
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Robotic Assembly Using a Singularity-Free Orientation Representation Based on
Quaternions

Stolt, Andreas; Linderoth, Magnus; Robertsson, Anders; Johansson, Rolf

Published in:
10th IFAC Symposium on Robot Control

DOI:
10.3182/20120905-3-HR-2030.00074

2012

Link to publication

Citation for published version (APA):
Stolt, A., Linderoth, M., Robertsson, A., & Johansson, R. (2012). Robotic Assembly Using a Singularity-Free
Orientation Representation Based on Quaternions. In 10th IFAC Symposium on Robot Control (22 ed., Vol. 45,
pp. 549-554). (IFAC Proceedings Volumes; Vol. 45, No. 22). IFAC. https://doi.org/10.3182/20120905-3-HR-
2030.00074

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.3182/20120905-3-HR-2030.00074
https://portal.research.lu.se/en/publications/e686879f-476b-49fc-b037-a7dd42f76560
https://doi.org/10.3182/20120905-3-HR-2030.00074
https://doi.org/10.3182/20120905-3-HR-2030.00074

Robotic Assembly Using a Singularity-Free

Orientation Representation Based on Quaternions ⋆

Andreas Stolt ∗ Magnus Linderoth ∗ Anders Robertsson ∗

Rolf Johansson ∗

∗ Department of Automatic Control, LTH, Lund University, Sweden
(corresponding author e-mail: andreas.stolt@control.lth.se).

Abstract: New robotic applications often require physical interaction between the robot and its
environment. To this purpose, external sensors might be needed, as well as a suitable way to specify
the tasks. One complication that might cause problems in the task execution is orientation representation
singularities. In this paper quaternions are used as a singularity-free orientation representation within
the constraint-based task specification framework. The approach is experimentally verified in a force
controlled assembly task. The task chosen contains a redundant degree of freedom that is exploited
using the constraint-based task specification framework.

Keywords: Robot control, force control, assembly, industrial robots

1. INTRODUCTION

Industrial robots are traditionally only position controlled, and
the tasks are given as trajectories to follow. New applications,
however, increase the need for integration of external sensing
from the workspace, such as vision and force. A framework
that can be used for incorporation of sensors and general task
specification is the constraint-based task specification frame-
work (De Schutter et al., 2007), or simply iTaSC (instantaneous
Task Specification using Constraints). Here the robot motion
is specified by imposing constraints, e.g., force, velocity, or
position constraints.

The goal of the current work is to create a framework for sensor-
guided assembly that should be possible to use for non-expert
robot operators. Previous work in this direction by the authors
is presented in (Stolt et al., 2011), where a snapfit assembly
is considered together with how uncertainties could be resolved
and how learning strategies could be used to increase the assem-
bly speed. The framework used is based on iTaSC, where Euler
angles commonly are used as a representation for orientation.
A main reason for using this representation is that it is intuitive
to work with and that it offers a minimial representation for
orientations, unfortunately it has problems with representation
singularitites.

One way to avoid the problems with an Euler angle represen-
tation, but keeping the intuitive orientation description, is to
use an internal singularity-free representation. Two such rep-
resentations are quaternions and rotation matrices. The former
representation is the one considered in this paper, due to the
fact that a quaternion only needs 4 parameters and a rotation
matrix needs 9 (not all unique). Another possibility is to switch
between different Euler angle representations that have the rep-

⋆ The research leading to these results has received funding from the European

Community’s Seventh Framework Programme FP7/2007-2013 – Challenge

2 – Cognitive Systems, Interaction, Robotics – under grant agreement No

230902 - ROSETTA. This document reflects only the author’s views and the

European Community is not liable for any use that may be made of the

information contained herein.

Fig. 1. The emergency stop button used as an experimental case.

resentation singularity in different orientations, as described in
(Singla et al., 2005). A drawback with a switching solution
is that it would be cumbersome to handle all possible Euler
angle parametrizations, if the user should have the possibility to
choose from all of them. The mapping of constraints between
the switching representations might also be a problem. An
advantage with the quaternion representation is that it always
gives orthogonal rotation axes, which is not the case for an
Euler angle representation. If the task requires constraints on
non-orthogonal rotation axes, the remedy is to use more than
one kinematic chain.

A general method to handle non-minimal representations, such
as quaternions, within iTaSC is suggested in (De Schutter et al.,
2007). Both this approach and the one presented in this paper
use the fact that there exists a minimal representation on the
velocity level. In fact, they can be proven to be equal. This paper
further presents how the quaternion representation is integrated
into the iTaSC methodology, making it possible for the user
to specify tasks without having to worry about orientation
representation singularities. The approach is experimentally
verified in an implementation of a force-controlled assembly
task. The task considered is a subassembly of an emergency
stop button; see Fig. 1 for an overview of the involved parts.
The red button should be inserted into the yellow case, i.e., a
peg-in-hole assembly. The button is assumed to be rotationally
symmetric, which introduces a redundant degree of freedom
in the task. This redundancy is exploited using the iTaSC
framework.

Quaternions have previously been used in many contexts, such
as robotics, computer graphics, and attitude control of aircrafts
and spacecrafts. A primary reason for working with quaternions
is that they are a singularity-free orientation representation.
In (Antonelli and Chiaverini, 1998) an underwater vehicle-
manipulator system is controlled in a singularity-free manner
using the unit quaternion, and the quaternion is also used in
(Caccavale and Siciliano, 2001) to avoid representation singu-
larities in control of a redundant manipulator on a spacecraft.
In (Wen and Kreutz-Delgado, 1991) the unit quaternion is used
as a singularity-free orientation representation to derive a large
family of globally stable control laws for the attitude control
problem. Another example where the quaternion is used to
avoid singularities is (Xian et al., 2004), where it is used to
implement a task-space tracking control scheme.

Quaternions have also been used in connection with SLAM,
e.g., in (Kyrki, 2008) they are used to represent similarity
transforms. A general framework on how to handle redundancy
is presented in (Rocco and Zanchettin, 2010). Previous work in
robotic assembly can e.g. be found in (Arai et al., 2006), where
optimization of force control parameters with respect to cycle
time was made in assembly of a clutch. An example from the
automotive industry is (Gravel et al., 2008), which describes
powertrain assembly. In (Zhang et al., 2005) synchronized
Petri nets were used to model the assembly process and an
experimental evaluation was made with a peg-in-hole assembly.

2. PRELIMINARIES

2.1 Constraint-based task specification

A thorough explanation of the constraint-based task specifica-
tion methodology, iTaSC, is given in (De Schutter et al., 2007).
A summary of the parts that are relevant for this paper is given
below.

The iTaSC framework specifies the relative motion of objects
by imposing constraints. A kinematic chain, consisting of two
object frames and two feature frames, are used to specify the
constraints. The object frames are attached on the objects to
be manipulated and on the robot, and the feature frames are
attached to relevant features for the task. The frames should
be defined such that the task becomes as easy as possible to
specify. A kinematic chain should have 6 degrees of freedom,
denoted by χf , the feature coordinates. They are distributed
over the transformations between the object and the feature
frames.

There might exist uncertainties in the pose between the previ-
ously defined coordinate frames. To model these uncertainties
an extra transformation between each of the object and feature
frames are introduced. The degrees of freedom in these trans-
formations are denoted by χu, the uncertainty coordinates.

The variables to be constrained are chosen by specifying out-
puts y. In general, each output can be a function of the feature
and the robot joint coordinates, but with properly chosen kine-
matic chains, the outputs will in most cases directly correspond
to a subset of the feature coordinates.

The iTaSC framework is suitable to handle both over- and
under-constrained tasks, as well as manipulators with redundant
degrees of freedom. For instance, in the velocity based control
scheme of iTaSC the redundancy can be used to optimize some
criterion of the joint velocities. In case of an over-constrained

task, weighting or prioritizing of the constraints is used to
calculate the desired motion.

2.2 Orientation representation

Orientation in the kinematic chain is usually represented by Eu-
ler angles, i.e., three consecutive rotations around given coordi-
nate axes. The reason for choosing Euler angles is that they are
intuitive to work with and easy to specify in a kinematic chain.
Furthermore, they offer a convenient way of parametrizing an
orientation, and also make it possible to control all three angles
separately.

There are, however, several problems with an Euler angle
representation. The first one is that the parameterization is not
unique, e.g. (π

2
, π
2
, 0) and (−π

2
,−π

2
, π) are two examples of

ZYZ-Euler angles that represent the same orientation. This
results in problems when the inverse kinematics problem is
considered, i.e., when calculating the Euler angles for a given
orientation. Another problem is the inherent representation
singularity, which occurs when two rotation axes are aligned.
This results in the Jacobian of the kinematic chain losing rank.
The iTaSC motion solver uses an inverse of this Jacobian, and
a representation singularity is therefore highly inconvenient.

2.3 Quaternions

Quaternions (Hamilton, 1840) are an extension of the complex
number system. A quaternion Q consists of a scalar part, Qs ∈
R, and a vector part, Q̄v ∈ R

3, according to

Q =
(

Qs, Q̄v

)

(1)

Unit quaternions are a suitable choice as a representation for
rotations. The rotation around an axis v̄, |v̄| = 1, with the angle
θ is then given by the quaternion

Q = (cos (θ/2) , sin (θ/2) v̄) (2)

The use of quaternions for representing rotations does not
exhibit the problems of the Euler angle representation. The
drawback is, however, the non-minimality of the quaternion
representation. Four parameters are needed together with the
normalization constraint, ||Q|| = 1. The intuitivity of the Euler
angles is also lost.

3. QUATERNION REPRESENTATION

3.1 Kinematics

To be able to incorporate quaternions in a kinematic chain in
the iTaSC framework, a new rotation transformation has to be
introduced. It is a general 3D rotation, and its current value is
described by a quaternion. One difference from other types of
transformations previously used within iTaSC is that this has
three degrees of freedom, and the corresponding feature coor-
dinate is a 4D-vector. A kinematic chain can contain several of
these quaternion transformations, but only one can be part of
the feature coordinates. The others might be used to introduce
uncertain and constant reorientations.

When formulating the motion specification with iTaSC all con-
straints are transformed to velocity constraints. Force and po-
sition constraints are handled by the use of controllers that
output a desired velocity to achieve the constraints. The ve-
locity of an ordinary feature coordinate is simply its time
derivative, but for a quaternion transformation this is not the

w

q
o2 f2

f1o1
χ
fI

χ
fII

χ
fIII

2

q
1

Fig. 2. The inverse kinematics problem is solved by considering
the position loop constraint that is defined by the kinematic
chain, w denoting the world coordinate frame, q1 and q2
robot joint coordinates, o1 and o2 object frames, f1 and f2
feature frames, and χf = (χfI , χfII , χfIII) the feature
coordinates.

desired way to describe a velocity constraint, as the derivative
of the quaternion parameters are even less intuitive than the
quaternion itself. Therefore a geometric approach is adopted,
and the velocity considered is the angular velocity in the local
coordinate system described by the quaternion. This means that
the angular velocities around the coordinate axes described by
the quaternion are considered as feature coordinates and not the
quaternion parameters. The quaternion is used to keep track of
the current orientation. Using the angular velocities as feature
coordinates makes it easy to calculate the part of the Jacobian of
the kinematic chain belonging to the quaternion transformation.
It is given in (3), where xi, yi, and zi are the rotation axes, i.e.,
the coordinate axes in the coordinate system described by the
quaternion. The vector t̄ represents the vector from the rotation
point to the endpoint of the kinematic chain.

JQ =

[

xi × t̄ yi × t̄ zi × t̄
xi yi zi

]

(3)

Inverse kinematics, i.e., the problem of finding the feature
coordinates when the rest of the kinematic chain is known, can
be solved in a similar way as the model update proposed in
(De Schutter et al., 2007). Consider the position loop constraint
(4) represented as a product of homogenous transformation
matrices 1 , see also the illustration in Fig. 2.

Tw→o1(q1)To1→f1(χfI)Tf1→f2(χfII)...
Tf2→o2(χfIII)To2→w(q2) = I4×4

(4)

When there is a quaternionQ in the kinematic chain, the feature
coordinates can be written χf = (Q, χ̄f), where χ̄f contains all
feature coordinates except for Q. An equivalent formulation of
(4) is (5), where the fact that q1 and q2 are known and constant
has been used.

T1T2(χ̄f)T3(Q)T4(χ̄f)T5 = I4×4 (5)

This position loop constraint can be solved for χ̄f and Q in
an iterative fashion. By first assuming that χ̄f is known, it is
possible to calculate Q such that the orientation part of (5) is
fulfilled, i.e., only the rotation matrix part of the homogenous
transformations is considered. To then solve (5) for χ̄f one
can for instance make a linear approximation. Let us denote
the left-hand side of (5) for T (χ̄f) and the current estimate of

χ̄f for ˆ̄χf , then (6) holds, where Rerr is the orientation error
represented by a rotation matrix and terr the translation error
represented by a Cartesian vector.

T (ˆ̄χf) = TerrI4×4 , Terr =

[

Rerr terr
01×3 1

]

(6)

1 The uncertainty coordinates have been omitted here, but the inclusion of

them are straightforward as they are considered to be known and constant in

these calculations.

A linear approximation to describe ∆χ̄f = χ̄f − ˆ̄χf is (7),
where aerr is an axis/angle representation of Rerr and Jχ̄f

the

Jacobian for T (χ̄f).

Jχ̄f
∆χ̄f =

[

terr
aerr

]

(7)

Normally there are 6 feature coordinates, but as χ̄f does not
contain the quaternion only 3 feature coordinates remain. This
means that a least-squares solution can be used to solve (7) for
∆χ̄f and update ˆ̄χf .

Iteration of the described procedure is performed until the error
is small enough, i.e., the right-hand side of (7). As the inverse
kinematics is calculated continuously during operation and the
coordinate values in the previous sample are used as starting
values in the next sample, usually only one or a few iterations
are needed. The only exception is in the start-up of the program,
when the initial guess might be far off.

3.2 Euler angle references

The value of the quaternion transformation is possible to spec-
ify in any format, and it is possible to give a desired orientation
in Euler angles. This is no problem as the transformation this
way is unique, i.e., all possible Euler angle coordinates for a
particular orientation result in the same quaternion. The same
holds for velocity and torque references. In the velocity con-
trol case the desired Euler angle velocity is transformed to a
desired angular velocity using the Jacobian, relating the Euler
angle time derivatives to the angular velocity. When a torque
constraint is active the controller output is the desired velocity,
which is transformed using the Jacobian, in the same way as the
velocity control case.

3.3 Hybrid control

Controlling a quaternion in a kinematic chain to a desired value
is fairly straightforward. If the current orientation is denoted
Qcur and the desired orientationQdes, then the orientation error
is given by Qerr = Q−1

cur ∗ Qdes, where ∗ denotes quaternion
multiplication. By exploiting the fact that the error describes a
rotation, its rotation axis v̄err and its rotation angle θerr can be
calculated from the parametrization (2). The orientation error
can now be eliminated by applying the desired angular velocity
(8), where K is a gain factor.

ω̄des = Kθerr v̄err (8)

It is a bit more difficult to apply hybrid control, e.g., when
it is desired to control the orientation around one axis and
torque around another. A solution to this problem is to con-
tinuously update the quaternion reference, by integrating the
velocity references given by the torque controller. The position
(orientation) controller is constrained to only apply velocity
corrections around the axes that are position controlled, i.e.,
the desired velocity from the controller is projected onto the
axes that are position controlled. Updating the reference for
the part of the orientation that is position controlled requires a
complete orientation reference. Only giving the Euler angles for
the position controlled directions is not enough, as the complete
orientation description can not be uniquely calculated from this
information.

The integration of the quaternion reference is made by applying
a rotation with constant angular velocity during one sample

z

y
x

o1

x

y

y

z

z

f2

f1

z

x

y
o2

x

Fig. 3. Illustration of the differ-
ent coordinate frames used
in the assembly task.

φ

θ

ψ

Fig. 4. Illustration of the
Euler angle represen-
tation (ZYZ) of the
orientation of the but-
ton. φ is a rotation
around the z-axis, θ is
then a rotation around
the y-axis in the new
coordinate system de-
fined by the first rota-
tion. Finally ψ is a ro-
tation around the new
z-axis.

period, i.e., multiplying with the quaternion (9), where ω̄ is the
angular velocity and h the sample period.

Qint = (cos(|ω̄|h/2), sin(|ω̄|h/2)ω̄/|ω̄|) (9)

3.4 Redundancy

A task may not need all available degrees of freedom, and
this redundancy should be exploited. If the orientation that is
described by a quaternion is part of the redundancy it can be
handled by not specifying the velocity around the redundant
axis. When the quaternion is position controlled the calculated
desired velocity should be projected onto the rotation axes that
are part of the task. This means that any desired quaternion can
be specified, but that only errors projected into the degrees of
freedom that are part of the task will be eliminated.

Introducing quaternions do not alter the way iTaSC handles
the redundancy, as the quaternion on the velocity level is
completely described by three angular velocities.

4. ASSEMBLY SCENARIO

The assembly scenario used to illustrate the quaternion ap-
proach is a part of the assembly of an emergency stop button,
see Fig. 3. The red button should be placed in the hole in the
yellow case, i.e., a peg-in-hole assembly. The button is assumed
to be rotationally symmetric, although this is not exactly true.
Making this assumption, however, makes the task redundant,
as the rotation around the symmetry axis does not matter. If
the button is grasped in such a way that the symmetry axis
coincides with the last joint axis of the robot, the redundancy
is trivial and only results in the position of the last robot joint
being unconstrained. The gripper is constructed in such a way
that the redundant degree of freedom is not trivial. A wrist-
mounted 6 degrees-of-freedom force/torque sensor is used to
perform the assembly.

4.1 Kinematic chain

One kinematic chain is used in the assembly task and the object
and feature frames related to it are shown in Fig. 3.

• Object frame o1 is attached to the box. It is related to the
world coordinate frame by a fix transformation.

• Feature frame f1 has its origin in the center of the hole on
top of the yellow case. The orientation is the same as o1.

• Feature frame f2 is attached to the endpoint of the button
and its orientation is illustrated in Fig. 3.

• Object frame o2 has its origin on the base of the gripper
and the same orientation as the robot flange frame. It is
related to f2 by a fix transformation.

The feature coordinates χf are divided into three groups
depending on which frames they relate to, according to
χfI = (−) o1 → f1
χfII = (x, y, z,Q) f1 → f2
χfIII = (−) f2 → o2

The first three feature coordinates, (x, y, z), are translations
along the coordinate axes of f1. Then it is intuitive to describe
the orientation of the red button with ZYZ-Euler angles, illus-
trated in Fig. 4. First a rotation around the z-axis is made, and
then a rotation around the y-axis of the new coordinate system.
Finally a rotation around the new z-axis is introduced. The last
axis is the symmetry axis of the button and this rotation thus
corresponds to the redundancy in the task. This Euler angle
representation would certainly cause trouble if it would have
been used for feedback control. The reason is that it has a
representation singularity close to the target position, because
in this position the second angle coordinate is zero and the first
and the third rotation axes coincide. Instead, the three Euler
angles are represented by a quaternion,Q, internally.

Outputs are chosen as Eq. (10), where the two last outputs are
specified on the velocity level and correspond to the quaternion
(ωx and ωy denote the angular velocities around the x- and the
y-axis, respectively, in the coordinate frame described by the
quaternion, i.e., frame f2). The actual values of y4 and y5 are
not defined, but the torque corresponding to these outputs is the
torque around the corresponding rotation axes. The last angular
velocity,ωz , is not chosen as output as it will not be constrained
in any way, due to the assumption of rotational symmetry.

y1 = x , y2 = y , y3 = z , ẏ4 = ωx , ẏ5 = ωy (10)

Uncertainties in the task include the exact location and orien-
tation of the box, and the grasp of the button. They are, how-
ever, resolved using guarded search motions, i.e., the motion is
velocity controlled in the search direction and stopped when a
contact force is detected. Once contact is made, it is maintained
by using force control, and hence no explicit uncertainty coor-
dinates are used to model this uncertainty.

4.2 Redundancy

The iTaSC motion specification is calculated by solving for the
robot joint velocities, q̇, in (11). The matrix A relates q̇ to the
desired output velocities ẏ0d, see (De Schutter et al., 2007) for
details.

Aq̇ = ẏ0d (11)

When the task is redundant, or over-constrained, the matrix A
will not be square, and hence a pseudoinverse must be used. In
case of a redundant task the weighted pseudoinverseA† in (12)
can be used. The interpretation is that the optimization problem
(13) is solved, where M is a weighting matrix.

A† =M−1AT
(

AM−1AT
)−1

(12)

minimize (over q̇) q̇TMq̇
subject to ẏ0d = Aq̇

(13)

4.3 Assembly strategy

The assembly strategy is designed in such a way that the
uncertainties are resolved during execution of the task. The
position of the yellow case is assumed not to be known well
enough for hitting the hole with the button in the upright
position. But the uncertainty is small enough for an approach
with a tilted button to hit the hole (Fig. 3). Once the hole is
found, force control is used to find the center of it. Then the
button is reoriented towards what is assumed to be the upright
position while using force control to press downwards, such
that the button gradually slides down into the hole. Torque
control is then used to find the correct orientation. This strategy
is modeled with a state machine, where each state has the
following actions:

(1) Goto start position
(2) Search for contact in z-direction (output y3)
(3) Force control to center of hole
(4) Reorient to the approximate upright position
(5) Control torques to zero
(6) (Release button and) move robot away

Position or force measurements are used to trigger transitions
between subsequent states.

5. EXPERIMENTAL RESULTS

Force data from an experimental execution is given in Fig. 5,
together with the corresponding state in the assembly sequence.
The first state shown, state 2, is the search in the z-direction.
The transition condition to the next state is that a large z-force
is detected, and this happens at t = 2.9 [s]. State 3 is a search
for the middle of the hole, which is made by controlling the x-
and y-forces to zero while keeping a positive force in the z-
direction; the reference is set to 10 [N]. The next step is then
a position control of the orientation to the assumed upright
position of the button, while pressing in the z-direction such
that the button slides down completely into the hole. In state
number 5 the torques around the x- and y-axes are controlled
to zero, such that the button is completely pushed down into
the hole. The last state is that the robot is moved away in the
positive z-direction.

The feature coordinates with Euler angles in the kinematic
chain have been calculated for the experimental execution
shown in Fig. 5, and these angles are shown in Fig. 6. The initial
position chosen was φ = −90◦, θ = 36◦ and ψ = 90◦, where
the ψ-angle corresponds to the redundant degree of freedom.
As the θ-coordinate was decreased, corresponding to the button
being moved towards the upright position, the current pose was
getting closer and closer to the singular configuration. When it
came close, the φ- and the ψ-angles immediately changed with
about 180◦, and the reason it stopped there is probably that the
singularity was only closely passed by. If this kinematic chain
would have been used for control it would be hard to predict
what would happen close to the singularity. Furthermore, if the
program would have survived the singularity, problems might
have occurred because the φ-coordinate had drifted away.

The redundancy in the task was handled by choosing the
weighting matrix M as (14), i.e., such that it was desired to
rather move the wrist of the robot (joint 4, 5 and 6) than the
three first joints.

M = diag (10 10 10 1 1 1) (14)

The resulting measured redundant angular velocity from the
experimental execution is shown in Fig. 7. Quite large rotations
can be seen, indicating that the redundancy was exploited,
especially around t = 9 [s] when the button is closing in on
the upright position and slides down into the hole.

6. DISCUSSION

The described choice of Euler angles in the assembly task had
a representation singularity close to the target position, and
would therefore cause trouble in the execution of the task. The
previous solution to this problem was to be careful and choose a
safe orientation representation, as e.g. was done in (Stolt et al.,
2011). An Euler XYZ representation would for instance be fine
for the assembly scenario in this paper. Using the assembly
framework and the quaternion representation described, how-
ever, relieves the user from doing these considerations, and
the user only has to come up with a suitable representation
for the task. In this way it is a step towards making it easier
for unexperienced robot programmers to accomplish assembly
tasks.

A drawback of the approach with an internal singularity-free
representation is that it is not possible to use feedback from the
individual Euler angles. An example is when one Euler angle
direction is torque controlled and the other two position con-
trolled, as then a reference change for the position controlled
angles might be impossible to translate to the internal represen-
tation because of the Euler angle ambiguity. These situations
are rare, and most scenarios relevant in assembly are not subject
to this problem. In case they do occur, the remedy is to specify
the complete orientation.

The current experimental implementation of the proposed
quaternion representation is not completely automatic, i.e., it
is not possible for a user to make the modeling and design
the state machine describing the task with Euler angles and
get an implementation based on the quaternion representation.
The current procedure requires some manual steps, which in
a real application have to be made automatic. This is, how-
ever, a shortcoming of the implementation, not of the proposed
method.

The redundancy resolution should be chosen such that some
criterion is optimized, e.g., the energy spent during the task
execution could be minimized. The weighting matrix M in the
assembly task described in this paper has been chosen quite
arbitrarily, where the only objective was to show the concept
of relative weighting. Further efforts should be spent to find a
meaningful criterion (13).

The button was assumed to be rotationally symmetric, which
is not true in reality. There are some edges that might get
stuck during the insertion in the hole. This sometimes happened
during execution of the assembly. Some extra oscillations are
then induced, but otherwise the assembly sequence still works
fine.

The force control parameters used in the assembly sequence
were tuned manually and were therefore probably not optimal.

0 5 10 15

2

4

6

0 5 10 15
−10

0

10

20

x−force

y−force

z−force

0 5 10 15

0

0.5

1

Torque around x−axis

Torque around y−axis

Torque around z−axis

S
ta

te
F

o
rc

e
[N

]
T

o
rq

u
e

[N
m

]

Time [s]

Fig. 5. Force data from an assembly sequence vs.
time. The uppermost diagram shows the state
sequence, the middle the forces (along the first
three feature coordinate directions, i.e, they are
given in frame f1) and the lowermost the
torques (around the coordinate axes defined by
the quaternion, i.e., they are given in frame f2).

0 5 10 15
1

2

3

4

5

6

7

0 5 10 15
−100

−50

0

50

100

S
ta

te

E
u
le

r
an

g
le

v
al

u
es

[◦
]

Time [s]

φ
θ

ψ

Fig. 6. Calculated Euler angles from the
assembly sequence.φ is the first rota-
tion around the z-axis, θ the rotation
around the y-axis, and ψ the final
rotation around the z-axis. Problems
occur when the singular position is
entered just before t = 9 [s].

0 5 10 15
1

2

3

4

5

6

7

0 5 10 15
−4

−2

0

2

4

6

S
ta

te
A

n
g
u
la

r
v
el

o
ci

ty
[◦
/
s]

Time [s]

Fig. 7. Measured angular ve-
locity in the redundant
direction.

Tuning these parameters is a tedious work, and the goal is to
make this process adaptive. This will further on make the im-
plementation robust to changing environments, and also make
it easier for users to specify tasks, when they do not have to be
concerned about the choice of controller parameters, assuming
that the adaptive laws have been designed properly.

The current assembly speed is not that fast, but very little effort
has been spent on optimizing it. This is, however, something
that would be important in an industrial application. If it is
assumed that the same assembly is performed several times,
learning approaches can be used to generate feed-forward data
that can speed up the assembly. Learning can also be used to
make changes in the assembly sequence, if this is appropriate.

7. CONCLUSIONS

A method to introduce a singularity-free orientation representa-
tion based on quaternions within the iTaSC framework has been
described. The proposed method makes it possible to model
tasks with Euler angles, and execute them such that the inherent
representation singularities cause no problems. The method has
further on been implemented on an industrial robot system and
experimentally verified in a force controlled assembly task. The
chosen task contained a redundant degree of freedom that was
exploited using the iTaSC framework.

REFERENCES

Antonelli, G. and Chiaverini, S. (1998). Singularity-free
regulation of underwater vehicle-manipulator systems. In
Proc. American Control Conf. (ACC), volume 1, 399–403.
Philadelphia, USA.

Arai, T., Yamanobe, N., Maeda, Y., Fujii, H., Kato, T., and Sato,
T. (2006). Increasing Efficiency of Force-Controlled Robotic
Assembly -Design of Damping Control Parameters Consid-
ering Cycle Time. CIRP Annals-Manufacturing Technology,
55(1), 7–10.

Caccavale, F. and Siciliano, B. (2001). Quaternion-based kine-
matic control of redundant spacecraft/manipulator systems.

In Proc. Int. Conf. Robotics and Automation (ICRA), vol-
ume 1, 435–440. Seoul, Korea.

De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W.,
Smits, R., Aertbeliën, E., Claes, K., and Bruyninckx, H.
(2007). Constraint-based task specification and estimation
for sensor-based robot systems in the presence of geometric
uncertainty. Int. J. Robotics Research, 26(5), 433.

Gravel, D., Maslar, F., Zhang, G., Nidamarthi, S., Chen, H.,
and Fuhlbrigge, T. (2008). Toward robotizing powertrain
assembly. In 7th World Congress Intelligent Control and
Automation (WCICA), 541–546. Chongqing, China.

Hamilton, W. (1840). On a New Species of Imaginary Quan-
tities, Connected with the Theory of Quaternions. In Proc.
Royal Irish Academy, volume 2, 424–434.

Kyrki, V. (2008). Quaternion representation for similarity trans-
formations in visual SLAM. In Proc. Int. Conf. Intelligent
Robots and Systems (IROS), 2498–2503. Nice, France.

Rocco, P. and Zanchettin, A. (2010). General parameterization
of holonomic kinematic inversion algorithms for redundant
manipulators. In Proc. Int. Conf. Robotics and Automation
(ICRA), 3721–3726. Anchorage, USA.

Singla, P., Mortari, D., and Junkins, J.L. (2005). How to
avoid singularity when using Euler angles? Advances In The
Astronautical Sciences, 119(II), 1409–1426.

Stolt, A., Linderoth, M., Robertsson, A., and Johansson, R.
(2011). Force Controlled Assembly of Emergency Stop
Button. In Proc. Int. Conf. Robotics and Automation (ICRA),
3751–3756. Shanghai, China.

Wen, J. and Kreutz-Delgado, K. (1991). The attitude control
problem. Automatic Control, IEEE Transactions on, 36(10),
1148–1162.

Xian, B., de Queiroz, M., Dawson, D., and Walker, I. (2004).
Task-space tracking control of robot manipulators via quater-
nion feedback. Robotics and Automation, IEEE Trans.,
20(1), 160–167.

Zhang, W., Mao, T., and Yang, R. (2005). A new robotic
assembly modeling and trajectory planning method using
synchronized Petri nets. The Int. J. Advanced Manufacturing
Techn., 26(4), 420–426.

