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Abstract

In this paper we present a novel, computationally and memtigient way of modeling the spatial dependency of measurda spi
waveforms in extracellular recordings of neuronal agtivitVe use compartment models to simulate action potentiateurons
and then apply linear source approximation to calculatedkalting extracellular spike waveform on a three dimemaligrid of
measurement points surrounding the neurons. We then aggliyional compression techniques and polynomial fittmglbtain

a compact mathematical description of the spatial deperydefithe spike waveform. We show how the compressed modals ca
be used to ficiently calculate the spike waveform from a neuron in a lageof measurement points simultaneously and how
the same procedure can be inversed to calculate the spikefavms from a large set of neurons at a single electrodeiposit
The compressed models have been implemented into an obateal simulation tool that allows the simulation of melictrode
recordings that capture the variations in spike wavefolmsdre expected to arise between théedént recording channels. The
computational simplicity of our approach allows the sintiola of a multi-channel recording of signals from large plapions of
neurons while simulating the activity of every neuron withigh level of detail. We have validated our compressed nsoaighinst
the original data obtained from the compartment models amtiave shown, by example, how the simulation approach pessen
here can be used to quantify the performance in spike sasragfunction of electrode position.

Keywords: Extracellular recordings, Multielectrode arrays, Eled movements Simulation, NEURON, Spike sorting, Spike
detection

1. Introduction an important aspect of BMI development. During design and
evaluation of such algorithms, test signals are needed avith

Recently, there has been great interest in the developriient griori known information content, in which the spike timefs o

brain machine interfaces (BMIs) with the aim to control pros each individual neuron in the recording are known and can be

thetic devices, conduct basic research on the central ngrvocompared with the output of the algorithms. In addition te-ha

system (CNS) and to treat the symptoms of neurological dising a priori known characteristics, the test signals nedthi@

ease. One way of performing signal acquisition in BMIs isrealistic signal properties and these properties need twhe

to use chronically implanted microelectrode arrays (Blzs” trollable to some extent. Realism is important for the fatur

2004) to measure the variation in extracellular potengéialit-  applicability of the results and controllability is impartt since

ing from discharges of action potentials in near by neurdhs. it allows the algorithm designer to perform studies of aion

extracellular representation of the action potential isally re-  performance in a wide range of scenarios that might be encoun

ferred to as a spike. Detecting spikes (Obeid and Wolf, 2004tered in future applications.

in the extracellular signal and assigning them to their apsir The approaches to obtaining adequate test signals can be

of origin thus provides information about the activity @atts  roughly divided into three categories, (1) simultaneougain

of individual neurons. The assignment part of that procedurand extracellular recordings, (2) purely synthetic reaud

is usually referred to as spike sorting (Lewicki, 1998). c®n and (3) hybrid recordings. In simultaneous intra- and eeka

the performance in these processing steps is what detesminkilar recordings, the intracellular membrane potentidlshe

the quality of the extracted information, the algorithmsedifor  cells of interest are measured directly and since the signal

spike detection and spike sorting play a crucial role fofftime-  to-noise ratio in these is normally high, they can be used as

tion of BMIs. Apart from the purely functional aspect, thega ground truth when assessing the performance in spike dmtect

also important in the context of compressing the informmatio and sorting applied to the extracellular signal (Harrisnie

contained in the neural signal for e.g. wireless transmissi Csicsvari, Hirase and Buzsaki, 2000, Franke, Natora, Bouc

andor memory-déficient storage for fi-line analysis. sein, Munk and Obermayer, 2010a). This class of test signals
The development of algorithms for information extractisn i provides a high level of realism — the signals in questiom@ei
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real. However, they lack in some practical aspects singgikge the available modeling approaches. Despite the ever isiciga
track of all true neuronal activity is flicult or even impossible availability of computational resources that indeed dbntes
in many cases. Besides these practical problems, cortildifa  to minimizing the impact of this tradeflo we reason that com-
of the recording properties is limited. Despite these dodess  putational diciency should be striven for. General availability
simultaneous intra- and extracellular recordings couldesas  to fast and simple ways of modeling complex recording sce-
ultimate benchmark signals in later steps of the algoritiem d narios would be of great value to researchers during thel-deve
sign process. opment of algorithms for signal processing. The possjbdit

Purely synthetic recordings are based on mathematical moduickly generating test data to match a specific recordihgpse
els of the signal generation process. The mathematical inodewould speed up the development phase and save valuable time.
can in turn be divided into two subcategories, (1) modelethas
on compartment models of the neurons and (2) models based
on fixed spike templates. Compartment models rely on more or
less detailed models of the mechanisms involved in producin In this paper, we present a novel, computationally and mem-
the action potential across the cell membrane and of thétresuory eficient approach to generating test signals that combines
ing signal measured outside the cell (Smith and Mtetwa, 200the detail of compartment models with the computationat sim
Gold, Henze and Koch, 2007, Pettersen and Einevoll, 2008)licity of template based models. To achieve this combina-
The extracellular signal is calculated by considering tol-v  tion, we applied traditional dimensionality reductioniiaimjues
age contribution of each point on each contributing neutton aand polynomial fitting to compress the description of the-spa
each given time instance. The amount of details captured bijal dependency in spike waveforms provided by compartment
such models thus leads to high computational demand, whicimodels. We used thdEURON simulation environment (Hines
makes them unpractical when modeling large populations odnd Carnevale, 1997) to simulate an action potential in acom
neurons. However, they are realistic in the sense that tbey dpartment model of a CA1 pyramidal neuron originally mod-
capture the variations in the spike waveform’s shape ths¢ar eled in (Gold, Henze, Koch and Buzsaki, 2006) and used in
when placing the recording electrode irffdrent measurement (Gold et al., 2007) and computed the extracellular spikeewxav
points (Gold et al., 2007). This feature is of great impoctan forms on a three dimensional grid of measurement pointgusin
when modeling recording setups with multiple gordhosition-  the line source approximation (LSA) (Holt and Koch, 1999).
ally unstable recording electrodes, both of which are irtgpdar ~ We then performed singular value decomposition (SVD) on the
factors to consider during development of algorithms foakesp matrix containing the calculated spike waveforms and there
detection and spike sorting in realistic scenarios. obtained a set of basis waveforms describing the origirikésp

Models based on fixed spike templates assume that the extraratrix and their respective contributions to each of th@ieri
cellular spike waveform measured from a given cell can be senal waveforms. Since most of the information describing the
lected from a library of spike templates and then scaledrdeco waveforms is contained in the first few (six) (Fee, Mitra and
ing to the cells distance from the electrode (Thorbergskmm-  Kleinfeld, 1996a, Thorbergsson, Garwicz, Schouenborgland
tell, Bengtsson, Garwicz, Schouenborg and Johansson, 2008ansson, 2010) components of this decomposition, we asthiev
Martinez, Pedreira, Ison and Quian Quiroga, 2009). Aparhfr  dimensionality reduction (compression) by discardinggiler
the amplitude scaling, template based models do not captummponents. The result of this was a trivariate field of six di
any spatial variations in the shape of measured spike wavenensional vectors, whose elements described the basis wave
forms. Therefore, despite their computational simplidibhey  form weights as functions of the measurement point coordi-
are not suitable for simulating recordings with multiplelaox ~ nates relative to the neuron in question. To obtain a compact
positionally electrodes. A possible solution to this liatibn is  description of the spatial dependency of the basis waveform
to first employ a compartment model to calculate spike waveweights, we individually fit the elements of the weight vecto
forms on a three dimensional grid of measurement points sufield to polynomial functions of the measurement point céord
rounding the neuron and then to interpolate the resultinggwa nates. The modeling procedure was carried out for fofiedi
forms to obtain waveforms in measurement points not lying orent neuronal compartment models (cad¢s D in (Gold et al.,
the simulation grid (Franke, Natora, Meier, Hagen, Petters 2007)) and the parameters of the compressed models were op-
Linden, Einevoll and Obermayer, 2010b). Despite the irsda timized for each neuron to provide a good match between the
level of realism introduced with this approach, it requiegen-  spike waveforms provided by the NEURON simulations and
sive waveform interpolation and may therefore not be siétab our compressed models. The models were implemented into an
for simulating very large populations of neurons. object oriented simulation tool, written atlab, that facili-

In hybrid recordings, synthetic spike trains are overlaid o tates fast and realistic simulations of multielectroderdings
real recordings of background noise (Pouzat, Mazor and Lauwith arbitrary geometries. Model validation was perforntgd
rent, 2002). They are thus advantageous in the sense tlyat theomparing spikes from the original NEURON simulations with

have highly realistic signal properties, but lack in colittioil-  spikes generated by our models in terms of shape and ampli-
ity for the same reasons as simultaneous intra- and exikszel  tude, as well as by examination of synthetic signals in tesfns
recordings. noise properties. The applicability of our approach wasweva

Considering the above, there is an obvious trafiéetween ated in an example application by estimating the perforrmanc
realism and computational complexity when selecting amongn spike sorting as a function of electrode position.
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Figure 1: An illustration of the procedure of modeling thatsg dependency of the measured spike waveform for oneeofi¢turons considered (neuron 1). (A)
The CAL1 pyramidal neuron model adopted from (Gold et al.,72@@as used to calculate extracellular spike waveforms insmement points surrounding the
neuron. (B) Spikes within an ellipsoid (overlaid ellipspikntered in the origin (cell soma) were used to derive thdeholhe ellipsoid was taken as the largest
inscribed ellipsoid into the volume where spike amplituffesaximum absolute amplitude) were at leAgi, (typically around 2Q:V. The spike waveforms are
color coded according to their maximum amplitude (blue atlindicate low and high maximum amplitude respectivelioté that for the sake of clarity, not all
initial waveforms are shown here.) (C) Spikes with amplsithelowAn, (measured in points outside the model ellipsoid in (B)) wesed to model the amplitude
attenuation as a function of distance from the model ellipsdong a line of sight from the measurement point to oridid) Singular value decomposition was
used to find an orthonormal set of basis wavefotmand their weightsvg, describing spikes within the model ellipsoid. (E) The weidistributions were then
individually fit to trivariate polynomial functions of meaement point coordinatesi (X, y, 2).

2. Methods points on a three dimensional grid surrounding the neurimrgus
the line source approximation (LSA) (Holt and Koch, 1999).
The measurement points were distributed within a volume of
Figure 1 illustrates the procedure we followed to derive thel40x 140 x 140um and the spacing between the points was
compressed neuron models. We used the CA1 pyramidal nevaried between 5 and 2amin each dimensionqy, z). Close
ron compartment models employed in (Gold et al., 2007) as ¢ the cell somai{k,y, z} < {60}um), the spacing was bmand
starting point for obtaining spike waveforms on a three dime further away, it was successively increased tutand 20um.
sional grid of measurement points around the neuron. Apmcti This resulted in a total of 42.875 initial measurement pmint
potential was simulated in the model neuron with foufetient To verify that this measurement point density wasisient,
ionic channel densities (referred to as ca8e® D in (Gold  we calculated the correlation déieients between spike wave-
et al., 2007), referred to here mauron 1 to neuron 4) and the  forms in all pairs of measurement points within a distancgQof
extracellular spike waveform was calculated in measurémermum from the origin and then calculated the mean and standard
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deviation of the correlation céiécient as a function of distance one of the three coordinates). These orders were referrasl to
between measurement points. The mean minus one standa\gure and Nmxed and together with the minimum spike ampli-
deviation was above 0.99 for all neurons at a measuremaeamit poitude Ann, they determined the model properties and were se-
distance of lum. At a measurement point distance ofi#@f, the  lected to provide a good match between original and modeled
mean minus one standard deviation of correlationfftments  spike waveforms (discussed later in the current section).
was above 0.97. This indicates that the chosen measurementThe polynomial fitting was performed by solving the equa-
point densities were adequate to capture the spatial i@arigt  tion system
spike waveforms.

The first step in the modeling procedure for each of the neu- ~ (AD)C = Wp

rons was to find a volume within which the model would be Ly AL @1 @2 fs By B2
| i | | ; bk ik 1.1,
derived. For points outside that volume, amplitude scaliag 1y 1y 2223 1Bz A
. . S : Y LT XY, %Y 5
applied (discussed later in this section). The volume wearta .
as an ellipsoid, concentric with the cell soma, inscribed the : : o :
. . €11, L1281, €1, £22_ 6 €1, 2.8,
volume bounded by the measurement points in which the spike XU Y74 XY™ - Xy 4)
amplitude exceeded a case-specific valué\gf. Spike am- [Cy, Ci, -+ Ci Wy, Wi, e Wi
plitude was defined as the maximum absolute amplitude of the Co, Cp -+ Cp Wo, Wp, - Wy
spike waveform. Finding the optimal value Af;, was part of : : S| =
a model selection procedure that is discussed later in s s : ST : : ‘
tion. Having identified the model ellipsoid, spikes withhret LG, G, o Gl MWL, W, e Wi

ellipsoid were arranged into columns of the spike maSix
Sy was then decomposed using singular value decompositi
(SVD) according to

wherelL is the number of measurement points used in the fitting,
%is the total number of polynomial terms in the fitted model,
is the multivariate Vandermonde matri, is anl x | diago-
Sy = uzVvT = UW, 1) nal matrix whoseé-th diagonal element is the reciprocal of the
Euclidean norm of thé-th column ofA, C is the codicient
where the columns of the matrixcontain an ordered set of or- matrix to be estimateds(, is the estimated polynomial cfie
thonormal basis waveforms describing the original spikéima cient of thei-th term for thep-th basis waveform) anWy is
S and the columns of the matrix produ&V "™ = W, contain  the original weight matrix i, is the weight of thep-th basis
the contributions (weights) of each of the basis wavefonms i waveform in thel-th measurement point). The purpose of the
constructing the original set of spike waveforms3n Since  matrix D was to scale the columns of the Vandermonde matrix
most of the spike waveform variation is described by the firsto improve the conditioning of the problem. The number of
few basis waveforms, we discarded all but the first six commeasurement points was in all cases larger than the number of
ponents of the decomposition to achieve a dimensionality repolynomial terms (i.eL > |). The equation system was thus
duction (Fee et al., 1996a, Thorbergsson et al., 2010).daror overdetermined and solving it yielded a least-squaregisalu
to assure that no information about spike waveform vaiitgbil For measurement points outside the model ellipsoid (in the
was lost by discarding the other components, we calculaed t far-field of the neuron) we assumed the measured spike wave-
amount of total variance described by the first six companentform to be an attenuated version of the spike waveform mea-

as 6 o sured in the point of intersection between the model ellghbso
D6 = Zn-1%hn @) and the line of sight from the measurement point to the origin
° Zr’:‘zl o2 We assumed the attenuatigrto be a power-law function of

whereo, is then-th singular value. This ratio was larger than f[he distance between the measurement point and the point of

0.99 in all cases, indicating that the first six components ad Intersection, i.e.

quately described the waveform variability. 1
We now modeled the weight of threth basis waveform as a 9(r) =

trivariate polynomial function of the measurement poinbdrco

dinates k,y, 2) in a coordinate system with origin in center of The codficientsas, andbsa Were estimated by fitting the am-

(5)

(L+ Qsgr)Pra’

the cell soma, i.e. plitudes of spikes with amplitudes belof, to a power-law
function of their corresponding measurement point distanc
Wn(X.y.2) = Z i, X1y 2 ®) (along the line of sight to origin) to the model ellipsoid. éh
I

power-law was estimated assuming the distant@ebe in mi-
wherec; is thei-th polynomial coéficient ande is a matrix ~ crometers. Thus, the unit of the dheientay, is [um]. The
whosei-th row contains thé-th combination ofx, y andzex-  form of the power-law was chosen to provide an attenuation of
ponents included in the model. For instance, if thh poly- 1 at a distance of 0 from the model ellipsoid. This way of mod-
nomial term isc;x®y?, the corresponding row in the exponent eling the spike waveforms in the far-field assured a contisuo
matrixeis[3 2 0]. The exponent matrix was constructed byvariation in the spike waveform when moving the electrodie ou
assuming maximum orders of pure terms (including only onef the model ellipsoid and between points outside the model
of the three coordinates) and mixed terms (including masa th ellipsoid.
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As mentioned before, each neuron model was characteriz{ [ A
by three parameters Apin, Npure @NdNmixeq. FOr each of the
neurons, we performed the modeling procedure for all combi
nations of model parameters in the randeg, € [16, 26]uV (2,2, 22)
(steps of 2uV), Npure € [10, 24] (steps of 1) antlmixed € [2, 8]
(steps of 2), resulting in a total of 360 models per neurore Th (s Yoy 7)) | (D1, 21) (“"1’?/5’4;j 27,12,
spike waveforms calculated by each of the models were corn R Tpe
pared with those obtained from the original NEURON simula- relative coordinates
tions and a score was assigned to each model based on how | — >
waveforms matched in terms of shape and amplitudes. To lowel J
the computational demand during the comparison, we selecte{ v, dermonde matrix )
two random sets of measurement points to use in the compal rovs tora tors  rons rens tens rors rors tors
son — 20% of the entire set of points within the near field (NF| A — [ T U T N N N e N s T }
inside the model ellipsoid) and 20 % of the entire set of mint Ty Y2 TZp T By Y TZp Ty Y TE
in the far field (FF). The following metrics were calculat@d t | Attenuation matrix Spike matrix
obtain the model scores: c 1 0 S=[s; s]=U(ADC)TG

. . - [ 0 1/(1+ afarrpe)bf”
e enr, = 1— mean(correl. cdés. between spikes in NF) \ J
e eyg, = std(correl. coffs. between spikes in NF) Figure 2: Anillustration of how the derived models can bedusecalculate the

extracellular spike waveforms from two neurons measured aisingle elec-
e enr, = mean(abs. di. between spike amplitudes in NF) trode. In the original coordinate system, the electrodedsted in ke, Ye, Ze)
and the neurons are located i (y1,z1) and o, Y2, z2) respectively. Assum-
ing that the neurons are of the same type (share the samennmadel), the
first step is to calculate the positions of the electrodeiveldo the two neurons,
(X, Yn» Z,)- Relative measurement points inside the model domaineofigu-

o eyg, = std(abs. dt. between spike amplitudes in NF)

® €F = mean(abs. dii. between sp|ke amp“tUdeS In FF) ron (yellow ellipsoid) are left unchanged((y;,z) and measurement points
. i . outside the model domain are replaced with the point of setetion between
e erf, = std(abs. di. between spike amplitudes in FF) the model ellipsoid and a line of sight to origin. In the firsise, the attenu-

) ) . ationissetto 1 (element (1,1) in the attenuation maB)xand in the second
The metrics were normalized to range from 0 to 1, O indicatingase it is set to AL + ararf pe)°™™ whereass andbyar are estimated model
the closest match and 1 the worst match. Based on the normaheficients and . is the distance of the relative measurement point from the

ized metrics. the following model scorese were then defined (nodel ellipsoid along the line of sight to origin before itsvaplaced with the
! intersection point. The Vandermonde matrix is constructgidg the exponent

denotes the normalized metrics): matrix e (obtained from the neuron model) and relative measuren@ntspand
] finally the matrixS containing the spike waveforms in its columns is calculated
e Near field score: with a simple matrix multiplication. The basis waveform matJ and model

codficient matrixDC are parts of the derived model.

SNF = \/érz\JF1 + érzxur2 + é12\1F3 + & (6)

A
Having selected the best model for a specific neuron, the
e Far field score: model description was saved for implementation into the sim
ulation algorithm. The main parameters included in the rhode
(7)  werethe basis waveforms (sampled at 25 kHz), the matrix-prod
uctDC, the exponent matrig the axial radii of the model ellip-
soid and the cd#cients of the far-field attenuation power-law.
The model parameteryin, Nouwe, Nmixed Were also included
Sot = S+ S (8) for descriptive purposes. The model files were typicallyuach

o 40kB of size which is three orders of magnitude smaller than
We wanted to select a mode| that, apart from minimizing they,q o jginal spike matrix obtained from the NEURON simula-

total scorg;toh also minimized the dierence between the negr tions that were typically around 31MB.
aqd far field scores. Thus, we selected the model that mini- The stored model parameters could now be usefiiently
mized the function calculate spike waveforms from neurons in a large set of arbi
- trary measurement points. Using the same procedure, wd coul
E= VAg + & (9 also calculate the spike waveforms from a large set of neuron
) ) ] sharing the same neuron model in a single measurement point.
whereAs is the normalized (0 to 1) absolutefigirence between g e > jllustrates this procedure. Assuming that we have a
near- and far-field scores asg; is the normalized (0 to 1) total single electrode placed i, e, z) andN neurons where the

score. This procedure consistently resulted in the auierset | i1 neuronis placed in, n, z1), the waveforms from the neu-
lection of a model that provided a high overall match with the, < can be calculated in the féllowing way:

original data while simultaneously performing well in bakie
near- and far-field. Step 1: Calculatetherelative positions of the electrode

e Total score:



For every neuron placed i, yn, z,), calculate the posi- of spikes within a burst was assumed to follow a Poisson dis-

tion of the electrode relative to that neuron, i.e. tribution (Heeger, 2000). Changes in the spike waveform dur
ing a bursting period were not accounted for. We included the
(X0 Yns ) = (Xes Yes Ze) = (%, Y, Zn).- (10)  methods in (Macke, Berens, Ecker, Tolias and Bethge, 2@09) t

generate correlated spike trains. Having used firing madels
The problemis now that of calculating the spike waveformgenerate spike times for every neuron in the simulationmelu
from a single neuron iN separate measurement points the measured signal at each recording channel was assembled
where then-th pointis &, vy 7). by adding the calculated spike waveforms from each neuron at
that channel at the spike times of that neuron in the same man-

Step 2: Construct Vander monde and attenuation matrices ner as described in (Thorbergsson et al., 2009).

For every (relative) measurement poin,, ;. z,), check 23, Noise Models
if the point is inside or outside the model ellipsoid by

evaluating the quantity We assumed noise to consist of two components, namely the

spiking activity of distant neurons and thermal noise cduse

X2 y2 72 random charge movements. This is a common way of modeling
I'check = ) + ) + 2 (11)  noise in extracellular recordings (Martinez et al., 2008pfF
& 8 =

bergsson et al., 2009, Lempka, Johnson filto Otto, Kipke

wherer, is the radius of the model ellipsoid along the and Mglntyre, 20.11). The thermal noise .amplitud_e depends on
axis. Ifrenec is larger than 1, the point s outside the modelrecordlng bandwidth, temperature and input resistanc@ief t

ellipsoid and is thus replaced with the point of intersattio '€c0rding electrode (Pettai, 1984, Lempka et al., 2011vemd
between the line of sight to origin and the model ellip- assumed it to be zero-mean normally distributed with a stan-

s0id. If renesk is smaller than or equal to 1, the point is dard deviation determined by these parameters. We used the
inside the model ellipsoid and is left unchanged. If the"®Sults presented in (Lempka et al., 2011) to derive a quant
point is outside the model ellipsoid, the- th diagonal el- tive model for setting the standard deviation. We approxéuia
ement of theN x N diagonal attenuation matri is setto " extrapolation of the resistive part of the electrode idamee

1/(1+ afarrpe)bfa, wherer . is the distance of the point to for an electrode size of_l?y?n2 to inc_:lude_frequenciesfrom 100
the ellipsoid along the line of sight to origin. If the poist i Hz to 50 kHz and obtained an estimation of the power spectral

inside the model ellipsoid, the attenuation value is set to 14€NSitY,

After performing the above check and replagkegping P(f) = 2KTR(f) (13)

the relative measurement point coordinates, ltheele-  wherek is the Boltzmann constari, is temperature in Kelvin

ment of then-th row of the Vandermonde matrik is set  (set to 37C) andR(f) is the resistance as a function of fre-

to X yn 2z . quency,f. The standard deviation of the thermal noisg,,,
was then obtained as a function of recording bandwidth by tak

Step 3: Calculate the spike matrix _ ing the square root of the integral of the power spectral itens
The spike matrixS whosen-th column contains the mod- 4y er the recording bandwidth

eled spike waveform from theth neuron can now be cal-

culated as fa

S= U(ADC)TG. (12) owy(fe) =y [ P(OS (14)
0

Note that the above procedure assumes that all neurons sha{fiere f,, is the recording bandwidth. A general description of

the same neuron model. If the volume to be simulated containgis relationship was obtained by fittingy,, to a power-law
several types of neurons, the entire population of neurans ¢ function of log(f),

be divided into subpopulations according to type and the sub
populations can then be treated individually accordinghi t oy (f8) = alog(fs)™. (15)

above procedure. . _ .
Physiological background noise was assumed to come from

2.2, Firing Models the_spikir}g activity of distan'g neurons. To be able jco make
- a distinction between the noise component of the signal and
Three models were implemented for generating spike times the spiking activity, we assumed the noise contributing-neu

gamma distributed inter spike intervals, bursting andelated rons to be located at a minimum distancerofrom the elec-
spike trains. In the current implementation, each neurpop}  trode (or origin) and we assumed them to have random mean
ulation is assumed to have the same basic firing model, athou firing rates selected from a uniform distribution betweemd a
the model parameters are set individually for each neuron. F f, spikegsecond. The minimum distanceand the upper level
instance, a population of neurons can have gamma distdbuteof firing rates were then used to set the background noisé leve
inter spike intervals, but each neuron in the populationdras (see Section 2.5). Due to the computationicéency of the
individual mean firing rate. For bursting neurons, interdbu  methods described in Section 2.1, we were able to generate
intervals were assumed to be gamma distributed and the numbiine background noise using the relative positions of theenoi

6



contributing neurons, thus employing the entire variapiin HDFS5 file
spike waveforms described by the neuron models in the noig F Trial 1
generation process also. Thus, although we make a distmcti E L
. . . . Electrode Neurons
between noise- and signal contributing neurons from the pe - Array Type Population 1
spective of the recorded signal, the two categories of meuro e I N
were treated in exactly the same way in the simulation pces - Signals Population2 | D;;:ity
We did, however, include the possibility of not storing theet - Channel 1 5. L Bt 2ol
spike times for neurons far away from all recording eleatd ~ Channel 2 L oo Lasmiens
thus further decreasing the memory requirements and simul Do - Neuron Model
tion time (See section 2.4). [ Site Locations - Spike Times
— Waveforms N i
- Trial 2 - Population 1

2.4. Smulator Implementation Lo L p Ogulaﬁon ) F Neuron 2

The simulator was implemented Matlab using object ori- ~ Volume

ented programming. We assumed the core components of
the simulation to be the neuronal populations contributing Figure 3: Anillustration of how simulation data is orgamdzeto HDF5 files. In

. . . order to lower memory requirements, all information is teritto the HDF5 file
the signal, the array of electrodes recording the signaiszan as soon as it becomes available during simulation. Upotirggaa simulation,

recorder that kept track of ground truth data and recordgd Si a new HDF5 file is created and a recorder object that provielgwrite access
nals. This abstract structure was implemented with thrgecbb to itis constructed. After the simulation is complete, ibdze loaded in read-

models. one for each of these core components. A brief dénode by calling the recorder object constructor functiothwthe file name as

. . . ) input. The functions implemented in the recorder objecvjoi®fast access to
scription of the properties of each object model follows: all simulation data in a database-query type of way.

The neuron class
An object of the neuron class contains information about |50 contains several methods to visualize the simulation
the properties of a population of neurons that share the  (agyits.
same model, both in terms of the spatial dependency of
spike waveforms and firing times. The information con- In order to minimize memory requirements, we employed
tained is the absolute coordinates of the neurons, the vothe HDF5 Hierarchical Data Format file format (The HDF
ume density within the population, a description of the vol-Group, 2012) for data storage during simulation. The HDF5
ume containing the population, the spike model associatefile format is suitable for fast read and write access fordangd
with the population and the firing statistics and spike timescomplex datasets and allows database-like queries to be mad
for the individual neurons. The neuron class has methodence the file structure has been defined. Figure 3 illustth&es
to generate spike times for its neurons based on the duHDF5 file structure that we designed. Wheresorder object
ration of the recording and the individual neuronal firing is constructed in write mode, it creates a new HDF5 file for the
statistics. In order to simulate a specific recording setupecording that is to be simulated and then it provides/iegat:
where several types of neurons (in terms of spike/and access to the simulation data as long as it exists. Afterlaimu
firing models) exist in specific regions, one neuron objection, a recorder object can be constructed in read mode héth t
is constructed for each population within the volume. name of the simulation file as input, thus allowing quick post
simulation access to all simulation data. The recorderabbje
The electrode class also allows for instance quick plotting of the syntheticnsits,
An object of the electrode class contains the absolute carye spike waveforms as measured at the individual recgrdin

ordinates of each electrode site and the spike waveformghannels and the 3D geometry of the simulated volume.
from every neuronin every population calculated at the po-

sition each electrode. The electrode class contains metrﬁ5_ validation

ods to calculate the spike waveforms and to assemble the

signal measured at each electrode site from the calculated The validity of our results was examined in terms of simi-
spike waveforms and the spike times contained by the nedarity between original and model-generated spike wave$or

ron objects. and noise properties of simulated recordings. The shapiég of
spike waveforms were visually compared within the neadfiel
Therecorder class (inside the model ellipsoid). Spike amplitude (maximum ab-

An object of the recorder class contains information abousolute amplitude) was examined as a function of distanaa fro
the structure of the HDF5 simulation file (see following origin (cell soma) and by qualitative comparison of spike-am
paragraph) where the simulation data is stored and metlplitude fields around the neuron. The amplitude fields were vi
ods to interact with the simulation file during and after sualized by plotting three-dimensional isosurfaces adctine
simulation. This interaction includes writing the informa neurons at spike amplitudes of 25, 50 and 1®0 The spike
tion contained in and generated by the neuron and ele@amplitude distributions for the original data (NEURON gene
trode objects to the simulation file as well fetching the in-ated spikes) were estimated by selecting approximatefyofial
formation once it is written to the file. The recorder classthe original measurement points at random and calculatiag t
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mean and standard deviation of spike amplitudes in measurset tor; = 15Qum and the upper limit of noise neuron fir-
ment points within 1Qum wide distance bins from the origin. ing rates was set to 50 Hz. Four target neurons (one of each
For the spikes generated with our models, we used the same dype, cell 1 to 4) were placed in (120, —2) um, (-2, 18, 20)
ordinates as for the true spikes, but with a small random.shif um, (-20, -5, 10)um and (16-13, 15)um respectively (Carte-
The random shift was introduced in order to make sure that theian coordinates of cells 1 through4mn). All target neurons
model captured the overall appearance of the amplitudg-dist had gamma distributed inter-spike intervals and randomnmea
bution, even in measurement points that weffetioe original  firing rates between 1 and 10 Hz. Nineteen electrodes were
measurement point grid. In addition, evaluating the amgét placed along the axis (x = y = 0) at positions ranging from
distribution in df-grid measurement points would reveal any z = —30umto z = 60um (5 um spacing) and a 60 second long
potential problems with “over-fitting”. The spike amplitagso-  recording was synthesized (a close-up of the electrodethand
surfaces were estimated in the same way, i.e. using an gquallarget neurons is shown in Figure 7 A).
large random set of measurement points and applying a randomHaving obtained the HDF5 simulation file, we used the inter-
shift for the model-generated spikes. Apart from these @mp face provided by theecorder class to extract the spike wave-
isons, we also included the metrics calculated during thegho forms for each of the target neurons at each of the electrode
selection procedure (Section 2.1) as validity measures. sites at the known spike times. We thus obtained ninetean set
Noise properties of simulated single channel recordingsewe of extracted spike waveforms, each corresponding to ore ele
examined in terms of sample histograms, normalized powetrode position. The spikes from each position were theredort
spectral density and standard deviation of noise. We assumeeparately and the sorting accuracy was estimated. Paincip
the noise properties to be mainly determined by the radius odomponent analysis (PCA) (Lewicki, 1998) was used to ektrac
the “silent volume” around the recording electrode and ke d spike features and the first two principal component weights
tribution of firing rates among the neurons contributinghe t (PC 1 and PC 2) were used to perform sorting of the spikes us-
background noise (see Section 2.3). To estimate the naige pr ing K-means clustering (Duda, Hart and Stork, 2001). Since
erties as functions of these parameters, we set up a regordimve were only interested in comparing the performance inespik
scenario with a single electrode placed in the origin and wesorting while varying the electrode position, and not thecab
then created four populations of noise neurons (one pdpalat lute performance of the selected spike sorting algorithm, w
of each type of neuron) surrounding the electrode. The noisprovided the true number of clusters (4 cells) to the K-means
neurons were placed at random positions within a hollowneyli algorithm as input. We only employed the first two principal
drical volume centered along tlzeaxis. The outer boundaries component weights in the clustering since that allowed for a
of the volume were defined by a cylinder with a radius of 250straight forward visual interpretation of the spike saytiper-
umandz between -25@im and 250um. The inner boundaries formance in terms of a two dimensional illustration of theAPC
were defined by a cylinder with a variable radipsanging from  feature space representation of the spikes (Figure 7 D).
50umto 150um andz between -15@m and 250um. Assum- Having obtained the sorting results for a given set of spikes
ing a neuronal density of 9x 10° neurongm?® (Lempkaetal.,  (a given position), the spike sorting accuracy was estichate
2011), gamma distributed inter-spike intervals (Thorksayp terms of true and false positive classification rates pe(Bep
et al., 2009) and a minimum firing rate of 1 spiecond, we and Pgp respectively) and an overall sorting accura&yp|.
synthesized 30 second long noise recordings while varyiag t The true positive classification ratB() for a given cell in a
minimum distance of noise contribution neurons,and the given electrode position was calculated as the ratio betwhe
upper limit of firing rates,f,. ri and f, were varied between number of spikes correctly assigned to that cell and thd tota
50 and 15Qum and 5 and 80 spik¢second respectively. The number of spikes truly coming from that cell. False positive
recordings were synthesized at a sampling rate of 100 kHz, belassification rateRgp) for a given cell in a given electrode po-
were downsampled to 25 kHz and then bandpass filtered (30fltion was calculated as the ratio between the number oéspik
Hz to 5 kHz). We then estimated the power spectral densityvrongfully assigned to that cell and the total number of epik
using Welch’s method, the sample amplitude histogram aad thtruly coming from any other cell. Overall spike sorting accu
standard deviation of the resulting noise signal. Therro&en racy (Pip) for a given electrode position was calculated as the
was included since that was assumed to be an inevitable pamdtio between the overall number of correctly classifiedeapi
of the recorded noise in a real situation. Besides allowmtpu and the total number of spikes.
compare the noise properties of our simulator with those®f p
viously reported simulators, this analysis provided be®@ans 3 Regiltsand Discussion
for controlling the noise properties by altering the partere

mentioned above. 3.1. Model Parameters
o . . The estimated neuron model parameters are summarized in
2.6. Application Example: Spike Sorting Performance Table 1. The minimum spike amplitud&n) included ranged

The applicability of our work was evaluated by an examplefrom 18 to 24V, and the maximum degree of pure and mixed
application in which we explored thdfects of electrode posi- polynomial terms was 10 to 24 and 6 to 8 respectively. The
tion on the performance in spike sorting. Noise neurons werenodel domain ellipsoid had a radius of approximately 45 to 65
created in the same manner as described in the previous sean in the x — y plane and 104 to 142 along tkexis. A max-
tion. The inner radius of the the hollow noise cylinder wasimum distance of 5gm between a neuron and the electrode is
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T T T T T T within 10 um wide distance bins. Also here, there is no notice-
O 177um’electrode | il .~  able diterence between the original spike amplitudes and those
o, =036log(f)** |- - - - - . -] produced by our models. In all cases, the models capture most
. : of the local variations in spike amplitudes (for instancéasl
decrease in standard deviation of spike amplitudes at 90Qo 1
R S S umfor neuron 3). These local variations are caused by the non-
F Ty Corrn =1 uniform structure of the neuron, i.e. some points far aweagnfr
s - - . the soma are in fact very close to other parts of the neuron.
10° 10° 10*
Recording bandwidth (Hz) 3.2.2. Noise Properties
Figure 6 shows the noise levety), power spectral density
Figure. 4: The standard deviatipn of thermal noisg,, at a temperature of (PSD) and sample histogram as functions of the upper limit of
37°C fitted to a power law functionRé = 0.98) of the logarithm of recording . - . . .
bandwidth fg for an electrode of 177Zn? extrapolated from (Lempka et al., n0|se_ ne_uron firing rates, _and minimum distance _Of noise
2011). contributing neurons;. The figure shows that by varying those
parameters we can control the amplitude and spectral gieper
) o ) of the recording noise. The figure also shows that we canmbtai
assumed for the neuron’s spikes to be distinguishable frem t good match with previously reported spectral properties a
background noise (Buzsaki, 2004). The model ellipsoidaliof sample histograms (Fee, Mitra and Kleinfeld, 1996b, Maxtin
neurons approximately cover that range. For neuron 4xthe ot al., 2009).
axial radius is below 5@m, which is explained by the smaller Increasing the maximum firing rate of noise neurons and
(in thex —y directions) spike amplitude field for neuron 4 (see yecreasing the minimum distance to them increased the noise
Figure 5 B), which in &ect would lower the 5qm distance  |eve| and concentrated the noise towards the lower parteof th
threshold mentioned before. o __ spectrum, in which most of the spike energy is contained.
The estimated power law describing the standard deviation large distances to the noise neurons (rightmost column
of thermal noise as a function of recording bandwidth is sihow ;, Figure 6), the change in noise neuron firing rate had less

in Figurg 4. The parameters of the fitted power law a(?cordingmp‘,jct on the noise amplitude than at small distances (t&ftm
to Equation 15 where, = 0.36 andby = 2.25. The cofficient  ¢4jymn in Figure 6). This observation can be interpreted in
of determination between the standard deviations adopteu f  ormg of how the variances of the contributions of individua
(Lempka et al., 2011) and the fitted power-law viés= 0.98, | \ise neurons are influenced by their respective firing iaates
indicating a good match. distances from the recording electrode. In order to simjtifs
o interpretation, we assume that the noise contributing oresur

3.2. Velidation are statistically independent and that the variance of piiles
3.2.1. Spike Waveforms and Amplitude train from a given neuron is approximately linearly deperide

All four models provided a good match in terms of spike on the neuron'’s firing rate. Then, at a given distance, alinea
waveforms and spike amplitudes when compared to the otiginancrease in firing rate will cause a linear increase in vagan
data. Figure 5 A shows the true spike waveforms (black) an&ince spike amplitude decreases with distance as a power law
spike waveforms calculated by the neuron models (red dots) ithis linear increase in variance with an increase in firing ra
an example set of measurement points. By visual inspectiowill be larger as the distance becomes smaller.
of these waveforms, we see that the models produce esential Thus, if the variance of the spike train from theh neuron
identical waveforms to those generated by the original NEUo?2 relates to the neuron’s firing rafgand the neuron’s distance
RON simulations. Mean correlation between true and modeleftom the electrode,, as a power law function of the distance,
spike waveforms in the near field was larger than 0.99 (stahda scaled with the firing rate, or
deviation< 0.02) for all neurons (metriosyg, andeyg,). Mean

=
o
T

Std. of thermal noise (V)

o N A~ O
— T
!

f

amplitude deviation in the near field was below\2 (standard o—ﬁ ~ 2 (16)
deviation< 5uV) for all neurons (metriceng, andeng,). Mean n

amplitude deviation in the far field was below @4 (standard  yheremis the amplitude power law céiesient, the variance of
deviation< 2.1uV) for all neurons (metricerr, anderr,). the total recording (sum of all spike train variances due to the

Figure 5 B shows the spike amplitude isosurfaces (25, 50 angatistical independence assumption) relates to the piegef
100uV) for NEURON generated spikes and spikes generateghe individual neurons as

by the compressed models. In all four cases, the compressed

models capture the major features of the amplitude field§ at a 9 N,

three amplitudes examined. This also applies to most “non- Z m 17

regular” features, such as the surface irregularitieseatdp of

the 25uV surface for neuron 4 and the following of the 8@  Therefore, an overall increase in the firing rate of noiseoes

surface along the axon for neuron 4. makes the standard deviation of noise (the square root of the
Figure 5 C shows the mean and standard deviation of spikeariance) more sensitive to an overall decrease in therdista

amplitudes as a function of distance from the origin (cethap  to noise neurons.
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Neuron Amin (uVY) Npwe Nmixed | (Fxly:r2) (M)  (@tar, brar) (um2, unitless)
1 24 10 8 735 (53,58,104) (6.8E-3,4.2)
2 18 16 8 753  (62,64,106) (5.6E-3,4.3)
3 18 13 8 744  (65,78,142) (7.4E-3,3.4)
4 22 24 6 397 (45,63,108) (5.7E-3,4.1)

Table 1: A summary of derived model parameteXgi, is the spike amplitude threshold applied to determine thdehellipsoid volume Npyre andNpixed are the
maximum orders of pure and mixed polynomial terms respelgtiand| is the resulting number of polynomial termsy,(ry, rz) are the axial radii of the model
ellipsoid andasa andbgg are the cofficients of the amplitude decay power-law in the far field aday to Equation 5.
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Figure 5: Validation of neuron models in terms of spike wawefs and spike amplitude. (A) Spike waveforms obtained WEIJRON in an example set of
measurement points (black) and spike waveforms calculatédose points by our models (red dots). (B) Spike amplitfieliels displayed as spike amplitude

isosurfaces at 25, 50 and 1p¥ (blue, red and green respectively). (C) Spike amplitudeagmend standard deviation) as a function of distance fronotiggn
(cell soma). The mean and standard deviation are takensaaliaspikes within 1emwide distance bins.

3.2.3. Application Example: Spike Sorting Performance position ¢). Finally, Figure 7 D shows the PCA feature space

] ) ) _ development (first two PC weights) for the extracted spikes a
Figure 7 A shows the example recording scenario considien example positions.

ered in our application example. The recorded signal at four . . . L
example locationsz( = —20um, z = 10um, z = 30um and _As expected, spike sorting perfqrmance varied signifigantl
2 = 50um) is shown in Figure 7 B along with extracted spike with the electrode po§|t_|on, both in terms of overall perfor
waveforms (mean waveformsstandard deviation) for each of Mance Pio) and for individual neuronsiyrp andP;p). Overall
the four neurons at each of the four example locations. Eigur performanceRip) was m.aX|maI a = 3qum, which qlso ap-
C shows the true and false positive classification refgs and _pee_lrfad to generally provide the best performance with cegar
Pep for the individual neurons as well as the overall classifica-"dvidual neurons.

tion performanceR,p and 1- P,p) as functions of the electrode =~ The example locations in Figure 7 A were selected to demon-
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Figure 6: The recording noise properties as functions ofifiemum distance of noise contributing neurons,and the upper limit of their firing rates,. The
individual firing rates of the neurons were selected fronfarm distributions between 1 anf} spikegsecond. The red solid line show the normalized power
spectral density (PSD) of the noise, the black broken lirevstthe sample histogram and the text inset shows the vafugsod f, for each case as well as the
obtained standard deviation of the noisg, for each case. The background color indicates the standaidtitn of the noise.

strate the varying similarity between the spikes comingnfro position is altered (Figure 7 D). A= —20um, the spike wave-
different neurons, depending on the electrode position. Aforms from neurons 1 and 2 were very similar and those from
z = —-20um, the true positive classification rateBrg) were  neuron 3 were somewhat similar to those from neurons 1 and
low for neurons 1 and 2 in comparison to neurons 3 and 4. AR. However, spikes from neuron 4 had a distinctive shape when
the same position, the false positive classification raBgs)( compared to all other neurons. This is clearly seen in the PCA
for neurons 1 and 2 were high. Also, the true and false posifeature space where clusters 1 and 2 overlap heavily, cl8ste
tive classification rates for neuron 4 were almost maximal an is close to, but not overlapping clusters 1 and 2, and cldsi®r
minimal, respectively, and for neuron 3, essentially theea well isolated from all other clusters.
applied. Atz = 30um, all neurons had similar true and false
positive classification rates, those being high and loweesp At z = 30um, all waveforms had distinctive characteristics,
tively. At z = 50um however, the performance was low for which was also reflected in the PCA feature space, where all
neurons 1 and 3, but high for neurons 2 and 4. clusters were well isolated. At> 30um, spikes from neurons
This varying performance can be explained both in terms ofl and 3 became more and more similar, which was seen in the
the varying similarity between spike waveforms (Figure 7 B,PCA feature space as a gradually increased overlap between
right part) and how the PCA clusters develop as the electrodelusters 1 and 3.
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Figure 7: A demonstration of how our modeling and simulatian be used to evaluate spike sorting performance as adaraftelectrode position. (A) Nineteen
electrodes (brown colored spheres along the center of theejigvere placed along theaxis (x = y = 0), each representing one electrode position to be evaluate
The electrodes were placedzat —30umto z = 6Qum with a spacing of 5um. Four target neurons (neurons 1 to 4, green, light-blues bhd purple ellipsoids)
were placed close to the array of electrodes and noise relgoay ellipsoids) were placed far away. The size of the or@icorresponds approximately to the
size of the cell soma in the NEURON model (see Figure 1). (B)wimspike times were used to extract spike waveforms frommetberded signals at each of the
nineteen electrode locations and the extracted spike wausfwere sorted using principal component analysis (PG&ehature extraction and K-means clustering
for classification. (C) At each electrode location, true faiske positive classification rateB+«p andPgp) were calculated for the individual neurons and the overall
classification performancéd(p) was estimated. (D) The first two dimensions of the PCA feasymace development at every other electrode position,isgdwew

the overlapping of the clusters varied with the electrodmtion. The varying overlapping of clusters in (D) and theyiay similaritiegdissimilarities between
spike waveforms in (B) relate directly to the varying cléisstion performance that is evident in (C).

4. Conclusions Our approach combines the powers of compartment models
and template based signal models to provide a computaljonal
In this paper we have described a novel approach for gernd memory icient way of simulating large scale recordings

erating synthetic test signals to facilitate the developnaad  Without discarding the spatial variability in spike wavefes.
testing of signal processing algorithms for neuronal signa We have shown that we can use traditional compression tech-
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niques to obtain a compact description of the spatial vditiab  electrode sites.
in measured spike waveforms predicted by compartment mod- In comparison with other simulation approaches that have
els and linear source approximations. The compressed siodehe ability to capture the spatial variation of spike wavefs,
have been implemented into a simulation algorithm by whichour simulator is significantly morefigcient. An alternative ap-
we generate synthetic spike trains as measured at an aybitrgoroach would be to pre-calculate membrane currents forengiv
number of electrode sites. The electrode sites can in tuam-be neuron model and use the LSA (Holt and Koch, 1999) to calcu-
bitrarily placed. The simulator has proved to be useful fa-p late spike waveforms in the given electrode locations, Wwhic
viding synthetic multielectrode recordings in which theane corresponds to the first step in the modeling procedure pre-
sured spike waveforms ftker realistically between recording sented in this paper. When initially calculating the LSA, we
channels due to their fierent positions relative to the neurons. obtained simulation times of around 0.1 segvaveform. In
This property facilitates the development of algorithmstwl-  the application example presented in Section 2.6, a totadéf
tichannel neuronal signal processing, the studying of ffects  neurons were present (740 noise neurons and 4 target ngurons
of electrode array geometry on the performance in informaand 19 electrode sites — requiring the total number of 749
tion extraction and the studying of algorithms to handle mgv = 14.136 spike waveforms to be pre-calculated. Assuming di-
electrodes. rect scaling of calculation time with the number of waveferm
We have performed the modeling for fouffdrent compart- the direct LSA approach would require a total time of approxi
ment models and our validation procedures have shown that denately 24 minutes to calculate all spike waveforms at alt-ele
spite the heavy compression, we can use the model to recredtede sites. However, using our method, the entire set df364.
the major features of the spatial variation in spike shapgesam  spike waveforms was calculated in approximately 2.4 sesond
plitude. They also show that by adjusting the minimum disgan or a factor of 600 times faster.
and maximum firing rate of noise contributing neurons, we can Another alternative approach would be to pre-calculate the
control the amplitude and spectral properties of the ptiggio  LSA on a grid of measurement points and interpolate the wave-
cal background noise. forms for at-grid measurement points, as discussed in the In-
We emphasize that the modeling procedure we have prearoduction (Franke et al., 2010b). However, interpolasngh a
sented here is in not restricted to compartment models @f-pyr high number of waveforms from a grid of 42.875 measurement
midal cells. Due to the generic character of our method, conpoints would be significantly more demanding than calcngati
structing a database of compressed models for various typeise matrix multiplication of Equation 12.
of neurons would provide a way officiently simulating the Judging from our results, we conclude that our current sim-
measured neuronal activity in specific brain structuresreshe ulator is both very computationally and memonfjigient and
multiple types of neurons might be present. offers increased realism in terms of spike waveform varigbilit
In the initial compartment model simulations we generateccompared to current state-of-the-art simulators. Futumein-
42.875 spike waveforms (corresponding to the same number etudes improving the user interface of the simulator andintpk
measurement points), each being 100 samples of length. A fili¢ available to the research community as a tool for prowdin
containing the spike waveforms in these discrete measurememulti-channel test signals with realistic properties.
points was thus roughly 31MB of size. With our compressed
models we are able to obtain a file size of around 40kB, or
775 times smaller than the original data matrix. Besideagrei Acknowledgments
smaller in size, the model is not restricted to discrete divor
nates and thus does not require any waveform interpoladion f
off-grid measurement points as would the initial spike wave
forms from the compartment model.
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