Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Adsorption of Lipid Liquid Crystalline Nanoparticles: Effects of Particle Composition, Internal Structure, and Phase Behavior

Chang, Debby LU ; Jankunec, Marija ; Barauskas, Justas ; Tiberg, Fredrik LU and Nylander, Tommy LU (2012) In Langmuir 28(29). p.10688-10696
Abstract
Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar Structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal... (More)
Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar Structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal structure, morphology, and charge were characterized by dynamic light scattering (DLS), synchrotron smallange X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and zeta potential measurements, respectively. With increasing SPC to GDO ratio in the interval from 35:65 to 60:40, the bulk lipid phase structure goes from reversed cubic micellar phase with Fd3m space group to reversed hexagonal phase. Adding P80 results in a successive shift toward more disorganized lamellar type of structures. This is also seen from cryo-TEM images for the LCNPs, where higher P80 ratios results in more extended lamellar layers surrounding the inner, more dense, lipid-rich particle core with nonlamellar structure. When put in contact with a solid silica surface, the LCNPs adsorb to form multilayer structures with a surface excess and thickness values that increase strongly with the content of P80 and decreases with increasing SPC:GDO ratio. This is reflected in both the adsorption rate and steady-state values, indicating that the driving force for adsorption is largely governed by attractive interactions between poly(ethylene oxide) (PEO) units of the P80 stabilizer and the silica surface. On cationic surface, i.e., silica modified with 3-aminopropltriethoxysilane (APTES), the slightly negatively charged LCNPs give rise to a very significant adsorption, which is relatively independent of LCNP composition. Finally, the dynamic thickness measurements indicate that direct adsorption of intact particles occurred on the cationic surface, while a slow buildup of the layer thickness with time is seen for the weakly interacting systems. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Langmuir
volume
28
issue
29
pages
10688 - 10696
publisher
The American Chemical Society (ACS)
external identifiers
  • wos:000306674000008
  • scopus:84864371995
ISSN
0743-7463
DOI
10.1021/la301529g
language
English
LU publication?
yes
id
a9367509-defb-4908-99ad-99c5ff754008 (old id 3080016)
date added to LUP
2016-04-01 11:05:25
date last changed
2023-10-12 21:08:26
@article{a9367509-defb-4908-99ad-99c5ff754008,
  abstract     = {{Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar Structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal structure, morphology, and charge were characterized by dynamic light scattering (DLS), synchrotron smallange X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and zeta potential measurements, respectively. With increasing SPC to GDO ratio in the interval from 35:65 to 60:40, the bulk lipid phase structure goes from reversed cubic micellar phase with Fd3m space group to reversed hexagonal phase. Adding P80 results in a successive shift toward more disorganized lamellar type of structures. This is also seen from cryo-TEM images for the LCNPs, where higher P80 ratios results in more extended lamellar layers surrounding the inner, more dense, lipid-rich particle core with nonlamellar structure. When put in contact with a solid silica surface, the LCNPs adsorb to form multilayer structures with a surface excess and thickness values that increase strongly with the content of P80 and decreases with increasing SPC:GDO ratio. This is reflected in both the adsorption rate and steady-state values, indicating that the driving force for adsorption is largely governed by attractive interactions between poly(ethylene oxide) (PEO) units of the P80 stabilizer and the silica surface. On cationic surface, i.e., silica modified with 3-aminopropltriethoxysilane (APTES), the slightly negatively charged LCNPs give rise to a very significant adsorption, which is relatively independent of LCNP composition. Finally, the dynamic thickness measurements indicate that direct adsorption of intact particles occurred on the cationic surface, while a slow buildup of the layer thickness with time is seen for the weakly interacting systems.}},
  author       = {{Chang, Debby and Jankunec, Marija and Barauskas, Justas and Tiberg, Fredrik and Nylander, Tommy}},
  issn         = {{0743-7463}},
  language     = {{eng}},
  number       = {{29}},
  pages        = {{10688--10696}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Langmuir}},
  title        = {{Adsorption of Lipid Liquid Crystalline Nanoparticles: Effects of Particle Composition, Internal Structure, and Phase Behavior}},
  url          = {{http://dx.doi.org/10.1021/la301529g}},
  doi          = {{10.1021/la301529g}},
  volume       = {{28}},
  year         = {{2012}},
}