-
ments, the optimization and debugging flags supplied
to the respective C compilers influence the result.

All measurements in this paper are performed
on a 64-bits architecture computer having one Intel
Q9550@2.83GHz CPU and 16 GB of RAM. It runs
Ubuntu 12.04 Linux, kernel 3.2.0-25.

4.1 Combined Cycle Power Plant

The first benchmark is a model of a combined cycle
power plant model, see Figure 2. The model con-
tains equation-based implementations of the thermo-
dynamic functions for water and steam, which in turn
are used in the components corresponding to pipes and
and the boiler. The model also contains components
for the economizer, the super heater, as well as the
gas and steam turbines. The model has 10 states and
131 equations. For additional details on the model,
see [11].

The benchmark results are shown in Table 1. As can
be seen, the model compilation times and the file sizes
are similar. Both implementations obtained six col-
ors for the Jacobian, i.e., 6 directional derivative eval-
uations were required to compute the Jacobian. The
Jacobian evaluation time does, however, differ in a
way that the OpenModelica implementation performs
faster.

4.2 Synthetic Benchmarks

In order to analyze the scalability properties of the re-
spective implementations, synthetic benchmark mod-
els were automatically generated. The underlying as-

Figure 2: Modelica component diagram for a com-
bined cycle power plant.

Table 1: Benchmark results for combined cycle power
plant.

Generation [s] Code size [kB] Jac eval
Tool No Jac Jac No Jac Jac time[ms]
OM 2.98 3.87 519 711 0.018
JM 3.64 5.92 266 456 0.090

sumption of the synthetic models is that a single Mod-
elica equation contains references to fixed maximum
number of variables, a number which does not in-
crease with model size. This assumption is realistic,
given that Modelica models are typically constructed
from a large number of simple component models,
where the equations in each component are local in the
sense that they refer mainly variables in the same, or
neighboring, components. Another important feature
of Modelica models are algebraic loops, or implicit
systems of equations, which require iterative solution
techniques. Therefore, the synthetic benchmark mod-
els contain implicit systems of equations, composed
from linear and non-linear terms, in the form of sin
functions, terms.

Three suits of benchmark models were constructed,
using different assumptions on the number of variable
references in a single equation. This aspect was quan-
tified by the sizes of the implicit systems of equations,
where sizes of two, four and eight, respectively, were
used to generate the benchmark models. Within each
suite of benchmark models, four different models of
increasing size were constructed, essentially by dou-
bling the number of variables while keeping the size
of all the implicit equation systems constant. For de-
tailed statistics and structural analysis of the models

Table 2: Statistics and structural analysis of the syn-
thetic models. #N denotes the number of variables,
#N-z. denotes the number of reported non-zero ele-
ments and #Col. denotes the number of colors result-
ing from the coloring algorithms. #N-z. and #Col. are
equal in both implementations.

#N #States #Alg. loops #N-z. #Col.
1-1 22 4 9 7 2
1-2 42 8 17 21 4
1-3 82 16 33 47 4
1-4 162 32 65 104 4
2-1 40 4 9 7 2
2-2 76 8 17 21 4
2-3 148 16 33 53 4
2-4 292 32 65 117 4
3-1 76 4 9 7 2
3-2 144 8 17 21 4
3-3 280 16 33 53 4
3-4 552 32 65 117 4

consider table 2. Note that for both implementations,
the number of non-zero elements and the number of
colors produced by the respective coloring algorithms
are equal.

Table 3: Benchmarks of synthetic models for Open-
Modelica

Generation [s] Code size [kB] Jac. eval.
No Jac. Jac. No Jac. Jac. time [ms]

1-1 0.57 1.3 41 121 0.008
1-2 0.87 2.0 72 225 0.033
1-3 1.51 3.7 134 435 0.068
1-4 2.82 7.4 260 860 0.142
2-1 0.88 2.1 64 208 0.017
2-2 1.51 4.1 114 393 0.067
2-3 2.75 7.5 218 781 0.144
2-4 5.36 15.5 429 1569 0.308
3-1 2.22 6.6 117 457 0.048
3-2 4.20 13.7 219 889 0.198
3-3 8.45 27.7 432 1789 0.421
3-4 17.02 56.9 857 3583 0.873

The results in terms of model compilation time, gen-
erated code size, and Jacobian evaluation time for the
different models are shown in Tables 3 and 4, for
the OpenModelica and the JModelica.org implemen-
tations respectively. Figures 3, 4, and 5 depict the
corresponding results graphically. Each curve corre-
sponds to one benchmark suite. As can be seen from
the tables, all three measures exhibit essentially lin-

Table 4: Benchmarks of synthetic models for JModel-
ica.org

Generation [s] Code size [kB] Jac. eval.
No Jac. Jac. No Jac. Jac. time [ms]

1-1 1.02 1.88 36 138 0.037
1-2 1.24 3.16 54 247 0.089
1-3 1.78 5.71 93 484 0.163
1-4 3.16 10.71 171 957 0.316
2-1 1.37 4.39 61 388 0.104
2-2 2.04 8.17 102 737 0.334
2-3 3.44 15.35 187 1435 0.673
2-4 6.42 31.52 360 2843 1.269
3-1 3.05 15.65 146 1371 0.558
3-2 5.28 30.33 264 2581 2.078
3-3 9.93 63.49 511 5146 4.027
3-4 19.66 136.05 1009 10315 8.827

ear complexity for a fixed size of the algebraic loops.
This result is the key to scalability of the methods. The
smallest model in each benchmark suite deviates from
the linear trend for Jacobian evaluation time, which is
due to the fact that fewer colors are needed in these
cases.

While model compilation time and generated code
size without Jacobians are similar in all cases for
OpenModelica and JModelica.org, the corresponding
numbers with Jacobians differ. The difference in code
size is due to the fact that JModelica.org relies on
generation of forward AD code, without simplifica-
tions, which results in verbose code. Also, inherent in
the forward AD strategy is that both the model equa-
tions in their original form and the directional deriva-
tives are evaluated simultaneously. In comparison,
the OpenModelica implementation differentiates the
equations symbolically and then applies symbolic sim-
plification. In this case, the resulting expressions that
are generated are simpler, and also, no additional code
is generated for the original model equations.

In terms of execution speed, the OpenModelica im-
plementation performs faster. The main reason for this
is that the application of forward AD in the JModel-
ica.org implementation results in more verbose code,
and also the model equations, along with the direc-
tional derivatives, are evaluated.

It is worth noting that either the effect of different
versions of LAPACK/BLAS, used to solve linear sys-
tems in both implementations, nor the the influence
of different compiler optimization and debugging flags
have been considered in the benchmarks. Rather, the
performance experienced by users has been reported.

Both implementations may be further optimized in
these respects in order to improve compilation and
execution times. Therefore, the reported benchmarks
do not solely measure the efficiency of the respective
methods described in the paper, but are rather biased
with the details of the particular implementations.

Figure 3: Model compilation time with Jacobians.

Figure 4: Generated code size with Jacobian.

5 Conclusions

In this paper, the generation of Jacobians for ODEs
originating from DAEs, in particular Modelica mod-
els, has been discussed. The algorithmic machinery
employed consists of known methods and algorithms,
such as numerical, symbolic, and automatic differen-

Figure 5: Execution time for one Jacobian evaluation

tiation, as well as graph theoretic methods such as the
BLT transformation. Two methods, sharing similari-
ties as well as differences have been presented. One
of the methods is a straight forward application of
forward automatic differentiation and generation of C
code, which results in functions for the evaluation of
directional derivatives, which in turn are used to com-
pute Jacobians. The other method relies mainly on
symbolic differentiation and makes use of symbolic
simplification algorithms in a Modelica compiler to
generate directional derivative functions. Both meth-
ods provide sparsity patterns for the ODE Jacobians,
and they both make efficient use of sparsity in order
to reduce the number of directional derivative evalua-
tions, a technique referred to as compression.

The two approaches are implemented in JModel-
ica.org and OpenModelica, respectively, and com-
pared in an industrial benchmark as well as in several
synthetic benchmarks. Both implementations show
linear growth in key measures such as model compi-
lation time, generated code size and execution time,
under realistic assumptions on model structure. In
terms of execution speed, the method relying on sym-
bolic differentiation and symbolic processing, as im-
plemented in OpenModelica, performed faster.

Memory consumption in the model compilation
step was not included in the benchmarks, because of
the inherent difficulties in accurately measuring this
quantity. Indeed, this measure would have been an in-
teresting addition to the benchmarks presented in this
paper, especially since the two methods take different
approaches to generate directional derivatives. How-
ever, measurements of memory consumption is left for

future work.

6 Acknowledgments

Modelon’s contribution to this work was partially
funded by Vinnova within the ITEA2 project OPEN-
PROD (dnr: 2010-00068). University of Applied
Sciences Bielefeld’s contribution to this work was
partially funded by The German Ministry BMBF
(01IS09029C) within the ITEA2 project OPENPROD.
Johan Åkesson acknowledges financial support from
Lund Center for Control of Complex systems, funded
by the Swedish research council. The authors also
would like to acknowledge the kind support from
Francesco Casella, who provided the power plant
model used for benchmarks.

References

[1] A. Griewank A. Walther. Evaluating Derivatives:
Principles and Techniques of Algorithmic Differ-
entiation, Second Edition. SIAM, 2008.

[2] The Functional Mock-up Interface
for Model Exchange 1.0, http:

//functional-mockup-interface.org/

specifications/FMI_for_ModelExchange_

v1.0.pdf, January 2010.

[3] The Functional Mock-up Inter-
face for Co-simulation 1.0, http:

//functional-mockup-interface.org/

specifications/FMI_for_CoSimulation_

v1.0.pdf, October 2010.

[4] R. Tarjan. “Depth-first search and linear graph
algorithms.” SIAM J. Computing, 1:2, pp. 146–
160, 1972.

[5] D. H. Al-Omari K. E. Sabri. “New graph col-
oring algorithms.” American Journal of Mathe-
matics and Statistics, 2006.

[6] T. F. Coleman J. J. More. “Estimation of sparse
Jacobian matrices and graph coloring problems.”
Society for Industrial and Applied Mathematics,
1983.

[7] Dürrbaum A., Klier W., Hahn H.: Comparison
of Automatic and Symbolic Differentiation in
Mathematical Modeling and Computer Simula-
tion of Rigid-Body Systems. In: Multibody Sys-
tem Dynamics. Springer Netherlands, 2002.

[8] Y. B. Gol’dshtein. “Portrait of the inverse of a
sparse matrix.” Cybernetics and Systems Analy-
sis, 28, pp. 514–519, 1992.

[9] Braun W, Gallardo Yances S, Link K, Bachmann
B. Fast Simulation of Fluid Models with Colored
Jacobians . In: Proceedings of the 9th Modelica
Conference, Munich, Germany, Modelica Asso-
ciation, 2012.

[10] Braun W, Ochel L, Bachmann B. Symbolically
Derived Jacobians Using Automatic Differentia-
tion - Enhancement of the OpenModelica Com-
piler. In: Proceedings of the 8th Modelica Con-
ference, Dresden, Germany, Modelica Associa-
tion, 2011.

[11] Casella, F., Donida, D., Åkesson, J. Object-
Oriented Modeling and Optimal Control: A Case
Study in Power Plant Start-Up. In: Proceedings
of the 18th IFAC World Congress, Milan, Italy,
2011.

http://functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf

	1 Introduction
	2 Background
	2.1 The Functional Mock-up Interface
	2.2 Causalization of DAEs
	2.3 Computation of Jacobians
	2.4 Finite Difference Approximation
	2.5 Symbolic Differentiation
	2.6 Automatic Differentiation
	2.7 Exploiting Sparsity

	3 Computation of Jacobians for Modelica Models
	3.1 Implementation of Directional Derivatives in JModelica.org
	3.1.1 Propagation of Directional Derivatives in Equation Blocks
	3.1.2 Computation of Sparsity Patterns

	3.2 Implementation of Directional Derivatives in OpenModelica
	3.3 Comparison of Implementations

	4 Benchmarks
	4.1 Combined Cycle Power Plant
	4.2 Synthetic Benchmarks

	5 Conclusions
	6 Acknowledgments
	References

