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“Sou um convalescente do Momento. [...] E ver passar a Vida faz-me tédio.”
Álvaro de Campos
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Abstract

Ultrafast science refers to physical events that happen on the femtosecond
(1 fs=10−15s) and attosecond (1 as= 10−18s) timescales. Generation of attosecond
pulses is usually achieved by interacting high-intensity femtosecond pulses with mat-
ter (typically gases), in a process called high-order harmonic generation (HHG). Under
the correct conditions, this process leads to the creation of sub-fs pulses in the extreme
ultraviolet (XUV) region.

The work presented in this thesis focuses around generating, characterizing, and
applying ultrashort light pulses, both in the femtosecond and attosecond domain.

The first part describes the effort on the femtosecond laser sources, with empha-
sis on carrier-envelope phase (CEP) stability and control, and temporal and spatial
characterization. An existing high-power (30 fs, 6 mJ) laser system was successfully
CEP-stabilized, using an acousto-optic programmable dispersive filter (AOPDF) for
CEP control. CEP detection at kilohertz rates is also demonstrated. A method for the
characterization of ultrashort laser pulses, based on a glass wedges and chirped mirror
compressor, has been developed and demonstrated on pulses in the few-cycle regime.
This technique, together with spectral interferometry, has been used to characterize
in space and time femtosecond laser pulses, in the optical / near-infrared domain.

The second part deals with the HHG sources and applications. The spatial coher-
ence of one of the HHG sources, together with its high photon flux, has allowed us
to perform single-shot holography in the extreme ultraviolet (XUV) domain. Another
HHG source, with lower power but higher repetition rate, was used for the character-
ization of properties of argon and helium atoms. For this, a technique typically used
for the temporal characterization of attosecond pulse trains, RABBITT (reconstruc-
tion of attosecond beating by interfering two-photon transitions) was used, allowing
us to study the phase of a resonant two-photon ionization in helium, and to measure
photoemission delays in argon.
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Sumário

Ciência ultra-rápida refere-se a eventos físicos que se desenvolvem em escalas de tempo
de femtosegundos (1 fs=10−15s) e attosegundos (1 as= 10−18s). A geração de impul-
sos com durações de attosegundos é tipicamente conseguida através da interacção de
impulsos de femtosegundos de alta intensidade com matéria (tipicamente gases), num
processo chamado geração de harmónicos de ordem elevada (HHG). Em condições
apropriadas, este processo pode levar à criação de impulsos com durações inferiores
a um femtosegundo, com comprimentos de onda na região do extremo ultra-violeta
(XUV).

Nesta tese é descrito o trabalho efectuado na geração, caracterização e aplicação
de impulsos ultra-curtos, tanto no regime de femtosegundos como de attosegundos.

A primeira parte descreve o trabalho efectuado nas fontes laser de femtosegundos,
com destaque na medida e controlo da fase absoluta do campo eléctrico, e na carac-
terização espacial e temporal. Um sistema laser anteriormente existente (30 fs, 6 mJ)
foi modificado de modo a ter a sua fase absoluta estabilizada, utilizando um filtro
acusto-óptico de dispersão programável (AOPDF). Medida de fase absoluta a taxas
de kilohertz é também demonstrada. Um novo método para caracterizar temporal-
mente impulsos ultra-curtos foi desenvolvido, baseado num compressor temporal de
espelhos chirpados, e foi demonstrado em impulsos ultra-curtos no regime de poucos
ciclos. Esta técnica, em conjunto com interferometria espectral, foi utilizada para
caracterizar no espaço e no tempo impulsos ultra-curtos.

A segunda parte do trabalho está relacionada com fontes e aplicações de HHG. A
coerência espacial de uma fonte, em conjunto com o seu elevado fluxo de energia, per-
mitiu a realização de holografia no domínio dos ultra-violeta extremos (XUV). Outra
fonte de HHG, com menor energia por impulso mas com maior taxa de repetição, foi
usada para estudar propriedades atómicas de argon e hélio. A técnica normalmente
ulilizada para caracterização de trens de impulsos de attosegundos, RABBIIT (recon-
strução de impulsos de attosegundos por interferência de transições a dois fotões) foi
utilizada para estudar uma ionização ressonante por dois fotões em hélio, e para medir
atrasos relativos na foto-emissão em árgon.
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Popular Science Summary

What is a photographic camera flash good for? The easy answer is “to illuminate”.
There is more to it though: the duration of a camera flash is usually much shorter
than the shutter speed of the camera. This allows us to take sharp pictures of fast
objects with an inexpensive camera. Ultrafast science is based on a similar principle:
no shutter is capable of opening and closing fast enough to “freeze” the motion of
molecules breaking up and forming new ones on a chemical reaction; or, much faster,
electrons “spinning” around the nucleus of an atom. The trick is to use very short
light pulses (our flashes). Events like the ones described take place in times as short
as femtoseconds and attoseconds, respectively. If we want to see what happens, for
example, during a chemical reaction, and not only the before and after, we need a
flash shorter than the time it takes to occur.

But how short is a femtosecond? And an attosecond? A femtosecond is
0.000000000000001 seconds (or 10−15 s), and an attosecond is one thousand times
smaller. To put it in perspective, suppose you have a clock and that, at each second,
your clock would fall behind one femtosecond. How long would it take for it to be one
second off? It would take longer than thirty million years.

There is a fundamental limitation to how short a light pulse can be. Light is an
oscillation, or vibration, of the electric and the magnetic fields, that propagate as
waves. Visible light, that our eyes can perceive, has oscillations periods of about two
femtoseconds, and a light pulse cannot be shorter than that. To create even shorter
pulses, we have to go higher in the frequency spectrum, towards X-rays. Light pulses
with durations of some femtoseconds are nowadays generated directly from lasers.
These laser pulses can then be used to interact with matter and generate light at
higher frequencies, and even shorter pulses can be created, with durations of around
one hundred attoseconds.

This thesis describes the work undertaken on creating, taming, measuring and us-
ing such short light pulses, both in the femtosecond and attosecond regime. Creating
such short light pulses poses a considerable technical challenge. Interestingly, it is as
difficult to keep them short as it is to create them, and the same goes for character-
izing them: since these are the shortest events artificially created, we do not have an
even shorter light pulse to measure them, so we have to use these pulses to measure
themselves.
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Populärvetenskaplig
sammanfattning

Vad är en fotografisk kamerablixt bra för? Det enkla svaret är “att belysa”. Det
är dock inte hela svaret: en kamerablixt är i regel mycket kortare än slutartiden
på kameran. Det gör det möjligt att ta skarpa bilder av snabba objekt med en
billig kamera. Ultrasnabb vetenskap bygger på en liknande princip: ingen slutare
kan öppnas och stängas tillräckligt snabbt för att “frysa” rörelsen hos molekyler då
de bryts upp i beståndsdelar som sedan bildar nya molekyler i en kemisk reaktion,
eller någonting ännu mycket snabbare, elektroner som “snurrar” runt kärnan av en
atom. Tricket är att använda mycket korta ljuspulser (våra blixtar). Händelser som
de som beskrivs ovan äger rum på tidsskalor så korta som femtosekunder respektive
attosekunder. Om vi vill se vad som händer exempelvis under en kemisk reaktion,
och inte bara före och efter, behöver vi en blixt kortare än den tid det tar att för
reaktionen att ske.

Men hur kort är en femtosekund? Och en attosekund? En femtosekund är
0.000000000000001 sekunder (eller 10−15 s) och en attosekund är tusen gånger mindre.
För att sätta det i perspektiv, antag att du har en klocka och att din klocka varje
sekund halkar efter med en femtosekund. Hur lång tid skulle det ta innan klockan
gick en sekund fel? Den skulle ta längre än 30 miljoner år.

Det finns en grundläggande begränsning för hur kort en ljuspuls kan vara. Ljus
är en svängning eller vibration av elektriska och magnetiska fält som propagerar som
vågor. Synligt ljus, som våra ögon kan uppfatta, har svängningsperioder på ca. två
femtosekunder, och en ljuspuls kan inte vara kortare än så. För att skapa ännu kortare
pulser måste vi gå högre upp i frekvensspektrat, mot röntgenstrålar. Ljuspulser som är
några femtosekunder långa kan idag genereras direkt från lasrar. Dessa laserpulser kan
sedan användas för att interagera med materia och generera ljus vid högre frekvenser,
och ännu kortare pulser kan skapas, som är omkring hundra attosekunder långa.

Denna avhandling beskriver arbetet med att skapa, tämja, mäta och använda
sådana korta ljuspulser, både i femtosekund- och attosekundregimen. Att skapa så
korta ljuspulser är en stor teknisk utmaning. Intressant nog är det lika svårt att hålla
dem korta som det är att skapa dem, och detsamma gäller för att karakterisera dem:
eftersom dessa är de kortaste händelser som har skapats artificiellt så har vi ingen
ännu kortare ljuspuls att mäta dem med, utan vi måste använda samma pulser och
låta dem mäta sig själva.
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Chapter 1

Introduction

When the laser was invented in 1960 [1], it was often seen as “a solution looking for a
problem” [2]. More than 50 years later, and even if many problems have indeed been
found and solved, this description is still true. Not only has the laser helped to solve
problems, it “created” new problems of its own. As laser technology progressed, the
boundaries of known physics have also been pushed, either by confirming theoretical
predictions or by surprising scientists with unexpected results.

The work performed in this thesis was based on, and motivated by, two things:
laser technology in itself (more specifically ultrafast lasers - or ultrashort light pulses),
and on the other hand, a relatively recent topic in physics which was built around un-
expected results from light matter interaction at high intensities: high-order harmonic
generation (HHG) [3, 4].

Recent advances in laser technology allow scientists to reach light pulses whose
duration is comparable to the duration of the electric field cycle. In the optical domain,
this corresponds to around 2 fs (1 fs=10−15 s). This has made possible the study of
physical phenomena on unprecedentedly short time scales: as with photography, to
“freeze” an object motion in time, a short exposure time can be used. Another way
is to use a short flash instead: this would be a direct analogy to ultrafast techniques.
On the other hand, short pulses have also allowed to reach high optical intensities
while keeping average powers low. This has made possible to probe matter at high
intensities with reduced thermal and other cumulative effects.

An example of high intensity phenomena is HHG: since its discovery, it has be-
come a tool for producing coherent light in the extreme ultra-violet (XUV) region
(wavelengths of around 10 to 100 nm) as well as for the generation of even shorter
pulses, shorter than 100 as (1 as=10−18 s), which can be used to probe matter on an
unprecedentedly short time-scale.

1.1 Aim and Outline

This thesis is the result of a joint doctoral program between Lund University in Swe-
den, and Porto University in Portugal. The aim was to study HHG with ultrashort
light pulses, towards the generation of isolated attosecond light pulses. The ultrafast
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1.1 Aim and Outline

optics laboratory at Porto University had the experience with the generation of ul-
trashort femtosecond light pulses, while Lund had the expertise regarding HHG and
attosecond pulses.

The work presented in this thesis has been performed both in Porto and in Lund,
and is based on eleven papers (referred to in the text as Papers I toXI). Most of it was
of experimental nature, and it was realized in three different laboratories: the HHG
setup based on a 10 Hz high-energy beamline in Lund (∼35 fs, ∼100 mJ), the HHG
and attosecond setup based on the 1 kHz beamline, also in Lund (∼30 fs, ∼3 mJ),
and the ultrafast optics laboratory in Porto (∼30 fs, ∼1 mJ).

Papers I and II describe the efforts and results taken to CEP-stabilize and con-
trol the kHz laser system in Lund. This is a necessary step to obtain controlled and
reproducible ultrashort pulses. Demonstration of CEP stabilization and control was
achieved for both the amplifier and after a hollow-core gas-filled compressor. Pa-
pers III and IV deal with pulse characterization in the time domain. This work was
motivated by the difficulty of time characterization of the hollow-core fiber compressor
in Lund, and was experimentally realized in Porto. A new characterization technique
was demonstrated, first on an ultrafast oscillator, and then on a hollow-core gas-filled
fiber compressor.

This technique was successfully applied as a part of a complete spatiotemporal
characterization method based on spectral interferometry, in Papers V and VI. This
successfully characterized in time and space ultrashort laser pulses.

In PaperVII, space and time compression of ultrashort laser pulses is presented. A
tradeoff between spatial and temporal compression is achieved, using chirped mirrors
and microscope objectives. The results obtained suggest that HHG from low-power,
high repetition rate ultrashort lasers might be feasible.

In Paper VIII, the spectral and spatial characteristics of one of the HHG sources
in Lund (the high-energy 10 Hz beamline) are studied. This same HHG setup was used
as a source for single-shot inline holography in the XUV region, which is described in
Paper IX.

In parallel to the research towards better control of the short laser pulses for HHG
and attosecond pulse generation, work has been performed on the applications of
the existing attosecond sources. This was done using the kilohertz source in Lund,
where properties of simple atomic systems were studied with the same experimental
technique (RABBITT) that is used for the characterization of attosecond pulse trains.
Phase properties of resonant two-color two-photon ionization in helium were studied in
Paper X, and attosecond photoemission delays in argon were measured in Paper XI.

In Chapter 2 an introduction is presented on the fundamental concepts about ultra-
short light pulses, namely generation and propagation. The issues encountered when
dealing with ultrashort pulses are discussed. Even if the concepts and techniques are
introduced from a “femtosecond” point of view, the mathematical framework applies
as well to the attosecond regime. Chapter 3 introduces some basic concepts about
the characterization of ultrashort pulses, and some of the most commonly used tech-
niques are presented. Some of the concepts here introduced are also applicable to the
attosecond regime. Chapter 4 introduces some of the physical principles behind HHG,
discusses the properties of the radiation produced, and presents some applications.
Finally, Chapter 5 summarizes the obtained results and conclusions, and an outlook
is presented.
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Chapter 2

Ultrashort Pulses

2.1 Introduction

The term “ultrashort” is obviously subjective. The ultrashort light pulse “race” took
a whole new step with the invention of the laser [1, 5]. Soon after the laser was in-
vented, Q-switch techniques [6] allowed for the production of pulses in the nanosecond
(1 ns=10−9s) regime. It was however with the advent of mode-locked lasers [7–11], and
especially the titanium-sapphire (Ti:Al2O3) laser [12], that pulses in the femtosecond
(1 fs=10−15s) regime became routinely possible.

HeNe Ti:Sapph

(a) (b)

Figure 2.1: Comparison between a typical broadband spectrum from an ultrafast
Ti:sapphire laser used during the work presented in this thesis, and a common HeNe laser.
The typical HeNe spectral bandwidth is typically of around 0.002 nm. With such a broad-
band spectrum, the Ti:sapphire laser can produce pulses as the one simulated on the right:
its duration is of just a few optical cycles.

The work presented in this thesis deals with ultrashort light pulses, in two different
regimes: in the femtosecond and in the attosecond timescales. A common aspect
between them is that their durations are comparable to the duration of their carrier
cycle. Or, equivalently, their spectral width is comparable to their central frequency.
Figure 2.1 shows the spectrum from the ultrafast laser used in Porto, and the shortest
pulse that can be obtained from it. The laser in Lund has similar properties, and these
are representative of state-of-the-art ultrafast lasers. For a comparison, the spectrum
of a HeNe laser is also shown, but not to scale: the actual HeNe spectral width is much
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2.2 Description

shorter than the drawn line. Even broader spectra than the one shown in Fig. 2.1 were
obtained with the goal of reaching even shorter pulses.

The broad bandwidth of such sources, which is necessary to obtain such short
pulses, poses considerable technical challenges: different spectral components “travel”
at different speeds through glasses and other materials, effectively stretching ultrashort
pulses in time. The shortest the pulse, the broader its spectrum, and the harder it is
to keep the pulse short.

This chapter discusses the issues around ultrashort pulse generation and propaga-
tion. Some of the concepts and basic mathematical tools often used on the subject are
presented, as well as some practical techniques commonly employed to keep ultrashort
pulses, well, ultrashort.

A very good and detailed description of ultrashort laser pulses can be found for
example in Diels’ and Rudolph’s book [13]. The text that follows introduces some of
the most important concepts of ultrashort pulses for this thesis, and applies to both
the femtosecond and attosecond regimes.

2.2 Description

An ultrashort pulse can be represented either in the time or spectral domain, and
these representations are related through the Fourier transform relations

Ũ(ω) = F {U(t)} =
∫
U(t)e−iωtdt

U(t) = F−1 {Ũ(ω)
}

= 1
2π

∫
Ũ(ω)eiωtdω (2.1)

Since U(t) is a real quantity,
Ũ(ω) = Ũ∗(−ω). (2.2)

One can always represent a real quantity by a sum of two complex quantities, being
that one is the complex conjugate of the other. It is rather common (and it will be
often the case during this thesis) to omit the complex conjugate. This is valid because
there is redundancy in the spectral representation: since one knows that the electric
field is a real quantity, half of the complex spectrum contains enough information
about the pulse (Fig. 2.2). To find the actual electric field it is simply enough to take
the real part of this complex quantity. Further, a pulse can be conveniently described
by an envelope multiplied by a monochromatic field (and now U(t) denotes a complex
representation)

U(t) = |U(t)|eiφ(t) = A(t)eiωt (2.3)

so a pulse can be even more simply described by a complex quantity, A(t), whose
phase varies (usually) much slower than the carrier frequency. This allows a precise
representation of the pulse with a lower numerical effort (a lower resolution is needed
to properly sample it, compared to using the full real representation) as long as one
keeps in mind there is a carrier frequency associated with it. Figure 2.3 shows an
example of taking a sinusoidal carrier and applying an envelope. As the envelope
width becomes comparable to, or even shorter than, the carrier period, the envelope
itself will have a higher spectral content than the original carrier.
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Figure 2.2: Real and complex representations, in the time and frequency domains, of an
ultrashort pulse. (a) An oscillating field has its amplitude modulated by an envelope (dashed
line). (b) The corresponding spectral representation has two lobes, with opposite phases. (c)
By keeping only the positive frequencies in (d), and Fourier transforming back to the time
domain, we get a complex representation of the pulse in time. The envelope in (c) is the
same as in (a), and the underlying electric field can be recovered by taking the real part of
the complex field. (e) The phase variation can be minimized by a spectral shift (f).

The intensity is usually defined as 1

I(t) = cnε0
2 |U(t)|2 (2.4)

This definition is commonly used even in the context of ultrashort laser pulses: the
actual energy flow from an electromagnetic wave follows the field and not the (slower)
envelope; however, the definition above is commonly used in the literature.

Similarly, the spectral representation can also be decomposed as a spectral envelope
and a phase

Ũ(ω) = |Ũ(ω)|eiφ(ω) (2.5)

The spectral representation is rather useful when dealing with linear optics: most
propagation effects are easily described in the spectral domain. The electric field as a
function of time can easily be obtained by Fourier transforming the complex spectrum
(Eq. 2.1).

1Even if against S.I. standards, the word intensity will be used to represent power per area unit,
i.e., W/cm2 .
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Figure 2.3: Effect of applying an envelope to a sinusoidal carrier. As the envelope time
width decreases, the spectral width increases. As the envelope becomes so short as not to
fit a single cycle of the original carrier, its own spectral content dominates and not only the
spectral width, but also the effective carrier frequency, increase.

2.2.1 Spectral phase
It is common to express the spectral phase as a Taylor series. So, taking a (somewhat
arbitrary) central frequency ω0

φ(ω) = φ0 + φ′0(ω − ω0) + 1
2!φ
′′
0(ω − ω0)2 + 1

3!φ
′′′
0 (ω − ω0)3 + · · · (2.6)

where

φ0 = φ(ω0), φ′0 = ∂φ(ω)
∂ω

∣∣∣∣
ω=ω0

, φ′′0 = ∂2φ(ω)
∂ω2

∣∣∣∣
ω=ω0

, φ′′′0 = ∂3φ(ω)
∂ω3

∣∣∣∣
ω=ω0

(2.7)

etc. The first term, φ0 is the absolute phase. In most situations it is (or was) discarded:
historically, when the shortest pulses available were still very long compared to the
electric field cycle duration, this phase was usually meaningless. With the advent of
few-cycle pulses, and highly nonlinear effects, this phase can be extremely important
(see Chapter 4 and Section 3.9).

The second term, φ′0, is the group delay. The effect of applying a linear phase in
the spectral domain is a translation in time. So, if one has a given spectrum Ũ(ω),
corresponding to a pulse in time U(t), applying a linear phase term exp(iωτ) shifts
the pulse in time

Ũ(ω)→ U(t)
Ũ(ω)eiωτ → U(t− τ) (2.8)
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Ultrashort Pulses

This term is also often ignored, since usually an external reference is not available,
and therefore the pulse arrival time is not important.

The quadratic term of the expansion is the first that leads to a deformation of the
pulse envelope. It is usually called group delay dispersion (GDD). If a spectral phase
is quadratic the pulse has “pure” GDD. Figure 2.4 shows some examples of how GDD
and higher order phase terms affect the temporal shape of a pulse.

The phase introduced by glasses and other linear elements is usually well described
by a few terms of the Taylor expansion of the spectral phase (see Fig. 2.6), so it is
often very convenient to use the above defined terms.

Figure 2.4: Effect of applying different phases in the spectral domain. A flat phase gives
the shortest possible pulse (top row). Quadratic and higher order phase terms distort the
pulse’s shape and its instantaneous frequency as a function of time.
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2.2.2 Wavelength/Frequency Representation

2.2.2 Wavelength/Frequency Representation
From a numerical point of view, a frequency representation is more advantageous,
since it is easy to go from the time domain to a spectral representation via Fourier
transform. However, it is more common to have a spectrum represented as a function
of wavelength. Even if the conversion is straightforward, there are some issues that
should be taken into account, especially for broadband spectra.

Consider a spectrum measured in the laboratory. Virtually all spectrometers give
as output a curve (that we will denote by Sλ(λ) ), which is a function of wavelength.

Sλ(λ) = dE

dλ

∣∣∣∣
λ

. (2.9)

For a single pulse (or for a defined integration time), this is the spectral energy density.
To convert it to a frequency representation one has to take into account that this is
an energy distribution. The function we want is

Sω(ω) = dE

dω

∣∣∣∣
ω

, (2.10)

and it relates to the measured spectrum as

dE

dω
= dE

dλ

∣∣∣∣ dλdω
∣∣∣∣ . (2.11)

A conversion between the two representations is given by

Sω(ω) = Sλ(λ)
∣∣∣∣ dλdω

∣∣∣∣ = Sλ(λ)2πc
ω2 = Sλ(λ) λ

2

2πc . (2.12)

This is in contrast with, say, converting phase between different representations. If
the phase curve φ(λ) is known, then the phase as a function of frequency is obtained
by just evaluating φ(λ) at the corresponding frequency

φ(ω) = φ(λ)|λ= 2πc
ω
. (2.13)

2.3 Dispersion

2.3.1 Propagation in Dispersive Media

x,-t

Figure 2.5: As an ultrashort pulse goes through a piece of glass, it is stretched in time, and
the instantaneous frequency varies in time. Usually, the longer wavelengths will travel faster.
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Ultrashort Pulses

Special considerations have to be taken into account when dealing with an ultra-
short pulse, due to its broad bandwidth. In general, during propagation in a material,
the carrier and the envelope do not travel at the same speed, and different frequencies
(or wavelengths) have different phase velocities. This leads to a reshaping in time of
the electric field of the pulse. As seen before, two quantities are usually introduced,
the group delay (GD) and the group-delay dispersion (GDD). These can be expressed
not only as a value referring to a central frequency, but also as a function of frequency.
This is often needed when a phase is not conveniently described by a few terms of the
Taylor expansion of the phase. The new quantities are then

GD(ω) = dφ(ω)
dω

(2.14)

and the group delay dispersion (GDD)

GDD(ω) = d2φ(ω)
dω2 (2.15)

other higher order phase terms can be described similarly, i.e., third-order dispersion
(TOD), fourth-order dispersion, etc

TOD(ω) = d3φ(ω)
dω3 (2.16)
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Figure 2.6: Comparison between the phase introduced by 1 mm of BK7 glass calculated
from Sellmeier formulas (thin line) and a fit (thick line) using an expansion up to third-order
dispersion (TOD). Even for such a broad bandwidth, specifying GDD and TOD is enough
for a very accurate phase representation.

The most common situation of propagation in dispersive media one encounters in
practical situations is simply that of glasses and/or gases (i.e., air). For transparent
media, the propagation can be easily described as a spectral phase filter. Consider a
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2.3.2 Dispersion Compensation

transparent medium with a wavelength-dependent refractive index n(ω). The phase
acquired as function of frequency, after propagating through a thickness L is

φ(ω) = k(ω)L = ω

c
n(ω)L (2.17)

so, given a pulse with a spectrum Ũ(ω), after propagation the spectrum will be

Ũ ′(ω) = Ũ(ω) exp
{
i
ω

c
n(ω)L

}
. (2.18)

Convenient ways of fitting refraction index curves to measured data are the use of
Sellmeier equations, which take the form

n2(λ) = 1 + B1λ
2

λ2 − C1
+ B2λ

2

λ2 − C2
+ · · · , (2.19)

or, a little less common, the Cauchy equation

n(λ) = A+ B

λ2 + C

λ4 + · · · (2.20)

An extensive list of Sellmeier formulas for many glasses and crystals can be found in
Ref. [14], and Sellmeier formulas have been adapted to gases, with pressure and tem-
perature dependence included, as shown in Ref. [15]. The effects of linear propagation
in glasses in this thesis were simulated from these formulas (Papers III, IV, and V).

2.3.2 Dispersion Compensation
An obvious solution to compensate for the pulse stretching due to dispersion would be
to use a glass whose dispersion would lead to the contrary effect, that is, where longer
wavelengths would travel slower than shorter ones. Unfortunately, such materials
are not available in the near infra-red (NIR) region where Ti-Sapphire lasers usually
operate, so other methods have been employed.

Gratings and Prisms Compressors

Figure 2.7: Grating compressor. The different wavelengths are dispersed in space and made
to travel different paths. A double pass setup allows the spatial recombination of the different
frequency components.

The first technique designed to introduce negative dispersion used reflection grat-
ings [16] to spatially separate different spectral components, make them travel different
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Ultrashort Pulses

lengths, and recombine them later. This technique led to compression of pulses down
to 30 fs [17] and is still extensively used due to the high amount of negative dispersion
obtainable this way.

Positive dispersion can be obtained by introducing a -1 magnification telescope
between gratings [18]. This is extensively used in chirped pulse amplification (CPA)
chains since often the material dispersion alone is not enough to stretch the pulses
enough to prevent damage (see Section 2.4.2). A common solution is to use an all-
reflective system, like an Öffner triplet [19].

In a similar way to gratings, prisms can also be used [20] (Fig. 2.8). The advantage
is that the losses are usually much lower (especially if they can be used at Brewster’s
angle), at the expense of reduced compactness. Prisms are almost always less diffrac-
tive than gratings, so that larger distances between prisms are needed to provide
enough spatial separation between the different spectral components. Furthermore,
because the light has to traverse glass, there is intrinsic material dispersion that limits
the amount of total negative dispersion achievable [21]. Several schemes exist that are
more suited for amplifiers [21, 22] and combinations of prisms and gratings are also
commonly used (and even grisms, prisms where one of the surfaces is a grating [23]).

Figure 2.8: Prisms compressor. The different wavelengths are dispersed in space and made
to travel different paths. A double pass setup allows the spatial recombination of the different
frequency components (adapted from [24]).

It is interesting to note that refraction always leads to dispersion [25]. While this
effect is often negligible, it might not be the case for extremely broadband pulses.

Chirped mirrors

More recently, dielectric mirrors have been specifically designed in such a way that
the reflection phase compensates for material dispersion [26]. By varying the layers
thicknesses, different wavelengths penetrate different depths into the multilayer struc-
ture (Fig. 2.9). The advantage of such approach is that a mirror can be specifically
designed to have a phase curve that matches a given target, e.g., a glass (Fig. 2.10),
and the reflectivity is usually very high (typically over 99%). While the analysis of
the phase introduced by a multilayer stack (both in amplitude and phase) is reason-
ably straightforward (see e.g. [27, 28]), the reverse engineering problem, i.e., to design
the multilayer stack for getting a certain phase at reflection, is not [29, 30]. A lot of
research is currently performed on the design of chirped mirrors.

Double-chirped mirrors employ an anti-reflection coating and an extra layer struc-
ture [27, 31] that act as an impedance matching from air to the chirped structure
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2.3.2 Dispersion Compensation

itself. This type of mirrors was used in Papers III, IV, V, VI and VII to compress
ultrashort pulses.

Figure 2.9: Simplified schematic of a chirped mirror. By varying the layers’ thicknesses,
different wavelengths penetrate different depths into the multilayer stack. An anti-reflection
coating (not shown) is used between the air-chirped structure interface to minimize impedance
mismatch.

Figure 2.10: Dispersion curves for the double chirped mirrors (DCM) used in Paper VII.
The mirrors are fabricated in matched pairs (here named “green” and “blue”) in such way
that the phase ringing is minimized when used together. The chirped mirrors were designed
for intra-cavity dispersion compensation of a Ti:Sapphire oscillator, but other materials are
still well compensated. The glasses’ curves are inverted to facilitate visualization.

Pulse Shapers

A pulse shaper is a device that allows for arbitrary spectral phase manipulation. The
most common approach consists in separating different optical frequencies in space,
and applying some spatial filter in order to shape the different spectral components
[32–34]. Figure 2.11 shows the basic principle of such device: the grating separates the
different wavelengths to different directions, and a lens focuses each of these frequency
components to some element which is capable of manipulating either the phase or
amplitude (for example, a spatial-light modulator). A symmetric arrangement recom-
bines the pulse. There are many variants for such devices, using different dispersion
methods (e.g., prisms instead of gratings), focussing elements (e.g., mirrors instead of

12



Ultrashort Pulses

lenses) and modulators (e.g., acousto-optic modulators instead of spatial-light modu-
lators) [35–37].

Figure 2.11: Working principle of a pulse shaper. The incoming beam is dispersed on a
grating (left) and separated in its different spectral components. An imaging optical element
(in this case, a lens) focuses each spectral component in space. Active (e.g. spatial light
modulators) or passive (e.g. wedges) elements are used to modulate the spectral amplitude
and/or phase. The different spectral components are then recombined.

A different kind of pulse shaper was extensively used in the experiments carried out
in Lund. It is based on an Acousto-Optic Programmable Dispersive Filter (AOPDF)
[38], usually named DAZZLER (commercial name). An acoustic wave co-propagates
with a given pulse, and the acoustic wave’s phase can be “imprinted” to the optical
field. This is accomplished by controlling the coupling between two crystal axes (see
Fig. 2.12).

FAST AXIS

SLOW AXIS

"CHIRPED" ACOUSTIC WAVE

Figure 2.12: Principle of an Acousto-Optic Programmable Dispersive Filter (AOPDF). An
acoustic wave is sent to the optical crystal, creating a refraction index grating. As the light is
much faster than the sound, the incoming pulse “sees” a stationary grating. This couples the
light from one crystal axis to the other. Since the two crystal axes have different propagation
speeds, different frequency components can be made to have an effective transit time shorter
or longer, depending on the shape of the acoustic wave.

This approach has the advantage of a collinear arrangement, which makes align-
ment easy, and the whole system is very compact.

13



2.4 Generation

2.4 Generation

2.4.1 Mode-locked Lasers
The generation of ultrashort pulses is usually done using mode-locked lasers. The main
idea behind it is to have laser emission on as many cavity modes as possible: if their
phases are synchronized, this leads to a pulse buildup in the time domain. State-of-
the-art lasers deliver pulses with a duration very close to a single cycle [39–42].

+
=

df

τ=1/df

~1/Δf

Δf f

t

Figure 2.13: Coherent addition of 30 consecutive modes of a cavity (left), leading to the
creation of a pulse. The cavity frequency spacing, determined by the cavity length, determines
the distance in time between consecutive pulses. The gain bandwidth determines the shortest
duration obtainable for the pulses.

The basic difference between a “common” laser and a mode-locked laser is that
in the former the operation is mostly monochromatic whereas in the latter a large
bandwidth is desired.

Moulton [12] first studied Titanium-doped Sapphire as a laser medium, and its
broad gain bandwidth makes it the material of choice for current state-of-the-art
ultrashort laser systems. Other characteristics, such as a good thermal conductivity,
high quantum efficiency, and mechanical strength make Ti:sapphire the most used
gain medium for ultrashort lasers.

While a broad gain bandwidth is necessary to produce short pulses, it is not enough.
Even if a gain medium has a large gain bandwidth, typically a laser based on such
medium will not emit on a large bandwidth, but only on a narrow one: mode competi-
tion will usually lead to single frequency operation for the mode with the highest gain.
Besides, the phase between different spectral components needs to be synchronized to
achieve short pulses. Some mechanism to induce a broad bandwidth operation, as well
as modelocking, is necessary.

Most modern ultrashort lasers based on Ti:sapphire work on the Kerr-lens mode-
locking (KLM) method: the basic idea is to make the laser cavity more stable when
higher intensities are present, to favor mode-locked operation compared to CW oper-
ation. This can be achieved by carefully designing the laser cavity.
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Figure 2.14: Schematic of an ultrafast oscillator. Typical configurations are Z-shaped (as
shown) or X-shaped (when the curved mirrors are oriented such that the beam crosses). Real
oscillators will include dispersion management components (not shown) such as glass wedges,
chirped mirrors and/or prisms (adapted from [43]).

Cavity Stability

Many textbooks on lasers have detailed analysis about cavity stability (e.g. [44–46])
using the ABCD matrix formalism for Gaussian beams. Here, we will mainly take a
closer look at specific details concerning ultrashort pulse mode-locked lasers. A good
analysis of ultrashort-specific issues can be found in [47].

To avoid losses, the gain medium is often used at Brewster’s angle. This introduces
an asymmetry between the tangential and sagittal planes, leading to an astigmatic
cavity. This can be compensated for by using off-axis focusing mirrors [48]. Off-axis
optical elements can also be represented using an ABCD matrix formalism [49], but
now the sagittal and tangential planes have to be considered separately.

A typical design criteria for KLM oscillators is to somehow favor the mode-locking
operation compared to the CW operation. This can be done by designing the cavity
to be more stable for the ML mode, to have a higher gain on the ML mode, or both.

The cavity stability can be studied by considering the round-trip propagation: if
the cavity is stable, the beam will not diverge as the number of round-trips grows.
This can be expressed as [44, 46]

−1 < S′ < 1 (2.21)

S′ = A+D

2 . (2.22)

Defining
S = 1− S′2, (2.23)

the stability condition can be written as

S > 0. (2.24)

For a given cavity, the beam characteristics of the fundamental Gaussian mode
can be determined by noting that, after a round-trip, the beam becomes the same. It
follows from this that the wavefronts at both the back-mirror and the output coupler
are flat (R = ∞). These conditions fully determine the cavity modes, and it is then
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2.4.2 Chirped-Pulse Amplification

straightforward to calculate the beam size and curvature at any given point inside the
cavity.
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Figure 2.15: Mode size inside the crystal (left) and cavity stability as a function of distance
L2 (adapted from [43]).

Mode-locked operation can be simulated by introducing a lens in the gain medium.
This is a simple way to take into account Kerr lensing which will occur if there is
enough intensity in the crystal. It is then possible to design a cavity that will privilege
mode-locking operation compared to CW operation. This can be achieved by choosing
the cavity parameters in such a way that cavity is more stable for ML operation
(Fig. 2.15), and the pump laser’s mode can be optimized to match the ML mode better
than the CW mode (Fig. 2.15). This is usually called soft aperturing, in contrast to
actually using a (real) hard aperture to introduce losses on the CW mode.

2.4.2 Chirped-Pulse Amplification
Chirped-Pulse Amplification (CPA) was first introduced by Strickland and co-
workers [50] and became a standard tool for high-energy, short pulse production.

Optical amplification of ultrashort pulses is problematic due to the high instan-
taneous intensities achieved. The solution around this consists in chirping the pulse
(thus making it longer in time), amplifying it, and later compressing it (Fig. 2.16).2
This avoids the high intensities in the gain medium, while allowing energy transfer
to the pulse. Afterwards, the pulse can be spatially expanded and temporally com-
pressed, keeping the intensity at safe levels. Chirped pulse amplifiers were extensively
used both in Porto and in Lund, each having different characteristics (see Section 2.6).

2.4.3 Spectral Broadening in a Hollow-Core Fiber
Spectral broadening and posterior pulse compression with a hollow-core gas-filled fiber
was first introduced by Nisoli [53] and has become a workhorse for the generation
of high-energy, ultra-short pulses [54–58]. Nonlinear propagation of pulses leads to

2A different scheme that consists in splitting the pulse in many replicas and later recombining
them [51, 52] has also been used, but is not very popular, as it is not suited for pulses in the
femtosecond regime.
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PUMP

STRETCHER AMPLIFIER COMPRESSOR

FROM OSCILLATOR

Figure 2.16: Schematic of a CPA chain. A dispersive element is used to make the pulse
longer (sometimes, as shown, a glass element, or some other dispersive element, as a grating
stretcher), typically to durations of a few picoseconds to hundreds of picoseconds. The pulse
can then be safely amplified while keeping instantaneous intensities below damage threshold.
After amplification, the pulse generally has a smaller bandwidth due to gain-narrowing in
the amplification process. Negative dispersion is then introduced to compress the pulse in
time, typically to approximately 30 fs.

FROM AMPLIFIER
~ 30fs, 1mJ

COMPRESSED
~ 6fs, 200μJ

GAS-FILLED TUBE
W/ HOLLOW FIBER

CM

CM

Ag

LENS

LONGER, BUT WITH
BROADER SPECTRUM

M1

Figure 2.17: Simplified schematic of a hollow-core fiber compressor. The pulse is contained
inside the hollow fibre, allowing for a larger interaction distance. Nonlinear effects lead to spectral
broadening, and, together with the gas dispersion, to a chirping of the pulse. Chirped mirrors are
used to flatten the spectral phase and produce shorter pulses.

spectral broadening, which in turn allows one to create shorter pulses, since more
spectral content is now available.

Contrary to normal waveguides, where the light is in principle completely confined,
in a hollow-core fiber the transmission is intrinsically lossy. This happens because,
while in a typical fiber (like the ones used for communications) the refractive index
is higher in the center, the opposite occurs in a hollow-core fiber (which is usually
filled with a gas). Still, solutions exist with acceptable losses for small propagation
distances, which are of interest since it allows one to maintain the propagation of a
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2.4.3 Spectral Broadening in a Hollow-Core Fiber

relatively small sized mode for a longer distance than would be possible in free-space,
due to diffraction. Keeping a small mode size is necessary to induce nonlinear effects.

The mode of interest is the EH11 [59] which is fortunately also the easiest to couple
into. A typical CPA-based system produces a beam with a spatial mode which can
usually be approximated by a Gaussian beam. It is then useful to study the best
coupling between a Gaussian beam and the EH11 mode of a hollow-fiber. For a fiber
with a radius a, and in the approximation a � λ, the intensity profile of such mode
is [59]

IEH11(r) = I0J
2
0

(
2.405r
a

)
, r < a, (2.25)

where J0 is the zeroth-order Bessel function of the first kind. We want to couple a
Gaussian beam into it:

IGauss(r) = I0 exp
(
−2r2

w2
0

)
. (2.26)

The maximum coupling between modes can be found by maximizing

η =
∫ ∞

0
UEH11(r) · UGauss(r)dr, (2.27)

where UEH11(r) and UGauss(r) are the corresponding modes’ amplitudes, and both
fields have been normalized to unity energy. The best matching is obtained for w0 '
0.65a, giving an efficiency of ∼ 98% (see Fig. 2.18).
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Figure 2.18: Comparison between the EH11 mode of a hollow fiber and the best-matching
Gaussian. The dashed line is a zeroth order Bessel function of the first kind, which is the
EH11 mode in the central lobe.

To couple the laser beam into the fiber a lens or a focusing mirror is used. For
Gaussian beam propagation the spot size w0 at the focus is related to the beam radius
before focusing wL by

w0 = λf

πwL
, (2.28)
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so we can easily find which focusing distance should be used

f = 0.65πawL
λ

. (2.29)

The dynamics of spectral broadening in hollow-core fibers are very complex, and the

Figure 2.19: Example of a spectrum obtained by broadening in a hollow-core fiber (from
Paper VI). The spectral phase and the time-domain reconstruction were obtained using the
d-scan technique (Papers III and IV). The pulse duration is 4.5 fs FWHM.

output of such systems is very sensitive to the input parameters. The main broadening
mechanism is usually self-phase modulation (SPM) due to Kerr effect, but other effects
must be taken into account, such as plasma effects from the gas ionization and the
linear dispersion.

Hollow-fiber setups were built in Porto and in Lund. Figure 2.19 shows some
experimental results obtained with the Porto setup. Due to the strong nonlineari-
ties inherent to the spectral broadening process, the spectral phase from such pulses
usually exhibit strong and fast phase variations. This, together with the broad band-
width, makes the characterization of pulses from hollow-core fibers challenging, and
was the main reason for the development of the “d-scan” technique (see Section 3.8
and Papers III and IV).

Different ways of spectral broadening are often used, like filamentation [60], where
no hollow fiber is used to guide the light, but instead the nonlinear Kerr lensing and
diffraction compensate each other to keep a small mode. All these techniques are hard
to scale for higher energies while keeping a compact setup. Alternatives exist, such as
broadening with planar waveguides [61, 62].

2.5 Second harmonic generation

In this section we will take a closer look at second harmonic generation (SHG) for the
special case of ultrashort laser pulses. In most nonlinear optics books the SHG signal
is derived for the specific case of a monochromatic wave, or, in some cases, for the
sum of a few monochromatic waves. For the case of SHG a typical expression would
be

I(2ω,L) =
2ω2d2

effL
2

n2ωn2
ωc

3ε0

(
sin(∆kL/2)

∆kL/2

)2
I(ω)2, (2.30)
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2.5 Second harmonic generation

Figure 2.20: Second harmonic generation spectra for different dispersion curves. Left
column shows the fundamental spectra and corresponding SHG spectra (notice the doubled
frequency axis on the SHG spectra) and the right column shows the pulse in the time domain.
As the phase inflection point is shifted to higher frequencies (left column, top plots), the main
pulse instantaneous frequency increases (left column) leading to a peak SHG signal at the
corresponding doubled frequencies (left column, bottom plots).

where L is the medium (SHG crystal) length, deff is the effective nonlinear suscepti-
bility for the considered wavelengths, and ∆k = k(2ω)−2k(ω) is the phase mismatch.

Since this is not a linear process, to find the response from a polychromatic pulse we
cannot simply decompose the input in monochromatic waves (i.e. Fourier transform
it), calculate the signal as a function of frequency and add it all up together. Instead,
we would have to go back to the nonlinear coupled equation. Fortunately, there is
a simple model that gives very good results, with the condition that the conversion
efficiency is low, and it is very commonly used in the context of ultrashort pulse
characterization. It consists in simply taking the pulse in time, squaring it, and
taking the Fourier transform again to find the spectral amplitude:

F {} ∧2 F {}−1

Ũ(ω) → U(t) → U(t)2 → ŨSHG(ω) (2.31)
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so

Sideal(ω) =
∣∣ŨSHG(ω)

∣∣2 (2.32)

=
∣∣∣∣∣
∫ (∫

Ũ(Ω) exp(iΩt)dΩ
)2

exp(−iωt)dt
∣∣∣∣∣
2

(2.33)

=
∣∣∣∣∫ Ũ(Ω)Ũ(ω − Ω)dΩ

∣∣∣∣2 . (2.34)

Deviations from this simple model to more complex models can be taken into account
by adding a spectral filter R(ω) to the measured SHG spectrum [13, 63]

Smeas(ω) = Sideal(ω) ·R(ω). (2.35)

This is a good approximation even near the single-cycle regime, and for non-collinear
SHG geometries [63, 64]. This model is assumed correct for many characterization
methods (like autocorrelations and FROG, see Chapter 3), but care must be taken to
ensure that it is legitimate to do so, in particular including the nonlinearity bandwidth.

This simple model can give some insight into how the SHG spectrum shape looks
like for different kinds of spectral phases. Figure 2.20 shows some examples of typical
spectral phases and corresponding time profiles and SHG spectra: a rule of thumb is
that, when the phase has an inflection point at a given frequency ω0 (which means
that GDD(ω0) = 0), then the neighboring frequencies will constructively interfere in
time. This leads to a main pulse whose frequency content mostly originates from that
spectral region (Fig. 2.20, right column). Since the SHG process is nonlinear, the
conversion efficiency from this main pulse will dominate, and the SHG spectrum will
have a higher content from this main pulse, with the corresponding frequency of 2ω0.

This analysis is the basis for determining the phase of a pulse using the MIIPS
technique (see Section 3.7) and the d-scan technique in Papers III and IV.

2.6 Experimental Laser Setups

Three laser setups were mainly used during the work performed for this thesis: two
CPA laser systems in Lund and one in Porto.

One of them is part of the Lund Laser Center high power facility, and the low-
energy part (around 100 mJ, 35 fs, 10 Hz repetition rate) of this beam was available
for the HHG source described in Papers VIII and used in Paper IX. This laser system
was used purely as a tool, and no work on the laser itself was performed during the
work presented on this thesis.

The other two systems were lower energy, and active work was carried out on
optimizing them.

Both are based on similar CEP-stabilized ultrafast oscillators (FemtoLasers Rain-
bow). It is a chirped-mirror based Kerr-lens modelocking system, which can deliver
a spectrum with a bandwidth around 800 nm, supporting 6 fs pulses. The repetition
rate is of about 80 MHz and the energy per pulse is of about 2 nJ. Both systems are
schematically depicted on Fig. 2.21.
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2.6.1 Laser System in Lund

Figure 2.21: Schematic representation of the laser system in (a) Lund and (b) Porto. A
detailed description is given in the text. OSC - oscillator; AOM - acousto-optic modula-
tor; APD - avalanche photodiode; PD - photodiode; AOPDF - acousto-optic programmable
dispersion filter; ISO - optical isolator (Faraday rotator); TOD CM - third-order dispersion
chirped mirrors; SP - spectrometer; PC - personal computer.

2.6.1 Laser System in Lund
The Lund CPA chain has two amplification stages: the first one is a regenerative am-
plifier and the second one is a multipass amplifier. Before the first amplifier the pulses
are sent through an AOPDF (Fastlite Dazzler), which allows to fine-tune the compres-
sion (since dispersion is linear, higher-order dispersion terms can be pre-compensated)
and also allows for spectral shaping. A Faraday rotator is used as an isolator to pre-
vent unwanted reflections or leakages from the high power pulses to couple into the
oscillator. A grating stretcher, based on an Õffner triplet is used to stretch the pulses
to a duration of around 200 ps. In the regenerative amplifier, the pulses are amplified
to an energy of about 0.4 mJ after around 12 passes, and the repetition rate is reduced
to 1 kHz.

The second amplification stage uses a multipass (five passes) bow-tie configuration,
without focusing. The amplifying crystal is kept in vacuum, and it is cryogenically
cooled to -80º C. At this stage the beam has a diameter of about 1 mm. Depending on
the desired output power, it can be pumped by one or two Q-switched Nd:Ylf lasers,
with 30 W and 20 W of average power. At maximum power, up to 10 W can be
extracted, corresponding to 10 mJ per pulse. This pulse is then spatially expanded
to a diameter of about 2 cm, and compressed with a grating compressor. Most of the
experiments were done using pulses energy lower than the maximum. A typical used
value was of 3 mJ per pulse.

Papers I and II describe this system in detail, as well as the work carried out on
its CEP stabilization, and it was the source for the HHG and attosecond setup used
in Papers X and XI.
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2.6.2 Laser System in Porto
The other used laser system is a commercially available amplifier (Femtolasers Fem-
toPower Compact PRO CEP), which includes the above-mentioned ultrafast oscillator.
The pulses are also sent through a Faraday rotator for optical isolation, and through a
glass stretcher, which stretches the pulses to about 20 ps. Specially designed chirped
mirrors are used to pre-compensate for the dispersion mismatch between the total
amplifier dispersion and the prisms compressor. The beam is then sent to a multipass
amplifier. It is a nine pass amplifier, and the beam is focused in the gain medium
at each pass (focusing length of 50 cm) with spherical mirrors. After four passes, a
Pockels cell pulse-picker selects pulses at 1 kHz repetition rate, and they are sent back
into the amplifier. After five more passes the pulses are extracted and compressed
with a Proctor-Wise prism compressor [21, 22]. The final compressed pulses have
1 mJ energy per pulse, with a duration of less than 30 fs.

The oscillator in Porto was used in Papers III, V and VII. The amplified output
was used for hollow-core fiber compression, which was used in Papers IV and VI.
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Chapter 3

Characterization

3.1 Introduction

So we have ultrashort pulses. How do we know we really have them?
Suppose that we are doing some time measurement, like, for example, reading

some voltage as a function of time on an oscilloscope. The measurement device can be
characterized by its spectral response H(ω) or, equivalently, by its impulse response
function h(t). So let us suppose that we are trying to measure a voltage v(t) with
such system. The signal that we will actually read, s(t) is given by1

s(t) = v(t)⊗ h(t), (3.1)

where ⊗ denotes convolution. In the limiting case where h(t) is much shorter than any
feature of v(t), it can be approximated by a Dirac delta function, and the measured
quantity faithfully represents the physical quantity v(t). This can also be represented
in the spectral domain by

S(ω) = V (ω) ·H(ω) (3.2)

and the problem can be seen as a bandwidth one: if h(t) is short, then its bandwidth
is large. If H(ω) is flat (or at least larger than the noise level) in the region containing
V (ω), then S(ω) will contain the necessary information about V (ω).

Unfortunately, this kind of measurement is usually not realizable with ultrashort
pulses. Since we do not have an oscilloscope fast enough to measure the intensity
variations on such a short time scale (~fs), and much less to actually resolve the
underlying electric field (or, equivalently, to measure the phase as well), other type of
approaches are needed.

A lot of work has been devoted to the problem of characterizing ultrashort events
in the last decades. A good review on characterization can be found in Ref. [65]. Below
a short introduction is given to techniques and principles used during this work.

1This assumes the system is linear.
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3.2 Spectral Interferometry

3.2 Spectral Interferometry

If a broadband, well-characterized reference pulse is available, then it is straightforward
to characterize another pulse. For that, one can use spectral interferometry. Usually
that isn’t the case though, so it will still be necessary to characterize a reference pulse.
It is also an extremely useful technique to characterize linear elements (for example,
glasses and chirped mirrors) and the fundamentals of spectral interferometry will be
useful for later discussing a complete technique (SPIDER).

Spectral interferometry was first used in the 1970’s [66, 67] to characterize disper-
sion characteristics of optical fibers. The concept is similar to holography [67, 68] but
in the time domain instead of spatial domain.

Consider two ultrahort laser pulses, again described in the spectral domain

Ũ1(ω) = |Ũ1(ω)| exp(iφ1(ω)) (3.3)
Ũ2(ω) = |Ũ2(ω)|exp(iφ2(ω)). (3.4)

If they are combined, then the resulting field is simply the sum of the spectra, added
coherently. A typical case is when a pulse is split in two (like, for example, with the
Mach-Zender interferometer in Fig. 3.3), each replica goes through different glasses,
for example, and the replicas are delayed with respect to each other. Then

Ũ(ω) = |Ũ(ω)|exp(iφ(ω)) (3.5)
Ũ2(ω) = Ũ(ω)eiϕ(ω)eiωτ , (3.6)

where ϕ(ω) is the phase introduced by the glass (or some other thing) and τ is the
delay. ϕ(ω) could of course include the delay term but we’ll keep it as it is for clarity.

The measured power spectrum is then

S(ω) = |ŨT (ω)|2 = |Ũ(ω) + Ũ(ω)eiϕ(ω)eiωτ |2 (3.7)
= 2|Ũ(ω)|2 + |Ũ(ω)|2eiϕ(ω)eiωτ + |Ũ(ω)|2e−iϕ(ω)e−iωτ (3.8)
= 2|Ũ(ω)|2 (1 + cos{ϕ(ω) + ωτ}) (3.9)

and will be, in general, a fringe pattern2. The spacing between fringes will depend
on the time delay and phase difference between the replicas. If done correctly, it
is possible to extract the spectral phase difference ϕ(ω) between them. The delay
τ leads to the spectral phase ωτ , which effectively translates the phase information
ϕ(ω), similarly to what happens with off-axis holography. If the carrier frequency is
high enough, the different terms in Eq. 3.8 can be separated by Fourier transforming
them.

2It might seem counter-intuitive that two pulses well separated in time interfere. In order to
properly resolve the spectral fringes they must actually be well separated, otherwise the fringes will
not properly sample the spectral envelope. It just happens that a spectrometer stretches the pulses
(see, e.g. [69]): if a spectrometer (for example, a CCD spectrometer) has a resolution of dω, with
each pixel taking the whole corresponding area, then a light field reaching a given pixel must be at
least ∼ 1/dω long. The spectrometer resolution thus defines how well separated two pulses can be
while still being possible to have interference fringes.
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Figure 3.1: Retrieving phase information from a spectral interference pattern. In this
example, a pulse with a flat phase (a reference pulse) and a chirped pulse are sent to a
spectrometer. Both pulses have the same spectral power (dashed line in (b)) but the test pulse
has a quadratic phase (gray line in (b)), and they interfere to give the spectral interference
pattern (b). Fourier transforming this interference pattern yields the result in (c), which
consists on a cross-term (at ‘zero’ delay) and two terms which contain the phase difference
between the test and the reference pulse. Isolating the term with positive delay and Fourier-
transforming back to the spectral domain we obtain the test pulse’s spectral phase (gray line
in (d)).

F{S(ω)} = 2F
{
|Ũ(ω)|2

}
+

+ F
{
|Ũ(ω)|2eiϕ(ω)eiωτ

}
+

+ F
{
|Ũ(ω)|2e−iϕ(ω)e−iωτ

}
(3.10)

F{S(ω)} = 2F
{
|Ũ(ω)|2

}
+

+ F
{
|Ũ(ω)|2eiϕ(ω)

}
⊗ δ(t− τ)+

+ F
{
|Ũ(ω)|2e−iϕ(ω)

}
⊗ δ(t+ τ) (3.11)

If the terms are displaced enough (i.e., τ is large enough) then the “sidebands” are
well separated from the DC term, and can be filtered. Fourier transforming back to
the spectral domain gives us the original spectral phase (Fig. 3.1).

3.3 Spatiotemporal Characterization

A particularly simple implementation of spectral interferometry can be done using
optical fibers [70, 71]. The implementation schematically shown in Fig. 3.2 has been
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3.4 Autocorrelation
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Figure 3.2: Spatiotemporal characterization with spectral interferometry. Optical fibers
are used to probe light on different small portions of a beam.

used in Papers V and VI to characterize, in space and time, ultrashort light pulses.
This arrangement has the advantage that the recombination of the beams is done with
a fiber coupler, making it alignment-free. The two different light paths are balanced
such that the dispersion introduced by the two different fibers are the same (or as close
as possible). Since spectral interferometry depends only on the phase differences, the
spectral pattern measured does not depend on the fiber length. If a reference pulse,
whose temporal characteristics are known, is available, then one of the fibers can be
used as a reference. Another fiber can be used to scan the spatial extent of another
beam. This is specially useful to measure a pulse whose spectral characteristics vary
across its profile, and can also measure spatial deformations of a beam. A high spatial
resolution can be achieved by using fibers with small-sized cores. Since the detection
is linear, the sensitivity is quite high, so small amounts of energy are enough. This
technique was used together with the d-scan technique (see Section 3.8) to characterize
in space and time ultrashort laser pulses.

Spectral interferometry is a powerful (and often overlooked) technique, and was
used often during the context of this work. It is very useful for finding the time overlap
between pulses, for the characterization of linear elements (for example, glasses and
dielectric mirrors), and ultrashort pulses, when a reference is available.

3.4 Autocorrelation

An autocorrelation uses the pulse itself as a gate. The fundamental idea of an au-
tocorrelation is to create two replicas, and delay one with respect to the other. By
scanning this delay, insight into the pulse duration can be obtained by using some
nonlinear detection [72].

The most basic autocorrelation is the field autocorrelation, and it can be real-
ized with a collinear interferometer and a linear detector (Fig. 3.3). Unfortunately, it
contains no phase information about the pulse: the Fourier transform of the field auto-
correlation is simply the spectrum of the pulse. If, however, there is a phase difference
between the two pulses, this phase can be measured, just as in spectral interferometry.
In principle it can yield the same information as spectral interferometry, and it has
some advantages and some disadvantages.
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BEAM
SPLITTER

MIRROR

DELAY DELAY

SHGDETECTOR

Figure 3.3: Mach-Zehnder interferometer. Collinear (left) and noncollinear (right) versions.

Figure 3.4: Intensity and interferometric autocorrelations for three typical cases: pulse
with a Fourier limited Gaussian spectrum, and the same spectrum with pure GDD and pure
TOD. The intensity correlation can be directly measured or be obtained numerically from
the interferometric autocorrelation.
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3.4.1 Interferometric Autocorrelation

3.4.1 Interferometric Autocorrelation
Much more useful is the nonlinear interferometric autocorrelation (IAC). It can be
realized optically with a collinear interferometer having, instead of a linear detector, a
nonlinear process. The most commonly used one is the second-order autocorrelation,
and it can be done using a SHG crystal, or using a nonlinear detector [73, 74]. Its
form is

IAC(τ) =
∫ {

[E(t− τ) + E(t)]2
}2
dt (3.12)

and it gives more insight into the phase of the pulse (see Fig.3.4). Because the inter-
ference fringes depend on the spectral content of the pulse compared to its replica, the
presence of chirp can be inferred from the fringes’ washout. The optical realization of
an IAC is done with a collinear interferometer, and the signal is not background-free.
This has advantages and disadvantages: The theoretical contrast between the peak
value of an IAC and its background is 8:1, so this is a good check for the quality of
a measurement. On the other hand, the interferometric nature of the measurement
increases the necessary sampling to properly resolve the fringes.

3.4.2 Intensity Autocorrelation
The intensity autocorrelation

AI(τ) =
∫
I(t)I(t− τ)dt (3.13)

is widely used, and it can be realized experimentally with the noncollinear setup shown
in Fig. 3.3. Since the SHG signal is spatially separated from the fundamental field,
the measurement can be done background-free. Because it is not interferometric, the
delay sampling is less demanding than in the interferometric case.

Intensity autocorrelations can also be obtained by low-pass filtering an interfer-
ometric autocorrelation (see Fig. 3.4). This is especially useful when a noncollinear
geometry is not possible.

Equations 3.12 and 3.13 assume a flat spectral SHG response (see Section 2.5).
Care must be taken to ensure that this is indeed the case: in some cases, a smaller
SHG bandwidth can lead to an autocorrelation whose width is smaller than it should
[64], therefore the real pulse duration will be underestimated.

Autocorrelations have been extensively used for ultrashort pulse measurements.
More complex analysis can be done to extract further information: iterative methods
to get phase information from correlations and spectra [63, 75, 76] are often used. In
Paper VII autocorrelations were used to estimate the pulse width and peak intensity
of ultrashort pulses from an ultrafast oscillator achievable at the focus of a microscope
objective, using chirped mirrors for compression.

3.5 Frequency-Resolved Optical Gating (FROG)

A lot more information about a pulse can be obtained by spectrally resolving the auto-
correlation signal. That is, instead of simply measuring the SHG power as a function
of delay, one measures the spectrum. The resulting 2D trace yields phase information
about the pulse. Instead of SHG generation, other nonlinearities can be used, yielding
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nonlinearity Esig(t, τ)
SHG E(t)E(t− τ)
PG E(t)|E(t− τ)|2
SD E(t)2E∗(t− τ)
THG E(t)2E(t− τ)

Table 3.1: FROG signal for different nonlinear processes. SHG: second harmonic generation,
PG: polarization gating, SD: self-diffraction, THG: third harmonic generation

even more information. The concept of frequency resolved autocorrelations had been
introduced before (for example [77]) and it was known that the signal depended on
the spectral phase of the pulse. Later, iterative algorithms were used to extract the
pulse’s phase from these traces, with the generic name of FROG (Frequency Resolved
Optical Gating) [78–80].

A FROG trace can give an intuitive representation in the time-frequency domain
of an ultrashort pulse, being formally equivalent to a spectrogram3[64, 80, 82].

The generic form for a FROG trace is:

S(ω, τ) =
∣∣∣∣∫ E(t)G(t− τ)e−iωtdt

∣∣∣∣2 (3.14)

also often written as
S(ω, τ) =

∣∣∣∣∫ Esig(t, τ)e−iωtdt
∣∣∣∣2 (3.15)

where G(t) is usually called the gate. Esig(t, τ) is indicated for different nonlinear
processes in Table 3.1. Even if most commonly the gate is related to the electric field
E(t) it is not necessarily so. For the most simple case of SHG FROG,

S(ω, τ) =
∣∣∣∣∫ E(t)E(t− τ)e−iωtdt

∣∣∣∣2 , (3.16)

the gate is simply the field itself. This form of FROG can be experimentally realized
with a noncollinear autocorrelator (Fig. 3.3). Numerical iterative algorithms are used
to extract the pulse information from the measured FROG traces. These are usually
based on generalized projection algorithms [23, 83, 84] and are robust and mature
methods.

There are many variants of FROG available, each with different strengths and
weaknesses. For example, single-shot versions [85], and interferometric versions of
FROG [86, 87] are often used. Single-shot measurements are obviously attractive
(but require higher pulse energy than multi-shot). Collinear [86, 87] versions have
the advantage of increased bandwidth, and extra information is obtained which allows
further cross-checking and validation of the data. The disadvantage of such scheme is
the increased resolution needed to resolve the FROG trace.

3Other ways of representing ultra-short pulses are sometimes used, for example, the chronocyclic
representation [81] which is the ultrashort pulse analog of the Wigner distribution. These represen-
tations are powerful tools for the analysis of ultrashort pulse.
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3.6 Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPIDER)

Figure 3.5: Simulated FROG traces for SHG FROG (cental column) and PG (right column).
Top to bottom: Fourier-limited pulse (6 fs FWHM), same spectrum but with pure GDD
(30 fs2), pure TOD (340 fs3), and pure FOD (2000 fs4).

It turns out that if the gate G(t) is independent of the field to be recovered E(t),
then both can in principle be recovered [23, 88]. The FROG retrieval method is also
used for attosecond pulse characterization (see Section 4.4.3).

3.6 Spectral Phase Interferometry for Direct Electric-field
Reconstruction (SPIDER)

A different approach to ultrashort pulse measurement relies on spectral interferometry.
We have previously discussed how linear interferometry can only give us relative phase
information (3.2), so it needs a reference. A different approach, while still using
spectral interferometry, was devised by Iaconis and Walmsley [89]. It relies on spectral
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shearing. The basic idea is, if one can take a spectrum, shift it (phase included), and
interfere it with the original one, then the spectral interference fringes do depend on
the original spectrum’s phase.
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Figure 3.6: Spider retrieving algorithm. A pulse and its sheared replica are combined to
produce interference fringes. A Fourier analysis of this fringe pattern allows its phase to
be retrieved. The phase which is directly retrieved from this interference pattern is not the
original pulse’s phase, but instead related to the original pulse’s group delay.

Consider a complex spectrum and its sheared and delayed replica

Ũ(ω) = |Ũ(ω)|eiφ(ω) (3.17)
Ũs(ω) = Ũ(ω − Ω)eiωτ = |Ũ(ω − Ω)|eiφ(ω−Ω)eiωτ . (3.18)

The measured spectral intensity of the two pulses combined is then

S(ω) = |Ũ(ω) + Ũs(ω)|2

= |Ũ(ω)|2 + |Ũ(ω − Ω)|2+
+ |Ũ(ω)||Ũ(ω − Ω)|ei{φ(ω)−φ(ω−Ω)}e−iωτ

+ |Ũ(ω)||Ũ(ω − Ω)|ei{−φ(ω)+φ(ω−Ω)}eiωτ . (3.19)

Proceeding as before (Section 3.2), the term around −τ can be isolated, thus retrieving
φ(ω)− φ(ω − Ω). For a small shear Ω

GD(ω) ' φ(ω)− φ(ω − Ω)
Ω , (3.20)

and the phase φ(ω) can be obtained by integration.
In practical SPIDER implementations (Fig. 3.7), instead of spectrally shearing

one of the replicas, both are sheared, but by slightly different amounts, using sum-
frequency generation. Mixing the fundamental pulse with a quasi-monochromatic
field in a sum frequency generation (SFG) crystal yields a spectral shift. To achieve

33



3.7 Multiphoton Intrapulse Interference Phase Scan (MIIPS)
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Figure 3.7: Schematic of a typical SPIDER setup. The pulse to be measured is split into a
replica and a chirped pulse. The replica is further divided into two replicas, which are later
mixed with the chirped pulse in a sum frequency generation (SFG) crystal. If the chirped
pulse is stretched enough, then each replica will only “see” a monochromatic part of the field.

different spectral shifts for the two replicas, a chirped beam is usually employed as the
quasi-monochromatic beam, which is obtained from the pulse to be measured itself.
Then, the time delay between the replicas determines not only the carrier ωτ but also
the shear Ω.

There are several SPIDER-related techniques designed to increase the robustness
and to deal with spectral “holes” [90, 91], as well as variants that decrease the high
spectrometer resolution which is often necessary (for example, Spatially-Encoded Ar-
rangement SPIDER (SEA-SPIDER) [92] and two-dimensional spectral shearing inter-
ferometry (2DSI) [93]).

3.7 Multiphoton Intrapulse Interference Phase Scan (MIIPS)

Another approach has been taken to the characterization of ultrashort laser pulses. It
is based on applying a set of different spectral phase curves to an unknown spectral
pulse, combined with nonlinear detection [94–97]. It is a convenient technique to be
used with pulse shapers and/or compressors in general, as it is often the case that
most of the experimental setup needed to measure the pulse is already present (either
in the form of a pulse shaper or a compressor).

The typical implementation of MIIPS uses a pulse shaper, but it can be done with
passive elements as well, like gratings or prisms compressors [96]. Let us again consider
an ultrashort laser pulse in the spectral domain, with an intrinsic spectral phase φ(ω)

Ũ(ω) = |Ũ(ω)| exp{iφ(ω)} (3.21)

If a spectral phase ϕ(ω) is applied, (with a passive element or with a pulse shaper),
and the pulse is sent to a SHG crystal, the SHG signal will depend on the intrinsic
φ(ω) and the applied ϕ(ω) phases (see section 2.5).

Applying a phase function as suggested in Ref. [95]

ϕ(δ, ω) = α sin(γω − δ) (3.22)
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Figure 3.8: Examples of MIIPS traces for some representative spectra. FWHM for the
Fourier limited spectrum is 6fs.

the SHG signal becomes

S(ω, δ) =
∣∣∣∣∣
∫ (∫

Ũ(Ω) exp{iϕ(Ω, δ)} exp(iΩt)dΩ
)2

exp(−iωt)dt
∣∣∣∣∣
2

(3.23)

which can also be expressed as a convolution

S(ω, δ) =
∣∣∣∣∫ Ũ(Ω) exp{iϕ(Ω, δ)}Ũ(ω − Ω) exp{iϕ(ω − Ω, δ)}dΩ

∣∣∣∣2 (3.24)
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Figure 3.8 shows some examples of MIIPS traces, with α = 1.5π, and γ = 6fs (which
is approximately the FWHM for the Fourier limit of the spectrum).

The pulse is characterized by determining which phase locally compresses each
frequency (see section 2.5). If the spectral phase varies slowly, whatever GDD locally
flattens a given spectral phase will lead to a maximal SHG signal at the corresponding
(doubled) frequency. Experimentally one would find what GDD had to be introduced
at a given frequency ω to maximize the SHG signal at the frequency 2ω. This approach
will not completely determine the phase (typically it works well up to TOD) but as
a pulse shaper is used, the phase can be partially corrected, and iteratively becomes
flat.

3.8 d-scan

During this thesis a technique called d-scan (for dispersion scan) was developed that al-
lowed us to characterize ultrashort laser pulses from an oscillator or from a hollow-core
fiber compressor. It is based on the MIIPS concept of applying spectral phases, but
an iterative numerical algorithm was used allowing us to retrieve the spectral phase,
and it was experimentally realized with a chirped mirror and glass wedges compres-
sor (see Fig. 3.10). The spectral phase function is simply that introduced by linear
propagation through a glass, ϕ(ω, z) = zk(ω), where k(ω) is the glass’ wavenumber,
which can be easily calculated from Sellmeier formulas (see Section 2.3.1). The SHG
spectrum as a function of the glass thickness z is then

S(ω, z) =
∣∣∣∣∣
∫ (∫

Ũ(Ω) exp{izk(Ω)} exp(iΩt)dΩ
)2

exp(−iωt)dt
∣∣∣∣∣
2

. (3.25)

The question is now how to find the phase from the 2D scans, which consist on
SHG spectra vs glass insertion (Fig. 3.9). A MIIPS analysis could be used here, as
the glass dispersion is well known. Since a pulse shaper is not available, an iterative
phase correction (that would lead to a better phase measurement) isn’t possible.

Our approach was to use an iterative algorithm that uses the measured funda-
mental spectrum, and tries to find which spectral phase best recreates the measured
scan. We found this approach to have some advantages from a bandwidth point of
view: since all the generated wavelength components depend, to some degree, on
the generating wavelength components, the phase could be retrieved even when some
wavelengths were not phase-matched, or purely absent.

One of the striking advantages of this technique is that most of the setup was
already there, as a pulse compressor (Fig. 3.10), i.e., the glass wedges and the chirped
mirrors. The only necessary modifications from the present chirped mirror compressor
were adding a SHG crystal and an encoder for the wedges’ position. A simple solution
was found using an optical encoder with a transparent strip (Fig. 3.11). This way,
the wedge’s position was scanned by hand, and a trigger signal was sent to a personal
computer to acquire SHG spectra.

The technique is described in detail in Papers III and IV, and was used in PapersV
and VI. It was utilized in Porto to characterize an ultrafast oscillator and the output
of a hollow-core fiber compressor. Figure 3.12 shows the experimental and retrieved
scans of the output from the ultrafast oscillator in Porto, with the corresponding
spectral phase and time domain reconstructions.
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Figure 3.9: Examples of d-scan traces for some representative spectra. FWHM for the
Fourier limited spectrum is 6 fs.

In all previous techniques, one of the main problems is the bandwidth of the
nonlinear process conversion. Broadband SHG generation requires the use of thinner
crystals, sacrificing efficiency. For the case of autocorrelations, the SHG response
should be flat within the whole region of interest to ensure a correct estimation of the
pulse duration. In the case of FROG, since the measurement is frequency-resolved,
the spectral response can in principle be corrected [64, 98] as long as it is above the
noise levels in the region of interest. In the case of SPIDER and related techniques,
a calibrated SHG response is not necessary since the information is encoded in the
fringes. The same is true for MIIPS, but for a different reason: as long as there is
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Figure 3.10: Simplified schematic of the experimental setup used. The encoder is a simple
linear strip printed on a normal laser printer transparency.
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Figure 3.11: As a courtesy to the reader, we provide the same strips that were used for the
encoder. Feel free to cut it out of the thesis.

enough SHG signal at a given frequency, it is not necessary that it follows the ideal
model for SHG. In the case of the d-scan retrieval technique, we found that even in
the absence of signal at some frequencies, the algorithm still worked well in some cases
(Papers III, Paper IV and Paper VI). A mathematically strict criterium for when
the bandwidth is enough or not is however not easy to formulate.

Effective bandwidth increase can also be accomplished by dithering the crystal
[99], at the expense of added complexity. For higher energy pulses, where higher-
order nonlinearities are achievable, Kerr-effect can be used as a nonlinearity, with
larger bandwidths.
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(a) (b)

(c) (d)

Figure 3.12: Temporal characterization of an ultrafast oscillator with the d-scan technique
(from Paper III). The fundamental spectrum (c) and the SHG spectra as a function of
glass insertion (a) were measured. An iterative algorithm applies phases to the fundamental
spectrum and simulates the SHG process to recreate (b) the measured trace. From this
retrieved phase (c) the pulse can be reconstructed in the time domain (d).

3.9 Carrier-Envelope Phase

All the self-referenced methods described so far have (at least) one limitation: they
are not capable of measuring a pulse’s absolute phase. This is normally called Carrier-
Envelope Phase (CEP) or Carrier-Envelope Offset (CEO). Methods to measure the
CEP drift of oscillators were proposed and demonstrated [100], and stabilization of
the drift was accomplished [101–103]. Consider an ultrashort pulse oscillator: in
general, the phase and group velocity are different which leads to a dephasing between
the carrier and the envelope (Fig. 3.13). Let us assume for simplicity that the pulse’s
spectrum is octave spanning: it is possible then to generate SHG from a given spectral
line on the red side of the spectrum and produce one with the approximate frequency
of an existing one from the blue side of the spectrum. If the first one has a frequency

fn = nfrep + δ (3.26)

its second harmonic will have a frequency of

2fn = 2nfrep + 2δ. (3.27)

Since there is already an existing frequency component at around 2nfrep, the ad-
dition of these two will lead to a field at the average frequency, but beating at the
frequency difference between the fields, δ, which can be detected by fast electronics.
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Figure 3.13: CEP drift on a mode-locked laser on the time and frequency representations
(adapted from [101]).

Since most spectra are not octave-spanning (although some state-of-the-art oscillators
do indeed deliver octave spanning spectra, e.g. [40–42]), spectral broadening from
nonlinear interactions is necessary before SHG. Monolithic schemes [104] take advan-
tage of spectral broadening in nonlinear crystals to achieve directly both effects, with
added simplicity. It should be stressed that the signal obtained from these methods
are not directly related to the CEP, but to its drift.

A spectral interference approach allows single shot CEP measurements [105]. It
requires more energy so it is only done on higher energy pulses, like typically obtained
with ultrafast amplifiers.

Consider first an octave-spanning pulse: if we perform SHG with full bandwidth,
the fundamental and SHG will overlap at the wings (see Fig 3.14). This interference
pattern depends on the fundamental field CEP phase.

Using the simple model for SHG presented in section 2.5, it is easy to see that a
constant phase applied to a fundamental field is doubled in the corresponding second
harmonic

U ′(ω) = U(ω)eiφ0

U ′SHG(ω) = USHG(ω)ei2φ0 . (3.28)

Delaying one with respect to the other by τ , the resulting total field will be

UT (ω) = eiφ0
(
U(ω) + USHG(ω)eiφ0eiωτ

)
. (3.29)

Proceeding as shown in Section 3.2, the term around the carrier ωτ can be isolated
(if the delay τ is suitable) and φ0 can be extracted.

In practice, SHG results in a signal with a polarization normal to the fundamental
pulse’s polarization, so no interference will occur. This can be easily solved by using
a polarizer at a convenient angle, which will project both spectra’s polarization in a
common axis.

Unfortunately, most pulses do not have an octave-spanning spectrum. Typically,
spectral broadening is achieved by some nonlinear effect, e.g. Kerr effect in a glass. A
problem is that the spectral phase of a pulse undergoing such a nonlinearity depends
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Figure 3.14: Interference fringes between an octave-spanning spectrum and its correspond-
ing SHG spectrum (fundamental and SHG spectra shown in dashed lines, centered at around
ω = 2.4 rad/fs and ω = 4.8 rad/fs respectively). The interference pattern depends on the
absolute phase of the fundamental spectrum.

on the intensity of the pulse: a variation in the pulse intensity will lead to a variation
of the phase measurement, even if the CEP itself doesn’t change [106, 107]. This is,
however, very difficult to avoid, and a laser system has to be stable in power if it is
to be stabilized in CEP.

The CEP stabilization can be achieved in different ways. A common technique
is to act directly on the laser oscillator: a slow signal is sent to the oscillator CEP
controller, effectively changing its CEP to stabilize the CEP at the amplifier output
(or somewhere else). Other techniques consist on using external elements, often part
of the stretcher or compressor, or active modulators.

Papers I and II describe the work that took place in Lund to make the system
CEP stable. Stabilization was achieved by controlling the oscillator’s CEP, or by using
the AOPDF to introduce a correction phase. Figure 3.15 shows long-term stability of
the CEP phase with a standard deviation of around 400 mrad. For this measurement,
the slow feedback loop was achieved by adjusting the oscillator’s CEP.

Other methods exist to measure CEP, relying for example on above threshold ion-
ization ( ATI) [108, 109] and terahertz-emission spectroscopy [110]. These are usually
much more complex to realize. A different approach for CEP-dependent experiments
is to, instead of controlling it, measuring it at the laser repetition rate. If the outcome
of the laser interaction can also be measured at the same rate, it can simply be tagged
to the corresponding CEP.

An alternative approach is to use parametric amplification: in some situations, it
is possible to directly generate radiation which is inherently CEP stable [111, 112].
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Figure 3.15: CEP-stability measurement and control of the Lund laser system.
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Chapter 4

High-Harmonic Generation,
Attosecond Pulses and
Applications

4.1 Introduction

This chapter introduces some basic concepts to the generation, propagation, character-
ization and applications of HHG radiation. An introduction to HHG and attosecond
physics can be found for example, in [113, 114]. Some applications of the HHG sources
in Lund are presented.

4.2 High-Harmonic Generation

High Harmonic Generation (HHG) was first observed in 1987 [3, 4] from the interaction
of gases with high-intensity laser pulses. Nonlinear optics was well understood using
perturbation theory, and from this point of view, it was natural that the efficiency of
a nonlinear process would decrease exponentially with the order of the process. The
observed harmonics followed this behavior up to a certain order and for low intensities,
but strangely, for very high intensities, the efficiency as a function of harmonic order
stops falling exponentially, and instead a plateau was observed (Fig. 4.1). This could
not be understood from a perturbative process point of view.

At light intensities of about 1013W/cm2, the magnitude of the electric field of light
approaches that of the Coulomb potential of valence electrons in rare gases. At such
extreme light fields, the electron might simply “tunnel out” of the atom Coulomb
potential: if this happens, the interaction of the electron with the core is rather small,
and the laser-electron interaction dominates.

High Harmonic Generation can be intuitively understood by a simple model, the
Three Step Model [115, 116] (Fig. 4.2). In this simple model, as soon as the electron
is released from the nucleus, its trajectory can be calculated from classical mechanics.
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Figure 4.1: Simplified schematic of a typical High-Harmonic Generation spectrum. For the
first few orders, the emission efficiency drops very fast, and is then followed by an efficiency
plateau. It then drops abruptly again at the cutoff.
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Figure 4.2: Three step model. If the laser intensity is enough that the light electric field is
comparable to the Coulomb potential, an outer electron might be able to tunnel out (I). The
electron trajectory is then mostly dominated by the laser driving field (II) and its trajectory
is well described by Newtonian mechanincs. When (and if) the electron collides with the
nucleus, a photon is emitted (III). Its energy depends on the energy the electron acquired
while accelerated in the continuum (adapted from [117]).

The only force acting on it is the driving laser field. Consider a driving electric field

E(t) = E0 sin(ωt). (4.1)

The position of the electron relative to the nucleus can be obtained by integrating the
acceleration twice:

x(t) = eE0

mω2 [sin(ωt)− sin(ωti)− ω(t− ti)cos(ωti)] , (4.2)

so the only parameter that determines the trajectory (besides the field amplitude)
is ti, the electron’s tunneling time relative to the laser field. This tunneling time
determines when (and if, at all) the electron returns to the nucleus. From this simple
model, the energy the electron acquires from the driving field while in the continuum
can be calculated (Fig. 4.3). For a given wavelength and intensity of the driving field,
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the maximum energy an electron can acquire while accelerated in the continuum, and
brought back to the nucleus, is 3.17 Up, where

Up = e2I

2meω2ε0c
(4.3)

is the ponderomotive energy. It follows from energy conservation that, after recombi-
nation, the maximum photon energy that can be emitted is

~ωm = Ip + 3.17Up (4.4)

which agrees rather well with the experimental results [116].
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Figure 4.3: Examples of electron trajectories in the continuum for different tunneling times
(left), and return energy acquired by the electron as a function of time spent in the continuum
(right) (adapted from [117]).

As can be seen in Fig. 4.3, there are two different trajectories that lead to the same
final energy. These are called the short and long trajectories, and the contributions
from these trajectories have different properties. The time delay with respect to the
fundamental driving field varies from a few hundred attoseconds to more than a cycle,
and that leads to different characteristics for the emitted radiation, as the accumulated
phase of the electronic wave is much larger for the long than for the short trajectory.

The phase of the emitted harmonics depend on the intensity of the driving field
approximately with [118]

dφjq = αjqdI, (4.5)
where q refers to the harmonic order and j to the quantum path (i.e., short or long
trajectory). For each given harmonic q, the parameter α is much larger for the long
than for the short trajectory. This has important consequences: since the driving field
varies both in time and space, the term dI/dt will lead to a frequency modulation
of the emitted harmonic, which produces a broadening of the harmonics width (or
even splitting) and the term dI/dr will lead to a spatial phase modulation of the
emitted harmonics as a function of the radial coordinate, similarly to Kerr lensing
(Fig. 4.4). Because the α’s parameters are different for the short and long trajectories,
this leads to the shorter trajectories’ emission having different divergence than the long
trajectories’ emission. These effects shape the harmonics emission in the spectral and
spatial domain.

As with other nonlinear processes, phase-matching (Fig. 4.5) plays an important
role on the efficiency of the HHG process, as well as on the spectral and temporal
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Figure 4.4: Spatial and spectral shaping of the harmonics field due to spatial and temporal
variations of the driving IR field, for a given harmonic q. Similarly to the Kerr effect, a spatial
variation of the intensity beam profile leads to a space-varying phase front of the generated
harmonics, which has a similar effect to a lens. The time-varying intensity of the IR driving
field leads to variation of the instantaneous frequency of the generated harmonics.
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Figure 4.5: Single-atom response and collective (macroscopic) response. The efficiency of
the process, as well as the spectral and temporal characteristics of the output HHG radiation
depend on a number of microscopic and macroscopic factors (adapted from [117]).

characteristics of the resulting radiation. In general, the phase matching condition for
the q-th harmonic is [119]

kq = qk +∇Φq (4.6)

where kq is the wave vector of the q’th harmonic, k is the wave vector of the funda-
mental driving field, and Φq is the intensity-dependent harmonic phase.

A centrosymmetric medium cannot lead to even-order harmonics: since the HHG
process repeats itself every half-cycle of the driving field, but with a different sign, the
end result in the time-domain is that, for each IR cycle, two consecutively emitted
burst are “flipped” relative to each other. The emission of odd-order harmonics is de-
pendent on several phase-matching parameters. These depend on the intrinsic HHG
phase itself, geometric effects (Gouy phase shift), the harmonics’ phase dependence
with the driving laser intensity, which in turn varies temporally and spatially, and
dispersion effects of the generation gas, both on the driving field as on the generated
harmonics. As HHG is inevitably accompanied by ionization, plasma formation in-
duces strong phase modulations into both the driving IR and generated XUV fields,
which also influence phase-matching.
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4.2.1 Experiments

Figure 4.6: Schematic of the setup used in Paper VIII, and an example of spatial and
spectral measurement.

In this thesis, HHG experiments have been performed using the low-energy arm
of a 10 Hz 40 TW laser, as well as a 1 kHz 3 mJ laser. In Paper VIII the spatial
and spectral properties of the 10Hz HHG beamline in Lund are characterized. The
HHG source is schematically shown in Fig. 4.6, together with an example of a spectral
and spatial measurement. The driving beam has up to 100 mJ of energy, with a
duration of about 35 fs. From this, typically only 10 mJ were used. Optimization
of HHG generation in the laboratory involves finding experimental conditions that
minimize the phase mismatch between the IR and the generated harmonics. A set of
tradeoffs has to be taken: for example, higher IR intensities are necessary to reach
higher harmonics; this can be done by using tighter focusing of the fundamental IR
beam, but this also reduces the interaction volume, increases ionization, and changes
the Gouy phase shift parameters, and all these factors will change the phase-matching
conditions.

4.3 Attosecond Pulses

Since its observation, HHG was proposed as a process to create short pulses [120]. It
follows from the temporal coherence of the HHG emission that it should be possible to
obtain extremely short pulses if the harmonics’ phases are locked. Figure 4.7 schemat-
ically depicts how the harmonics’ spectral phase translate to in the time domain. The
width of the individual harmonics roughly determines the length of the pulse train,
and the width of the spectral envelope roughly determines the length of the individual
pulses. A similar argument holds for the spectral and temporal phases.

4.3.1 Attosecond Pulse Shaping
The attosecond pulses generated by HHG have an intrinsic phase due to the generation
process itself and therefore are not, in general, temporally compressed. A way of doing
so is to use transmission through transmission filters [121, 122]: some materials exhibit
negative dispersion in certain XUV spectral regions, and can then compensate the
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Figure 4.7: Inter-harmonic chirp (dashed line) and intra-harmonic chirp (continuous lines).
The inter-harmonic chirp mostly determines the average pulse width and characteristics on
the time domain (right side) while the intra-harmonic chirp determines the pulse train width
and chirp.

intrinsic positive chirp of the generation process. A commonly used material during
the work presented here was aluminum. It is useful also because it efficiently blocks
the generating IR radiation, so aluminum filters were used even when the attosecond
pulses did not need to be short for some particular application. Figure 4.8 shows a
simulated example of transmission through 200 nm of aluminum of a typical XUV
spectrum generated with our attosecond setup. The optical properties of numerous
materials in the XUV region can be found for example in Refs. [123, 124]. In this
spectral region, aluminum exhibits negative dispersion (Fig. 4.8a), but it is not the
case for higher energies. Other materials, e.g. zirconium or semiconductors have
different absorption and phase properties, and might be used for different generation
conditions.

(a) (b)

Figure 4.8: (a) A typical measured harmonic spectrum, and calculated group delay curve
for transmission through 200 nm of aluminum. (b) The corresponding temporal reconstruc-
tion of one of the attosecond pulses from the train, assuming it was Fourier limited before
transmission. The FWHM duration for the Fourier limited case is of about 150 as.

Another approach is to use multilayer mirrors [125–128]. As in the optical domain,
multilayer mirrors can be designed to match desired spectral characteristics, both in
amplitude and phase. It is more difficult though to fabricate mirrors for the XUV
spectral domain due to the shorter wavelengths.
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4.3.2 Isolated Attosecond Pulses

Figure 4.9: Isolated attosecond pulses generation by (a) spectral filtering on the cutoff
region and (b) polarization gating.

A spectrum made up of well-separated harmonics will lead to a train of pulses but
not to an isolated one: for that, a spectral continuum is needed.

A first proposed and demonstrated technique consisted in spectral filtering the
cutoff region [125, 129] using thin metallic filters. Since the spectral content varies
from pulse to pulse in the train, with a larger bandwidth for the shortest pulses, then
selecting a given bandwidth continuum would translate, in the time domain, to an
isolated attosecond pulse. The recent approaches to generate isolated pulses consist
in some form of temporal gating, either by “simply” reducing the fundamental driving
field to the single-cycle regime, or by employing some time-domain gating to confine
the HHG emission to an interval shorter than the pulse itself. Polarization gating
[58, 130, 131] is one such method, where the ellipticity of the generating pulse is
made to vary throughout the pulse: since the HHG emission strongly depends on the
ellipticity, the emission can be confined to an interval shorter than the pulse itself.
Other routes, as using two-colour fields [132], or combining the two approaches (double
optical gating - DOG) [133], and ionization gating [134] have been proposed or/and
demonstrated.

4.3.3 Experimental Setup
Figure 4.10 shows a schematic representation of the attosecond setup in Lund. It is
based on a Mach-Zehnder type pump-probe setup: part of the fundamental IR field
is used to generate XUV radiation, while a small portion of IR is combined with
the generated XUV, with a variable time delay. For the experiments presented in
Papers X and XI, the laser beam was taken directly from the compressor of the
ultrafast amplifier (about 3 mJ, 30 fs, 1 kHz).

The main part of the beam is focused in a pulsed gas cell synchronized with the laser
beam at 1 kHz. This allows generation at the full laser repetition rate while keeping a
good vacuum in the generation chamber. The chambers are connected through small
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Figure 4.10: Attosecond setup used in Lund. The driving field was either the beam directly
from the ultra-short amplifier (about 3 mJ, 30 fs, 1 kHz) or from the hollow-fiber compressor
(about 300 µJ, 7 fs, 1 kHz). Most of the pulse’s energy (the “pump” arm) is used to generate
XUV radiation in argon, and a small part (the “probe” arm) is collinearly recombined with
the XUV with a variable delay, and with a controllable energy (using the half-wavelength
plate and a polarizer). The recombination mirror is a convex metallic mirror with a central
hole, with a curvature designed to match the reflected IR (the probe) wavefront with the
XUV wavefront. A toroidal mirror at a grazing incidence focusses both XUV and probe IR
beams in a detection chamber (not shown).

holes (∼ 3 mm) to minimize gas flow from the generation to the other chambers. The
beam focussing is done with a spherical mirror, with focussing lengths of typically
50 cm, and small angles were used to minimize astigmatism. The XUV radiation
is separated from the driving IR radiation using free-standing thin metallic filters
(typically 200 nm of aluminum, depending on the desired spectral characteristics),
and the recombination mirror clips the outer region of the XUV beam: this increases
the ratio between short/long trajectory radiation in the final beam, since the long
trajectory radiation has a higher divergence.

The probe arm is split from the main one using a broadband ultrafast beam-
splitter, and its energy is controlled with a typical half-wave plate and polarizer com-
bination. It is then sent into the recombination chamber. A curved mirror with a
central hole is used for combining the XUV with the IR probe. Its hole size allows
for most of the XUV radiation to go through, but the IR probe is large enough that
enough is reflected off of it. Since the XUV beam is divergent and the IR probe is
collimated, the recombination mirror is curved to match the reflected IR’s curvature
to the XUV’s. Two delay stages are used: a rough motorized stage and a fine piezo
mount. Later, a feedback loop was implemented to stabilize the pump-probe delay
(Fig. 4.11). Because of the long length of the Mach-Zehnder arms, the delay between
pump and probe arms would drift due to thermal effects. To compensate for this, an
active stabilization system was implemented, which uses the IR beam itself for stabi-
lization. This active stabilization was used in Paper XI and the related experiment is
discussed in Section 4.5.3.
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Figure 4.11: HHG generation and detection setup with active stabilization. The existing
setup was modified to improve the timing stability between the XUV and the IR probe
beam. The secondary Mach-Zehnder interferometer is shown in green. A small portion of
the generating beam is removed with a pickup mirror (PM) before the aluminum filter (FW)
and sent to a delay line (R, DS). A part of the probe IR beam leaks through the “holey”
mirror (RM) and is combined with the previous leaked beam in a beam-splitter (BS) with a
small displacement. The resulting beam is sent to a webcam where a fringe pattern (due to
the noncollinear arrangement) is recorded (inset, showing a simulated interference pattern).
A bandpass filter (not shown) before the camera decreases the spectral bandwidth, increasing
the temporal coherence and allowing for delays much longer than the pulse temporal width
without loosing fringe visibility. A software tracks the interference fringe displacement and
sends a feedback signal to the piezo translator (PM).

4.4 Characterization

As discussed before (see Chapter 3), linear detection is not sufficient for a temporal
characterization of ultrashort pulses, and this holds in the attosecond domain. Unfor-
tunately, the reachable intensities on the XUV region are usually too low to directly
achieve nonlinear effects (although it is possible, see e.g. [135–137]). A solution for
this is to use the IR field together with the XUV, since photoionization processes in
the presence of an external IR field depend on the time characteristics of both fields.
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4.4.1 Photoionization

4.4.1 Photoionization

Figure 4.12: (a) An isolated photoelectron harmonic (continuous line) and the same spec-
trum after applying an IR field (dashed line). Sidebands are created with rapidly falling
amplitudes (inset shows same plot in logaritmic scale). (b) A different spectrum, with two
well separated harmonics. When an IR field is applied, the sidebands from each harmonic
will interfere, with an amplitude depending on their relative phases (c) and (d). As the delay
between the harmonics and the IR is scanned (e) and (f), the sidebands intensity also varies.
The maxima and minima positions depend on the relative phase between the harmonics.
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When a light field (here EXUV (t)) interacts with an atom, ionization might occur.
The probability of getting an electron with momentum pf , is P (pf ) ∝ |a(pf )|2, with
[138]

a(pf ) = −i
∫

d(pf )EXUV (t) exp
[
i

~

(
Ip +

p2
f

2m

)
t

]
dt, (4.7)

where a(pf ) is the amplitude of the electronic wave as a function of momentum pf ,
d(pf ) is the dipole transition matrix element (whose magnitude can be measured
experimentally [139–141]), m is the electron mass, and Ip is the ionization potential.
The above expression is simply the Fourier transform of the field EXUV (t), with a
response curve d(pf ), at the frequency ~ω = p2

f/(2m), so the photoelectron spectrum
maps the electric field spectrum of the incident light. As with an optical spectrometer,
this carries no information about the time properties of the XUV field. As seen before,
a nonlinear process is needed for temporal characterization: this nonlinear response
is provided by the presence of the IR field. Its effect can described under the strong
field approximation (SFA), and the previous momentum distribution becomes [138]

a(pf , τ) = −i
∫

d[pf + eA(t)]EXUV (t− τ)

× exp
[
i

~

(
Ip +

p2
f

2m

)
t

]
exp{iφIR(pf , t)}dt, (4.8)

where
φIR(pf , t) = 1

2m~

∫ +∞

t

[
2epf ·A(t′) + e2A2(t′)

]
dt′. (4.9)

The IR field acts as a phase modulator of the electronic wave packets. This is formally
the same as frequency modulation (FM). A simple case occurs for low IR intensities:
in this scenario, A2(t) can be neglected compared to A(t), and the modulation is a
sinusoidal wave. This will produce sidebands on the electron spectrum, with the ampli-
tude of the sidebands decreasing as a Bessel function (Fig. 4.12). These sidebands do
not carry any information about the harmonics phase, but if the photoelectron spec-
trum consists of several harmonics, and the sidebands of different harmonics overlap,
this will lead to an interference (or beating) of the sideband signal. This interference
depends on the phase difference between the harmonics and on the applied IR field
(Fig. 4.12). This is the basic idea behind the RABBITT (Reconstruction of Attosec-
ond Beating By Interference of Two-photon Transitions) [142, 143] method, as will be
discussed below.

4.4.2 RABBITT
Figure 4.13 shows the quantum paths1 used in RABBITT. The interference can be
used to characterize attosecond pulses, provided their properties do not change from
one pulse to another in the train. The phase difference between adjacent harmonics
causes a beating of the sidebands [142]

Sq(τ) ∝ 1 + cos(2ωτ −∆φq −∆φatq ) (4.10)
1There are actually more paths, if one considers higher-order processes, but these will usually be

much weaker.
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Figure 4.13: Photon-picture of different photon energy combinations leading to interference
(sidebands).

where τ is the time delay between the XUV and the IR field, ω is the driving field
frequency, ∆φq = φq+1−φq−1 is the phase difference between adjacent odd harmonics,
and ∆φatq is the intrinsic phase difference due to the ionization process itself.

The characterization of the harmonics’ relative phase assumes that this ∆φatq is
negligible or well known. In this case, from the sidebands’ beating positions (Fig. 4.15,
right column) the phase between harmonics can be measured. The XUV spectrum
can be measured separately (by simply switching off the IR field) and the time pro-
file can be reconstructed from the spectrum and the retrieved inter-harmonic phases.
The RABBITT technique is limited in the sense that only an average pulse is re-
constructed, i.e., the pulse to pulse variations in the attosecond pulse train are not
detected. Furthermore, the absolute phase is not measurable either. Therefore, one
of the measured harmonics’ phase is assumed to be zero, and the other phases are
obtained by recursively concatenating the measured phase differences

φq+1 = φq−1 + ∆φq (4.11)

and the pulses are then reconstructed as

U(t) =
∑
odd q

Aq exp {−i(ωqt+ φq)} , (4.12)

where Aq are the harmonics’ amplitudes.
The capability to measure not only the harmonic phase but also the intrinsic atomic

phases is very interesting, and has been exploited to study the phase of resonant two-
photon ionization in helium in Paper X (see Section 4.5.2) and the photoemission
time-delays between different electronic shells in argon in PaperXI (see Section 4.5.3).

4.4.3 Streaking and FROG-CRAB
A different approach has to be taken for the characterization of isolated pulses, since
there are no harmonics to start with. It still uses a cross-correlation technique, and
photoionization in the presence of an IR field, but a stronger IR field is employed
to strongly distort the photo-electron spectrum, and a perturbative analysis is not
valid anymore. This regime is called streaking, and can be described with a simple,
semi-classical two-step picture. An electron from the outer shell of an atom is ionized
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by interaction with an attosecond pulse. Depending on the ionization time, it is then
accelerated or decelerated (it gains or loses energy) by the IR field (as in a streaking
camera). If the photo-electron wavepackets are chirped they might get “compressed”
or “stretched” by the IR field (see Fig. 4.14).

I II

III

-A(t)

eV eV eV

XUV pulse

Figure 4.14: Naive picture of what is going on during a streaking experiment. In the absence
of interaction between the XUV pulse and the fundamental pulse (case I) the photoelectron
energy spectrum maps the XUV optical spectrum. In the presence of a varying A(t) field, the
electron bunch is either compressed, if the early part of the wave packet will be decelerated
(case II) or stretched (case III) depending on the XUV chirp.

Mairesse and Quéré noted that the Strong Field Approximation expression for the
final electron momentum (Eq. 4.8) can, under some approximations, be written as a
FROG trace [144]. d(p) is assumed constant within the spectral region of interest, so
that Eq. 4.8 can be rewritten as Eq. 3.14 in Section 3.5 [144, 145], with

E(t) = EXUV (t) (4.13)

and
G(t) = exp {iφIR(t)} . (4.14)

Then, similar algorithms as for a blind-FROG (see Section 3.5) can be used to
extract both the XUV field and the gate (which is related to the IR field).

Figure 4.15 shows a comparison between simulated FROG-CRAB and RABBITT
scans, for Fourier limit, pure GDD, and pure TOD cases, respectively. In the FROG-
CRAB case, an isolated pulse is assumed, as well as an ultrashort IR field, with around
4 fs duration FWHM. For the RABBITT case, a train of pulses is assumed (and hence
the harmonics structure), and the IR field is much longer than the scan length. The
phase retrieval from the RABBITT scans is straightforward: the sidebands positions
directly give us the phase between adjacent harmonics. In the FROG-CRAB case, the
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Figure 4.15: Comparison between a measurement using the FROG-CRAB technique (left
column) and a measurement using the RABBITT technique (right column). On the former
case, an isolated pulse is being characterized while in the latter we have a train of pulses.
Top row corresponds to a flat phase (Fourier-limited) XUV pulse, middle row to pure GDD,
and bottom row to pure TOD.

FROG algorithm can be used to find the XUV and the IR pulses that better fit the
measured (or simulated, in this case) data.

4.4.4 Experimental Detection
In the experiments carried out in Lund, the photoelectron detection was done with a
Magnetic Bottle Electron Spectrometer (MBES) [146, 147]. Its operation is depicted
in Fig. 4.16, and it is based on time-of-flight (TOF) spectroscopy. As the radiation
ionizes a gas (typically argon was used in the experiments), free electrons are created,
whose kinetic energy (and therefore, speed) depends on the radiation photon energy.
A strong magnetic field, parallel to the flight tube, is applied in the ionization region,
decreasing in strength toward the detector. The electrons ejected from ionization spiral
around the magnetic field lines, and as the field strength decreases, their velocities
are slowly converted into velocity in the flight tube direction. In this way, electrons
emitted within a solid angle of 2π sr are collected.
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Figure 4.16: Photoelectron detection with a Magnetic Bottle Electron Spectrometer
(MBES). (a) A magnetic field collects electrons emitted in a 2π steradian angle towards
the detector, in this case a Micro-Channel Plate (MCP). The electrons are counted as a
function of arrival time (b), which can then be converted to an electron count as a function
of kinetic energy (c).

The electrons are detected as a function of arrival time (Fig. 4.16b), and from this
their kinetic energy can be derived, as well as the associated photon energy

~ω = Ip + α

(t− t0)2 , (4.15)

where Ip is the ionization potential, t0 is a time-delay introduced to take into account
the system synchronization, and α is a constant that depends on the MBES length. In
practice, to calibrate the system we use a long pulse to generate harmonics, and the
parameters are adjusted to match the expected harmonics frequencies (Fig. 4.16b).

Typical measurements with long and short IR pulses are presented in Fig. 4.17,
where a RABBITT scan and a streaking scan are shown. The RABBITT scan
(Fig. 4.17b) was made using the long IR pulses as a source for XUV generation,
leading to a harmonic signal (Fig. 4.17a) and the IR intensity levels at the probe arm
are kept low enough as to not deplete the fundamental harmonics signal, while giv-
ing enough signal at the sidebands frequencies (where the even-numbered harmonics
would be). Figure 4.17d shows an example of a streaking experiment done in Lund
using the a hollow-core fiber compressor as a HHG source. The generated IR pulses
were not short enough to produce isolated attosecond pulses (as can be seen from the
harmonics structure). The interference structure visible at delays beyond the esti-
mated pulse width indicate the presence of strong satellite pulses: in these conditions,
a longer scan would have been necessary to perform a FROG-CRAB retrieval.

57



4.5 Applications

(c) (d)

(a) (b)

H17
H19

H21
H23

H25

Figure 4.17: (a) A typical photoelectron spectrum from HHG in argon with a relatively
long (∼ 30 fs) IR pulse, and the corresponding RABBITT trace (b). (c) Same as (a), but
with a short (∼ 7 fs) IR pulse, obtained from a hollow-core fiber compressor.(d) A streaking
measurement, where the probe IR intensity is much higher than the one used in (b).

4.5 Applications

Finally, we present some applications of harmonic pulses and attosecond pulse trains
carried out in this thesis work.

4.5.1 XUV Holography
The temporal and spatial coherence of the HHG radiation makes it suitable for holog-
raphy. The basic concept behind holography is to record an interference pattern,
which contains information about the (spatial) phase of a wave.

The concept is similar to that presented in the section about spectral interferometry
(Section 3.2) and it consists in adding two coherent fields so as to obtain an interference
pattern. Suppose we have an object wave O = o(x, y) and a reference wave R = r(x, y).
At a given plane their interference pattern is given by

I(x, y) = |o(x, y) + r(x, y)|2

= |o(x, y)|2 + |r(x, y)|2 + o∗(x, y)r(x, y) + o(x, y)r∗(x, y) (4.16)

If the reference wave is a plane wave, then the last term, o(x, y)r∗(x, y) is simply
the object wave that we want. As with spectral interferometry, if the above terms have

58



High-Harmonic Generation, Attosecond Pulses and Applications

different carrier frequencies, it is possible to separate them. The “simple” solution to
reconstruct the object wave is to use a tilted plane wave as a reference [148]. This
is called off-axis holography. Since this is hard to realize in the XUV domain, a
setup similar to the original one by Gabor [149] (inline) is employed. The object is
simply placed in front of a reference wave (partially obstructing it) and diffracts it. An
observation screen detects the interference between the reference and the diffracted
waves.
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Figure 4.18: Numerical reconstruction of a digital hologram. A numerical lens is applied
to the measured hologram, and Fresnel propagation is used to simulate propagation to the
observation plane.

The problem now is how to extract information about the object from the recorded
interference pattern. In an all-optical hologram, this is accomplished by developing
the recorded pattern as a transparency, illuminating it, and using a lens (which in
some cases could simply be the observer’s eye) to bring the object to focus.

In the case of digital holography, the imaging operation is done numerically: a
numerical lens is applied to the hologram (Fig. 4.18), and the Fresnel approximation
is used to simulate the propagation between planes. Unfortunately, in the case of
inline holography, more information will be contained in the formed image (namely
the infamous twin-image) but since it will not be brought to focus it is still possible
to discern an image of the original object, but with added noise.

In Paper IX, the high photon flux of the 10 Hz HHG source (described in Pa-
per VIII) has been used to perform single-shot XUV holography (Fig. 4.19). An
XUV Schwarzschild objective was used slightly tilted to focus the XUV radiation be-
fore the object (Fig. 4.19b), giving a magnified interference pattern at the observation
plane of the MCP (Fig. 4.19c). The Schwarzschild objective has a reflective coat-
ing that decreases the spectral width of the XUV radiation, increasing the coherence
length.

A more robust algorithm [150] was used to iteratively retrieve the object’s ampli-
tude. The basic principle is the same as described before, but the field is iteratively
propagated back and forth from the object to the hologram plane and vice-versa. At
each iteration, constraints are applied (in the hologram plane the intensity pattern is
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Figure 4.19: (a) XUV holography setup based on the 10 Hz HHG source. (b) Scanning
tunneling microscope (STM) image of a deformed STM tip, its single-shot hologram (c) and
corresponding reconstruction (d) using an iterative algorithm. From Paper IX.

known, whereas it is also known that the object cannot have a transmission higher than
1), leading to an increased signal-to-noise ration of the retrieved object (Fig. 4.19d).

4.5.2 Resonant Two-Photon Ionization
The RABBITT technique can be used to characterize the Group-Delay between ad-
jacent harmonics. This assumes, however, that there is no intrinsic phase of the pho-
toelectrons due to the photoemission process itself. Recalling again the RABBITT
beating

Sq(τ) ∝ 1 + cos(2ωτ −∆φq −∆φatq ) (4.17)

By comparing RABBITT measurements done in different conditions, ∆φatq can be
measured, and insight into atomic processes can be obtained. In Paper X the RAB-
BITT technique is used to study the phase of photoelectron in a two-photon ionization
in helium.

Figure 4.20 shows a schematic description of the principle of the experiment: the
transition energy from 1s2 to 1s3p in helium (23.09 eV) roughly matches the energy
of the 15th harmonic (23.25 eV) of the IR field (1.55 eV, for a central wavelength of
800 nm). This level offers a path to reach the continuum through a resonance. The
ionization potential of He (24.59 eV) corresponds to an energy slightly below that of
the 16th harmonic (24.80 eV) of the IR field. There is no HHG field at that frequency
(since it is an even harmonic) but it can be reached through multi-photon processes,
by using the IR field. The difference to a “normal” RABBITT measurement is that
one of the quantum paths to the 16th sideband involves a resonant state.
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Figure 4.20: (a) Energy levels in helium and the considered transitions. The energy of
harmonic 15 roughly matches the 1s2 → 1s3p transition energy in He. (b) Typical phase
behavior for transitions around a resonance. (c) Spectral shaping of the laser spectrum to
scan energy transitions around the 1s3p transition. (d) Phase measurements at different
central laser wavelengths.

Changing the fundamental wavelength of the generating IR field, all the harmonics
have their frequency changed as well. The 15th harmonic frequency can then be swept
across the resonant transition. For this, an AOPDF (a DAZZLER, see Section 2.3.2)
was used to shape the fundamental IR spectrum (see Fig. 4.20c). A phase shift of the
16th sideband relative to the others is observed as the detuning δ is swept across the
resonance.

Another way of observing this phase shift is by inducing a change of the 1s2 →
1s3p transition energy. Instead of sweeping the 15th harmonic energy, the IR field
can induce a Stark shift on the energy levels. By changing the IR intensity, the
transition energy is made to move across the 15th harmonic energy with a similar
effect. Comparing both measurements allowed us to determine the AC Stark shift of
the 1s2 → 1s3p transition energy.

The details about this experiment and the theory underlying it can be found in
Paper X.

4.5.3 Time Delay Measurements
When an XUV pulse interacts with an atom, if the photon energy is high enough,
ionization might occur. In the quantum picture, this means that the associated elec-
tronic wave packet (EWP) expands and is no longer confined to the vicinity of the
nucleus. As the EWP spreads away from the nucleus, its group delay depends on the
interaction with the remaining core potential. By comparing streaking or RABBITT
traces from different electronic shells, information about the ionization process can be
obtained.

Time delay between the formation of electron wave packets originating from differ-
ent atomic orbitals were first observed by Schulze et al [152] using isolated attosecond
pulses and streaking. Previously, Cavalieri et al [153] had performed similar experi-
ments in solids.
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Figure 4.21: Photoionization from 3s and 3p shells, and a RABBITT trace containing both
channels. Even if the energy scales are the same, the different ionization potential leads to
different final photo-electron energies, which do not overlap (adapted from [151]).

The work described in Paper XI follows the work previously done in Lund by
Klünder et al [151] on time-delay emission in argon using not isolated attosecond
pulses and streaking measurements, but trains of pulses (and a spectrum made of
harmonics) and the RABBITT technique. An improvement was made to the setup,
by adding an active stabilization of the Mach-Zehnder interferometer (see Section 4.3.3
and Fig. 4.11).
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Chapter 5

Summary and Outlook

This thesis describes the work undertaken in Porto and Lund, with the idea of op-
timizing the sources and diagnostics for generating well-controlled attosecond pulses.
The emphasis was on the laser side of the problem, with most of the work on gen-
eration and characterization of ultrashort laser pulses. Papers I and II describe and
discuss the CEP stabilization of a multi-milijoule laser system. CEP detection at kHz
repetition rates is also demonstrated. Papers III, IV, V, and VI introduce techniques
for the characterization, both temporal and spatial, of ultrashort laser pulses.

The d-scan technique (Papers III and IV) shows promising possibilities for ul-
trashort laser pulse characterization beyond the usual bandwidth limitations. Even
if experimental simplicity was the main motivation behind its development, it turned
out to be extremely robust and relaxed with respect to bandwidth. It is not clear
though, at this point, which are the real limitations. Research into faster, more ro-
bust and generic retrieval methods could make easier the characterization of ultrashort
pulses in the single-cycle regime. Attosecond pulse characterization might also benefit
from developments on femtosecond pulse characterization techniques. Papers V and
VI demonstrate a simple technique for spatiotemporal characterization of ultrashort
laser pulses. Especially for the case of ultra broadband pulses, spatiotemporal effects
can be of extreme importance when used for highly nonlinear effects (e.g., HHG).

Paper VII describes a simple setup based on chirped mirrors and microscope
objectives to achieve high intensities with low-average power oscillators. The estimated
achieved intensities, even if below the necessary to induce HHG, give some hope for
future development of compact and inexpensive table-top HHG sources.

Papers VIII and IX report respectively on the characterization and application
of the 10 Hz HHG source in Lund. The spatial and spectral properties were studied
in Paper VIII, and absolute energy measurements were also performed. In Paper IX
this source was used for single-shot holography in the XUV region. This kind of setup
has the potential for femtosecond time-resolved pump-probe imaging experiments in
the XUV region.

Finally, in Papers X and XI the 1 kHz HHG source in Lund was used to study
atomic properties in Helium and Argon. The same technique used to characterize
trains of attosecond pulses (RABBITT) can be used to extract phase information
from the ionized electrons. These in turn carry information about atomic properties.
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In Paper X the RABBITT technique was used to characterize the phase properties
of two-photon two-color ionization through a resonant level in Helium. In Paper XI,
the same technique was used to study the photoemission delay from different valence
shells in Argon.

Since the beginning of this thesis, a lot of changes have happened in both labora-
tories, in Porto and in Lund. The kilohertz CPA system in Lund has recently been
upgraded to deliver shorter and even more energetic pulses. Emphasis is currently
being placed on improving its stability: proper CEP detection and control relies on
a high pulse-to-pulse source stability, and the same goes for spectral broadening and
pulse compression with hollow-core fibers. A new HHG setup is also planned, more
compact and stable. These will be key factors for producing isolated attosecond pulses.
The larger bandwidth of the new system means it will also have a higher tunability
range. In parallel, a new laser systems have been installed in Lund, a high repeti-
tion rate (200 kHz) optical parametric chirped pulse amplifier (OPCPA) capable of
delivering 6 fs pulses with energies of around 10 µJ.

The CPA system in Porto has also been modified several times during the course
of this thesis. The work on its stability, and on the hollow-core fiber compressor, made
it recently capable of reliably producing sub-5 fs pulses, with a CEP stability of less
than 100 mrad. An HHG setup is expected to be built in the near future.
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Comments on the papers

I Carrier-envelope phase stabilization of a multi-millijoule,
regenerative-amplifier-based chirped-pulse amplifier system
In this paper we perform the CEP stabilization and control of the laser system in
Lund. I worked on the laser and the f-2f setup, and on the system optimization
for CEP-stable operation. I also took part in writing the manuscript.

II High-speed carrier-envelope phase drift detection of amplified laser
pulses
In this paper we show a fast CEP phase detector, based on a CCD array and
FPGA electronics, capable of single-shot operation at the laser repetition rate.
I worked on the experimental setup (amplifier, hollow fiber compressor and f-2f
detection).

III Simultaneous compression and characterization of ultrashort laser
pulses using chirped mirrors and glass wedges
In this paper we show a simple method of characterizing ultrashort laser pulses.
I had the original idea, developed the algorithm and performed most of the
experimental work and experimental analysis, and wrote the article.

IV Characterization of broadband few-cycle laser pulses with the d-scan
technique
In this paper we study and show the capabilities and limitations of the d-scan
technique for ultrashort laser pulse characterization. Its applicability is exper-
imentally demonstrated on demanding situations. I made the simulations and
improved the phase-retrieval algorithm to deal with the more complex sources.
I took a major role on the experimental setup and wrote the paper.

V Spatiotemporal characterization of few-cycle laser pulses
In this paper we study the spatio-temporal characteristics of ultra-short pulses,
specifically issues on focusing. I took part in the temporal compression and
characterization.
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VI Generation and spatiotemporal characterization of 4.5-fs pulses from
a hollow-core fiber compressor
In this paper we study the spatio-temporal characteristics of ultra-short pulses
from a hollow-core gas-filled fiber. I took part on building the experimental
setup, and on the temporal compression and characterization.

VII Space-time focusing of phase-stabilized nanojoule-level 2.5-cycle
pulses to peak intensities > 3× 1013W/cm2 at 80 MHz
In this paper we show the relative high intensities achievable directly from a
laser oscillator, using microscope objectives and chirped mirrors. I took part on
building the experimental setup, processing and analyzing the data, and writing
the manuscript.

VIII Spatial and spectral properties of the high-order harmonic emission
in argon for seeding applications
In this paper we study the spectral and spatial properties of radiation from high-
harmonic generation in argon. I took part in building and optimizing the HHG
setup and in the absolute energy measurements, and wrote the acquisition and
data processing software. I also took part in the interpretation of the data and
in the writing of the manuscript.

IX Single-shot holography using high-order harmonics
In this paper we demonstrate single-shot holography from an HHG source. I
took part in building the HHG source and the holography setup, and wrote the
signal acquisition code and real-time reconstruction of the XUV holograms.

X Phase Measurement of Resonant Two-Photon Ionization in Helium
In this paper we study the phase properties of two-photon resonant ionization
of He. The phase information is gained by cross-correlating an IR field with
a high-order harmonic comb, where the lowest harmonic is resonant with the
bound 1s3p state in He. I took part in preparing the HHG and RABBITT setup
and data acquisition, and on the spectral shaping of the driving field for the
wavelength-dependence study.

XI Photoemission-time-delay measurements and calculations close to
the 3s-ionization-cross-section minimum in Ar
In this paper we study the photoemission time delay in argon. I took part on
the HHG setup, the RABBITT setup, and on the active stabilization of the
interferometer.
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63. A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma and R. Szipöcs. All-
solid-state cavity-dumped sub-5-fs laser. Appl. Phys. B 65, 175 (1997).

64. Rick Trebino. Frequency-resolved optical gating: the measurement of ultrashort
laser pulses. Kluwer Academic Publishers (2000).

65. Ian A. Walmsley and Christophe Dorrer. Characterization of ultrashort electro-
magnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

66. Cl Froehly, A Lacourt and J Ch Viénot. Time impulse response and time fre-
quency response of optical pupils.:Experimental confirmations and applications.
Nouvelle Revue d’Optique 4, 183 (1973).

67. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly and J. A. Arnaud. Nou-
velle méthode de mesure de la réponse impulsionnelle des fibres optiques. Appl.
Opt. 19, 3749–3755 (1980).

68. Jean-Charles Viénot, Jean-Pierre Goedgebuer and Alain Lacourt. Space and time
variables in optics and holography: recent experimental aspects. Appl. Opt. 16,
454–461 (1977).

69. B. Rubin and R. M. Herman. Monochromators as light stretchers. American
Journal of Physics 49, 868–871 (1981).

70. Jacob Cohen, Pamela Bowlan, Vikrant Chauhan and Rick Trebino. Measuring
temporally complex ultrashort pulses using multiple-delay crossed-beam spectral
interferometry. Opt. Express 18, 6583–6597 (2010).

71. Benjamín Alonso, Íñigo J. Sola, Óscar Varela, Juan Hernández-Toro, Cruz Mén-
dez, Julio San Román, Amelle Zaïr and Luis Roso. Spatiotemporal amplitude-
and-phase reconstruction by Fourier-transform of interference spectra of high-
complex-beams. J. Opt. Soc. Am. B 27, 933–940 (2010).

73



References

72. Jean-Claude M. Diels, Joel J. Fontaine, Ian C. McMichael and Francesco Simoni.
Control and measurement of ultrashort pulse shapes (in amplitude and phase)
with femtosecond accuracy. Appl. Opt. 24, 1270–1282 (1985).

73. Yoshihiro Takagi, Tohru Kobayashi, Keitaro Yoshihara and Shunji Imamura.
Multiple- and single-shot autocorrelator based on two-photon conductivity in
semiconductors. Opt. Lett. 17, 658–660 (1992).

74. D.T. Reid, W. Sibbett, J.M. Dudley, L.P. Barry, B. Thomsen and J.D. Harvey.
Commercial Semiconductor Devices for Two Photon Absorption Autocorrelation
of Ultrashort Light Pulses. Appl. Opt. 37, 8142–8144 (1998).

75. K. Naganuma, K. Mogi and H. Yamada. General method for ultrashort light
pulse chirp measurement. Quantum Electronics, IEEE Journal of 25, 1225 –
1233 (1989).

76. Wenlong Yang, Matthew Springer, James Strohaber, Alexandre Kolomenski,
Hans Schuessler, George Kattawar and Alexei Sokolov. Spectral phase retrieval
from interferometric autocorrelation by a combination of graduated optimization
and genetic algorithms. Opt. Express 18, 15028–15038 (2010).

77. Akira Watanabe, Hiroshi Saito, Yuzo Ishida and Tatsuo Yajima. Computer-
assisted spectrum-resolved SHG autocorrelator for monitoring phase characteris-
tics of femtosecond pulses. Optics Communications 63, 320 – 324 (1987).

78. D. J. Kane and R. Trebino. Characterization of Arbitrary Femtosecond Pulses
Using Frequency-Resolved Optical Gating. IEEE J. Quantum Electron. 29, 571
(1993).

79. R. Trebino and D. J. Kane. Using phase retrieval to measure the intensity and
phase of ultrashort pulses: frequency-resolved optical gating. J. Opt. Soc. Am. A
10, 1101 (1993).

80. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel
and B. Richman. Measuring ultrashort laser pulses in the time-frequency domain
using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 1 (1997).

81. J. Paye. The chronocyclic representation of ultrashort light pulses. Quantum
Electronics, IEEE Journal of 28, 2262 –2273 (1992).

82. W. Koenig, H. K. Dunn and L. Y. Lacy. The Sound Spectrograph. The Journal
of the Acoustical Society of America 18, 19–49 (1946).

83. Kenneth W. DeLong, David N. Fittinghoff, Rick Trebino, Bern Kohler and Kent
Wilson. Pulse retrieval in frequency-resolved optical gating based on the method
of generalized projections. Opt. Lett. 19, 2152–2154 (1994).

84. Daniel J Kane. Real-Time Measurement of Ultrashort Laser Pulses Using Prin-
cipal Component Generalized Projections. IEEE Journal of selected topics in
quantum electronics 4, 278–284 (1998).

85. Patrick O’Shea, Mark Kimmel, Xun Gu and Rick Trebino. Highly Simplified
Device for Ultrashort-Pulse Measurement. Opt. Lett. 26, 932–934 (2001).

74



References

86. Ivan Amat-Roldán, Iain Cormack, Pablo Loza-Alvarez, Emilio Gualda and David
Artigas. Ultrashort pulse characterisation with SHG collinear-FROG. Opt. Ex-
press 12, 1169–1178 (2004).

87. Gero Stibenz and Günter Steinmeyer. Interferometric frequency-resolved optical
gating. Opt. Express 13, 2617–2626 (2005).

88. Kenneth W. DeLong, Rick Trebino and William E. White. Simultaneous recovery
of two ultrashort laser pulses from a single spectrogram. J. Opt. Soc. Am. B 12,
2463–2466 (1995).

89. C. Iaconis and I. A. Walmsley. Spectral phase interferometry for direct electric
field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792 (1998).

90. Dane R. Austin, Tobias Witting and Ian A. Walmsley. Resolution of the relative
phase ambiguity in spectral shearing interferometry of ultrashort pulses. Opt.
Lett. 35, 1971–1973 (2010).

91. Adam S. Wyatt, Alexander Grün, Philip K. Bates, Olivier Chalus, Jens Biegert
and Ian A. Walmsley. Accuracy measurements and improvement for complete
characterization of optical pulses from nonlinear processes via multiple spectral-
shearing interferometry. Opt. Express 19, 25355–25366 (2011).

92. Adam S. Wyatt, Ian A. Walmsley, Gero Stibenz and Günter Steinmeyer. Sub-10
fs pulse characterization using spatially encoded arrangement for spectral phase
interferometry for direct electric field reconstruction. Opt. Lett. 31, 1914–1916
(2006).

93. Jonathan R. Birge, Richard Ell and Franz X. Kärtner. Two-dimensional spectral
shearing interferometry for few-cycle pulse characterization. Opt. Lett. 31,
2063–2065 (2006).

94. Vadim V. Lozovoy, Igor Pastirk and Marcos Dantus. Multiphoton intrapulse
interference. IV. Ultrashort laserpulse spectral phase characterization and com-
pensation. Opt. Lett. 29, 775–777 (2004).

95. Bingwei Xu, Jess M. Gunn, Johanna M. Dela Cruz, Vadim V. Lozovoy and Mar-
cos Dantus. Quantitative investigation of the multiphoton intrapulse interference
phase scan method for simultaneous phase measurement and compensation of
femtosecond laser pulses. J. Opt. Soc. Am. B 23, 750–759 (2006).

96. Yves Coello, Vadim V. Lozovoy, Tissa C. Gunaratne, Bingwei Xu, Ian
Borukhovich, Chien hung Tseng, Thomas Weinacht and Marcos Dantus. Interfer-
ence without an interferometer: a different approach to measuring, compressing,
and shaping ultrashort laser pulses. J. Opt. Soc. Am. B 25, A140–A150 (2008).

97. Vadim V. Lozovoy, Bingwei Xu, Yves Coello and Marcos Dantus. Direct mea-
surement of spectral phase for ultrashort laser pulses. Opt. Express 16, 592–597
(2008).

98. Selcuk Akturk, Ciro D’Amico and Andre Mysyrowicz. Measuring ultrashort
pulses in the single-cycle regime using frequency-resolved optical gating. J. Opt.
Soc. Am. B 25, A63–A69 (2008).

75



References

99. Patrick O’Shea, Mark Kimmel, Xun Gu and Rick Trebino. Increased-bandwidth
in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal.
Opt. Express 7, 342–349 (2000).

100. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter and U. Keller.
Carrier-envelope offset phase control: A novel concept for absolute optical fre-
quency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327
(1999).

101. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall
and S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked
lasers and direct optical frequency synthesis. Science 288, 635 (2000).

102. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth,
T. W. Hänsch and F. Krausz. Controlling the phase evolution of few-cycle light
pulses. Phys. Rev. Lett. 85, 740 (2000).

103. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto,
H. A. Haus and E. P. Ippen. Nonlinear Optics with Phase-Controlled Pulses in
the Sub-Two-Cycle Regime. Phys. Rev. Lett. 86, 5462–5465 (2001).

104. Takao Fuji, Jens Rauschenberger, Alexander Apolonski, Vladislav S. Yakovlev,
Gabriel Tempea, Thomas Udem, Christoph Gohle, Theodor W. Hänsch, Walter
Lehnert, Michael Scherer and Ferenc Krausz. Monolithic carrier-envelope phase-
stabilization scheme. Opt. Lett. 30, 332–334 (2005).

105. Masayuki Kakehata, Hideyuki Takada, Yohei Kobayash, Kenji Torizuka, Yoshi-
hiko Fujihira, Tetsuya Homma and Hideo Takahashi. Single-shot measurement
of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436
(2001).

106. Chengquan Li, Eric Moon, He Wang, Hiroki Mashiko, Christopher M. Nakamura,
Jason Tackett and Zenghu Chang. Determining the phase-energy coupling coef-
ficient in carrier-envelope phase measurements. Opt. Lett. 32, 796–798 (2007).

107. He Wang, Michael Chini, Eric Moon, Hiroki Mashiko, Chengquan Li and Zenghu
Chang. Coupling between energy and phase in hollow-core fiber based f-to-2f
interferometers. Opt. Express 17, 12082–12089 (2009).

108. T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri,
G. G. Paulus and R. Kienberger. Single-shot carrier-envelope phase measurement
of few-cycle laser pulses. Nat. Phys. 5, 357 (2009).

109. A. M. Sayler, Tim Rathje, Walter Müller, Klaus Rühle, R. Kienberger and G. G.
Paulus. Precise, real-time, every-single-shot, carrier-envelope phase measurement
of ultrashort laser pulses. Opt. Lett. 36, 1–3 (2011).

110. Markus Kreß, Torsten Löffler, Mark D. Thomson, Reinhard Dörner, Hart-
mut Gimpel, Karl Zrost, Thorsten Ergler, Robert Moshammer, Uwe Morgner,
Joachim Ullrich and Hartmut G. Roskos. Determination of the carrier-envelope
phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature
Physics 2, 327–331 (2006).

76



References

111. Andrius Baltuška, Takao Fuji and Takayoshi Kobayashi. Controlling the Carrier-
Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers.
Phys. Rev. Lett. 88, 133901 (2002).

112. C. Vozzi, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G. Sansone, S. Stagira,
O. Svelto, S. De Silvestri, M. Nisoli and G. Cerullo. High-energy, few-optical-
cycle pulses at 1.5 µm with passive carrier-envelope phase stabilization. Opt.
Express 14, 10109–10116 (2006).

113. T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear
optics. Rev. Mod. Phys. 72, 545 (2000).

114. F. Krausz and M. Ivanov. Attosecond physics. Reviews of Modern Physics 81,
163–234 (2009).

115. P. B. Corkum. Plasma perspective on strong-field multiphoton ionization. Phys.
Rev. Lett. 71, 1994 (1993).

116. K. J. Schafer, B. Yang, L. F. DiMauro and K. C. Kulander. Above threshold
ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599 (1993).

117. Kathrin Klünder. Electron Wave Packet Dynamics on the Attosecond Time Scale.
PhD thesis Lund University (2012).

118. K. Varjú, Y. Mairesse, B. Carre, M. B. Gaarde, P. Johnsson, S. Kazamias,
R. Lopez-Martens, J. Mauritsson, K. J. Schafer, Ph. Balcou, A. L’Huillier and
P. Salières. Frequency chirp of harmonic and attosecond pulses. J. Mod. Opt.
52, 379 (2005).

119. P. Balcou, P. Salières, A. L’Huillier and M. Lewenstein. Generalized phase-
matching conditions for high harmonics: The role of field-gradient forces. Phys.
Rev. A 55, 3204–3210 (1997).

120. G. Farkas and C. Tóth. Proposal for attosecond light pulse generation using laser
induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168,
447 (1992).

121. K. T. Kim, C. M. Kim, M.-G. Baik, G. Umesh and C. H. Nam. Single sub-50-
attosecond pulse generation from chirp-compensated harmonic radiation using
material dispersion. Phys. Rev. A 69, 051805 (2004).

122. R. López-Martens, K. Varjú, P. Johnsson, J. Mauritsson, Y. Mairesse, P. Salières,
M. B. Gaarde, K. J. Schafer, A. Persson, S. Svanberg, C.-G. Wahlström and
A. L’Huillier. Amplitude and phase control of attosecond light pulses. Phys. Rev.
Lett. 94, 033001 (2005).

123. Center for X-ray Optics, Lawrence Berkley National Laboratory (2009).

124. E. D. Palik, editor. Handbook of optical constants of solids, vol. 1. Academic
Press San Diego (1985).

77



References

125. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic,
T. Brabec, P. Corkum, U. Heinzmannß, M. Drescher and F. Krausz. Attosecond
metrology. Nature 414, 509 (2001).

126. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuška, V. Yakovlev,
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Abstract: This article reports on the successful stabilization of the

carrier-envelope phase of a 1-kHz laser system that includes a large grating

stretcher, a regenerative amplifier, a multipass amplifier and a grating

compressor. Phase stability for pulse energies up to 6 mJ is demonstrated

using electronic feedback to the oscillator locking electronics as well as

feedback via an acousto-optic programmable dispersive filter.

© 2009 Optical Society of America

OCIS codes: (140.3425) Laser stabilization; (320.7090) Ultrafast lasers; (120.5050) Phase

measurement

References and links

1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope

phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635-639

(2000).

2. A. Polonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, ”Control-
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1. Introduction

Ever since their first demonstration at the turn of the century, carrier-envelope phase (CEP)

stable femtosecond oscillators have brought on a revolution in metrology [1-3]. Phase-stable

amplification of these pulses has, in turn, become a very important tool in attosecond science,

especially in the production of single attosecond pulses [4-6]. By now, phase-stable amplifi-

cation has been demonstrated in several types of laser systems based on chirped-pulse am-

plification (CPA), from systems having material, prism or transmission grating stretchers and

compressors [7-9] to grating based systems that can be scaled to very high energies [10-16].

CEP stable multi-millijoule CPA systems have also recently become commercially available.

These systems have been built with CEP stability in mind, contrary to equipment often present

in many laboratories. Therefore, practical, uncomplicated modifications that can add CEP sta-

bility to existing systems are of great interest to a large scientific community.

This article reports on the successful CEP stabilization of a relatively large 1-kHz

Ti:Sapphire-based CPA laser system consisting of a commercial CEP-stable seed oscillator, a

large Öffner triplet grating stretcher, a regenerative amplifier, a cryogenically-cooled multipass

amplifier and a grating compressor. CEP stability for pulse energies up to 6 mJ is demonstrated.

This upgrade has been done non-invasively, that is, without causing long interruptions to scien-

tific experiments conducted with the laser.

2. Description of the laser system

The original CPA system (35 fs, 1.5 mJ) was delivered in 1998 (B.M. Industries / Thales).

Prior to this work, a considerable overhaul was performed in 2006 when the amplifiers were

upgraded to give 10 mJ per pulse before compression (Amplitude technologies). The present

system layout is shown in Fig. 1(a). The seed oscillator is a CEP-stable Femtosource Rainbow,

which provides very stable operation due to its rigid construction and collinear f-to-0 setup. The

oscillator uses its broad bandwidth together with self-phase modulation in a periodically-poled

lithium-niobate crystal to achieve the octave spanning spectrum required in the self-referencing
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Fig. 1. (a) Simplified laser setup: AOM: acousto-optic modulator; OSC: oscillator; APD:

avalanche photodiode; PD: photodiode; AOPDF: acousto-optic programmable dispersive

filter; ISO: optical isolator; SP: spectrometer; PC: personal computer. Electrical connec-

tions are indicated with dashed lines and slow loop feedback paths in purple. (b) Cryocooler

setup in the multipass amplifier. The vibrating cryocooler is mounted on a separate tripod

completely isolated from the optical table.

f-to-0 interferometer without the need for a photonic crystal fibre [17]. Phase stabilization elec-

tronics (XPS800-E, Menlosystems) stabilizes the oscillator pulse-to-pulse phase slip to π/2

with a resulting in-loop phase jitter well below 100 mrad root-mean-square (RMS).

For fine control of system dispersion, an acousto-optic programmable dispersive filter

(AOPDF, Fastlite Dazzler) is used after the oscillator. With the low-jitter option installed, fac-

tory timing jitter measurements on this particular unit point to an added optical CEP jitter of

50 mrad RMS. Besides being useful for dispersion management, the AOPDF can also be used to

fine tune the carrier frequency of amplified pulses simply by changing the spectral shape of the

seed pulses [18]. The stretcher is a large, folded, triplet Öffner grating stretcher with a 5-ps/nm

stretch factor. The size of this stretcher is considerable compared to stretchers in commercial

CEP stable systems. The diameter of the concave mirror is 30 cm, the grating is 14 cm x 12 cm,

the beam height is 20 cm above the table surface, the footprint is 120 cm x 60 cm, and the total

beam path is 11 meters. Needless to say, this device is extremely sensitive to vibrations.

The first of the two amplifiers is regenerative with three KD*P Pockels cells (pulse picker,

switch in/out, and cleaner). Saturation at an output energy of 0.5 mJ is obtained after roughly

13 cavity roundtrips. The second amplifier is a standard cryogenically-cooled five-pass bow-tie

amplifier that is designed to boost the pulse energy up to 10 mJ. Both amplifiers are pumped

by light from a 30-W diode-pumped solid-state laser (DM30, Photonics Industries). For pulse

energies above 5 mJ or so, a second flashlamp-pumped 20-W laser (YLF20W, B.M. Industries)

is used for the multipass amplifier. Finally, the beam is sent over to the adjacent optical table and

into a standard double pass grating compressor. With large dielectric gratings (14 cm x 12 cm)

optimized for 800 nm the throughput is approximately 74%. In order not to damage the gratings,

the beam is expanded to 1.6 cm full width at half maximum (FWHM) in a telescope before

entering the compressor. Frequency-resolved optical gating measurements indicate a minimum

pulse length of 34 fs FWHM after compression. By tuning the AOPDF this can be reduced to

30 fs if minor satellites to the main pulse are allowed. For reference, the autocorrelation trace

assuming a sech2 pulse shape yields 30 fs and 26 fs, respectively.

A self-referencing f-to-2f interferometer (APS800, MenloSystems) is used as a CEP detector

for the amplified pulses. During amplification a slow drift of the CEP usually occurs, and this

must be compensated by another feedback loop, the so called slow loop [7]. Several different

implementations of the slow loop have been demonstrated, including feedback to the oscillator

locking electronics [7], grating position [14] or prism position [8] in the stretcher, and grating

separation in the compressor [15]. CEP control using an AOPDF has also very recently been
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demonstrated [9, 19]. In this work the slow loop has been implemented in two different ways:

voltage feedback to the oscillator locking electronics and phase control of the acoustic wave in

the AOPDF. Feedback paths are indicated in purple in Fig. 1(a).

3. Route to carrier-envelope-phase stability

Early on it was clear that the first problem to be encountered on a route to a stable CEP would

be the cryogenic cooler assembly in the multipass amplifier. Gas pressure fluctuations in the

cryocooler (ARS DE-104) generate a considerable amount of vibrations, and these must not

propagate to the optical table. For this reason the cryocooler assembly was mounted on a sepa-

rate tripod and is hovering a few millimeters above the optical table surface completely isolated

from the rest of the setup (Fig. 1(b)). Later, during first tests after installation of the CEP-stable

oscillator and the phase detector for the amplified pulses, no CEP stability was observed even

with the noisy cryocooler turned off. What follows in this section is a short summary of the

path to a stable and controllable phase: the encountered problems and their solutions.

The second problem encountered was electromagnetic interference in the oscillator fast loop

and in the pulse picking caused by the high-voltage switching of the three Pockels cells. In

the fast loop this interference manifested itself as clear and regular spikes in the error signal,

whereas the interference in the pulse picking was more subtle. These interference problems

where removed by re-routing cables, putting aluminum foil for added shielding, using a band-

pass filter in front of the pulse counter input and by using separate pulse pick-up photodiodes

for different parts of the system in order to remove potential ground loops and noise propaga-

tion. As a result a total of four separate photodiodes are used in timing and control.With these

modifications CEP stability on the few second time scale was observed with short stable periods

interrupted by long periods of very turbulent behavior.

By inspection, i.e., by tapping on different parts while monitoring the CEP, it became clear

that the stretcher seemed by far the most sensitive part with respect to vibrations. To investigate

the role of table vibrations further, a piezo-electric transducer was mounted on the optical tables,

and it turned out that even very weak floor vibrations could cause severe turbulence of the phase.

Thus it seemed that vibrations in the floor were exciting resonances in the table, in the rigid table

legs, and in the optomechanical components themselves. Since the system stretches over two

separate optical tables, floating the tables did not seem like a quick and easy solution. Instead,

special anti-vibration rubber sheets (Novibra) were placed under the table legs as well as under

the cryocooler tripod in order to isolate the optical tables from floor vibrations with excellent

results. Even though the anti-vibration sheets are not designed for demanding applications, they

do remove efficiently the part of the noise spectrum that can induce resonances in the table and

the table legs (50-100 Hz or so). Note also that the laboratory is located in the basement of the

building and that there is no heavy traffic nearby, which makes the environment already quiet

by default.

At this point the system could be regarded as phase stable; however, to further reduce the

phase jitter and to be able to operate the flashlamp-pumped Nd:YLF laser, vibration isolating

sheets (Sorbothane) were placed under the pump lasers. Also, rotary pumps, cooling water and

cryocooler pumps, and pump laser drivers are all located in separate rooms away from the laser

setup. Vibrating cooling water hoses have also been clamped down by a large concrete block

before going onto the optical table.

4. Results

Fig. 2(a) shows single-shot, in-loop phase jitter measured at an output energy of 6 mJ with slow

loop feedback applied to the AOPDF (red dots in the background) and the oscillator locking
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Fig. 2. (a) In-loop, single shot CEP jitter at a pulse energy of 6 mJ with slow loop feedback

applied to the AOPDF (red dots in the background) and to the oscillator locking electronics

(black dots). (b) Histograms of the data in (a) show gaussian distributions with a standard

deviation of 510 mrad and 470 mrad. (c) CEP control using the AOPDF at an output energy

of 4.2 mJ is demonstrated by spelling ”Lund”.

electronics (black dots). Here, approximately every fourth pulse has been recorded. In both

cases the resulting noise has a gaussian distribution with a standard deviation of 510 mrad and

470 mrad, respectively (Fig. 2(b)). The electronic feedback has the advantage of providing a

tight lock. There are, however, a number of disadvantages, including feedback range limitations

and, especially, added noise to the oscillator locking electronics.

The Dazzler feedback scheme, on the other hand, will never run out of range due to its cyclic

nature, the feedback being just the phase of the acoustic wave that ranges from 0 to 2π . Further-

more, this technique will not disturb the oscillator in any way. In this work, the disadvantage

was the slow update rate of the acoustic waveform (around 6 Hz or so), and the fact that only

32 different waveforms could be preloaded into the memory of the driver electronics, which

resulted in a feedback step size of 2π/32 = 200 mrad. Therefore, the feedback value could dif-

fer from the correct one by up to 100 mrad. These disadvantages do not exist in newer models

with much higher update rates and in which several hundred waveforms can be preloaded into

memory. Nevertheless, suprisingly good results were obtained also with our device as can be

seen in Fig. 2(c), where CEP control at an output energy of 4.2 mJ is demonstrated by spelling

”Lund”.

Other possible implementations of the slow loop include control of various grating, prism

or wedge positions in the beam path. While all of these would probably work, they are based

on mechanically moving parts and will sooner or later run out of range forcing a reset of the

feedback and momentary instabilities in the phase; therefore, an AOPDF based approach that

will neither disturb the oscillator nor will it ever run out of range is probably the method of
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choice for large laser systems such as the one discussed here where the slow loop needs to

correct large drifts. A summary of CEP noise measured at different pumping conditions is

given in Table 1. Again, the data is single-shot with approximately every fourth pulse recorded

over a time span of 15 minutes, which is the typical time scale of an attosecond experiment.

Energy (mJ) AOPDF Electronic

3.1 390 390

5.2 490 460

6.0 510 470

Table 1. Measured in-loop phase jitter (mrad) for different feedback schemes and at dif-

ferent pumping conditions. The data is single-shot with approximately every fourth pulse

recorder over a time span of 15 minutes.

5. Discussion

The results presented in the previous section are encouraging and would presumably result

in observable CEP dependent effects in many experiments, but for certain applications, such

as the production of single attosecond pulses using high-order harmonic generation, reduced

CEP jitter would be desirable. One big contributor to CEP noise in the present system is the

cryogenic cooler setup in the multipass amplifier (Fig. 1(b)). Even though it is hovering above

the optical table surface, vibrations propagate via the tripod to the floor and to the table. But

more importantly, the entire vacuum chamber vibrates, including the Ti:sapphire crystal and

the windows. This has two consequences: first, the overall beam pointing stability is reduced

and second, since the windows are tilted, the movement of the vacuum chamber results in a

changing path length in vacuum (and air), and hence a change in phase. By turning off the

cryocooler for a few seconds, a clear reduction in CEP jitter can be seen: the RMS jitter drops

from the 400 mrad regime to the 300 mrad range. Thus, in order to increase the stability of the

laser, a new design incorporating vibration dampers for the cryocooler is needed.

To further reduce the CEP jitter, additional layers of vibration damping material might be

put under the pump lasers, the stretcher assembly, and also under the table legs. Active stabi-

lization of pulse energy fluctuations [20] and an update of the AOPDF drive circuitry are other

minimally invasive steps that can be taken for additional noise reduction.

6. Conclusions

In conclusion, it was shown that CEP stability can be added to a relatively large, and partly

old, CPA based laser system consisting of a large grating stretcher, a regenerative amplifier, a

cryogenically-cooled multipass amplifier and a grating compressor. The necessary steps needed

to achieve CEP stable operation at an output energy of 6 mJ were described and additional steps

to further reduce the CEP jitter were proposed. Clearly, by progressing step by step CEP stabil-

ity can be added to existing CPA laser systems without causing long interruptions to scientific

experiments.
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1. Introduction

The ability to stabilize and control the phase slip of the carrier wave under the pulse envelope

in femtosecond oscillators has become a crucial part of time and frequency metrology since

it provides a straightforward, and elegant, way to link the radio frequency domain coherently

to the optical frequency domain, and vice versa [1, 2]. Moreover, phase stable amplification of

these carrier-envelope-phase-stable pulses has revolutionized ultrafast science by enabling the

production of isolated attosecond XUV pulses [3,4]. While optical clockwork as well as single

attosecond XUV pulses without the need to control the carrier-envelope phase (CEP) have both

been recently demonstrated [5, 6], CEP stabilization and control has become, and will remain,

a fundamental feature of modern femtosecond laser systems.

Different techniques have been developed to detect CEP drift and even its absolute value.

The standard way to detect CEP drift is to first generate an octave spanning spectrum via super-

continuum generation and then to monitor the interference between the fundamental spectrum

and its second harmonic in a so called f-to-2f interferometer. In laser oscillators, a narrow spec-

tral region is filtered out and detected with a photodiode. Typically, a phase-locked loop is then

used to lock the signal from the photodiode (the ’beat note’) to one quarter of the pulse repe-

tition rate by modulating the pump power or by tilting a mirror in a prism based intra-cavity

dispersion compensator. Such a scheme locks the phase slip from pulse to pulse to π/4 [7].

The photodiode signal can also be used to directly modulate the pump power [8] or to drive

an acousto-optic modulator external to the laser cavity [9]. In addition to the f-to-2f scheme,

semiconductor-based solutions also exist for generating the beat note [10]. CEP detection at

low power levels and narrow bandwidths can be done using linear interferometry [11].

Once the oscillator has been stabilized, high-power CEP-stable pulses can be produced by

properly selecting the pulses to be amplified. During amplification, a slow drift of the CEP

usually occurs, and this needs to be corrected by a second feedback loop, the slow loop [12].

Here again, an f-to-2f interferometer is usually employed but with a spectrometer instead of a

photodiode [13]. A computer then monitors the interference fringes in the spectrum and com-

putes a correction to be fed back into the laser system. Such a measurement with data transfer

from a spectrometer to a computer is slow and plagued with high latencies, but this is normally

not a problem since only a few hertz of bandwidth is needed for the slow loop to perform well;

however, this means that the phase of only a fraction of the pulses can be recorded for high-

repetition-rate laser systems. In [14], the spectrometer in such an f-to-2f interferometer was
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Fig. 1. (a) Experimental setup. POL: polarizer; F: short pass filter; G: grating; PDA: photo-

diode array. A spectrum of the hollow fiber output is also shown. (b) Electronics for signal

processing. Trans-Z: transimpedance amplifier; ADC: analog to digital converter.

replaced by two photomultiplier tubes in quadrature, which meant that the relative CEP could

be determined unambiguously in a ]−π/2,π/2[ interval at multi-kHz repetition rates.
The absolute CEP can be measured with techniques based on, e.g., THz emission [15], half-

cycle cutoffs in high-harmonic spectra [16] and above-threshold ionization [17]. Recently, using

above-threshold ionization, single-shot CEP measurements with very low latency (20 µs) was

demonstrated [18].

This letter presents a scheme for measuring the relative CEP at high pulse repetition rates and

with latencies in the µs regime. The method is especially designed to be used with hollow-fiber

pulse compressors and it is based on the traditional f-to-2f technique, which is simple to imple-

ment, robust and offers a visually clear picture of the phase stability (the jitter of the spectral

fringe pattern). Here, the spectrometer normally used is replaced by a grating that disperses an

octave spanning spectrum onto a photodiode array. A field-programmable gate-array (FPGA,

NI PCI-7833R) is then used to calculate, in real time, the CEP from the measured interference

pattern. An FPGA based approach for fringe pattern analysis has several advantages compared

to other solutions, including straightforward graphical programming (NI Labview) that results

in high-speed task-dedicated electronic hardware, fast data transfer to the host computer as well

as a (built-in) graphical user interface.

2. Experimental setup and results

The test setup is illustrated in Fig. 1a. CEP-stable pulses from a 30-fs, 1-kHz chirped-pulse

amplifier (CPA) system [19] are spectrally broadened in a hollow fiber. After collimation of

the beam but before dispersion compensation by double chirped mirrors, a reflection off an

uncoated glass plate is used to pick off a sample of the beam for CEP measurement (<10 µJ).
The octave spanning spectrum (about 5 fs transform limit) is then doubled in a nonlinear crystal

(0.5-mm BBO), spectrally filtered (short pass), and angularly dispersed by a grating (1800

grooves/mm, 500-nm blaze) before hitting a 16-element photodiode array (PDA, Hamamatsu

S4111-16R). Optical alignment of the detector is very easy since the interference fringes used to

detect CEP drift are even visible to the naked eye. The photocurrents from the PDA (Fig. 1b) are

then amplified by a transimpedance amplifier (16 channels) and multiplexed down to 8 parallel

lines before being digitized (ADC, 8x200 kS/s) and processed by the FPGA. A sample-and-
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Fig. 2. (a) Raw data of the interference pattern on the PDA (circles) with piecewise linear

(black) and spline (red) interpolations. (b) Double-sided complex Fourier transform of the

raw data in (a). The CEP is given by the phase of the Fourier component at position 4.

hold (S/H) circuit can be inserted before the analog multiplexer to make sure that the signal

does not change during digitization. In this work, for simplicity, a S/H circuit was not used;

instead, the first 8 channels were digitized on the rising slope while the rest were digitized on

the descending slope (at equal magnitudes). In the FPGA, a 16-point fast-Fourier-transform

(FFT) is computed and the phase of the relevant Fourier component is extracted, unwrapped

and transferred via a buffer to the PC for storage. The time required for this process, excluding

the rise time of the PDA and the amplifier, is around 14 µs and is mostly limited by the analog

to digital conversion (ADC) (2x4 µs) and multiplexing (3 µs). Interference patterns can be

continuously read, analyzed and the data saved at pulse repetition rates up to 70 kHz. If only

the first 8 channels are used, the latency drops to around 7 µs and the maximum trigger rate

goes up to 200 kHz.

The current proof-of-principle setup is limited to about 50 kHz by the response of the tran-

simpedance amplifier; however, the rise time of the PDA is well below 1 µs and permits, with an

improved amplifier, very high pulse rates. A proportional-integral-derivative (PID) controller is

also programmed into the FPGA and can be run in parallel to the above signal processing in

order to provide rapid feedback to a (future) high-repetition-rate laser system. Fig. 2a shows a

typical interference pattern measured at 460 nm with the setup in Fig. 1; the open circles are

the actual data points and the black and red lines are piecewise linear and spline interpolations,

respectively. The corresponding spectrum from which the CEP is extracted is shown in Fig.

2b. The interference signal at 460 nm is surprisingly good considering the relatively narrow

spectrum shown in the inset in Fig. 1. Clearly, the spectrum from the fiber has broad wings.

Some care has to be taken when extracting the phase from such a short data set. Computer

simulations show that the relation between the computed phase and the actual phase is slightly

nonlinear due to the low number of points used for the FFT. This nonlinearity can go up to

100 mrad, but it can be reduced by windowing the data. Window functions that go to zero at

the edges should be avoided since they cut away much of the interesting signal; hence, e.g.

a Hamming window, or variations thereof, is recommended. A Hamming window will reduce

the nonlinearity to approximately 10 mrad, which is negligible in most cases. Furthermore, a

short data set means that the extracted phase becomes more sensitive to noise in the signal.

Again, simulations show that this level of sensitivity is acceptable: for example, a noisy signal

with 20% noise in each data point and with a randomly varying background level (random

offset and random slope, both varying in an interval equal in amplitude to the amplitude of the

signal) will together produce a jitter of around 60 mrad and 100 mrad for 16 and 8 channels,

respectively. If a more noise resilient detection is required, the number of data points must be

increased. For example, a 32 cell PDA with 4-to-1 multiplexers and S/H circuits would still

yield latencies of only a few tens of µs. Sub-10 µs latencies could be obtained by updating to

the latest multifunction FPGA modules that require only 1 µs for the ADC.
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To check the noise level of the detector, the phase of an artificial, static pattern was meas-

ured (flash lamp + transmission grating). With a signal level comparable to that in Fig. 2a, a

root-mean-square (RMS) phase jitter of a few mrad was measured even when the FPGA was

triggered at 200 kHz. The dominant source of this phase noise is the analog-to-digital con-

verter, which produces an RMS noise level of nearly 2 mV per sample per channel. The photon

shot noise is an order of magnitude smaller due to the large amounts of photons available from

the hollow fiber (>106/pulse/photodiode). Adding a low-noise amplifier in front of the ADC
and/or increasing the beam intensity can be used to reduce the relative contribution of the ADC

quantization noise and to push the detector noise level into the sub-mrad regime.

Fig. 3. A short excerpt of 1000 consecutive interference patterns recorded at 1 kHz with

only the oscillator being locked. For visual clarity, a spline interpolation as in Fig. 2a has

been done for each pulse.

Fig. 3 shows a traditional view of the fringe pattern around 460 nm of 1000 consecutive laser

pulses recorded at 1 kHz with only the oscillator being locked (no slow loop). The data is a

short excerpt from a much longer data set. At such a low repetition rate, the computed CEP as

well as all of the raw data can easily be transferred and saved continuously to the host computer.

If triggered above 30 kHz or so, only the CEP can be continuously transferred and saved. Three

distinct features from this short excerpt can be seen: the pulse-to-pulse jitter, the slow drift due

to only the oscillator being locked, and the large disturbances at 150 ms and 650 ms caused by

vibrations of the cryogenic cooler unit that operates at 2 Hz and cools the Ti:Sa crystal in the

multipass amplifier. The RMS CEP jitter in Fig. 3 is around 600 mrad. This value should only

be used to get an idea of the scale of the CEP fluctuations. With also the slow feedback loop

running, the phase jitter in front of the fiber as measured with a commercial f:2f interferometer

(APS800) was around 450 mrad [19]. It must be emphasized that these numbers should not

be compared to each other for several reasons, one obvious reason being the slow loop. More

importantly, it is still unclear exactly how, e.g., beam pointing and pulse energy fluctuations, are

coupled to measured and true CEP fluctuations in different setups. The method proposed here

measures the pulses as they exit the hollow fiber and are sent to the experiment, which means

that a considerable part of the measured CEP jitter arising from such effects should reflect true

changes of the CEP in the hollow fiber and not just artifacts of the measurement, which is the

case when the measurement is done in front of the fiber.

The f:2f technique is well known to interpret pulse energy fluctuations as CEP fluctuations.

This coupling has been estimated in [20] to be around 160 mrad for every 1 per cent change

in pulse energy for traditional f:2f interferometers based on white light generation in sapphire.

A value of 120 mrad has been measured for a hollow fiber setup [21]. In this work, the energy

fluctuations in front of the fiber were below 1 per cent. Consequently, energy fluctuations are of

minor importance for the results presented here; however, for a laser with better CEP stability,
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pulse energy fluctuations can become an issue. In a feedback loop, the detrimental effect of

energy fluctuations can be reduced by averaging over a few pulses. If the CEP of the laser is not

stabilized, that is, if the pulses are only labeled by their CEP, then the averaging must be done

during data analysis. But this only means that more shots must be recorded than what would

otherwise be necessary. Active stabilization of the pulse energy can also be employed [22].

Another approach would be to measure the pulse energy simultaneously with the CEP. After a

calibration of the coupling strength has been performed, real-time compensation of this effect

can easily be performed by the FGPA. Finally, the coupling can probably also be reduced by

having a broader white light continuum [23].

Up to a few tens of kHz the signal level from the photodiode array should not be a problem,

after all, a 45o s-polarized reflection off an uncoated glass surface (R≈ 1.5%) provided suffi-

cient signal in this work; however, when going towards 100 kHz and possibly above, a broader

spectrum combined with an improved transimpedance amplifier will be needed in addition to

an increase of the beam split-off ratio.

3. Conclusion

In conclusion, an instrument for fast CEP measurement of amplified femtosecond pulses has

been presented. Spectral broadening of the input pulses was done in a hollow-core fiber, which

is, along with CEP measurement and stabilization, a crucial component in many laboratories at

the forefront of ultrafast science where single attosecond XUV pulses are produced via high-

harmonic generation. The device presented can be used for real-time pulse labeling and rapid

feedback for single-loop CEP stabilization at pulse repetition rates up to the 100-kHz regime.
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1. Introduction 

The characterization of ultrashort laser pulses is often as important as the generation process 
itself. Since no methods exist for the direct measurement of such short events, self-referencing 
techniques are usually employed. 

Traditionally, ultrashort pulses have been characterized by nonlinear autocorrelation 
diagnostics (see, e.g., [1]), which are still widely used in many laboratories. Although 
relatively simple to implement, these fail to provide complete information about the pulses. 
Still, several methods have been devised allowing for the reconstruction of the amplitude and 
phase of the pulses by combination of autocorrelation and spectral measurements (see, e.g [2–
4].). An important improvement over these techniques came in 1993 with the introduction of 
frequency resolved optical gating (FROG) [5, 6]: by spectrally resolving an autocorrelation 
(or cross-correlation) signal, a sonogram-like trace is created from which complete 
characterization of a given pulse can be performed using an iterative algorithm. The quality of 
the retrieval is reflected by the corresponding FROG error, and the time and frequency 
marginals of the trace also provide a means to cross-check the results. There are many 
variants of FROG today, which all rely on spectrally resolving some time-gated signal. Other 
methods widely used today are related to the technique of spectral phase interferometry for 
direct electric-field reconstruction (SPIDER), first introduced in 1998 [7]. These methods do 
not rely on temporal gating, but instead on interferometry in the spectral domain: the spectrum 
of a given pulse is made to interfere with a frequency-shifted (sheared) replica of itself, and 
the resulting spectral interferogram is recorded. Although usually more complicated to set up, 
retrieving the spectral phase from a SPIDER trace is numerically much simpler than in 
FROG, but there is no straightforward means to determine the quality of the phase 
measurement, which strongly depends on the accuracy of the delay between the two replicas. 
Recent SPIDER-related methods have been devised that allow overcoming this calibration 
issue [8, 9]. 

Recently, a new paradigm in pulse characterization based on phase scanning, multiphoton 
intrapulse interference phase scan (MIIPS) [10–13], was introduced. It consists in applying 
well-known spectral phases to the pulse to be characterized and measuring the resulting 
second-harmonic generation (SHG) signal. By finding which locally introduced amount of 
group delay dispersion (GDD) results in compression at a given wavelength, the original 
GDD of the pulse can be found, thereby allowing for the reconstruction of the unknown 
phase. 

In all of the above techniques, the characterization of few-cycle laser pulses is still 
challenging and usually requires specific adaptations and materials in order to accommodate 
the associated broad bandwidths. 

Our method is related to the MIIPS technique in the sense that a phase scan is performed 
on the pulse to be measured; however both the experimental setup and the phase retrieval 
method are substantially different, and these will provide major advantages with respect to 
other methods. In fact, our technique can be implemented using a standard chirped mirror 
compressor setup: we use chirped mirrors to ensure that the pulse becomes negatively 
chirped, and then add glass continuously until the pulse becomes as short as possible. 
Measuring the generated SHG spectra around this optimal glass insertion allows us to fully 
retrieve the spectral phase of the pulse in a robust and precise way without the need of further 
diagnostic tools. The alignment is very easy: no beam-splitting at any point, and no 
interferometric precision or stability are needed. This method is also particularly relaxed with 
respect to the necessary bandwidth of the SHG process, so relatively thick (tens of 
micrometers) frequency doubling crystals can be employed even when measuring few-cycle 
pulses. 

2. Method 

Consider an ultrashort laser pulse, which can be described by its complex spectral amplitude 
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The pulse goes through a piece of transparent glass and then a SHG crystal, and the 
measured SHG spectral power as a function of thickness is proportional to 

 � �� �
2

2

, ) ( ) exp ( ) exp( ) exp( )( z U izk i t d i tS dt� �� � � � � 	
 
 �  (2) 

where z is the thickness of the glass and k(�) its frequency-dependent phase per unit length 
(or wavenumber). Here, we simply take the original spectrum (amplitude and phase), apply a 
phase, and Fourier transform it to have the electric field in the time domain. Then SHG is 
performed (the time-dependent field is squared), and an inverse Fourier transform gives us the 
SHG spectrum. We perform a dispersion scan (we will call it d-scan for short) on the 
unknown pulse by introducing different thicknesses of glass and measuring the corresponding 
SHG spectra, which results in a two-dimensional trace. This is analogous to a MIIPS trace, 
but in our case the phase function is simply the one introduced by a piece of glass. 

This model assumes that the SHG process consists simply on squaring the electric field in 
time, which assumes an instantaneous and wavelength-independent nonlinearity. We will 
discuss the consequences of this approximation later. For simplicity, we will also use negative 
values for the glass insertion. While this is obviously unrealistic from an experimental point 
of view, mathematically it simply results from setting a given reference insertion as zero. 
Regardless of this definition, if we know the electric field for a given insertion, it will be 
straightforward to calculate it for any other insertion. 

As an example, we show in Fig. 1 calculated dispersion-scanned SHG traces of some 
representative spectra, where the spectral phase (left) refers to zero insertion in the d-scans 
(right). In all cases we used the same power spectrum, which is an actual spectrum measured 
from the few-cycle ultrafast oscillator used in the next section, and applied different phase 
curves. The assumed glass is BK7, and the corresponding phase was calculated from easily 
available Sellmeier equations. 

The question now arises on how to find the electric field that generated a given scan. In 
MIIPS it consists on, for each wavelength �0 in the SHG spectrum, finding the insertion that 
maximizes this signal, noting the corresponding GDD at that point, and assuming that the 
GDD at the corresponding wavelength 2�0 in the fundamental spectrum is the negative of this 
value. In our case, applying the MIIPS retrieval technique gives good results for slowly 
varying phases, such as pure GDD and/or third-order dispersion (TOD), but fails for complex 
and structured phases, such as the modulated phase exemplified in Fig. 1(g). While the SHG 
at a given wavelength is mostly determined by the spectral power and phase at twice that 
wavelength in the fundamental field, there is always a coupling between all the generating and 
generated wavelengths. In the case of MIIPS, where a pulse shaper is normally used, an 
iterative procedure effectively solves the retrieval problem mentioned above, as the phase gets 
flatter with each iteration. 

We used this coupling between generating and generated wavelengths to our advantage: 
by using the whole trace’s information, combined with a numerical iterative algorithm, we are 
able to retrieve the spectral phase in a robust and precise way. 
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Fig. 1. Example of simulated dispersion scans, where the spectral phase plots on the left 
correspond to zero insertion in the scans on the right. (a) Fourier limited pulse. (b) Linearly 
chirped pulse (second-order dispersion only) – this causes mostly a translation of the trace with 
respect to the glass insertion, but since the glass itself doesn’t introduce pure second order 
dispersion, the pulse is never completely compressed for any insertion, so it appears slightly 
tilted. (c) Pulse with third-order dispersion only, around 800 nm, which results in a clear tilt in 
the trace with respect to the previous cases. (d) A more complex phase curve, mostly third-
order dispersion and some phase ringing. 

The method we used to retrieve the phase, although certainly not the only possible one, 
proved to be extremely flexible and reliable. It is based on the Nelder–Mead [14] (or downhill 
simplex) algorithm. We use the measured spectral power density, and by applying different 
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phase curves, try to minimize a merit function (the rms error between the measured and 
simulated scans, as commonly used in FROG retrievals), given by 

 � �
2

,

1
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N N
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where Smeas and Ssim refer to the measured and simulated scans, respectively, and � is the 
factor that minimizes the error. This factor, which can be easily found by differentiating the 
error with respect to �, is given by 
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and must be updated at each iteration. The problem can now be treated as a general multi-
dimension optimization problem, where the phase is defined by a function of a set of 
parameters (or dimensions) and the function to be minimized is the error G. To make things 
easier for the algorithm, the phase function should be described in a convenient basis. We 
want to minimize the number of dimensions in the problem while still accurately describing 
the phase, and we want a basis whose functions are as uncoupled as possible, to prevent the 
algorithm from getting stuck on local minima. Different approaches can be taken here. Some 
authors choose to allow each point of the sampled complex spectral or time amplitude to be 
an independent variable (e.g [15].), and as such, the number of dimensions of the problem will 
be determined by the sampling. Another (very common) choice is to use a Taylor expansion 
as a basis. In the former case, the large number of parameters makes the algorithm rather 
slow, while in the latter, there is a high degree of coupling between the even terms (i.e., 
second order dispersion, fourth order dispersion, etc.) as well as between the odd terms (third 
order dispersion, fifth order dispersion, etc.). This would still be a good choice (if not optimal) 
for simple phase functions, as the ones introduced by glasses, gratings, prism compressors, 
etc., which are accurately described in such a way. 

In our case, we chose to write the phase as a Fourier series. This was inspired by the fact 
that Fourier components are orthogonal. If one could access directly the error between the true 
phase and its Fourier representation, then each Fourier component could be directly 
determined by minimizing the error. While we don’t have direct access to this error, the 
overall trace error is a good indicator of the phase error. In fact, for all the cases we tried, the 
algorithm converged very well. For simple phases (i.e. mostly GDD and TOD) about 6 to 10 
coefficients were used, whereas for more complicated phases up to 60 coefficients were used. 
The highest phase frequencies present on the fundamental spectrum can be estimated from the 
structure of its dispersion scan. 

 

Fig. 2. Example of scan and phase retrievals from Fig. 1 (h). 

Figure 2 shows an example of a simulated spectrum (measured power spectrum and 
simulated phase), its d-scan, and the corresponding retrieved phase. The agreement between 
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the retrieved and original phases is very good typically down to regions where the spectral 
power is around 2% of the peak spectral power. 

Let us now consider a more realistic scenario of particular importance for the case of ultra-
broadband few-cycle pulses, where the SHG signal cannot be described by simply squaring 
the electric field (the SHG process doesn’t have infinite bandwidth). Even in this case, the 
SHG signal is well described by the simple model (Eq. (2), provided the spectrum is 
multiplied by an adequate spectral filter [16, 17], so the measured signal is simply given by 

 ( , ) ( , ) ( ),
meas ideal

S z S z R� � ��  (5) 

where R(�) is the spectral filter and Sideal denotes the ideal, flat response process (Eq. (2). If 
the spectrometer’s response to the SH signal is unknown it can also be included in this 
response function. 

For the discussed algorithm, it is crucial to have a well calibrated signal, the reason being 
that the algorithm uses the overall error as a merit function. If the spectral response is not flat, 
the algorithm reacts by introducing fast phase variations on the regions with lower filter 
response, which makes the signal go out of the calculation box, therefore artificially reducing 
the overall error. There are several ways around this. The most straightforward would be to 
measure the spectrometer’s response and simulate the SHG crystal spectral curve, but both are 
unfortunately difficult to obtain accurately. We found numerically that the integral of the trace 
over the thickness parameter (the frequency marginal) 

 ( ) ( , )M S z dz� �
�

	�

� 
  (6) 

does not depend on the original spectral phase of the pulse, �(�). It is then easy to simulate a 
trace for a Fourier-limited pulse, and use its marginal to calibrate the measured one. 
Comparing the simulated scan’s marginal to the measured scan’s marginal it is 
straightforward to calculate the spectral response R(�). Knowing the filter response, we can 
either divide the experimental trace by it, or include it in the retrieval process, by multiplying 
it by the “ideal” simulated trace, in each iteration. If the filter has zeros in the spectral region 
of interest, then we are left only with the latter option. We have successfully calibrated 
experimental scans this way. 

We also devised another approach, which proved to be much easier to implement and 
more flexible. It consists in allowing the error function to be minimized for each wavelength, 
with the overall error being a weighted function of all these errors. So, given an experimental 
and simulated scan, the factor that minimizes the error for each frequency component is given 
by 
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and the overall error is 

 � �2
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Now, by using this new error function, the algorithm effectively works on matching the 
trace’s features, instead of simply trying to match the trace as a whole. If the trace is 
successfully retrieved, then the minimizing factors �i give us the complete filter response. 
What is perhaps more remarkable with this approach is that it is possible to correctly retrieve 
the phase for a certain frequency, even if there is no signal at the corresponding SHG 
(doubled) frequency. This can be seen from the examples in Fig. 3. Even in the case where the 
simulated filter response is clipped to zero, like in Fig. 3(d) (therefore making it impossible to 
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calibrate the signal), the phase is nevertheless correctly retrieved across the whole spectrum 
(Fig. 3(a)). This would not be possible with the MIIPS retrieval technique. 

 

Fig. 3. Example of simulated traces including spectral filters in the SHG process. (a) Simulated 
spectrum, where the retrieved phase shown is for the worst case scenario, (d). (b) Ideal trace. 
(c) Ideal trace multiplied by a typical SHG crystal efficiency curve. (d) Same as (c), but 
clipped at around 370nm and 440nm. (e) Retrieved “ideal” scan from scan (d) – the retrieved 
scan is supposed to be identical to scan (b). (f) Applied and retrieved spectral filters from (c). 
The retrieved filter is made up of the error minimizing coefficients �‘s for each wavelength. 

3. Experimental results 

A simplified diagram of our experimental setup is given in Fig. 4. It consists on an ultrafast 
oscillator (Femtolasers Rainbow CEP, not shown), four double-chirped mirror pairs (Venteon 
GmbH), followed by BK7 AR-coated glass wedges with an 8° angle, an off-axis aluminum-
coated parabola (50 mm focal length) and a standard 20 �m thick BBO crystal cut for type I 
SHG at 800 nm. The chirped mirrors are made in matched pairs to minimize GDD 
oscillations, and therefore come in two types (described as “blue” and “green” on Fig. 4). 

A dispersion scan was performed with very fine sampling in thickness (250 acquired 
spectra, with a thickness step of about 20 �m). Because of the relatively small angle of the 
wedges, this thickness step corresponds to a wedge translation step of more than 100 �m (and 
even this is much more than necessary, as a thickness step of 100 �m is typically enough, 
which corresponds to a translation step of more than 500 �m) so the positioning precision is 
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quite undemanding compared to interferometric methods. Depending on the neccessary 
spectrometer integration time, a typical scan is performed in a few seconds. 

 

Fig. 4. Experimental setup. The laser is a Femtolasers Rainbow CEP (80 MHz repetition rate, 
energy per pulse of 2.5 nJ, FWHM Fourier limit of 6 fs), SHG is a 20 �m thick BBO crystal. 
The double chirped mirrors (DCM) are made in matched pairs to minimize phase ringing, and 
the aluminum off-axis parabola has a 50 mm focal length. 

To test the precision of the method, a bootstrap analysis was performed: from this fine 
scan, five scans were extracted, all with different data sets, by using every fifth spectrum (i.e., 
scan 1 uses steps 1,6,11, etc., scan 2 uses steps 2, 7, 12, etc.). The background signal was 
subtracted, and when the resulting signal was negative, we kept it as such, instead of making 
it zero. This way we allow for the retrieved data to (correctly) tend to zero where it should, 
instead of forcing the algorithm to try to converge to half of the noise level. 

Two different retrieval techniques were used for each scan thus yielding a total of ten 
retrievals. In the first case we calibrated the scan from its frequency marginal (i.e., by forcing 
the integral over z to be the same for the measured scan and for a simulated scan 
corresponding to the Fourier limit case), and in the second, we allowed the error to adjust to 
each spectral slice. Typical retrieval times on a standard personal computer range from a few 
seconds to a few minutes, depending on the number of coefficients used to describe the phase. 

In all cases, the retrievals are very similar so we grouped them all together for the 
statistical analysis (Fig. 5). The “zero” insertion here refers to the insertion at which the pulse 
is shortest, and for which the phase and time reconstructions are shown. It actually 
corresponds to about 3 mm of BK7 glass. The retrieved pulse width was 7.1 ± 0.1 fs. The 
pulses clearly show the effect of residual uncompensated third order dispersion (also 
evidenced by the tilt in the corresponding d-scan trace) in the form of post-pulses. Note that 
there is no time-direction ambiguity on the retrieved pulse. Even if the laser and setup as it is 
don’t allow for any shorter pulses, the precise phase measure allows one to re-design the 
compressor if necessary, i.e. by using different glasses and/or chirped mirrors. 

It is worth noting that the phase retrieval is very robust even in regions of very low 
spectral power density. And, considering there is very little SHG signal above 470 nm and 
below 350 nm, it is surprising at first that the phase is consistently retrieved well beyond 940 
nm and below 700 nm. Again, this is due to the coupling between all the frequency 
components on the trace and the original spectrum. As with FROG, the key aspect of this 
technique is the data redundancy in the dispersion-scanned SHG trace. 

As with the simulated scans, it was possible to fully retrieve the filter response of the 
system as well. With both methods we retrieved very similar curves for all traces. 

The phase retrieval technique used in this work is certainly not the only possible one. 
Even if it worked extremely well for our purposes, better, faster and more elegant numerical 
approaches are certainly possible and will be studied in future work. 

Another advantage of using a multi-dimensional minimization technique is its extreme 
flexibility. For example, we tried feeding the algorithm the glass thickness spacing as a 
parameter, and it correctly found the known experimental value. 

After having the field well characterized for a given insertion it is straightforward to 
calculate it for any other insertion by applying the known phase curve of the glass to the 
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retrieved phase. One can then simply find the insertion that minimized the pulse length and 
move the wedges into the corresponding position. 

 

Fig. 5. Measured and retrieved scans. (a) Raw scan, made up of 250 spectra. (b) Scan made 
from 50 spectra out of the raw scan. (c) Calibrated scan, by using the frequency marginals in 
Eq. (6)d) Retrieved scan from (c) - either retrieving from (c) or (b), the results are very similar. 
Plots (e) and (f) show a bootstrap analysis on spectrum and time, from 10 different retrievals. 
From the original scan with 250 spectra, 5 different scans were obtained using different data 
sets. The two different techniques were used on each data set. The red curve is the average 
value, and the blue curves are one standard deviation above and below the average. Retrieved 
pulse width at FWHM was 7.1 ± 0.1 fs. 

4. Conclusion 

We have described and demonstrated a simple, inexpensive and robust method to characterize 
ultrashort laser pulses based on iterative phase retrieval from dispersion scans, using chirped 
mirrors, wedges and a standard (relatively thick) SHG crystal. The alignment is very easy (no 
beam-splitting at any point, and no interferometric precision or stability are needed). In our 
case, the main part of the setup (chirped mirrors and wedges) was already being used for pulse 
compression, so there was no need to employ other characterization methods. This is the 
situation where this technique is especially useful. It is of course possible to use the system as 
a standalone device. Also, we are not as limited by the phase-matching restrictions of the 
SHG crystal as with other techniques, which allows for the characterization of extremely 
broad bandwidth pulses without having to sacrifice SHG efficiency by employing 

#156410 - $15.00 USD Received 14 Oct 2011; revised 18 Nov 2011; accepted 18 Nov 2011; published 23 Dec 2011

(C) 2012 OSA 2 January 2012 / Vol. 20,  No. 1 / OPTICS EXPRESS  696

111



Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass
wedges

unpractically thin crystals. We believe this technique might be immediately useful for many 
people working in the field with pulse compressors based on chirped mirrors. 
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Abstract: We present an analysis and demonstration of few-cycle ultrashort 
laser pulse characterization using second-harmonic dispersion scans and 
numerical phase retrieval algorithms. The sensitivity and robustness of this 
technique with respect to noise, measurement bandwidth and complexity of 
the measured pulses is discussed through numerical examples and 
experimental results. Using this technique, we successfully demonstrate the 
characterization of few-cycle pulses with complex and structured spectra 
generated from a broadband ultrafast laser oscillator and a high-energy 
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1. Introduction 

Today’s femtosecond laser oscillators can easily deliver pulse durations in the few-cycle 
regime [1–4]. Ultra-broadband oscillators based on Ti:Sapphire usually operate in regimes 
where strong nonlinearities occur within the gain medium itself, which can lead to broadband 
and highly structured spectra. On the other hand, there is a strong demand for high-power 
ultrashort pulses not achievable directly with laser oscillators. These can be produced by 
optical parametric chirped pulse amplification (OPCPA) [5, 6] or by chirped pulse 
amplification (CPA) [7, 8]. It is however a complicated task to preserve the short pulse 
duration in the amplification process in traditional CPA systems, as effects like gain 
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narrowing reduce the spectral width of the amplified pulses. Thus, external pulse compression 
schemes are usually employed that can provide energetic pulses in the few- to single-cycle 
regimes. These pulses have become indispensable tools in attoscience [9] and high-field 
physics [10]. The most common external compression schemes involve spectral broadening 
of amplified pulses by self phase modulation (SPM), either in a gas-filled capillary waveguide 
[11, 12] or in a self-guided filament [13], usually followed by temporal compression with 
chirped mirrors. The resulting spectra are generally a few hundred nanometers wide, often 
featuring strong modulations and spectral gaps. Furthermore, the phase acquired by the pulses 
in the broadening process is complicated due to the interplay between several effects, such as 
SPM, dispersion, plasma generation, and shockwave formation, and in practice can only be 
partially compensated for by chirped mirrors. Considering the broadband spectra with 
complicated structure and phase that normally arise, the characterization of pulses delivered 
by these external compression schemes is usually quite challenging. 

When characterizing ultrashort laser pulses, different methods have different strengths and 
weaknesses [14]. The existing measurement techniques can be broadly defined to operate in 
the time domain (i.e., autocorrelations [15]), the spectral domain (spectral phase 
interferometry for direct electric-field reconstruction - SPIDER - and variants [16–18], and 
multiphoton intrapulse interference phase scan - MIIPS [19–22]) or both domains (frequency 
resolved optical gating - FROG [23–25]). 

We have recently demonstrated a simple technique to characterize ultrashort pulses while 
compressing them with chirped mirrors and glass wedges [26]. Since chirped mirrors 
introduce fixed amounts of dispersion, they’re commonly used together with a pair of glass 
wedges to fine-tune the dispersion so as to reach maximum compression. By measuring the 
fundamental spectrum and the second-harmonic generation (SHG) spectra around this 
optimum glass insertion, together with a numerical iterative algorithm, it is possible to fully 
characterize the pulses without the need for further diagnostics. In this work, we investigate 
the applicability of the method (which we call d-scan, short for dispersion scan) to 
particularly complex cases, namely sources with complex spectra (both in spectral power and 
phase), as well as its robustness to measurement bandwidth and noise. We demonstrate, via 
simulations and experiments, that it is possible to reconstruct the phase of few-cycle pulses 
generated by ultrabroad bandwidth oscillators and from post-compression in a hollow fiber 
from a CPA system. The main advantages of this technique are its simplicity (ease of 
alignment), sensitivity (no need for pulse splitting, so it uses all the available energy), relaxed 
bandwidth requirements, and the ability to measure the relative phase between well separated 
frequency components, provided the spectral gap between them is smaller than the largest 
continuous spectral region [27]. The cases considered here (both simulated and experimental) 
are of particular relevance for state-of-the-art broadband ultrashort pulse sources, where 
spectra are the result of complex nonlinear processes (e.g., Kerr effect and plasma 
interaction). 

2. Method 

An ultrashort laser pulse can be described by its complex spectral amplitude 

 ) ( ) exp{ ( )}( .U U i� �� � � � �  (1) 

If the pulse goes through a piece of transparent glass and then a SHG crystal, the measured 
SHG spectral power as a function of thickness is proportional to 

 � �� �
2

2

, ) ( ) exp ( ) exp( ) xp(( ,e )z U izk i t d i t dtS � � � � � 	
 
 �� �  (2) 

which can also be written in the spectral domain as a convolution (as usually found in MIIPS 
literature [19–22]) 
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 � �� � �  (3) 

where z is the glass thickness and k(�) is the frequency-dependent wavenumber of the glass. 
This simple SHG model assumes that the nonlinearity has infinite bandwidth, or at least that 
the spectral response is flat in the region of interest, which is seldom the case for pulses in the 
few-cycle regime and under normal experimental conditions. Fortunately the resulting SHG 
power spectrum is still well described by this simple model, provided that a spectral filter is 
included [28, 29]. 

 

Fig. 1. Measured spectrum and simulated phase (a) and corresponding d-scan trace (b). The 
algorithm uses a GD representation to try to match the simulated trace (d) to the target trace 
(b). It starts with a coarse representation which is then interpolated to a finer one as the 
algorithm reaches a minimum. In (c) a given amount of free parameters are available (green 
dots), the GD curve is interpolated from those values, and the phase (blue dotted line) is 
calculated from that GD curve. For this amount of points the best it can do is to produce trace 
(d). The algorithm then continues by adding more degrees of freedom (blue dots), until it 
reaches the sampling limit. The previously determined values are still allowed to vary. 

Our method consists on measuring the fundamental power spectrum and guessing the 

spectral phase that reproduces the measured SHG trace, ,( )S z� . As in our previous work 

[26], we use a general minimization technique (Downhill Simplex [30]), but different basis 
sets are used to describe the phase. In the original algorithm we used a Fourier series to 
represent the phase, with the different coefficients of the Fourier series being the optimization 
parameters. This worked well in most cases but was not enough for others. A simple way to 
avoid the algorithm getting stuck in local minima is to switch basis whenever this happens: 
often, a local minimum in a given basis is not a local minimum in another basis, so the simple 
switching of basis can be a great improvement. For the work presented here, we used several 
different representations. A good tradeoff between accuracy and speed was obtained by 
defining the GD values at a given resolution and using spline interpolation in between 
(similarly to [31, 32]). As the algorithm converges, the resolution is then increased by adding 
more degrees of freedom. A schematic representation of the algorithm is depicted in Fig. 1, 
showing an intermediate step of the algorithm while using GD values as a set to represent the 
guessed phase. The same was done using phase and GDD representations instead of GD 
values, and switching between those representations whenever the algorithm stalled. 

(C) 2012 OSA 13 August 2012 / Vol. 20,  No. 17 / OPTICS EXPRESS  18735

118



Paper IV

 

Fig. 2. Example of simulated dispersion scans for different complex cases, where the spectral 
phase plots on the left correspond to zero insertion in the scans on the right. (a) simulated and 
retrieved phase and corresponding d-scan (b) multiplied by a crystal response curve, together 
with hard clipping at the spectral edges and 5% additive noise added. (c) and (d) correspond to 
relatively small but fast phase variations that heavily distort the trace. (e) and (f) demonstrate 
the case of a hard-clipped spectrum with phase, group delay and group delay dispersion 
discontinuities between the resulting two spectral regions. For all of these cases the retrieved 
phase is in very good agreement with the initial simulated phase. 

In previous work we showed that the d-scan method doesn’t require an intensity-
calibrated SHG signal, and the spectral filter can be retrieved at the same time as the 
fundamental spectral phase. This is accomplished by using a wavelength-dependent (local) 
error as the merit function for the minimization algorithm [26]. 

3. Examples 

We briefly study the performance of the method for three different scenarios: measurement 
noise, strong phase modulation, and spectra with well-separated frequency components (Fig. 
2). A d-scan trace is simulated for each different scenario, and the retrieval algorithm is run. 
In all cases, the “zero” glass insertion on the right side scans corresponds to the shown 
spectral phase on the left side plots. The fundamental spectrum is an actual measurement 
from the ultrafast oscillator used in our previous work [26]. 
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3.1 Noise 

A systematic analysis to noise tolerance of a given method invariably involves choosing a 
“representative” pulse, physically simulating the measurement process, adding noise, and 
trying to retrieve the original pulse. Given the amount of parameters available, and that each 
measurement technique has its strengths and weaknesses, it is just too easy to find a case 
where a given method is superior to others with respect to noise. In view of this, we will not 
be comparing the d-scan technique to other methods but will simply illustrate qualitatively the 
tolerance to noise using a “representative” example. For this we simulated a d-scan, applied a 
spectral filter and added Gaussian noise, with a standard deviation equal to 5% of the peak 
value of the trace. Even under such unfavorable conditions the retrieved phase is still in very 
good agreement with the original simulated phase, as seen in Figs. 2(a) and 2(b). 

 

Fig. 3. Error as a function of the added Gaussian noise for the example from Fig. 1(a). For each 
amount of noise, five retrievals were done. The error bars indicate the standard deviation. 

The finer details in the trace will naturally be the first to become “buried” under the noise. 
Still, even a very noisy signal is often enough to get an estimate of the degree of compression 
being achieved, since the trace’s tilt gives direct indication of uncompensated third and higher 
order dispersion. This is a very useful feature for real-life situations. 

Using the RMS electric field error as defined in [33], 
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it is possible to study how much the retrieval degrades compared to a noiseless trace for our 
“representative” pulse (Fig. 3). With the example from Fig. 1(a), with full bandwidth, an 
RMS noise below 0.02 is readily achievable for a noiseless trace and doesn’t appreciably 
increase up to a noise fraction of about 2%. Then it scales approximately linearly with the 
added noise, and a retrieval is typically acceptable (RMS error of 0.1) with noise levels as 
high as 30% of the trace’s peak value. It should be pointed out that this depends on many 
parameters, like the number of samples, scanning range, and the test pulse. The fundamental 
spectrum is also assumed to be measured without any error. 

3.2 Strong phase modulation 

Dealing with complex pulses (i.e., pulses with a rapidly varying spectral phase) is a 
challenging task for all measurement methods [34]. A particularly difficult (and common) 
situation appears when the generation and/or compression process relies on nonlinear 
processes like SPM and self-steepening. This increases the time-bandwidth product (TBP) of 
the pulses, putting higher demands on spectrometer resolution, and increasing the delay range 
requirements in FROG measurements. Our method makes no assumption about a slowly 
varying phase, so there isn’t in principle a limit for how fast and strong these can be. There 
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are some practical issues that should be taken into account though: in our case, the spectral 
resolution requirements increase both for structured spectral power and phase, as necessary to 
properly sample each spectrum of the scan. In these conditions, the signal is spread over a 
larger glass insertion scale, therefore increasing the necessary dispersion scanning range. The 
retrieval time also increases, as a finer spectral sampling is needed, and more parameters are 
also needed to properly describe the phase. For the case of SPIDER, provided the signal is 
well sampled, the direct, non-iterative algorithm is quite insensitive to this added complexity. 

Figures 2(c) and 2(d) show an example of a trace for a spectrum with a strongly 
modulated, rapidly varying phase. Our simulations show that, as long as most of the signal is 
contained within the scanning region, the d-scan method performs well. As with other 
techniques, very fast and small phase structures might go unnoticed: experimentally, the 
spectra are resampled to a grid with a reasonable amount of points to keep computational 
effort low. If not done carefully (i.e., properly sampling all spectra), this might wash out fine 
details. 

3.3 Spectra with well-separated frequency components 

It is often difficult to measure the relative phase between spectral components when there is a 
gap between them. The fundamental limitation in our technique is similar to all other self-
referenced methods [27]. Given two well-separated fundamental frequency components, the 
trace will contain a signal at the corresponding doubled frequencies, and in addition there will 
be a cross-term, like in the FROG technique. If this cross-term is broad enough to connect the 
separate individual SHG parts, then its shape depends on the relative phase between them, 
and that phase can in principle be recovered. Otherwise, the signal is still sensitive to the 
group delay between separate spectral components. In the case of SPIDER, large shears will 
be necessary to “connect” different spectral regions, but this sacrifices measurement 
resolution. Multi-shearing techniques allow overcoming this problem [35, 36], at the expense 
of added experimental complexity. 

On Figs. 2(e) and 2(f) such an example is shown, where the spectrum was clipped to zero 
at around 820 nm. For such situation, the width of the cross-term around 410 nm is large 
enough (and the gap at 820 nm is small enough) not to pose any problem to the algorithm: it 
handles well, without any modification, discontinuities in the phase, group delay, and group 
delay dispersion. 

All the mentioned problems are linked, and there’s a tradeoff between all of them, i.e., a 
complex spectrum will put more demand on the signal-to-noise ratio, and holes in the 
spectrum will lead to a longer trace, which in turn requires a larger dispersion range, etc. It is 
therefore difficult (if not impossible) to make a systematic study on a measurement technique 
without assuming a particular set of conditions. The cases shown here can be considered 
“worst case scenarios” within realistic conditions one would usually find in the lab. 

4. Experimental results 

Two different systems have been characterized for this work. The first is a recently built few-
cycle ultrafast laser oscillator, and the second is the output of a hollow fiber compressor. 
Characterizing such systems is a difficult task for different reasons: in the first case, besides 
the broad bandwidth, the spectral power is very low at certain wavelengths. In the second 
case, the spectral power and phase can both be, in some situations, rather complex, due to the 
nonlinearities involved in the spectral broadening process. 

The experimental setup is very similar to the setup described in previous work [26], and 
consists of a standard pulse compressor made with broadband double-chirped mirrors 

(IdestaQE, 600-1200 nm bandwidth, GDD �-85 fs
2
 per bounce at 800 nm) and BK7 glass 

wedges (Femtolasers GmbH), followed by a focusing off-axis silver parabolic mirror and a 
SHG crystal (Fig. 4). 

In all cases, a full d-scan measurement typically takes a few seconds to perform, and a 
retrieval can take between a few seconds to a few minutes on a standard personal computer, 
depending on the complexity of the trace. Both the fundamental and SHG spectra were 
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resampled to a 256-point linear array, as this was enough to properly sample the spectra. 
Between 50 to 60 spectra were acquired for each scan. Depending on the system being 
characterized, minor changes to the setup were done, as described in the following sections. 

4.1 Ultrafast oscillator 

The home-built Kerr-lens modelocked laser oscillator used in this section will be described in 
detail elsewhere [37]. This oscillator presents a challenging case due to its broad and 

structured spectrum. For SHG, both 5 �m and 20 �m thick BBO crystals (cut for type I SHG 
at 800 nm) were used in different measurements in order to experimentally investigate the 
relative insensitivity of the d-scan technique to crystal phase-matching bandwidth [26]. The 
SHG signal was filtered from the fundamental using a colored highpass filter and a lens was 
used to collect the signal into a fiber-coupled visible-uv spectrometer (Scansci ScanSpec). 
The energy per pulse was about 1nJ, at 80 MHz repetition rate. 

 

Fig. 4. Experimental setup. The glass wedges are made of BK7, and the chirped mirrors are 
made in matched pairs to minimize phase ringing. In some cases a mask was used to spatially 
separate the SHG signal from the fundamental beam at the detector, while in others a blue 
filter was used to block the fundamental beam (see text). The SHG crystal was either a 5 or 20 

�m thick BBO. 

Figure 5 shows a comparison between measurements and retrievals made using both 

crystals. The raw d-scan trace obtained with the 5 �m crystal (Fig. 5(a)) shows a smaller 

signal-to-noise ratio compared to the 20 �m trace (Fig. 5(f)) due to lower SHG conversion 
efficiency in the thinner crystal, but also features a larger relative signal in the longer 
wavelength side due to the larger phase matching bandwidth. The calibrated scans (Figs. 5(b) 
and 5(g)), obtained by applying the calibration curve given by the d-scan retrieval algorithm 
to the measured (raw) d-scan traces, are very similar in both cases, apart from the expected 
higher signal-to-noise ratio for the thicker crystal. For each crystal, five different data sets 
were used on five different retrievals, allowing us to perform a statistical analysis and to 
estimate the confidence levels of the result. 
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Fig. 5. Measured (a), calibrated (b), and retrieved (c) scans from the home-built ultrafast 

oscillator, obtained with a 5 �m thick BBO crystal. The retrieved phase statistics in the spectral 
domain (d) and the corresponding time reconstructions (e) were obtained from 5 different 

measurements and retrievals. The same applies to plots (f) to (j), but for a 20 �m thick crystal. 
The measured pulse duration is 6.0 ± 0.1 fs FWHM, with a Fourier limit of 5.2 fs for both 
cases. 

In both cases, the shortest pulse duration obtainable for this chirped mirror set and glass 
combination was 6.0 ± 0.1 fs FWHM, achieved for a glass insertion of 1.5 mm. The Fourier 
limit for both spectra is 5.2 fs FWHM. 
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Fig. 6. Measured (a) and (e), and retrieved (b) and (f) scans from a hollow-fiber compressor 
operating in different regimes. The measured pulse durations are respectively 6.2 and 6.5 fs 
FWHM, with Fourier limits of 4.7 and 6.1 fs. 

Due to UV absorption in the glass filter, the expected SHG signal at around 330 nm 
(corresponding to the peak at around 660 nm in the fundamental spectrum) is absent from our 
measurements. This (weak) signal is nevertheless present in the retrieved traces (not shown), 
which also shows that the phase from that spectral region is encoded in the remaining of the 
trace. A similar argument holds regarding the peak at 1000 nm: the corresponding SHG signal 
at around 500 nm varies very little across the insertion scale, thus yielding little information 
about the fundamental spectral phase; yet, that phase strongly shapes the trace around the 360 
to 460 nm region, which allows it to be determined. The fact that all retrievals give very 
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similar results, independently of factors such as first guesses for the algorithm, chosen basis, 
etc., further reassures us of the accuracy of the retrievals. 

4.2 Hollow-fiber 

For the case of ultrashort pulses obtained from spectral broadening in gas-filled hollow-core 
fibers, the nonlinear processes inherent to the broadening process are responsible for fast and 
strong oscillations on both spectral power and phase. Different operating conditions that 
depend on many parameters such as alignment, input power, beam size, etc., might lead to 
very different spectral structures. We characterized the output of a hollow fiber compressor 
under two different operating conditions: in the first one, the fiber was aligned so as to get a 
spectrum as broad as possible, while in the second case it was aligned so as to optimize the 
quality of the spatial profile of the output beam. 

The hollow fiber used had a 250 �m inner diameter, was filled with approximately 500 

mbar of Argon, and pumped with 800 �J, sub-30 fs pulses from a 1 kHz Ti:Sapphire 

amplifier (Femtolasers FemtoPower Compact PRO CEP). For SHG we used a 5 �m thick 
BBO crystal. 

The output of the fiber usually has measurable spectral wings down to 300 nm. While 
much weaker than the main spectral part, this is still enough to prevent proper measurement 
of the SHG signal if not properly filtered. 

The blue filter used in the previous case (ultrafast oscillator) blocked too much of the 
SHG signal, as it also absorbed wavelengths shorter than 360 nm. Instead, we opted to block 
a small central portion of the fundamental beam with a thin wire (the “mask” shown in Fig. 2) 
and measured the central part of the SHG signal. The resulting spatial separation was enough 
to eliminate the fundamental signal, without any additional spectral filtering. Both the 
fundamental and SHG spectra were measured with a broadband fiber-coupled spectrometer 
(Ocean Optics HR4000). 

The results for both operating conditions are shown in Fig. 6. Figures 6(a) to 6(d) 
correspond to the case where the hollow fiber was optimized for spectral bandwidth, while 
Figs. 6(e) to 6(h) are for the case where the spatial mode was best. 

5. Conclusion 

We have successfully demonstrated the applicability of ultrashort pulse characterization by 
numerical phase retrieval from second-harmonic dispersion scans for cases that are 
representative of broadband state-of-the-art sources. Compared to our previous work, the 
phase retrieval algorithm has been improved by swapping the base and/or the representation 
of the quantity being retrieved (phase, GD, GDD) whenever calculations would stall. The 
technique proved to be robust with respect to spectral complexity (power and phase), noise, 
and bandwidth limitations, not only in simulations but in real laboratory conditions as well. 
Measurements performed on a home-built broadband few-cycle laser oscillator using two 

nonlinear crystals of different thicknesses (5 �m and 20 �m) resulted in the same retrieved 
pulse profile and duration (6.0 ± 0.1 fs FWHM) in spite of the different phase matching 
bandwidth conditions and signal-to-noise ratios of the corresponding traces. Few-cycle pulses 
with complex and highly modulated spectra generated by a hollow-fiber compressor under 
two different alignment conditions (broadest spectrum and best spatial profile) were also 
successfully retrieved with this technique (6.2 and 6.5 FHWM, respectively). 

The main drawbacks of this method are its iterative nature (there is the possibility that the 
algorithm gets stuck during minimization) and, in its current implementation, its intrinsic 
multi-shot nature. It is also based on a 1D model, so space-time coupling effects are not 
presently taken into account. 

In principle there is no reason why this method shouldn’t work down to the single-cycle 
regime. The fact that most of the fundamental phase information is contained within the 
cross-terms clearly makes the technique very tolerant with respect to bandwidth limitations 
regarding SHG generation and detection. The intrinsic simplicity (most of the experimental 
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setup is actually a standard chirped mirror compressor similar to those already existent in 
many laboratories) and ease of alignment are also some of the most attractive features of this 
method. 
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Abstract: In this paper we apply a broadband fiber optic coupler 

interferometer to the measurement of few-cycle laser pulses. Sub-8-fs 

pulses delivered by an ultrafast oscillator were characterized 

spatiotemporally using STARFISH, which is based on spatially resolved 

spectral interferometry. The reference pulse was measured with the d-scan 

technique. The pulses were focused by an off-axis parabolic mirror and 

were characterized at different transverse planes along the focusing region. 

The evolution of the retrieved pulses is analyzed, exhibiting small variations 

in the temporal (and spectral) amplitude and phase during propagation. 

Finally, the peak irradiance evolution is estimated from the integration of 

the spatiotemporal intensity. 

©2012 Optical Society of America 

OCIS codes: (320.7100) Ultrafast Measurements; (320.2250) Femtosecond phenomena; 

(320.5520) Pulse compression; (320.7090) Ultrafast lasers. 
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1. Introduction 

The field of ultrashort laser pulses is rapidly evolving both from the point of view of the 
development of laser sources and from their applications. As a consequence, the techniques 
for the characterization of such pulses are also in constant development. The temporal 
characterization of ultrashort pulses is a well-established field, with several techniques 
allowing for the retrieval of pulse amplitude and phase in the temporal domain [1]. Among 
these techniques, FROG (Frequency-Resolved Optical Gating) [2] and SPIDER (Spectral 
phase interferometry for direct electric-field reconstruction) [3] are the most widely used 
today. The spatial phase of the pulses can also be obtained with standard methods, as for 
example using the Hartmann-Shack wavefront sensor [4]. 

During the last few years, a huge progress has been done to extend these techniques to 
characterize the spatiotemporal amplitude and phase (or equivalently, the spatiospectral 
amplitude and phase) of the pulses. This full characterization is often required in applications 
where the spatial and temporal dependence of the pulses is coupled and of extreme 
importance. For this purpose, the following techniques can be underlined: Spatially Encoded 
Arrangement for Temporal Analysis by Dispersing a Pair Of Light E-fields (SEA TADPOLE) 
[5], Hartmann-Shack combined with FROG (Shackled-FROG) [6], and SpatioTemporal 
Amplitude-and-phase Reconstruction by Fourier-transform of Interference Spectra of High-
complex-beams (STARFISH) [7]. 

Regarding the duration of the pulses, currently available technology routinely provides 
few-cycle near-infrared ultrafast laser pulses (with durations well below 10 fs) either using 
post-compression schemes or directly from broadband and octave-spanning Ti:sapphire laser 
oscillators (see, e.g., [8,9]). Octave-spanning oscillators have many applications, for example, 
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in optical frequency metrology and high-precision optical spectroscopy [10]. Moreover, the 

production of high-energy few-cycle laser pulses has also been recently achieved through 

direct chirped pulse amplification [11] as well as in post-compression schemes based on 

hollow-core fibers [12] and filamentation [13,14]. 

The temporal characterization of few-cycle pulses, which have ultra-broad bandwidths, is 

very demanding for common techniques. Many efforts have been done in adapting these 

techniques to this regime, where very thin nonlinear crystals and second-harmonic-generation 

(SHG) spectral signal calibration are required. For example, spatially encoded arrangement of 

SPIDER (SEA-SPIDER) [15] and two-dimensional spectral shearing interferometry [16] have 

been applied to the measurement of few-cycle pulses. Also, careful calibration of SHG-FROG 

[17–19] and the use of interferometric FROG [20] have also been demonstrated in the few-

cycle regime. A comparison of the experimental results for these techniques is given in [21]. 

Recently a new technique known as d-scan (dispersion-scan) has been introduced [22,23]. It 

achieves the simultaneous compression and characterization of the pulses by tracking the 

spectrum of the SHG signal during a continuous insertion of dispersion (from negative to 

positive chirp) and applying an iterative retrieval procedure. The SHG signal can be self-

calibrated and the up-converted bandwidth requirements are more relaxed compared to other 

techniques. 

The adaptation of techniques for pulse characterization in the spatiotemporal domain is 

also a challenge. There is a strong interest in the full spatiotemporal characterization of 

ultrashort pulses to be used in applications, for example in filamentation [24]. SEA-SPIDER 

has been recently shown to provide space-time information (excluding the pulse-front tilt) of 

10.2 fs pulses [25]. In this paper, we used the technique STARFISH [7] to measure few-cycle 

pulses delivered by an oscillator. The phase of the test pulse can be extracted by combining it 

with a known reference pulse in a spectral interferometer (SI). Here, we used the d-scan 

technique [22] to measure the spectral phase of the reference pulse. Due to the large 

bandwidth of the pulses, we had to calibrate the spectral response (in amplitude and phase) of 

the fiber optic coupler used in the SI setup, as well as the spectrometer’s response, in order to 

correct the spectral amplitude and phase retrieved with STARFISH. 

2. Experimental setup 

The experiments were performed with a Ti:sapphire ultrafast oscillator (Femtolasers Rainbow 

CEP) at a repetition rate of 80 MHz, with a central wavelength around 800 nm, a Fourier-

transform limit of 7� fs and an energy per pulse of 2.5 nJ. The experimental setup for the full 

characterization of these pulses is divided into two main parts, corresponding to the 

combination of the d-scan technique [22] for measurement of the reference pulse, and the 

STARFISH technique [7] for the spatiotemporal characterization of the test pulse (see Fig. 1). 

The d-scan setup is based on a glass wedge pair and a set of chirped mirrors and allows us 

to obtain dispersion scans of the pulses around their optimum compression point. We used 

BK7 wedges (Femtolasers GmbH) with antireflection-coating and an angle of 8°. The chirped 

mirrors are two pairs of double-chirped mirrors (DCM, Venteon GmbH), with each pair 

composed of two types of mirrors, named ‘blue’ and ‘green’, designed to compensate for the 

phase ringing. The group delay dispersion (GDD) introduced by the DCMs is approximately 
2120 fs  per two bounces at 800 nm. Simultaneously to the d-scan, the pulse is focused in a 

nonlinear crystal (BBO, type I, 20 �m thick) by an off-axis parabolic (OAP) mirror with a 

focal length of 5 cm. The SHG signal produced in the BBO crystal is collimated by a lens and 

a blue filter is used to remove residual infrared radiation before detection with a calibrated 

fiber-coupled spectrometer (HR4000, Ocean Optics Inc.). 
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Fig. 1. Experimental setup for the spatiotemporal characterization of few-cycle pulses focused 

by an off-axis parabola (OAP) of 5-cm focal length. The pulses are simultaneously compressed 

and characterized using the dispersion scan (d-scan) technique, where a compressor based on a 

wedge pair and two pairs of double chirped mirrors (DCM) enables tracking the SHG signal 

generated in a nonlinear crystal (BBO) as a function of dispersion. The pulses are divided by a 

broadband beam splitter (BS) and coupled to the SI of STARFISH. The test and reference 

pulses are combined in a fiber optic coupler and sent to the spectrometer. The position of the 

test fiber performs the scan (in the spatial, x, and the longitudinal, z, coordinates). 

Regarding the STARFISH setup, a broadband beam splitter (BS, Venteon GmbH) is used 

to produce a replica of the oscillator pulses, to be used as reference pulse in the SI. A flip 

mirror is used to obtain the calibration of the reference pulses using d-scan. The test pulse is 

focused by a 5-cm focal length OAP after an iris that selects the most energetic part of the 

pulse’s profile (diameter of 5 mm). The pulses focused by the OAP are spatiotemporally 

characterized by scanning their spatial profile along the x-axis with the test pulse fiber. This is 

performed for different propagation distances around the focus by scanning the z-axis with the 

fiber. The position of the fiber that collects the reference pulse allows for adjusting the delay 

in the SI. The single-mode fiber coupler acts as an interferometer, effectively combining the 

test and reference pulses; it is directly connected to the spectrometer (HR4000), where the 

resulting spectral interferences are detected. The small diameter of the fiber core ( 4 m� ) 

provides high spatial resolution in the measurements. 

The spectral phase of the reference pulse is retrieved by d-scan [22]. For this purpose, the 

SHG trace in a dispersion scan with the glass wedges around the shortest compressed pulse is 

measured. The dispersion introduced by the wedges is known from the Sellmeier equations of 

the material (in this case BK7). The fundamental spectrum is separately measured. The SHG 

trace is simulated for a seed phase and is compared with the experimental d-scan. An iterative 

algorithm is used to optimize the retrieved phase until the simulated trace converges to the 

experimental one. This way, the spectral phase of the pulse is univocally determined. Since 

the dispersion of the wedges is known, the glass insertion that gives the shortest pulse can be 

obtained simultaneously to the pulse characterization. 

The spatiotemporal amplitude and phase characterization is obtained by the STARFISH 

technique [7]. For each propagation distance, the fiber scans the pulse profile to measure the 

spatially resolved spectral interferometry with a reference pulse, previously characterized 

#169675 - $15.00 USD Received 4 Jun 2012; revised 13 Jul 2012; accepted 16 Jul 2012; published 20 Jul 2012

(C) 2012 OSA 30 July 2012 / Vol. 20,  No. 16 / OPTICS EXPRESS  17883

132



Paper V

using d-scan. The spectral interferences are analyzed with a Fourier-transform algorithm [26] 

to retrieve the spectral phase of the test pulse. The spatially-resolved spectrum (amplitude) is 

measured in another scan with the fiber. After inverse Fourier-transforming in the frequency 

coordinate, the spatiotemporal amplitude and phase of the pulses is characterized. 

The few-cycle laser pulses delivered by the oscillator have an ultra-broadband spectrum 

extending from 630 to 980 nm. Since fiber optic couplers are designed to transmit light in a 

finite bandwidth, checking the transmission of the fiber coupler, as described in the next 

section, is vital for broadband applications. 

3. Calibration of the fiber coupler for ultra-broadband experiments 

3.1 Transmission as a function of the wavelength 

We measured the spectral transmission of the coupler with a white-light calibration lamp 

(300-1050 nm, LS1-CAL, Ocean Optics Inc.). The transmission function, ( )� � , was obtained 

by comparing the power spectral density with and without the fiber, measured with a 

calibrated broadband spectrometer (HR4000, Ocean Optics). The result is given in Fig. 2, 

where the experimental data is plotted in blue. We fitted an exponential function to the 

measured data, 4 3 2exp( )a b c d e� � � �� � �� , where we determined five free parameters (in 

order to avoid restrictions in the fit of the experimental curve) by least squares optimization. 

Only the gray shaded area was considered for the fit in order to avoid the noise in the tails. 

The red curve is the resulting transmission ( )� �  that will be taken into account to correct the 

amplitude response of the fiber coupler. From this curve, we see that wavelengths below 500 

nm and above 1000 nm will not be coupled. Nevertheless, the broadband transmission of the 

coupler is still adequate for measuring few-cycle, near infrared pulses. 

 

Fig. 2. Calibration of the spectral transmission of the fiber coupler measured with a white-light 

source. 

The two interferometer arms are of almost equal length (difference 2 mm� ), and so the 

dispersion introduced in the reference and test pulses is practically balanced. The slight 

difference in length gives rise to an actual phase difference but this is calibrated in the SI and 

is taken into account when retrieving the correct phase from STARFISH. The dispersion of 
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additional optics, e.g. the beam splitter, was also calibrated with SI and introduced in the 

phase retrieval. Our fiber with almost equal length arms allows their phase difference to be 

calibrated and the application to SI. If the arms length were not well-balanced, the relative 

dispersion between the two arms of the interferometer would be arbitrarily large to the point 

that it caused a large broadening of the side-peaks after calculating the Fourier-transform of 

the interference [26]. These two peaks may overlap and this fact may enter in conflict with the 

longer measurable pulses due to the limitations imposed by the experimental spectral 

resolution. In our case, the signal broadening is well below this limit. 

3.2 Transmission as a function of the angle of incidence and the wavelength 

We will use STARFISH for the measurement of non-collimated pulses, such as those focused 

by an off-axis parabola (see Section 4). In these cases, k-vectors with different directions will 

be coupled with different efficiency into the optical fiber due to its limited numerical aperture 

( NA ). In general, the transmission of the fiber is a function of the angle of incidence of the 

light, with the highest efficiency occurring for normal incidence with respect to the fiber axis. 

The transmission decreases as the angle of incidence increases, which determines a cone of 

coupled light related to the NA . 

Since the NA  of single-mode fibers also depends on the refractive indices of the fiber 

core and cladding, and we are dealing with ultra-broadband spectra, the NA  is expected to 

show a dependence on material dispersion. In this case, the transmission of the fiber depends 

not only on the angle of incidence � , but also on the wavelength � . Such situation would 

imply a spatiospectral distortion in the measurement of focused pulses. 

For this reason, we calibrated the coupling efficiency of the fiber as a function of the angle 

of incidence and the wavelength. We used a white-light source (LS1-CAL, Ocean Optics) and 

a rotation stage to vary the angle of the fiber with respect to the source while keeping the fiber 

input in the axis of rotation. The signal was detected with a fiber-coupled spectrometer 

(AvaSpec-2048, Avantes). The transmission function ( , )� � � , where the signal has been 

normalized for each wavelength, is represented in Fig. 3(a). The angular dependence of 

( , )� � �  is roughly constant with wavelength. In Fig. 3(b) we plot the integral of ( , )� � �  in 

the wavelength axis ( ) ( , )
m

d
�

� � � � � �	 
 , obtaining a full-width at half-maximum (FWHM) 

of the acceptance cone 10.06º�� 	 . To study the dispersion of the acceptance angle (see Fig. 

3(c)), we calculated the angle for which the signal falls to half the maximum from the center, 

50%
� , as a function of wavelength (blue dots), and compared it to / 2��  (red curve). If the 

noisy regions in the extremes of the spectrum are discarded, it can be concluded that the 

angular response is not dispersive in a broad spectral bandwidth. This means that the angular 

dependence of the light coupling in the fiber does not depend on the wavelength, so 

( , ) ( )
m

� � � � �� . We therefore conclude that spatiospectral distortions do not occur when 

measuring few-cycle focused pulses with the fiber. In Fig. 3(d) the numerical aperture for the 

half-maximum of the cone, 
50% 50%

sinNA �	 , is given. In the case of measuring pulses with 

higher numerical apertures, the detection modifies the measured pulse with the function 

( )
m
� � , so the signal coming from the peripheral part of the profile of the focused pulse will 

be detected with less efficiency, as verified experimentally in the near-field of a zone plate 

[27]. In this work, we measured the oscillator pulses focused with a focal length 50f mm	 , 

so the radius 
50%

r  corresponding to 
50%
�  is given by 

50% 50%
tan /r f� 	 . This radius is 

50%
4.40r mm	  and the condition 

50%
r r�  in the input profile is fulfilled within the 2.5-mm 

radius iris used in the experiments. To prove this, we simulated the focus of an ideal plane 

wave using a 5-mm diameter diaphragm, with and without the effect of the NA , obtaining a 
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focal spot size (FWHM) of 7.42  and 7.35 m� , respectively. We conclude that the effect is 

almost negligible in our case, even more taking into account that the outer part of the spatial 

profile before focusing (the region more afflicted) is the less intense part of the pulse profile. 

 

Fig. 3. (a) Transmission of the fiber as a function of the angle of incidence and the wavelength. 

(b) Transmission integrated in wavelength. (c) Angle of incidence for a decrease in efficiency 

of 50% with respect to the maximum. (d) Numerical aperture corresponding to the angle in (c). 

4. Experimental characterization of few-cycle pulses delivered by an oscillator 

4.1 Measurement of the reference pulse: d-scan 

The reference pulse required by STARFISH was characterized with the d-scan technique. The 

compressor was composed of two pairs of chirped mirrors and a pair of BK7 wedges with an 

angle of 8°. The dispersion scan was done, as usual, by translating one wedge along the 

direction illustrated in Fig. 1. The total scan corresponds to 59 points with a step of 0.6mm  in 

the direction of the scan. This translates into a total glass insertion of 4.84d mm	  in the 

propagation direction of the pulse. We measured three independent d-scans of the pulse in 

order to perform several pulse retrievals. 

An experimental d-scan trace is shown in Fig. 4(a). The corresponding retrieved trace is 

given in Fig. 4(b) and shows a good matching to the measurement. The spectrum and phase of 

the retrieved pulse for the best achieved compression are shown in Fig. 4(c). The full width at 
21/ e  of the characterized spectrum is 267nm . The standard deviation of the phase (gray 

curve) for the different retrievals shows the small precision error present in the retrieval. In 

Fig. 4(d) the temporal intensity and phase of the pulse is depicted. The Fourier-limited 

duration of the measured spectrum is 6.7 fs  (FWHM) and the duration of the retrieved pulse 

#169675 - $15.00 USD Received 4 Jun 2012; revised 13 Jul 2012; accepted 16 Jul 2012; published 20 Jul 2012

(C) 2012 OSA 30 July 2012 / Vol. 20,  No. 16 / OPTICS EXPRESS  17886

135



Spatiotemporal characterization of few-cycle laser pulses

is 7.8 0.1 fs�  (FWHM). The gray curves are the standard deviation of the amplitude and 

phase calculated from the different traces, showing a small variation between them: 0.4 rad�  

for the spectral phase, 0.1rad�  for the temporal phase and 0.035�  for the normalized 

temporal intensity. 

 

Fig. 4. (a) Experimental and (b) retrieved d-scan trace of the reference pulse. (c) Spectrum 

(blue) and phase (red) of the retrieved pulse. (d) Intensity (blue) and phase (red) of the 

reference pulse. The gray curves in (c) and (d) represent the standard deviation of the 

retrievals. 

4.2 Spatiospectral and spatiotemporal characterization: STARFISH 

We used STARFISH to characterize the focusing region of the oscillator after the OAP 

( 50f mm	 ). The measurements were done for 7 consecutive propagation distances z around 

the focus, in order to track the evolution of the focused pulses: 

z f	 � {-1.5 -1.0 -0.5 0 0.51.01.5}mm      . The spatiospectral (and spatiotemporal) amplitude 

and phase were retrieved for each z-plane. The spatial features in the transverse plane were 

measured in one axis (x-axis), since the system was assumed to have cylindrical symmetry. 

Similar sets of measurements can be performed in the full x-y plane just by spatially scanning 

with two perpendicular actuators. 

The evolution of the spatially-resolved spectrum is shown in Fig. 5(a) as a function of the 

longitudinal position z. The x-axis extends from 50 to 50 mm in all cases. The x-scan was 

done in steps of 1 m� . During propagation, it is mainly the spatial width (x-axis) that is 

changing, whereas the spectrum is almost undistorted. Due to the pulses’ broad bandwidth, 

the effect of smaller focal spot size for the shorter wavelengths is visible in the spatially-

resolved spectrum at the focus of the OAP [Fig. 5(a)]. Apart from this effect, the main 
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consequence is a change of the relative amplitude of the spectral components, in particular the 

fact that shorter wavelengths exhibit slightly larger amplitudes with respect to longer 

wavelengths. Other small distortions can be attributed to a misalignment of the OAP or to a 

non-homogeneous spatial profile of the oscillator (before the OAP). 

In Fig. 5(b), the spatiospectral phase (or wavefront) is represented for the same set of axial 

distances. Since STARFISH retrieves the frequency-resolved wavefront [28] (with a small 

noise due to phase drifts), we represent the phase ( )x�  for different wavelengths 
0
� . For 

clarity, we represent these wavefronts, 
0

( ; )x� � �	 , using a different color for each 

wavelength and shifted to 
0

( ; ) 0x� � �	 	  in 0x 	 , what is equivalent to remove the spectral 

phase on-axis. To corroborate the result, we did two independent measurements ( x -scans) for 

each position z , so we also represent the error (black curves) calculated from their difference. 

In spite of the presence of some noise, these measurements can be used to determine 

qualitatively and quantitatively the convergence and divergence of the pulse, thus helping to 

identify the propagation distance analyzed in each measurement. As observed in the 

measurements, for the pulses focused by the OAP the reddish wavelengths have smaller 

curvature than the bluer ones, as given by the dependence of the wavenumber on wavelength, 
1

k � � . 

 

Fig. 5. (a) Normalized spatiospectral intensity and (b) frequency-resolved wavefront at 

different propagation distances z around the focus of the OAP, the latter represented in 

different colored curves for each wavelength (see the colorbar). The black curves are the error 

obtained in the wavefronts from two independent measurements. 

In the spatiotemporal domain, the intensity of the pulses along the focusing region is given 

in Fig. 6(a). Here, the temporal features are also roughly constant both in the x-axis and along 

z, with the spatial width (x-axis) of the pulses exhibiting the largest variation as the pulse 

approaches and moves away from the focus. Figure 6(b) depicts slices of the on-axis (x = 0) 

temporal intensity, with the instantaneous wavelength (calculated from the inverse of the 
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derivative of the temporal phase) shown in different colors that give us information on the 

temporal chirp of the pulses. Due to the overall positive chirp of the pulses, combined with 

the relative amplitude decrease of redder wavelengths with respect to the bluer part of the 

spectrum (as mentioned above), the temporal intensity presents a small decrease in the leading 

part of the pulse in the planes closer to the focus. The chirp is almost constant along the 

direction of propagation. These results are consistent with the expected almost constant 

temporal profile in the focusing region. 

 

Fig. 6. (a) Normalized spatiotemporal intensity at different propagation distances z around the 

focus of the OAP. (b) Normalized on-axis intensity (x = 0) colored by the instantaneous 

wavelength of the pulse for the same propagation distances. 

4.3 Comparison of the on-axis results 

Here, we compare the spectral and temporal retrievals obtained on-axis (x = 0) for the 7 

propagation distances considered. In Fig. 7(a), we represent the mean spectral power (blue 

curve) and corresponding standard deviation (gray curves), together with the spectral phase 

(red curve) and standard deviation (gray curves). From the results, it is clear that the spectral 

amplitude deviation is higher than the phase deviation, indicating that the differences 

observed in the temporal profiles of Fig. 6(b) are mainly originated by the differences in the 

spectral amplitude. In Fig. 7(b), the temporal duration (FWHM) of the on-axis pulses is 

plotted as a function of the propagation distance. The variation of these widths is compared 

with the FWHM of the Fourier-transform limit (FTL) of the corresponding spectra, exhibiting 

a correlation between the width of the FTL and the actual width of the pulses. This result 

again supports the idea that the differences mainly come from the amplitude and not from the 

phase. The explanation of this result is that the spectral amplitude reshaping due to the 

focusing flattens the spectrum close to the focus (since the shape of the input spectrum on Fig. 

4(c) has lower signal for shorter wavelengths) and this induces a small reduction in the FTL 

and the duration of the pulse, as seen in Fig. 7(b). 
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As mentioned above, the variations observed in the spectral domain are also present in the 

temporal domain. In Fig. 7(c), we show the mean temporal intensity (blue) and its standard 

deviation (gray). The same applies for the temporal phase (red) and its deviation (gray). Here, 

it is also observed that the difference in the phase is smaller than the difference in the 

amplitude. The statistics of the pulse width retrieved on-axis gives a FWHM of 8.0 0.3 fs� , 

which is consistent with the retrieval of the d-scan. In Fig. 7(d), we also represent the (mean) 

temporal profile colored with the (mean) instantaneous wavelength to show the good match 

with the results of Fig. 6(b). 

 

Fig. 7. (a) Mean of the spectral amplitudes (blue curve) and phases (red curve) retrieved on-

axis for the five propagation distances, and corresponding standard deviation (gray curves). (b) 

Temporal width (FWHM) of the on-axis intensity reconstructions of the pulses for different 

propagation distances, and comparison with the FWHM of the Fourier-transform limit (FTL) 

of the corresponding spectra. (c) Mean of the temporal amplitudes (blue curve) and phases (red 

curve) retrieved on-axis for the five propagation distances, and standard deviation (gray 

curves). (d) Intensity colored by the instantaneous wavelength (see colorbar) of the mean of the 

on-axis measured pulses. 

These results can be interpreted as the validation of the current experimental 

implementation of the d-scan technique (and could also be extrapolated to other techniques, in 

which the pulses to be characterized are focused in the nonlinear crystal with an OAP), in the 

sense that it is assumed that the focus of the OAP does not distort the temporal (or 

equivalently spectral) amplitude and phase of the pulse. Here, we have found that small 

differences can occur, although they do not hinder proper pulse retrieval. 

4.4 Measurement of the peak irradiance of ultrashort laser pulses 

The measurement of the peak intensity of ultrashort laser pulses is often difficult to be 

addressed, many times due to the high intensities involved. We will show how the 

characterization of the spatiotemporal intensity of the pulses can be used to calculate an 
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estimation of the peak intensity. Although the results presented in Fig. 6(a) are commonly 

called intensity, they are actually the irradiance of the pulse, measured in 2/W cm  units. It is 

usually represented in arbitrary units (a.u.) whenever the absolute value is unknown or 

irrelevant. 

The integral in the two spatial coordinates and the temporal dimension gives the energy of 

the pulse E , as given in Eq. (1), where � �,
E

I r t  represents the experimental normalized 

spatiotemporal intensity at a certain z  and 
rt

�  is a constant that gives the peak irradiance of 

the pulse: 

 � �
0

, 2
rt E

E I r t r dr dt� �
� �

�

� �
	 � �

� �

 
  (1) 

Since we are assuming cylindrical symmetry, the characterization was done only in one 

spatial dimension (x-axis). The scan was done in the full axis, i.e., over the two sides of the 

beam profile with respect to the center (x = 0). Consequently, we have double information and 

we can obtain two values of the peak irradiance per measurement, corresponding to the polar 

radius � �1
/ 0r x x	 �  and � �2

/ 0r x x	 � , respectively. 

Often, this full information is not available and we have to make approximations to obtain 

the peak intensity. Here, we will do a first rough calculation just for comparison. To simplify, 

we can consider a focused pulse with a Gaussian profile both in the temporal and in the spatial 

coordinates, thus with separable dependence in time and space. In this case, the irradiance 

� �,
G

I r t  is given by 

 � � � � � �2 2 2 2
, exp (4 ln 2) exp (4 ln 2)G G x tI r t r FWHM t FWHM�	    (2) 

where 
t

FWHM  and 
x

FWHM  are, respectively, the pulse full widths in the temporal and the 

spatial coordinates. We take the 
t

FWHM  from the on-axis intensity widths, whose results are 

shown in Fig. 7(b). For the spatial width 
x

FWHM , we consider the full width in the x-axis 

after integration in wavelengths of the spatiospectral traces shown in Fig. 5(a). The results for 

x
FWHM  are shown in Fig. 8(a) as a function of the propagation distance. After integrating 

the Gaussian irradiance � �,
G

I r t , we obtain the following relation between the pulse energy, 

the x- and t-widths, and the peak irradiance: 

 � �
2

0

, 2 1.536
4

x

G G t

FWHM
E I r t r dr dt FWHM� � �

� �

�

� � �  
	 	 ! "� �

# $� �

 
  (3) 

From Eq. (3) we see that the Gaussian peak irradiance 
G

�  actually corresponds to the 

pulse energy divided by the spatiotemporal volume above half the peak intensity, that is, the 

pulse energy divided by the temporal duration, 
t

FWHM , by the spatial section, 

2( / 4)
x

FWHM� , and corrected by a factor of 1/1.536 . 

The energy per pulse /
rep

E P f	  is calculated from the measured average power P  and 

the pulse repetition rate 80
rep

f MHz	 . The power measured after the 5mm  iris and the OAP 

was 80P mW	 , so the energy per pulse was 1E nJ	 . We consider that the fraction of this 

energy that is lost (spatially spread) in the focus is negligible. Also, there are other factors that 

can affect the result, for example part of the radiation being incoherent (e.g. amplified 

spontaneous emission) or small pre- or post-pulses that are not measured. Therefore, the peak 

irradiance obtained by this procedure should be considered as an estimate of the actual value. 
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The comparison of the results for the peak irradiance as a function of the propagation 

distance is shown in Fig. 8(b). As expected, the peak irradiance is higher closer to the focus, 

where the spatial width decreases. The values obtained at the focus ( z f	 ) are 

10 26.92·10 /
G

W cm� 	 , 10 2

1
5.67·10 /

rt
W cm� 	  and 10 2

2
5.63·10 /

rt
W cm� 	  in the Gaussian 

irradiance approximation, for the measured spatiotemporal irradiance from the set 

� �1
/ 0r x x	 �  and from the set � �2

/ 0r x x	 � , respectively. The two values for the full 

spatiotemporal calculation are overlapped, whereas the Gaussian estimation gives higher 

values. This occurs because the irradiance is more spread in the temporal dimension than in a 

Gaussian function with the same 
t

FWHM  and accordingly the actual peak irradiance is 

lower. 

 

Fig. 8. (a) Experimental spatial width (FWHM) as a function of the propagation distance. (b) 

Peak irradiance as a function of the propagation distance calculated from the assumption of 

spatial and temporal Gaussian shape (black curve-squares) and from the measured 

spatiotemporal intensity using the right-hand-side (blue curve-circles) and the left-hand-side 

(red dashed curve-diamonds) of the x-axis. 

5. Conclusions 

Current techniques for the temporal characterization of laser pulses have already reached the 

few-cycle regime. In particular, the d-scan technique is very powerful due to its simple and 

low-demanding experimental implementation. The STARFISH technique for the 

spatiotemporal characterization of the pulses is based in spectral interferometry, and thus 

requires a calibrated reference pulse. Firstly, we have shown the capabilities of fiber optic 

coupler based interferometry for ultra-broadband pulse measurements in terms of the 

operating spectral bandwidth. Then, we have demonstrated the application of STARFISH to 

few-cycle pulses, using the d-scan to measure the reference pulse. 

We have reconstructed spatiotemporally the pulses delivered by an ultrafast oscillator (6.7 

fs FWHM Fourier-transform limit) focused by an OAP. The full retrieval of the amplitude-

and-phase in the spatiotemporal and spatiospectral domains gives additional information that 

is lost with usual temporal characterization techniques. We have measured pulses with 

durations below 8 fs (FWHM) and have studied the evolution of the pulses along the focusing 

region. We found that temporal dependence of the pulses is practically preserved around the 

focus of the OAP, presenting small changes in the spectral and temporal amplitude (due to the 

dependence of the focal spot size for different wavelengths in ultra-broadband pulses), and 
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almost invariant spectral and temporal phases. OAPs are important devices that find many 

uses in pulse focusing and characterization (especially of ultra-broadband pulses), precisely 

because of the absence of dispersion and chromatic aberrations, provided that they are 

properly aligned. STARFISH allows us to know whether the focusing is being properly 

performed in both the xy-plane (actually, we measured the x-axis) and the z-axis. 

We have calculated the peak irradiance of the pulses from the spatiotemporal 

reconstruction. We have checked that assuming Gaussian profiles and uncoupled space-time 

dependence is not enough to estimate the peak irradiance. This will be absolutely relevant in 

pulses with stronger spatiotemporal coupling. 

We expect the availability of spatiotemporal characterization techniques in the few-cycle 

regime to be extremely helpful to study processes involving ultrafast oscillators, as well as 

processes employing high-energy pulses such as pulse post-compression and high-order 

harmonic generation, among others. 
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Generation and spatiotemporal characterization 
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Abstract: We have post-compressed 25 fs (Fourier-limit) amplified pulses 

in an argon-filled hollow-core fiber. The output pulses were compressed 

using a pair of wedges and chirped mirrors down to 4.5 fs (Fourier-limit of 

4.1 fs), which corresponds to less than two optical cycles. The 

spatiotemporal and spatiospectral amplitude and phase of the pulses were 

characterized with a combination of STARFISH and d-scan. The spatial 

dependence of the spectral broadening and the pulse duration was studied, 

revealing a near-Gaussian output spatial mode. Spatiotemporal 

characterization of the focus of an off-axis parabolic mirror yielded a peak 

intensity of 8.3·10
15

 W/cm
2
 with a 4.8 to 5.3 fs pulse duration across the 

beam profile, checking the potential applicability of the focused pulses for 

strong field experiments. 

  

OCIS codes: (320.7100) Ultrafast Measurements; (320.7110) Ultrafast nonlinear optics; 

(320.5520) Pulse compression; (320.7090) Ultrafast lasers. 

References and links 

1. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. 

Yakovlev, A. Scrinzi, T. W. Hänsch, F. Krausz, “Attosecond control of electronic processes by intense light 

fields,” Nature 421, 611-615 (2003). 

2. S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chirilã, M. Lein, J. W. Tisch, and J. P. 

Marangos, “Probing proton dynamics in molecules on an attosecond time scale,” Science 312, 424-427 (2006). 

3. K.W.D. Ledingham, P. McKenna, R.P. Singhal, “Applications for nuclear phenomena generated by ultra-intense 

lasers,” Science 300, 1107-1111 (2003). 

4. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 

545-591 (2000). 

5. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, 

M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001). 

6. Y. Mairesse, A. de Bohan, L. J. Frasinski, H. Merdji, L. C. Dinu, P. Monchicourt, P. Breger, M. Kovačev, R. 

Taïeb, B. Carré,  H. G. Muller,P. Agostini, and P. Salières, “Attosecond Synchronization of High-Harmonic Soft 

X-rays,” Science 302, 1540-1543 (2003). 

7. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. 

Velotta, S. Stagira, S. D. Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–

446 (2006). 

8. I. J. Sola, E. Mevel, L. Elouga, E. Constant, V. Strelkov, L. Poletto, P. Villoresi, E. Benedetti, J. P. Caumes, S. 

Stagira, C. Vozzi, G. Sansone, and M. Nisoli, “Controlling attosecond electron dynamics by phase-stabilized 

polarization gating,” Nature Phys. 2, 319–322 (2006). 

145



Generation and spatiotemporal characterization of 4.5-fs pulses from a hollow-core fiber compressor

9. A. A. Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, and K. Midorikawa, “Direct amplification of 
terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser,” Opt. Express 16, 13431-13438 (2008). 

10. S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Generation of few-cycle terawatt light pulses using 
optical parametric chirped pulse amplification,” Opt. Express 13, 4903-4908 (2005). 

11. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, 
“Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522-524 (1997).  

12. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, 
“Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 
28, 1987-1989 (2003). 

13. C. P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of 
intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673-677 
(2004). 

14. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. 
Mysyrowicz, and U. Keller, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” 
Opt. Express 15, 5394-5404 (2007) 

15. D. Faccio, A. Lotti, A. Matijosius, F. Bragheri, V. Degiorgio, A. Couairon, and P. Di Trapani, “Experimental 
energy-density flux characterization of ultrashort laser pulse filaments,” Opt. Express 17, 8193-8200 (2009). 

16. J. Odhner and R. J. Levis, “Direct phase and amplitude characterization of femtosecond laser pulses undergoing 
filamentation in air,” Opt. Lett. 37, 1775-1777 (2012).  

17. B. Alonso, I. J. Sola, J. San Román, Ó. Varela, and L. Roso, “Spatiotemporal evolution of light during 
propagation in filamentation regime,” J. Opt. Soc. Am. B 28, 1807-1816 (2011).  

18. X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at 
the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20, 4790-4795 (2012) 

19. L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark and S.R. Leone, “Comparison of the 
filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. 
Phys. B. 86, 561-566 (2007). 

20. T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. G. Tisch, “Characterization of high-
intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. Lett. 36, 1680-
1682 (2011).  

21. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 
308-437 (2009). 

22. A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses 
by frequency-resolved optical gating,” Opt. Lett. 23, 1474–1476 (1998). 

23. A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, “Sub-10 fs pulse characterization using spatially 
encoded arrangement for spectral phase interferometry for direct electric field reconstruction,” Opt. Lett. 31, 
1914–1916 (2006).  

24. J. R. Birge, H. M. Crespo, and F. X. Kärtner, “Theory and design of two-dimensional spectral shearing 
interferometry for few-cycle pulse measurement,” J. Opt. Soc. Am. B 27, 1165–1173 (2010). 

25. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and 
characterization of ultrashort laser pulses using chirped mirrors and  glass wedges,” Opt. Express 20, 688-697 
(2012). 

26. B. Alonso, I. J. Sola, O. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, 
“Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-
complex-beams,” J. Opt. Soc. Am. B. 27, 933-940 (2010). 

27. B. Alonso, M. Miranda, I. J. Sola, and H. Crespo, “Spatiotemporal characterization of few-cycle laser pulses,” 
Opt. Express 20, 17880-17893  (2012). 

28. M. Miranda, T. Fordell, C. Arnold, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, and H. Crespo, 
“Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20, 18732- 
18743 (2012). 

29. B. Alonso, R. Borrego-Varillas, Í. J. Sola, Ó. Varela, A. Villamarín, M. V. Collados, J. San Román, J. M. 
Bueno, and L. Roso, “Enhancement of filamentation postcompression by astigmatic focusing,” Opt. Lett. 36, 
3867-3869 (2011) 

30. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors 
with smooth dispersion characteristics,” Opt. Express 17, 7943-7951 (2009). 

31. J. Paye and A. Migus, “Space-time Wigner functions and their application to the analysis of a pulse shaper,” J. 
Opt. Soc. Am. B 12, 1480-1490 (1995). 

32. B. Alonso, R. Borrego-Varillas, O. Mendoza-Yero, I. J. Sola, J. San Román, G. Mínguez-Vega, and L. Roso, 
“Frequency resolved wavefront retrieval and dynamics of diffractive focused ultrashort pulses,” J. Opt. Soc. 
Am. B 29, 1993-2000 (2012). 

33. E. Kim, H. Kim and J. Noh, “Measurement of the Spatial Wigner Distribution Function of Laser Light by Using 
a Sagnac Interferometer,” J. Korean Phys. Soc. 46, 1342-1346 (2005).  

 

146



Paper VI

1. Introduction 

The advent of sources capable of delivering ultrashort and ultra-intense light pulses has led to 

numerous applications in atomic, molecular and nuclear physics [1-3]. In particular, intense 

few-cycle pulses have opened the way for attosecond physics [4] and metrology [5] via the 

extreme ultraviolet (XUV) attosecond pulse trains that can be obtained by high-harmonic 

generation (HHG) [6]. Intense near-infrared pulses close to the single-cycle regime have 

enabled the generation of isolated attosecond pulses [5,7,8]. 

The technique of chirped pulse amplification (CPA) combined with Ti:sapphire laser 

technology has provided many laboratories with intense ultrashort pulses in the 20 to 100 fs 

range (the lower limit essentially imposed by gain narrowing effects). Although sub-10-fs 

pulses can be directly obtained from CPA [9] and optical parametric CPA systems [10], they 

have proven challenging and are still the subject of much research and development.  For this 

reason, two post-compression techniques are usually employed for the generation of intense 

few-cycle pulses, based on the spectral broadening of light either during propagation in a gas-

filled hollow-core fiber (HCF) [11,12] or during the self-guiding due to the filamentation of 

light [13]. The nonlinear nature of the spectral broadening process, originating mainly from 

self-phase modulation (SPM), provides a broader spectrum in the center of the beam where 

the intensity of the pulse is higher. As a consequence, the post-compressed pulses are 

inhomogeneous and present spatial chirp. The temporal profile of filament-compressed pulses 

has been shown to depend on the radial coordinate [14]. Also, many efforts are being devoted 

to the characterization of the filament propagation in terms of temporal [15], spatiotemporal 

[16,17] and intensity dynamics [18]. The spatial chirp after filamentation and HCF post-

compression has been compared experimentally through analysis of the corresponding 

spectral contents, with more even and less chirped spectra being reported for the HCF case 

[19]. Recently, a spatially resolved measurement of the spectral and temporal profile of the 

output mode of a HCF has been performed [20]. 

Over the last decades, different optical techniques have been introduced for the temporal 

characterization of ultrashort laser pulses [21]. Most of these now “standard” techniques have 

been adapted for the temporal measurement of ultra-broadband few-cycle pulses [22-24]. 

Very recently, the new technique of d-scan (dispersion scan) was introduced, enabling the 

simultaneous compression and temporal characterization of few-cycle pulses [25]. However, 

solely temporal characterization of the pulse in a small section of the beam, without 

accounting for possible variations across the whole pulse front, is generally insufficient, due to 

the spatiotemporal coupling effects typical of the nonlinear phenomena employed in the post-

compression process. For this purpose, the technique of STARFISH (SpatioTemporal 

Amplitude-and-phase Reconstruction by Fourier-transform of Interference Spectra of Highly-

complex-beams) was proposed [26]. Very recently, STARFISH has been demonstrated with 

sub-8-fs pulses delivered by an ultrafast oscillator, and its capabilities for the study of ultra-

broadband pulses have been analyzed [27]. The d-scan technique – initially demonstrated with 

a few-cycle oscillator – was also very recently used to temporally characterize pulses post-

compressed in a HCF [28], which present additional difficulties due to the higher energy, 

larger spectral bandwidth, stronger phase modulations, and higher instability compared to 

pulses from an oscillator. 

In this work, we generated and characterized sub-two-cycle 4.5 fs pulses (4.1 fs Fourier-

limited) from post-compression of 25 fs (Fourier-limit) amplified pulses in an argon-filled 

HCF. We used the d-scan technique to measure the reference pulse required by STARFISH 

and applied the latter for the spatiotemporal characterization of the mode compressed at the 

output of the fiber, where the pulse structure and spatial chirp were studied. These pulses were 

also focused using an off-axis parabolic mirror and measured around the focal spot in the 

spatiotemporal domain. 
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The full spatiotemporal characterization of intense few-cycle lasers provide useful 

information for the study of the dynamics and characteristics of filamentation [17,29] and 

HCF post-compressed pulses. In future experiments, it may be used to tackle the comparison 

between both post-compression techniques. This information is relevant for the optimization 

of the process itself and for applications (e.g., HHG) of the generated pulses. 

 

2. Experimental setup for post-compression and spatiotemporal characterization 

We post-compressed pulses delivered by a 1kHz  Ti:sapphire CPA amplifier (Femtolasers  

FemtoPower  Compact  PRO  CEP) in a gas-filled HCF and chirped mirror compressor. The 

complete experimental setup is depicted in Fig. 1. The amplified pulses, with a Fourier-

transform limit (FTL) of 25 fs, were coupled into the hollow fiber with a 1.5-m focal length 

lens. The HCF had an inner diameter of 250µm , a length of 1m , and was filled with argon at 

a pressure of 960 mbar. The pulse energy before the HCF was 375µ J  and the output of the 

fiber was 150µ J  (transmission of 40 %). The amplifier’s compressor (the input pulse chirp 

on the HCF) was adjusted to optimize the spectral broadening (Fig. 3(c)) and the transverse 

mode profile (Fig. 2(b)) at the fiber output. Additionally, we also optimized the fiber output 

with an iris (7-mm diameter) placed just before the lens for the fine control of the input energy 

and the input mode being coupled into the HCF (Fig. 2(a)). Moreover, the post-compression 

was optimized for a very stable output mode, as required both for subsequent applications and 

for (multi-shot) pulse characterization. The quality of the d-scan and STARFISH traces is an 

indication of this stability, since shot-to-shot variations would strongly affect them. In parallel, 

the raw d-scan traces already provided a fast diagnostic to ensure that the temporal profile 

corresponded to clean compressed pulses without satellites that could occur in the HCF, given 

that it only takes a few seconds to acquire them and the shape of the trace gives direct 

interpretable insight over the structure of the pulse [25]. Due to the nonlinearity of the argon 

gas inside the HCF, the input spectrum was broadened to a 4.1-fs FTL spectrum extending 

from 540 to 990 nm (Fig. 3(c)). A spherical silver mirror at near-normal incidence 

( 3000= −ROC mm ) was placed after the HCF to collimate the spectrally broadened pulses. 

To complete the post-compression of the pulses, a compressor made of a glass wedge pair and 

a set of ultra broadband chirped mirrors (CMs) was used. The wedges (Femtolasers GmbH) 

were made of BK7 with an antireflection-coating and an angle of 8º. The CMs (UltraFast 

Innovations GmbH) are designed in such a way that when two bounces are combined, with 

angles of incidence of 5º and 19º, the residual phase ringing is minimized [30]. We used five 

pairs of mirrors for a total number of five bounces at each angle, as illustrated in Fig. 1 (we 

have identified the CMs with different colors, orange and purple, for 5º and 19º incidence, 

respectively). The nominal group delay dispersion (GDD) of the CMs was around 250 fs−  per 

bounce at 800 nm. The variable insertion of one of the wedges allowed us to fine tune the 

ultimate post-compressed duration of the pulses, and was also used as part of the d-scan 

technique, as described below. Notice that for the post-compression we have used a higher gas 

pressure than in our previous work [27], which provided a broader spectrum here. Also, the 

compression in [28] was performed using different CMs. 

For the characterization of the post-compressed pulses, we used the STARFISH technique 

[26] assisted by the d-scan technique [25] to measure the reference pulse, in a configuration 

recently introduced for few-cycle pulses [27]. A replica of the pulse to be characterized was 

created with a dispersion-balanced (same dispersion in the reflected and transmitted beams) 

broadband beam splitter (600-1500 nm), BS (Venteon GmbH). One pulse was measured with 

the d-scan (after the flip mirror) and subsequently used as the reference pulse in STARFISH. 

The experimental implementation of the d-scan consists in measuring the second 

harmonic generation (SHG) spectrum of the pulse while the dispersion is varied via the 
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translation of one of the wedges around the point of maximum compression (minimum pulse 

duration). As a result, a spectrally resolved SHG trace as a function of wedge insertion 

(dispersion) is obtained. In the present setup, we focus the pulses with an off-axis parabolic 

(OAP) mirror (focal length of 5 cm) in a nonlinear crystal (BBO, 20 µm thick, cut for type I 

SHG at 800 nm). The SHG signal is collimated with a lens and a blue filter is used to remove 

the remaining fundamental frequency signal before detection with the spectrometer (HR4000, 

Ocean Optics Inc.). 

In STARFISH, a single-mode, 4µm  core diameter, broadband fiber optic coupler [26,27] 

is used to combine the reference pulse (already characterized by the d-scan) and the 

(unknown) test pulse. A spectral interferogram (SI) of the pulses with a relative delay τ  is 

measured in a standard fiber-coupled spectrometer (S2000, Ocean Optics Inc.). This 

information will allow us to obtain the temporal reconstruction of the pulses. The test pulse 

fiber input is scanned over the spatial profile of the pulse in one axis (x-scan), where 

cylindrical symmetry is assumed. This allows for the spatiotemporal characterization of the 

pulses. 

 
Fig. 1. Experimental setup for the generation and spatiotemporal characterization of post-

compressed pulses. The amplified pulses are spectrally broadened in a hollow-fiber and the 

output mode is collimated with a spherical mirror. The pulses are divided with a dispersion-

balanced broadband 50/50 beam splitter (BS) to perform the spectral interferometry of 

STARFISH. Using a flip mirror, the reflected pulses can be simultaneously compressed and 

characterized by dispersion scan (d-scan) where a compressor made of a pair of glass wedges 

and 5 pairs of chirped mirrors (CM) is used to track the SHG signal generated in a nonlinear 

crystal (BBO) as a function of wedge insertion. The test and reference pulses are then 

combined in a fiber optic coupler and sent to the spectrometer. The position of the test fiber is 

scanned over the spatial coordinate (x-axis). The hollow-fiber output (test pulse) is measured 

without focusing (flat mirror) and with focusing (off-axis parabola, OAP, 5 cm focal length). 
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The spatiotemporal STARFISH characterization of the few-cycle pulses is first performed 

directly after the CM setup, so a flat mirror is used to direct the pulses to the test fiber. We 

then replace this mirror with a 5-cm focal length OAP to study the focusability of the pulses, 

and to characterize them around the focal region. 

Before the wedges and CM compressor, an iris of 10-mm diameter is used to select the 

spatial mode after collimation of the fiber output (see Fig. 2(b)). Due to the 10-mm iris before 

the wedges and the losses inside the compressor itself, the pulse energy decreased from 

150µ J  to 90µ J  before the BS. The beam was not perfectly collimated after the spherical 

mirror, since it diverged more than would be expected for a collimated beam with the same 

waist. Actually, the beam size of the pulses increased up to 13 mm just before the last mirror 

prior to the test fiber (the optical path in the CM setup was 169 cm). At this position, we 

selected the spatial mode with a diaphragm to eliminate the residual (mostly conical) emission 

around the main portion of the beam. 

 

Fig. 2. (a) Input mode coupled at the entrance of the HCF with an inner diameter of 250 mµ . 

(b) Spatial profile of the output mode of the HCF after collimation with the spherical mirror. 

The spectral phase of the reference pulse is retrieved by the d-scan technique by 

optimizing the simulated SHG trace compared with the experimental trace using an iterative 

algorithm [25]. The spatiotemporal amplitude and phase characterization is obtained by an 

algorithm based on the Fourier-transform of the spectral interferences given by the 

STARFISH technique [26]. 

 

3. Spatiotemporal analysis of sub-5-fs pulses after hollow-fiber post-compression 

3.1 Characterization of the reference pulse using d-scan  

As said before, the spectrally broadened amplified pulses are compressed with five pairs of 

broadband chirped mirrors and a pair of BK7 glass wedges (angle 8º). This compressor is also 

a part of the d-scan technique setup for the characterization of the reference pulse, which is 

required for the spectral interferometry. The d-scan trace was taken by measuring the SHG 

signal for varying glass insertion. The total range of insertion (in the propagation direction) 

was 4.34d mm=  using a lateral insertion step of 0.215mm , which corresponds to 146 

sampling points. The resulting experimental d-scan trace is shown in Fig. 3(a). 

The d-scan algorithm was executed five times with different input conditions (five 

different starting guesses) in order to ensure the convergence of the retrieved phase. The 

retrieved trace is given in Fig. 3(b), and is in very good agreement with the experimental trace. 

The experimental spectrum and the retrieved phase of the pulse for maximum compression are 
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shown in Fig. 3(c). The full width at 
2

1/ e  of the maximum (in intensity) of the hollow-fiber 

spectrum is 402nm . The standard deviation of the phase (gray curves) for the different runs of 

the algorithm provides the information of the precision error. The spectral phase retrieved is 

precise except for the shorter wavelengths due to the experimental d-scan trace being cropped 

in the bluer part of the spectrum, as we will explain below. In Fig. 3(d), we represent the 

retrieved temporal intensity and phase of the corresponding pulse. The optimum spectral 

phase has a small contribution of negative third-order dispersion that produces the pre-pulses. 

The corresponding standard deviations (gray curves) are very small, which means that the 

spectral phase deviation for shorter wavelengths hardly affects the temporal retrieval. The 

duration of the pulse is 4.5 0.1 fs±  (intensity FWHM), close to its FTL of 4.1 fs . The carrier 

wavelength calculated from the center of gravity of the spectral power density (in frequency) 

is 739
g

nmλ = . The temporal intensity in Fig. 3(d) has been color-filled with the 

instantaneous wavelength of the pulse 
t

λ . From the tilt of the phase in the pre-pulses we see 

that they are slightly redder than the main pulse (centered at 739
t

nmλ = ), as illustrated by the 

color fill. The small deviation of the instantaneous wavelength from the carrier wavelength is 

an evidence of the good compression achieved. The main reason why the final pulse duration 

deviates from the FTL is the divergence in the spectral phase introduced by the broadband 

beamsplitter for wavelengths below 600 nm, since this element is designed to work above this 

wavelength. 

 

 
Fig. 3. (a) Experimental and (b) retrieved d-scan traces of the reference pulse. (c) Spectral 

intensity (black) and phase (dashed red) of the retrieved pulse. (d) Temporal intensity (black) 

and phase (dashed red) of the reference pulse. The gray curves in (c) and (d) represent the 

standard deviation of the spectral phase, and of the temporal intensity and phase, respectively. 

The intensity profile (d) is color-filled by the instantaneous wavelength following the same 

color scale than in (c). 
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The lack of signal below 320 nm in the experimental trace may be partly due to the cut-

off of the blue filter and by UV absorption in the collimating lens. This justifies the difference 

between measured and retrieved traces in that spectral region. To minimize this effect, a 

spatial mask can be used instead of the filter or lens [28]. The phase distortion introduced by 

the beamsplitter for wavelengths below 600 nm may also contribute to the smaller SHG signal 

observed at shorter wavelengths. In spite of this, thanks to the trace redundancy in the d-scan 

technique, it is possible to recover phase information for regions where no SHG signal has 

been measured at all, as it was shown in [25,28]. 

As mentioned above, the optimal pulse compression with this system is close to the FTL. 

To further analyze this compression, we calculated the temporal Wigner distribution function 

of the pulse and the FTL of the spectrum. For a certain function defined in the time domain (in 

our case the electric field of the pulses, ( )E t ), the temporal Wigner distribution can be 

interpreted as the probability (despite it taking positive and negative values) to find a certain 

wavelength (or frequency ω ) at a given time t , i.e., it gives us the spectral distribution within 

the pulse. The definition of the temporal Wigner distribution function 
T

W  is [31] 

( ) '' '
, * '

2 2

i t

T

t t
W t E t E t e dt

ω
ω

∞

−∞

   
= + −   

   
∫                                        (1)    

The calculations for the pulse retrieved by the d-scan and for the FTL of the spectrum are 

shown in Fig. 4(a) and 4(b), respectively. The information given by 
T

W  is related to the 

instantaneous frequency (see Fig. 3(d)), although 
T

W  provides the whole information of the 

temporal distribution of wavelengths, in contrast to the single value of the effective 

instantaneous wavelength. This gives further insight on the pulse structure and compression, 

and can give a visual and intuitive idea of how far we are from the FTL by comparing the 

temporal Wigner distributions of the retrieved pulse and of its FTL (Figs. 4(a) and 4(b)). In 

our case, the fact that most of the spectrum is contained in the main peak of the pulse (like in 

the FTL pulse, except for the tails of the spectrum) means that almost the whole spectrum is 

well compressed (i.e., its spectral phase is well compensated for). Moreover, when comparing 

the scales of the plots, there is a small loss of signal in the measured pulse with respect to its 

FTL. This is in agreement with the fact that the peak intensity of the pulse for the d-scan 

retrieval is 0.8 times the FTL peak intensity. The marginals of 
T

W  are also given in the plots, 

where integration of the Wigner function of the pulse over the frequency and time axes 

provides the temporal intensity (left) and power spectral density (bottom), respectively. 

 
Fig. 4. Wigner distribution functions and corresponding marginals for the electric field of the 

(a) experimental pulse and (b) Fourier-transform limit of the spectrum. The two functions are 

represented in the same (arbitrary) units in order to compare the respective signal strength. 
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3.2 Spatiospectral and spatiotemporal characterization of the output mode using STARFISH 

The output mode of the post-compression of the intense pulses in the HCF was characterized 

in the spatiotemporal domain. The spatial profile was scanned with the fiber across the 13-mm 

diameter of the pulse with steps of 50µm  (261 sampling points). The spatially-resolved 

spectrum (Fig. 5(a)) shows that the spectral distribution is fairly constant across the x-

coordinate, only presenting less broadening in the bluer part of the spectrum for the outermost 

part of the spatial profile. The frequency-resolved wavefront (Fig. 5(b)) presents a curvature 

responsible for the beam divergence (already observed during beam propagation), which will 

be taken into account to simulate the focus of the pulse in Section 3.3. 

The pulse-front curvature in the spatiotemporal intensity (Fig. 5(d)) corresponds to the 

expected curvature of a diverging beam. It exhibits a relatively small variation of 30≈ fs  

from the center to the periphery of the beam ( 13mm≈  diameter), although it is large 

compared to the pulse duration. Nevertheless, we will see that the presence of wavefront and 

pulse-front curvature do not compromise the focusability of the beam and a tight focus is 

achieved. The spatiotemporal intensity is shown in Fig. 5(e), color-filled with the 

instantaneous wavelength to better illustrate the spatial dependence of the temporal chirp. The 

main peak color shifts from bluer to redder values as we move away from the center of the 

pulse ( 0=x ), as expected from the spatially-resolved spectrum in Fig. 5(a). 

 

 
Fig. 5. Intense pulse post-compressed in a HCF; experiment: (a) Normalized spatiospectral 

intensity and (b) frequency-resolved wavefront, the latter represented in different colored lines 

for each wavelength (see the colorbar). (c) Fourier-limit (blue) and retrieved pulse duration 

(red). (d) Normalized spatiotemporal intensity and (e) same as (d), but color-filled with the 

instantaneous wavelength (see the colorbar). (f) Instantaneous wavelength at the pulse-front 

(blue) and center wavelength (red). 
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The pulse duration (intensity FWHM) as a function of x  is presented in Fig. 5(c) for the 

retrieved pulse and for the FTL of the spectrum. The pulse duration varies approximately from 

4.5 fs on-axis to 5.0 fs in the wings, whereas the FTL varies from 4.0 fs to 4.5 fs. In Fig. 5(f), 

we show the carrier wavelength dependence on x , both for the center of gravity of the 

spectrum ( λ
g

) and the instantaneous wavelength ( λ
t
) evaluated at the maximum of the pulse 

(i.e. at the pulse front). We see that λ
g

 varies from 740 nm (on-axis) to 820 nm (wings), 

whereas λ
t
 varies from 735 nm (on-axis) to 790 nm (wings). This difference is explained by 

the redistribution of frequencies inside the pulse due to the temporal chirp. These results are in 

agreement with previous works where blue-shift and larger spectral broadening and pulse 

shortening were observed on-axis in comparison with the outer part of the spatial profile [19]. 

Redder pre-pulses with the same curvature than the main pulse (the pulse front) are observed, 

similarly to the reference pulse. There is almost no chromatic aberration in the wavefront (Fig. 

5(b)) since all wavelengths have practically the same curvature, except for the intrinsic 

wavenumber dependence 1

0
( , )x kφ λ λ −∝ ∝  (similar to the results given in [32] for a 

focusing refractive lens), as we will calculate in the next section. 

3.3 Spatiospectral and spatiotemporal characterization of the focus using STARFISH 

The pulses were focused with an OAP (f = 5 cm). The focus was spatially resolved with the 

test fiber, which scanned the transverse profile across 30µm  in steps of 1µm  ( x -axis). 

Despite the 4 mµ  fiber core diameter, we have demonstrated in previous work that using a 

smaller step allows us to recover the structure and size of focused pulses [31]. In this 

experiment, a neutral-density filter was placed before the interferometer (before the BS) to 

avoid damage or nonlinear effects in the collecting fiber, so the linear focus was characterized. 

The spectrum as a function of the x-coordinate (Fig. 6(a)) presents a spatial chirp, with 

increasing red-shift for increasing values of x . The spatiotemporal distribution corresponds to 

a well-defined focus in space and time (Fig. 6(d)), with a spatial width of 10 mµ  (FWHM) 

and a temporal duration on-axis of 4.5 fs  (FWHM). The instantaneous wavelength combined 

with the intensity (Fig. 6(e)) inherits the spatial chirp from the frequency domain (shown in 

Fig. 6(a)). Since the input pulse is symmetric in x  (Fig. 5), the spatial chirp may be originated 

by a slight misalignment in the OAP. The frequency-resolved wavefronts (Fig. 6(b)) show a 

slight divergence, meaning that the measurement was not taken exactly at the focus, but just 

before it. Also, the wavefronts for the different wavelengths have a gradual relative tilt, which 

is an evidence of the spatial chirp originated by the asymmetric focusing phase introduced by 

the misalignment.  

An estimation of the peak irradiance of the pulses focused with the OAP can be obtained 

in terms of the pulse duration and the spot size, assuming Gaussian beams and pulse shapes 

with widths given by the experimental spatial and temporal FWHM, respectively. The 

expression for the peak irradiance is 
max

0.651· / ( · )I E t S= ∆  [27], where 45E Jµ=  is the 

pulse energy after the beam splitter, 4.5t fs∆ =  is the temporal FWHM, 2( / 2)S xπ= ∆  is the 

spot section (since 10x mµ∆ =  is the spatial FWHM) and 0.651  is the factor coming from the 

assumption of Gaussian shapes. In our case, we estimate a peak irradiance of 
15 2

max
8.3 10I W cm= × . 

The FWHM intensity of the Fourier-transform limited (FTL) pulse increases along the x -

axis from 4.5 to 4.9 fs and the retrieved pulse duration from 4.8 to 5.3 fs (Fig. 6(c)). Similar 

behavior is observed for the carrier (central) wavelength λ
g

that varies from 760 nm to 

810 nm (Fig. 6(f)). Again, the instantaneous wavelength at the pulse-front, λ
t
, is blue-shifted 

with respect to λ
g

. 
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Fig. 6. Post-compressed pulses focused with an OAP; experiment: (a) Normalized 

spatiospectral intensity and (b) frequency-resolved wavefront, the latter represented in different 

colored lines for each wavelength (see the color-bar). (c) Fourier-limit (blue) and pulse duration 

(red). (d) Normalized spatiotemporal intensity and (e) same as (d), color-filled by the 

instantaneous wavelength (see the color-bar). (f) Instantaneous wavelength at the pulse-front 

(blue) and center wavelength (red). 

We studied the effect of the spatiospectral phase (or wavefront) of the mode before 

focusing (Fig. 5(b)). This phase is mainly quadratic and can be written as 
2( ; ) ( / )( / )

in
x x fφ λ π λ= , corresponding to a diverging beam with a focal length 

in
f . From 

the fit to the phase ( ; )φ λx  for each wavelength, we extracted the focal length 

4724 26= − ±
in

f mm  (regression coefficient 0.9989=R ). When combined with the focal 

length of the OAP, 50=
OAP

f mm , we obtained the effective focal length 50.53=
eff

f mm . 

Assuming that only this quadratic phase is present, this will simply cause a shift in the focal 

position along the propagation axis, but higher order curvature terms in the wavefront may 

distort the focal spot. 

Finally, we analyzed the effect of the numerical aperture ( NA ) of the fiber coupler (the 

test pulse fiber arm). In a previous work we measured a coupling efficiency of 50% at an 

angle of incidence of 5ºθ =  [27]. Here, we used the experimental dependence of the coupling 

on the angle θ , denoted by ( )θT , to study its effect in the measurement of the focus of the 

OAP. In the ray-tracing approximation, the angle θ  is translated to the input spatial plane as 

tan /r zθ ≈ , where z f=  for observation at the focus (this gives the function ( )T r  in Fig. 

7(a)). In the present case, the spatial intensity profile has a Gaussian-like shape, so the less 

efficiently coupled part of the profile, the periphery, is the part with less contribution. Figure 

7(a) shows the spatial intensity profile ( )I r , the fiber transmission ( )T r , and the modified 

spatial profile ( )· ( )I r T r  considering ray tracing. The experimental spatially-resolved 
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spectrum before the focus is shown in Fig. 7(b), which can be compared with the same 

magnitude modified by ( )T r  in Fig. 7(c). From Fig. 7, it can be seen that the parts actually 

affected are the wings of the spatial profile. 

The distribution of the orientation of the wave vectors inside a focused monochromatic 

Gaussian beam (far from the Rayleigh zone) corresponds to a defined (with a narrow angular 

spreading) angle, which can be simply calculated by ray tracing, as a function of the spatial 

coordinate (in the transverse plane) [33]. Since larger angles occur in the periphery of the 

beam, outside the focal region the angular filtering of the NA  of the fiber results in a 

reduction of the spatial width that can be estimated as explained in the previous paragraph (see 

Fig. 7). Contrarily, at the focus position all the wave vectors (from the ray tracing) are 

overlapped and the wave vector spreading is independent on the spatial coordinate, so the ray 

tracing approximation is obviously unacceptable there [33]. For this reason, in the focus 

(where we measured the pulse), the effect of the NA  coupling will be ideally a reduction in 

the collected signal without spatial distortion. Anyway, in our case the NA  of the pulse is 

comparable to the NA  of the detection fiber, so the effect on the spatiotemporal 

measurements will be small (for instance, see the decrease in spatial width in Fig. 7). 

The present analysis will be more complex in the case of polychromatic non-Gaussian 

beams, which may also be inhomogeneous and present wavefront aberrations. This will cause 

a less predictable propagation (if the unfocused pulse is known, numerical simulations can 

still be performed). However, ray tracing can still give a first approximation of the wavevector 

distribution and an upper bound for the maximum angle 
max

θ  can be estimated by the relation 

max max
tan r fθ ≃ , where 

max
r  is the radius of the unfocused pulse and f  is the focal length. 

Naturally, the effect of the NA  will not be felt by smaller beams or longer focal lengths. 

Finally, the rather homogeneous mode at the output of the hollow-fiber plays to our advantage 

in the sense that distortions (due to the NA ) at the focus of the beam will be reduced. 

 

 
Fig. 7. (a) Spatial profile of the pulse (blue), transmission of the fiber due to the numerical 

aperture (red) and corrected spatial distribution (green). (b) Experimental spatially-resolved 

spectrum. (c) Spatially-resolved spectrum modified by T(r). 

4. Conclusions 

We have generated sub-two-cycle pulses by post-compression in an argon-filled hollow-core-

fiber of 25-fs (Fourier-transform limited) amplified pulses from a 1 kHz Ti:sapphire laser. The 

post-compression was optimized to have a broadband spectrum corresponding to few-cycle 

pulses (4.5 fs FWHM, 4.1 fs FTL) and a homogeneous (near-Gaussian) spatial profile with a 

significantly stable mode. The optimum compression was achieved by compensating the 

spectral phase with a pair of wedges and ultra-broadband chirped mirrors. The post-

compressed pulses were characterized in the spatiotemporal domain using the STARFISH 
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technique and the reference pulse was measured with the d-scan technique. We first studied 

the output mode of the hollow-fiber and found that the spectral broadening and the blue-shift 

are significantly larger at the center (x=0) of the pulse than in the periphery. This resulted in 

an increase in pulse duration from 4.5 fs at the beam center up to 5 fs at the periphery. A 

symmetric spatial chirp (relative to x=0) was consequently observed in the spatiotemporal 

reconstruction. Also, the measured wavefront corroborated the divergence predicted from the 

observation of the spatial size growth during the propagation. 

The pulse was also focused with an off-axis parabolic mirror (f = 5 cm) producing a 

measured focal spot size of 10 mµ  (FWHM). In this case, an asymmetric spatial chirp was 

observed, which was attributed to a slight misalignment of the mirror. The experimental 

spectrum, wavefront, intensity and temporal chirp are consistent with this statement. The 

effect of the numerical aperture of the collection fiber on the focused pulse measurement was 

also studied. Although not negligible, it did not prevent us from obtaining detailed 

information on the structure of the focused pulse. 

The broadband, intense 4.5 fs pulses (4.1 fs Fourier-limited) that were characterized in the 

spatiotemporal domain using STARFISH in conjunction with d-scan are already at the limit of 

most temporal characterization techniques in the near-infrared range. The possibility of 

measuring high-energy, low repetition rate pulses in this range shows promise for future 

applications to the further study and optimization of filament and hollow-fiber compressed 

pulses. 
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Tight focusing of laser light down to near diffraction limited spot sizes can be easily achieved with high 

numerical aperture microscope objectives, and state-of-the-art ultrafast laser technology has made possible the 

generation of sub-two-cycle pulses directly from laser oscillators [1, 2]. In applications such as OCT, the spot 

size translates into lateral resolution, while techniques relying on nonlinear optical effects, such as CARS 

spectroscopy and two-photon microscopy, rely on both the spatial and temporal confinement of radiation, which 

leads to high peak intensities. Space-time focusing of carrier-envelope phase stabilized few-cycle laser pulses 

plays a crucial role in the study of phase-dependent nonlinear optical phenomena [3]. However, such focusing is 

not easily achieved, mostly due to the very broad bandwidths of few-cycle pulses and the dispersion introduced 

by the large amounts of glass present in high-quality microscope objectives. Non-dispersive reflective objectives 

have been used for this purpose [3], but their intrinsic obscuration usually limits the coupling efficiency to less 

than 10%, with a consequent decrease in peak intensity. Dispersion compensation of microscope objectives 

using chirped mirrors has resulted in sub-14-fs pulses [4], and very recently, sub-8-fs pulses were obtained with 

a 4-f pulse shaper arrangement based on a mechanically deformable mirror [5]. 

In this work we demonstrate the efficient focusing of 2.5-cycle laser pulses from a phase-stabilized 

broadband laser oscillator with a repetition rate of 80 MHz (Femtolasers Rainbow) using a simple and compact 

setup based on octave-spanning double-chirped mirrors [6] to pre-compensate the dispersion of microscope 

objectives. The beam diameter was kept at <2 mm at the entrance of the objectives in order to minimize 

undesirable radius-depend group-delay dispersion effects [7]. Temporal characterization was performed with a 

modified SHG interferometric autocorrelator capable of measuring the pulse duration directly at the focus of the 

objectives, and the spot size was measured by imaging it with another microscope objective and CCD camera. 

For an input pulse energy of 2.5 nJ, a 63× microscope objective (N.A.= 0.85) resulted in clean 6.8 fs (FWHM) 

pulses with spot sizes as small as 1.1 µm (FWHM), as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Measured focused pulses obtained with a 63× microscope objective (N.A. = 0.85): (left) Interferometric and 

intensity autocorrelations at the focus (inset: intensity spectrum). The retrieved pulse width assuming a sech2 shape is 6.8 fs 

FWHM. (right) Beam intensity profile at the focus, with x-cut slice inset. The beam diameter is 1.1 µm FWHM. 

 

Thin glass slides were used to fine tune the dispersion and optimize the final pulse width. The overall system 

efficiency is >95%, corresponding to a peak intensity >3.7×10
13

 W/cm
2
, already at the onset of extreme phase-

dependent nonlinear effects such as high-harmonic generation (HHG). To our knowledge, these are the highest 

peak intensities and shortest pulse durations ever obtained for focused low-energy phase-stabilized pulses at 

multi-MHz repetition rates, which should have an impact on a number of applications. The estimated peak 

intensities open the possibility of studying phase-dependent extreme nonlinear optical phenomena such as HHG 

directly with a few-cycle laser oscillator at MHz repetition rates. 
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We characterize and control the harmonic emission in the spectral and spatial domains in order to define in

which conditions the harmonic radiation can be a high-quality seed for soft x-ray and x-ray free-electron lasers.

The length of the gas cell, where harmonics are generated, was optimized and the energy per pulse was

determined in absolute value with a calibrated x-ray photodiode. The beam spatial profile was measured and,

in some conditions, a very collimated beam with a half-angle divergence below 1 mrad could be obtained. We

also show that increasing the intensity of the fundamental laser field leads to a considerable broadening of the

bandwidth of the harmonic radiation, allowing us to cover a large spectral range. This effect is due to funda-

mental reshaping leading to an efficient phase matching of both short- and long-trajectory contributions.

DOI: 10.1103/PhysRevA.79.063829 PACS numberssd: 42.65.Ky, 32.80.Rm, 32.80.Qk

I. INTRODUCTION

A lot of effort is devoted world wide to the development

of coherent light sources in the extreme ultraviolet sxuvd
range with laserlike properties. Different paths are being ex-

plored, from x-ray free-electron lasers sXFELsd, based on the

self-amplification of the synchrotron radiation emitted by

relativistic electron bunches f1g to soft x-ray lasers sSXRLsd,
relying on the realization of a population inversion in highly

charged ions obtained in a hot dense plasma f2g. These two

approaches lead to high-energy xuv pulses with, in general,

poor coherence properties compared to conventional lasers

since the xuv beams result from the direct amplification of

the spontaneous emission emitted at one extremity of the

medium. High-order harmonics emitted during the nonlinear

interaction between an intense ultrashort laser and a gas f3,4g
inherit most of the desirable properties of the driving laser in

terms of the spatial and temporal coherence but suffer from

low conversion efficiencies, resulting in pulse energies typi-

cally in the nJ range f5g. A straightforward idea explored in

several laboratories around the world f6–8g is to use har-

monic radiation to seed the first mentioned sources, thus

combining the coherence and flexibility of the harmonics

with the high output energy of XFELs or SXRLs.

Seeding requires well-characterized and optimized har-

monics. The spatial wave front and spectral content should

be of high quality and the energy per unit of bandwidth as

high as possible to overcome the spontaneous emission in the

amplifier. Many studies have been devoted to characterize

the harmonic spectra f9,10g or the spatial profile f11,12g of

high-order harmonics, however, often separately. In addition,

the harmonic frequency should be matched to a given x-ray

plasma spectral line. Previous work uses a high-intensity

frequency-chirped fundamental field to spectrally modulate

and, to some extent, tune the high-energy part of the high-

order harmonic generation spectrum f13,14g. An adaptive

spectral filter sDAZZLERd has also been used to provide

some tunability of the high-harmonic spectrum f15g.
In the present paper, we discuss the characteristics of the

harmonic radiation generated in argon around 30 nm by a

rather high-energy laser driver with about 100 mJ per pulse

in 40 fs at 800 nm wavelength. The spectrum, spatial profile,

and energy per pulse are determined and optimized for dif-

ferent focusing geometries and medium lengths. We also

show that the spectral bandwidth is considerably increased

by simply using a higher laser intensity. We concentrate on

the wavelength range between 20 and 40 nm, which can be

reached using Ar as generating gas. In Sec. II, we describe

the main physics of harmonic generation useful for this

work. In Sec. III, we present the experimental method and

results.

II. BRIEF SUMMARY OF THE PHYSICS OF HIGH-

ORDER HARMONIC GENERATION

A. Single-atom response

The physical origin of harmonic generation can be easily

understood by a simple semiclassical picture f16,17g. When

an atom is exposed to an intense infrared laser field, the

atomic potential is considerably distorted by the strong elec-

tric field. An electron from the outer shell may tunnel

through the Coulomb barrier and ionize. This electron is then

accelerated by the laser field, driven back to the parent ion

when the direction of the electric field changes sign, and may

recombine to the ground state, thereby emitting a high-

energy photon. This energy is equal to the atomic ionization

energy sIpd plus the energy acquired during the acceleration.
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This process occurs every half cycle of the driving laser, so

that the emitted radiation is periodic with a periodicity equal

to 1.3 fs, for a 800 nm fundamental laser field. The spectrum

consists of harmonic peaks at odd multiples of the incident

frequency. The kinetic energy sEcd acquired during the elec-
tron excursion in the continuum can be calculated using a

simple classical calculation, which provides to the experi-

mentalist a useful guide to estimate the available spectral

range sWd according to the formula W= Ip+Ec. Results of

such calculations are presented in Fig. 1sad. The kinetic en-
ergy gained is plotted in units of the ponderomotive energy

Up related to the laser field amplitude sEd by Up

=e2E2
/4mv2 where e and m are the charge and mass of

electron and v laser frequencies. Up sexpressed in eVd can
also been written as 9.34l2I where the laser wavelength l is

in mm and the laser intensity I is in 1014 W /cm2 units. For

example, for l=0.8 mm, I=231014 W /cm2, the maximum

kinetic energy is 38 eV, and the maximum photon energy

generated in Ar is about 54 eV. The abscissa in Fig. 1sad
indicates the return time of the electron in units of the laser

cycle s2.7 fsd. This figure shows that there are two possible

electron trajectories leading to the same return energy below

the maximum energy. The trajectory with the longer excur-

sion time is called the long trajectory, while that with the

shorter excursion time is called short.

The phase accumulated by the electron on these trajecto-

ries is transferred to the emitted radiation field. The phase of

the harmonic light is therefore not simply related to the

phase of the driving laser but also includes an intrinsic phase

component that can vary rapidly with laser intensity. This

intrinsic phase, which is weakly dependent on the process

order, has consequences for both spatial and spectral emis-

sion characteristics, and we indicate in Fig. 1sbd its variation
with the intensity for the 19th harmonic generated in Ar cal-

culated using the strong-field approximation f18,19g. The
two branches refer to the short sredd and long sblued trajec-
tories. For I.1014 W /cm2, in the so-called plateau region,

the intrinsic phase can be approximated by F jsr , td
=a jIsr , td, where j refers to the trajectory sshort or longd. The
harmonic field is the coherent sum of two contributions,

Ehsr,td = o
s,l

Ahjsr,tde
ivht−iajIsr,td, s1d

where Ahj denotes the amplitude of the contribution of the

trajectory j to the harmonic field with frequency vh. We also

indicate in Table I the values of these a coefficients for the

short and long trajectories, for a few harmonics discussed in

the present work f19g. Assuming a Gaussian distribution for
the fundamental and harmonic fields, both in space and time,

we can estimate the divergence and spectral bandwidth of the

harmonic field according to

u j =
lh

pwh

Î1 + 4a j
2
I0
2wh

4

w f
4
, s2d

and

Dl j =
lh
2

pcth

Î1 + 4a j
2
I0
2th

4

t f
4
. s3d

lh, wh, and th denote the wavelength, beam waist, and pulse

width of the harmonic field and w f, t f, and I0 are the beam

waist, pulse width, and peak intensity of the fundamental

field. If the second terms in the roots are negligible, the har-

monic field is Fourier transform limited in the time domain

and diffraction limited in space. In general, phase effects lead

to the deviation from the Fourier limit, especially for high

intensities and long trajectories. Upper values for u jsj=s , ld
and Dl j are given in Table I using w f=150 mm, t f=40 fs,

and I0=1.531014 W /cm2, representing typical experimental

values and assuming wh /w f=th /t f=1. In reality, these ratios

are slightly below one and decrease with the process order

since high-order harmonics require higher laser intensity to

be generated and are emitted over a smaller diameter and

shorter pulse duration. The values indicated in Table I might
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FIG. 1. sColor onlined sad Classical calculation of the kinetic

energy of the electron as a function of the return time. sbd Calcula-
tion of the intensity dependence of the 19th harmonic phase for the

short and long trajectories using the strong-field approximation

f19g.

TABLE I. Useful parameters for the 19th to the 31st harmonics in Ar. The intensity of the laser field used

for the calculation is 1.531014 W /cm2 and the unit for a is 10−14 W−1 cm2.

Order 19 21 23 25 27 29 31

lh snmd 42.1 38.1 34.8 32.0 29.6 27.6 25.8

as −1.0 −1.8 −2.7 −3.8 −5.1 −6.9 −9.8

al −22.9 −22.2 −21.5 −20.5 −19.2 −17.5 −14.8

us smradd 0.3 0.4 0.6 0.8 1.0 1.2 1.6

ul smradd 6.1 5.4 4.8 4.2 3.6 3.1 2.4

Dls snmd 0.2 0.2 0.2 0.3 0.4 0.5 0.5

Dll snmd 3.2 2.6 2.1 1.7 1.4 1.0 0.8

HE et al. PHYSICAL REVIEW A 79, 063829 s2009d
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be used as a guide to estimate upper values for the spatial

and spectral widths of the HHG radiation.

B. Propagation

The optimization of the harmonic emission requires not

only a strong single-atom response but also that all of the

atoms in the medium emitted in phase. For the sake of sim-

plicity, we here give a simple description of propagation us-

ing a one-dimensional approximation, along the propagation

axis szd. More advanced calculations accounting also for off-

axis effects will be presented in Sec. III. Phase matching is

realized when the variation in the difference between the

phase of the qth harmonic field generated in the medium and

that of the polarization driving it, equal to

dFqsz,td =E Dkqsz8,tddz8 + q arctansz/zRd + a jIsz,td ,

s4d

is minimized over the medium length f20g. In the right-hand

side of Eq. s4d, the first term denotes the influence of disper-

sion, which includes two opposite contributions, from the

neutral medium and the free electrons. The second term in-

dicates the influence of focusing szR denoting the Rayleigh

length of the fundamental beamd. Finally, the third term is

the single-atom phase described above, which strongly de-

pends on the trajectory. For loose focusing geometries, in

general, the contribution of dispersion effects is stronger than

the geometrical and single-atom phase variations, both for a

neutral medium and for a strongly ionized medium. The first

condition to achieve phase matching is to sapproximatelyd
cancel the neutral atom and free-electron dispersion, which is

achieved for a degree of ionization of the medium of ap-

proximately 7% in argon. The phase variation due to the

geometrical phase and to the single-atom phase sespecially in

the case of the long trajectoryd needs to be included for a

correct description of phase matching f21,22g. In addition,

the absorption in general limits the conversion efficiency

f23g.
Figure 2 shows the results of calculations performed for

the 21st harmonic in argon using a one-dimensional model

described in f24g, including all of the phase terms in Eq. s4d,

and consisting in summing all of the microscopic contribu-

tions over a certain length. The red and blue curves refer to

the contribution of the short and long trajectories considered

separately in the calculation, with the same single-atom re-

sponse amplitude. The oscillations observed for short length

media indicate that phase matching is not realized and that

the field generated at some location in the medium is can-

celed by that generated in another location. The quadratic

increase from L=12 mm is characteristic of phase matching.

The harmonic yield saturates and eventually decreases when

the absorption limit is reached. The phase variation for the

long-trajectory contribution leads to a shift in the optimal

medium length. The curves shown in Fig. 2 depend only

weakly on the process order; for example, the short trajectory

contribution of the 15th srespectively, 25thd harmonic is

maximized for L=16 mm srespectively, L=20 mmd. These

results obtained with a one-dimensional model might change

a little when generalizing to three dimensions, when consid-

ering other laser intensities and gas pressures. Our aim here

was to illustrate the physics of phase matching of high-order

harmonics rather than simulate a realistic experimental situ-

ation.

The conclusion of our model is that efficient, absorption-

limited, and phase matching of high-order harmonics may be

achieved by using sufficiently long media. Another way

would be to have a cell with a length corresponding to the

absorption length sor equal to a few times the absorption

lengthd and to locate it at the position where the intensity is

such that phase matching can be achieved. Experimentally,

the first solution is much easier. Other effects, such as a

spatiotemporal modification of the fundamental field f25g,
leading in particular to defocusing, could also favor phase

matching of high-order harmonic generation in long media

f26g ssee also the discussion belowd.

III. EXPERIMENTAL METHOD AND RESULTS

A. Measurement of spatial and spectral profiles

Our experimental setup is shown in Fig. 3. The laser is an

amplified Ti:sapphire 10 Hz system delivering 40 fs pulses

around 800 nm with an energy up to 1 J. The results pre-

sented below are obtained with only a fraction of this energy

less than 100 mJ. Furthermore, the 50-mm-diameter beam is

apertured down by an iris with variable diameter swith a

diameter typically between 11 and 16 mmd, so that only

about a few mJ infrared energy is actually sent into our ex-
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perimental setup. The beam is focused by a lens with 2 m

focal length into a gas cell with 1 mm transverse diameter

and variable length sfrom 3 to 20 mmd. The harmonic spectra

are detected by a flat-field xuv spectrometer, with a 100 mm

entrance slit, located at approximately 2 m from the gas jet.

An xuv microchannel plate sMCPd combined with a charge-

coupled device camera is used to capture the final image. In

contrast to many previous measurements f11,12g, we do not

image the harmonic source but a slice of its profile at a

relatively long distance s2 md from the source, which gives

us the possibility to measure the spatial profile in the far field

sand therefore the divergenced of the beam f27,28g. Our

spectral resolution is estimated to be 0.2 nm.

A typical experimental spectrum is shown in Fig. 4. Har-

monics are shown from the 19th to the 33rd, corresponding

to a spectral range of 42–24 nm or in energy 29–51 eV.

Spatial profiles are shown in the horizontal direction, while

the vertical one shows spectra. Figure 4sbd shows some spa-

tial profiles, while the spatially-integrated spectrum is pre-

sented in scd. These measurements show evidence for contri-

butions from the short trajectory, leading to a narrow

collimated beam and also from the sweakerd long trajectory,

with much higher divergence. In the cut-off region, both con-

tributions merge together.

In order to avoid any influence of the spectrometer col-

lecting optics on the harmonic spatial profile, we have mea-

sured it directly by taking an image with the MCP at about 2

m from the gas cell. The fundamental field and the low-order

harmonics sup to the 11thd were removed by an absorption in

a 200-nm-thin Al filter. A typical result is shown in Fig. 5. A

relatively narrow peak is superposed on a broad pedestal,

which can be attributed to the main two quantum paths re-

sponsible for harmonic generation. The harmonic beam di-

ameter could be measured by comparing with the diameter of

the aperture on which the filter was mounted and which

could be observed on the MCP. The full width at half maxi-

mum is 1.4 mm and the corresponding beam divergence is

0.7 mrad. This agrees with the predictions presented above

sTable Id for the sdominantd short trajectory and for the

strong 23rd–25th harmonics. The ratio between the short-

and long-trajectory contributions is affected by the position

of the focus of the infrared beam in the gas cell. In agree-

ment with previous work f21g, we find that the short trajec-

tory is enhanced compared to the long one when the focus

position is before the gas cell.

B. Measurement of the harmonic pulse energy

The pulse energy of the high-order harmonic radiation

was measured by using a calibrated xuv photodiode, with

good sensitivity from 1 eV to 6 keV. The diode could be

moved under vacuum before the flat-field xuv spectrometer,

so that we could measure the energy and the corresponding

spectrum within the same series of measurements. Two 200

nm Al filters were needed to block the fundamental beam.

The number of the electrons Ne generated from the photodi-

ode is the integral of the measured current. The number of

the photons at each harmonic frequency is obtained through

the equation

Ne = o
q

hqtqNq, s5d

where Nq denotes the number of photons generated at the qth

harmonic frequency, tq is the transmission by the Al filters

and hq is the quantum efficiency of the photodiode for the

qth harmonic. The absorption from the Al filters can be esti-

mated by calculating the transmission function of Al, ac-

counting for the effect of a thin layer of oxide, which unfor-

tunately reduces the transmission and introduces an

uncertainty in the energy determination. Figure 6 shows the

transmission of 200 nm Al sblue lined, as well as that of 200

nm Al, plus 20 nm oxide s10 nm on each sided, which is a
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rough estimation of the oxide layer on the filters used in this

experiment f29g. From the relative ratios between the gener-

ated harmonics obtained from spectral measurements, the

number of photons per harmonic, the pulse energy, as well as

the conversion efficiency can be deduced. Results of mea-

surements performed in optimized conditions fwith a 19-

mm-length gas cell ssee belowdg are presented in Table II.

C. Optimization of the output energy by varying the cell

length

Figure 7sad shows the variation in the harmonic energy as

a function of cell length for a few harmonics. The focus was

located at the center of the cell. The saturation effect ob-

served is attributed to absorption, which is more important

for the low-order harmonics than for the high-order ones.

Figure 7sbd shows the 23rd harmonic spatial profile obtained

at ,231014 W /cm2, with gas cells of different lengths and

an aperture before the lens equal to 13 mm. The central part

of the angular profile, which reflects the contribution from

the short trajectory, is approximately constant with order and

with cell length, on the order of 1 mrad.

Increasing the cell length results in an increased harmonic

energy as well as the appearance of the long-trajectory con-

tribution, with higher divergence. The predictions of our

model ssee Fig. 2d agree quite well with the experimental

observation, showing a saturation for medium lengths of 20

mm and an increase in the contribution of the long trajectory

as the length increases. The latter effect is of interest for

seeding applications since the contribution of the long trajec-

tory can be made spectrally broader at high laser intensity,

thus, providing increased possibility to match the gain profile

of an amplifier, as explained below.

D. Increasing the spectral range between consecutive

harmonics

Spectra obtained from two different fundamental energies

by changing iris diameters are shown in Fig. 8. The harmonic

spectra get broadened as the input energy increases more

than the prediction of Eq. s3d for a single trajectory. In addi-

tion, interference structures appear. This complicated struc-

ture appears in connection with an ionization-induced spa-

tiotemporal reshaping of the laser beam, which improves the

phase matching conditions for the long trajectory. The short

trajectory is well phase matched both before and after the

reshaping, and we therefore see spectral interference between

the contributions from both trajectories f30g. Similar struc-

tures have been observed in previous work f27,28g and inter-

preted in terms of interference between the contribution of

the two sshort and longd trajectories, without—however—

explaining the reason for both contributions to be of the

same strength.

Our interpretation is supported by theoretical calculations

including both the microscopic and macroscopic responses

of the argon gas to the intense laser pulse. The results were

calculated via the coupled nonadiabatic solutions of the time-

dependent Schrödinger equation, within the strong-field ap-

proximation f17g, and the Maxwell wave equation. Our ap-

proach is described in detail in f20g. As initial conditions for
the calculation, we use similar parameters as the experiment,

in terms of peak intensity, duration, and focusing conditions

for the laser beam, and density and length of the argon cell.
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TABLE II. Optimized high-order harmonic energy and conversion efficiency.

Harmonic order 17 19 21 23 25 27

Transmission 0.12 0.13 0.15 0.16 0.19 0.21

Photon number s31010d 3.03 2.98 3.10 2.63 1.60 1.41

Energy smJd 0.13 0.14 0.16 0.15 0.10 0.09

Efficiency s310−6d 6.8 7.5 8.6 8.0 5.3 5.0
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The calculated far-field spatiospectral profiles of harmon-

ics 17–21 are shown in Figs. 9sad and 9sbd. At low intensity,

the very loose focusing conditions strongly favor phase

matching of the short trajectory, and the resulting harmonics

are spectrally narrow and well behaved. The contribution

from the long trajectory in these conditions can barely be

seen in Fig. 9sad as a faint halo around the 19th harmonic,

most prominent on the low-frequency side and at diver-

gences above 0.6 mrad. At high intensity, the harmonic spec-

tra are much broader, exhibit interference fringes, and are

blueshifted relative to the low-intensity case. As mentioned

above, the interference is the result of both short- and long-

trajectory contributions being well phase matched by the

strongly reshaped laser beam. Figures 9scd and 9sdd show the

spatiotemporal profile of the laser beam in the near field, at

the end of the argon medium. The high-intensity beam has

undergone violent spatiotemporal reshaping which results in

defocusing, strong blueshifting on axis, and the overall

change in shape where the laser envelope reaches its maxi-

mum at different times for different radii. The reshaping hap-

pens after a few mm of propagation and then does not

change much through the remainder of the medium. In the

calculations, we see a strong increase in the long-trajectory

contribution around the propagation distances where the re-

shaping sets in, with a significant component on axis. The

short- and long-trajectory contributions thus interfere in the

far field, leading to the two or three horizontal stripes ob-

served in Figs. 9sbd and 8sbd.
This effect provides an easy way for covering a larger

spectral range, which is very important for seeding x-ray

laser plasmas. For example, the 25th harmonic s32 nmd is

close to the x-ray lasing lines of 31.2 nm sNe-like Scd, 32.6
nm sNe-like Tid, and 32.8 nm sNi-like Krd and can be broad-

ened to reach these lines simply by increasing the laser in-

tensity. It has been suggested previously f13,14g that har-

monics could be tuned by changing the chirp of the

fundamental field. In such an experiment, several parameters

are varied at the same time: chirp, pulse duration, and laser

intensity. We believe that the main effect is due to the varia-

tion in the laser intensity. In addition, the fundamental chirp

may induce additional or reduced spectral broadening de-

pending on the sign of the chirp.

IV. CONCLUSION

In this work, we have studied the spectral and spatial

properties of high-order harmonics generated in argon gas.

The absolute value of the energy emitted per harmonic pulse

was estimated in optimized conditions. We found that the use

of long gas cells s20 mmd led to higher energies and more

collimated xuv beams. Large spectral bandwidths, close to

the interval between consecutive harmonics, could be

achieved by increasing the intensity of the infrared beam in

the gas cell leading to an improved phase matching of the

long trajectory.
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This work demonstrates single-shot holography with ultrashort XUV pulses.
The pulses are generated by high-harmonic generation in an Ar gas cell and
focused to produce a strongly divergent reference beam suitable for in-line
holography of micrometer size objects. The achieved intensity of the high-order
harmonics in the XUV regime is sufficient for single-shot holography with good
signal-to-noise ratio. A numerical algorithm is applied to reconstruct real images
from the recorded holograms, which also includes an iterative process to reduce
the twin-image blurring. Holograms and reconstructed images of microscope tips
are presented and a description of the algorithm is given.

Keywords: holography; high-harmonic generation; time-resolved imaging

1. Introduction

Coherent light sources in the XUV and X-ray ranges are being actively developed for

imaging objects of nanometer size in various conditions. An additional interesting feature

is the combination of spatial and temporal resolution. This often requires intense short

pulses, in order to perform single-shot time-resolved measurements. These requirements

are fullfilled by free electron lasers, as beautifully shown in experiments performed at

FLASH in Hamburg [1–3]. Single-shot experiments were also recently carried out at

BESSY in Berlin and SSRL at Stanford University [4].

High-order harmonics generated when an intense laser interacts with a gas target

constitute another interesting source with the advantage of being table-top and affordable

in university laboratories. Using Ar or Xe gas, pulse energies of up to a hundred nJ

between 30 and 50 nm can be achieved. High-order harmonics are now being developed

for time-resolved coherent-imaging applications by several groups [5–8]. The energy range

varies from the ultraviolet to the soft X-ray region (4100 eV) and pulses can be as short as

a few hundred attoseconds.

In the present work we describe a coherent imaging setup developed in Lund, based

upon digital in-line holography [9]. The coherent light, produced by high-order harmonic

generation in Ar gas, is both spectrally selected and tightly focused with a Schwarzschild

objective, manufactured with multilayer mirrors reflecting 38 nm. Our optimized harmonic
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Single-shot holography using high-order harmonics

generation setup allows us to obtain high quality single shot holograms. An algorithm has

also been developed to recover amplitude and phase of the object. This article is organized

as follows. In Section 2 the experimental setup is described in detail, while in Section 3 our

reconstruction algorithm is presented. The reconstructed images are shown and discussed

in Section 4.

2. Experiment

The experimental setup is shown in Figure 1. The incident infrared laser beam at 800 nm is

provided by a low energy (100 mJ) arm of a powerful 40 TW laser system, operating at

10Hz repetition rate and with pulses of 40 fs duration. An iris is used to optimize the HHG

efficiency. In general the beam is clipped to a diameter of 12mm, so that 10 mJ are actually

used for the nonlinear conversion. A lens with a focal length of 2 m focuses pulses into the

gas target, which is a cylindrical cell with variable length. The diameter of the gas cell is

1mm, and a cell length of 15mm was used in this experiment. The cell is filled with Ar gas

through a piezo-driven injection system synchronized with the incident laser pulse.

The harmonic beam created is emitted along the laser axis, with a divergence of 0.7 mrad.

The infrared pulses are blocked after the gas cell by a 200 nm-thick Al filter. About 2 m

after the gas cell the beam is focused by a Schwarzschild objective, which includes two

spherical mirrors, convex and concave, centred at the same point. The mirrors are coated

with multiple layers to select a narrow bandwidth around the 21st harmonic (38 nm).

The bandwidth is, unfortunately, large enough to let through small fractions of the 19th

and 23rd harmonics as well. The maximum reflection, which occurs at �¼ 37 nm, is about

40%. The focal length of the objective is 26.9mm. The setup is used off-axis in order to

reduce intensity loss due to back reflection. The focal point is located at a distance of

48mm behind the objective, and the harmonic beam is divergent with a half angle �¼ 75

mrad. A micro channel plate (MCP) is used to record the intensity distribution of the

divergent beam. The MCP is coupled to a phosphor screen, imaged by a CCD camera.

If an object is placed into the divergent beam, interference occurs between the direct beam

and parts of the beam diffracted from the object, and an interference pattern can be

observed and recorded on the MCP. Based on the divergence of the beam, and the distance

and dimensions of the detector, the theoretical resolution limit of the setup is 250 nm.

Figure 1. Experimental setup.
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The method presented here requires a strongly divergent beam to achieve a magnified

interference pattern. The Schwarzschild objective allows for tight focusing in a compact

design and was therefore chosen over conventional spherical mirror setups. Objects are

mounted on a motorized translation stage that allows for accurate positioning. In these

experiments, tungsten tips for a scanning tuneling microscope (STM) [10] were used.

Figure 2 shows recorded holograms after background subtraction. The left image shows

a straight tip, where just a single shot of the setup was used. The middle image shows the

same tip, but here the hologram was averaged over a large number of shots. Figure 2(c)

shows a deformed tip, also averaged over many shots. In all three cases, the background

was averaged over multiple images recorded in the absence of the object.

3. The reconstruction algorithm

The recorded holograms show the interference of the direct beam (or reference beam) and

that diffracted by the object. According to the Huygens–Fresnel principle, each point in

(a) (b)

(c)

Figure 2. Recorded holograms of tungsten mircoscope tips. (a) Straight tip, single-shot hologram
after subtraction of an averaged background. (b) Straight tip and (c) deformed tip, multiple shot
holograms after subtraction of an averaged background.

Journal of Modern Optics 2725
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Single-shot holography using high-order harmonics

the object plane is the origin of a spherical wave contributing to the interference pattern in

the hologram plane. The electromagnetic field at a point (xh, yh) in the hologram plane can

be calculated from the field in the object plane by adding up the individual waves at points

(xo, yo), as stated by the Fresnel–Kirchoff integral:

EHðxh, yhÞ ¼
i

�

ð
S

EOðxo, yoÞ
expðÿikrÞ

r
cos � dxo dyo, ð1Þ

where r is the distance between the points with the angle � to the normal of the planes.

The integration is carried out over the area of the object, S. If the angle � is small, the

paraxial approximation can be used, which greatly simplifies the integration in Equation (1).

Unfortunately, this is not the case in our configuration since the harmonic beam is focused

by the Schwarzschild objective and therefore divergent after the focus. Our numerical

approach introduces a third plane, called the far field plane, which is at a large distance from

the other two planes. The paraxial approximation is used between the far field plane and the

object or hologram planes. Fast Fourier Transformation techniques are used to integrate

Equation (1), where the harmonic beam is approximated by a Gaussian profile [9]. This

method allows us to simulate a hologram from an object, as well as to reconstruct the

electromagnetic field in the object plane from a recorded hologram.

In our experiment, the interference pattern on the MCP is recorded as an intensity

distribution, so that the phase information is lost. After subtracting a background image

(recorded in the absence of the object), the method described above can be used to obtain

the field distribution in the object plane. However, since no phase information was

recorded, the reconstructed image is blurred due to the twin image problem inherent to the

in-line geometry [11]. We therefore apply an iterative algorithm to recover the phase of the

hologram and thereby reduce the blurring of the image. This algorithm was inspired from

Latychevskaia and Fink [12].

The first iteration loop begins with the recorded intensity distribution I(xh, yh). This is

the square of the amplitude of the electromagnetic field in the hologram plane,

A(xh, yh)¼ [I(xh, yh)]
1/2. To build a hologram, we combine the amplitude with the phase

of the reference wave in the hologram plane, �H,ref:

EHðxh, yhÞ ¼ Aðxh, yhÞ exp½i�H,refðxh, yhÞ�: ð2Þ

This complex field is used as the input data for the reverse propagation, by which the total

electromagnetic field EO(xo, yo) in the object plane is found. The total field can be

described as

EOðxo, yoÞ ¼ tðxo, yoÞ exp½i�O,refðxo, yoÞ�, ð3Þ

where t(xo, yo) is a complex transmission function, and �O,ref(xo, yo) is the phase of the

reference wave in the object plane. We remove the phase of the reference wave by

multiplying with the complex conjugate, and rewrite the transmission function as

tðxo, yoÞ ¼ EOðxo, yoÞ exp½ÿi�O,refðxo, yoÞ� ¼ ½1ÿ aðxo, yoÞ� exp½i�Oðxo, yoÞ�: ð4Þ

The real part on the right side of the equation contains the absorption a(xo, yo), while the

complex part describes the phase shift �O(xo, yo) induced by the transmission through

the object. We now impose a constraint on the absorption, namely that it must not

2726 J. Schwenke et al.
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be negative. For the expression [1ÿ a(xo, yo)] we therefore consider values larger than 1 to

be undesirable contributions of the twin image and consequently replace them by 1. This

gives the adjusted transmission function a0(xo, yo), which is recombined with the phase

shift to form a new object:

½1ÿ a0ðxh, yhÞ� exp½i�Oðxo, yoÞ� ¼ t0ðxo, yoÞ: ð5Þ

This object is used to simulate a hologram,

EH,sim ¼ Asimðxh, yhÞ exp½i�simðxh, yhÞ�, ð6Þ

from which the simulated phase �sim(xh, yh) is extracted. This concludes the first iteration

loop. For all consecutive iterations, the initial hologram is composed of the recorded

diffraction pattern and the simulated phase from the last iteration (rather than the phase

of the reference wave). Our reconstruction algorithm can be summarized as follows:

(1) A hologram is composed of the experimentally recorded intesnsity, and phase

information, which is acquired by extraction from a simulated hologram. For the

first reconstruction, the phase of the reference wave is used instead.

(2) The Fresnel–Kirchhoff algorithm is used to find the total field in the object plane,

and the field is divided by the reference wave, to obtain the transmission function

of the object.

(3) The absorption function is extracted, and adjusted so that negative absorption

does not occur. The resulting function is recombined with the phase to form a new

transmission function and thus a new object.

(4) The new object is propagated forward to the hologram plane to simulate

a hologram. The phase of this simulated hologram is used for the next iteration.

The iteration process in theory completely removes the blurring of the reconstructed

image, and at the same time causes the absorption and phase properties of the object to

develop towards their true values. However, when applied to experimentally recorded

holograms, the performance of the iteration process is limited by the stability of the light

source. In our setup, beam direction and intensity vary from shot to shot which impairs

background subtraction. As a result, the reconstructed transmission function in the object

plane is distorted, and clean separation and removal of twin image contributions becomes

difficult. In this work, we have adjusted the constraint to values lower than 1 in order to

counteract the effects of intensity and beam position variation.

4. Reconstruction of experimental holograms

Figure 3 shows the results of the reconstruction algorithm on holograms of a straight

tungsten tip. The hologram in Figure 2(a) is obtained by subtracting a single shot image

with a background averaged over 200 shots. The first reconstruction from this hologram

yields Figure 3(a). The shape of the tip is clearly visible, but the image is blurred, and

fringes are still present. Figure 3(b) shows the object after application of the iteration

algorithm (100 iterations). Even though the blurring is not removed completely, the image

is of higher quality. The details at the end of the tip have a higher contrast, while the

fringes have almost disappeared. The FWHM of the tip profile, which gives an upper

Journal of Modern Optics 2727
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estimate of the spatial resolution, is measured to be 4.3mm. The second row of Figure 3

shows the reconstruction of a hologram averaged over 200 images (Figure 2(b)).

Compared with the single-shot hologram in Figure 2(a), the noise is much lower, and the

fringes have a better contrast to the background. The first reconstruction, Figure 3(c),

already shows the object clearly, although fringes are visible on both sides of the tip.

Figure 3(d) shows the object after 100 iterations. Again, the image quality is improved, but

still some blurring remains, and the aforementioned fringes are also still visible. The width

of the profile is now 4.7 mm. The limited effect of the iterative process can be partly

attributed to the usage of multiple shot backgrounds. Since the beam direction changes

slightly from shot to shot, the averaged background does not accurately match the

hologram.

Figure 4 shows the hologram (Figure 4(a)) and reconstruction (Figure 4(b), 100

iterations) of a deformed tungsten tip, as well as a scanning tuneling microscope (STM)

image (Figure 4(c)) of the same tip in a similar orientation. As can be seen on the STM-

image, the end of the tip is bent to a hook. The overall shape can be readily identified on

the reconstructed image, but the hook is very blurred. In this case, the object blocks

(a) (b)

(c) (d)

Figure 3. Reconstructed images of a straight microscope tip with and without iteration. (a), (b)
Reconstructed from a single-shot hologram, and (c), (d) reconstructed from an averaged hologram.

2728 J. Schwenke et al.
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a larger area of the beam, which reduces the intensity and the contrast on the detector.

Figure 5(a) shows a single-shot hologram of the same object, and Figure 5(b) the

reconstruction thereof (100 iterations). Here the single-shot image looks slightly better

even than the multi-shot image.

The spatial resolution is primarily limited by the digital capturing of the hologram, as

the CCD does not resolve the maximal resolution displayed by the MCP. As a result,

smaller fringes in the outer areas of the hologram are not observed. The situation can be

improved by using a back-illuminated X-ray CCD instead of the MCP setup, and also by

adjusting the ratio between object beam and reference beam, which affects the contrast of

the fringes. Another factor is possibly the bandwidth of the focusing optics, where the

transmission of multiple harmonic orders results in superimposed (and therefore blurred)

diffraction patterns. It is, however, still possible to reconstruct the object with a single

(a) (b)

Figure 4. Images of a deformed microscope tip, hologram averaged over multiple shots: (a) object
after reconstruction, and (b) STM-image for comparison.

(a) (b)

Figure 5. Hologram and reconstructed image of a deformed microscope tip. (a) Single-shot
hologram, and (b) reconstructed image after 100 iterations.

Journal of Modern Optics 2729
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wavelength and thereby select to some extent the image obtained with the dominant

harmonic order. Lastly, the beam stability needs to be improved in order to enhance the

effectiveness of the iterative algorithm and thereby increase the quality of the

reconstructed images. This is especially important for the imaging of transmissive objects.

5. Conclusions

The recent experiments show that the setup is capable of producing single-shot images of

good quality in the low micrometer range. The spatial resolution is not as good as

expected, but it can be improved by careful optimization of the setup. A spatial resolution

of below 1 mm seems to be readily achievable. Future work will be targeted at

demonstrating time-resolved holography in pump–probe experiments, effectively reaching

the femtosecond time scale with a table-top setup. Furthermore, the capability of the

experimental technique and reconstruction algorithm to retrieve the phase properties of

transmissive objects will be explored.
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We study resonant two-color two-photon ionization of helium via the 1s3p 1P1 state. The first color is

the 15th harmonic of a tunable Ti:sapphire laser, while the second color is the fundamental laser radiation.

Our method uses phase-locked high-order harmonics to determine the phase of the two-photon process by

interferometry. The measurement of the two-photon ionization phase variation as a function of detuning

from the resonance and intensity of the dressing field allows us to determine the intensity dependence of

the transition energy.

DOI: 10.1103/PhysRevLett.104.103003 PACS numbers: 32.80.Rm, 32.70.Jz, 32.80.Qk, 42.65.Ky

Multicolor resonant ionization is at the heart of numer-
ous and diverse applications in fundamental and applied
sciences. Examples are studies of very high Rydberg states
[1], investigations of biomolecules [2] and specific selec-
tion of radioactive species [3]. In the simplest scheme,
resonantly enhanced two-photon ionization (R2PI) occurs
via the absorption of two photons, generally of different
colors, one tunable (!1) used to scan across a resonant
state (r), and the second (!) ionizing from the excited
state. In traditional R2PI, the yield of the produced ion
species is recorded as a function of laser wavelength, and
the position and shape of the observed resonance provides
information on the underlying electronic and rovibrational
structures. These studies rely on spectroscopic information
using narrow-bandwidth lasers, which do not allow any
temporal resolution. Here, we present an ultrafast time-
resolved-technique to retrieve also the phase of R2PI when
sweeping through the resonance. We demonstrate it by
studying R2PI of He via the 1s3p 1P1 state which lies
23.087 eV above the ground state.

The basic principle of our experiment is illustrated in
Fig. 1. We study the interference between two pathways to
the same ionized final state (f1), one through the resonance
with absorption of two photons with frequency !1 and !,
and the second through a continuum path, using a third
color (!2), involving absorption of a photon with fre-
quency !2 and emission of a photon with frequency !.
The phase of the R2PI is encoded in the modulation of the
photoelectron signal Sf1 as a function of the delay �

between the (!1, !2) fields and the ! field [Fig. 1(b)].
When the energy of the exciting radiation !1, and thus the
detuning from the resonance is changed, the phase varia-
tion of the resonant transition leads to a measurable shift of
the Sf1 oscillation. This phase shift needs to be referenced

against another modulation Sf2 that is independent of the

resonance and thus providing a clock to our measurement.

A process providing an independent modulation requires a
fourth color (!3) and involves another final state (f2) (see
Fig. 1).
An essential requirement for our measurement is the use

of phase-locked radiation fields with commensurate fre-
quencies, and a temporal precision better than the period-
icity of the interference signal, in our case 1.3 fs. Another
requirement, is a high spectral resolution for the excitation
of a narrow resonance. These requirements can be simul-
taneously fulfilled by using the high-order harmonic fre-
quency combs produced when an intense laser field
interacts with a gas of atoms or molecules [4]. As is now
well understood [5,6], harmonics arise due to interferences

FIG. 1 (color online). (a) Schematic diagram illustrating the
phase measurement of R2PI. The dashed and solid !1 lines
represent two excitation energies on either side of the resonance.
The photoelectron peaks used in the measurement are Sf1 and

Sf2 . (b) Illustration of modulated sideband signals Sf1 and Sf2 .

Two Sf1 modulations are indicated, corresponding to the two

excitation energies in (a). (c) Experimental harmonic spectrum
used in the measurements.
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between attosecond pulses produced by tunnel ionization,
acceleration of the created wave packet in the field and
recombination back to the ground state at each half cycle of
the laser field. The spectral width of the individual har-
monics is thus related to the number of attosecond pulses,
and decreases as the laser pulse duration increases [7]. In
this process, a comb of phase-locked harmonics of odd
order is generated.

In the present work, we use high-order harmonics to
study two-color photoionization of He via the 1s3p 1P1

state [8,9]. In contrast to the ‘‘reconstruction of attosecond
bursts by interference of two-photon transition’’
(RABITT) technique, used to determine the pulse duration
of attosecond pulses [10,11] and similarly to previous work
performed in Ne [12] and N2 [13], we eliminate the influ-
ence of the temporal characteristics of the attosecond
pulses to concentrate on the influence of the atomic prop-
erties. We study the R2PI phase as a function of detuning
from the resonance, by varying the fundamental wave-
length (around 805 nm) or alternatively by increasing the
fundamental intensity. We apply these measurements to
determine the intensity-dependence of the energy of the
1s2 ! 1s3p transition, and interpret the results using theo-
retical calculations consisting of solving the time-
dependent Schrödinger equation (TDSE) in conditions
close to the experimental ones [14].

Our experiments were performed with a 1-kHz 35-fs
4-mJ Ti:sapphire laser system. An acousto-optic program-
mable dispersive filter (DAZZLER) was used to change the
central wavelength between 802.5 and 809.3 nm, while
maintaining the spectral width of the amplified pulses
approximately equal to 25 nm. High-order harmonics
were generated in a pulsed Ar gas cell, filtered using a
spatial aperture and a 200-nm thick Al thin film [15], and
focused by a toroidal mirror into a vacuum chamber con-
taining an effusive He gas jet. A magnetic bottle electron
spectrometer (MBES) allowed us to record and analyze in
energy the ejected electrons. Part of the laser field was
extracted before the generation of harmonics, and recom-
bined downstream collinearly with the harmonics, after a
variable time delay that could be adjusted with sub-100-as
precision [12].

A comb of about seven phase-locked harmonic fields
[Fig. 1(c)], corresponding in the time domain to a train of
attosecond pulses of 260 as duration, was thus sent into the
interaction chamber together with the dressing field at
frequency ! with an adjustable phase ’ (or time � ¼
’=!) delay. In addition, a half-wave plate and polarizer
in the dressing IR field arm allowed precise control of the
pulse energy and therefore the intensity in the interaction
region of the MBES. The detuning was determined from
� ¼ 15hc=�0 � E3p, where E3p is 23.087 eVand �0 is the

barycenter of the fundamental frequency spectrum, shifted
to the blue by �� ’ 3:5 nm to account for the blueshift
from free electrons in the generation gas [16,17]. The
dressing laser intensity was determined by measuring the

energy shifts of the photoelectron peaks of harmonics 17 to
23 in the presence of the laser field, which is simply equal
to the ponderomotive energy Up � 6:0I eV where the

intensity I is in units of 1014 W cm�2 for a laser wave-
length of 800 nm [18,19].
Figures 2(a) and 2(b) present electron spectra as a func-

tion of delay between the harmonics and the dressing field,
obtained for two different detunings. Electrons are ob-
served at energies corresponding to one-photon absorption
of the harmonics (from the 17th) and at ‘‘sideband’’ en-
ergies due to two-photon ionization processes, which we
label by the corresponding net number of infrared photons
(16, 18, etc.). These sideband peaks strongly oscillate with
the delay at a frequency equal to 2!. The oscillations of
sidebands 18, 20, 22, and 24 do not depend on the detun-
ing, while sideband 16 is strongly affected by it. A Fourier
transform of the sideband signal over about 10 fs (four
cycles) allows us to determine the relative phases of the
sideband oscillations with a precision of 0.1 rad. The
phases are plotted in Fig. 2(c) for the two cases shown in
(a),(b).
The relationship between the R2PI phase and the ex-

perimental results in Fig. 2 can be understood within
second-order perturbation theory [10,12]. Using the nota-
tion from Fig. 1, the photoelectron signal Sf1 can be ex-

pressed as

Sf1 ¼ jaa1 þ ae2j2; (1)

where aa1 and a
e
2 are the two-photon probability amplitudes

with the superscript a or e referring to an absorption or
emission of an ! photon and with the subscript 1 or 2
referring to absorption of an !1 or !2 photon. Introducing
’1 and ’2 as the phases of the radiation fields, as well as

FIG. 2 (color online). Electron spectra as a function of delay
for detunings � ¼ 10 meV (a) and � ¼ 190 meV (b). The
oscillation of the 16th sideband depends on the detuning while
the others do not (see dashed line) (c) Phase of the oscillations of
the sideband peaks in light orange for (a) and dark red for (b).
The two results have been superposed at sideband 18.
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’a
1 and ’e

2 as the phase terms involved in the two-photon
transitions, Eq. (1) becomes

Sf1 ¼jjaa1jei’a
1
þi’1þi’þjae2jei’e

2
þi’2�i’j2

¼jaa1j2þjae2j2þ2jaa1ae2jcosð’a
1�’e

2þ2’þ’1�’2Þ:
(2)

The cosine term leads to the modulation of the signal
observed in the experiment. In general, the phase terms
involved do not depend much on the photon energies. In
two-photon ionization via a resonant state, however, the
phase (’a

1) changes by � across the resonance. The study
of the variation of ’a

1 as a function of detuning � provides
interesting information on the two-photon ionization pro-
cess, e.g., on the relative importance of resonant and non-
resonant contributions, ac Stark shift of the resonant state,
depending on the spectral characteristics of the XUV and
laser fields.

The variation of ’a
1 with the detuning can be experi-

mentally obtained from Sf1ð’Þ provided the other phase

terms ’e
2, ’1, ’2 do not depend on � and provided the

phase delay ’ is known in absolute value, which is gen-
erally not the case. Sf1ð’; �Þ is therefore referenced against
Sf2ð’Þ, assuming that the phase terms involved,’a

2 and’
e
3,

are independent of the detuning and thus removing the
need of knowledge of the absolute ’. When changing �,
the laser intensity used to generate the harmonics varies
slightly, leading to a (small) variation of the group delay of
the attosecond pulses and thus of ’1 � ’2. We take this
effect into account by assuming a linear group delay [20],
which we experimentally determine using higher-order
sidebands. Its contribution is then subtracted from the mea-
sured phases and the phase of sideband 18 is set to zero for
all detunings. The results are presented in Fig. 3(a). As
expected, the phases corresponding to all sidebands except
the 16th are almost superposed to each other and show no
influence of detuning.

Figure 3(b) shows the variation of the R2PI phase as a
function of detuning. We can tune only over half the
resonance since for lower (negative detunings) sideband
16 moves progressively below the ionization threshold,
thus making our phase measurement inaccurate. We also
compare our measurements with the results of two differ-
ent calculations (solid lines): The dark red line is obtained
by a simple perturbative model [21], only considering the
resonant state. Gaussian envelopes were used for the ir and
XUV pulses with FWHMs of 30 and 10 fs, respectively.
The light orange curve shows the result of calculations
performed by numerically integrating the TDSE in the
single active electron approximation [14] in conditions
close to the experiment. We use a He pseudopotential
with the energy of the 1s3p state equal to 23.039 eV. The
result is therefore shifted by 40 meV for comparison with
the experiment. The result shown in Fig. 3(b) agrees very
well with the experiment, thus confirming our detuning
calibration.

In order to investigate how the 1s3p resonance behaves
in a laser field, we measured the dependence of the R2PI
phase on the dressing laser intensity. Figure 4(a) shows the
R2PI phase determined similarly to Fig. 3(a) but keeping
the wavelength constant at 805.5 nm and gradually increas-
ing the dressing intensity. We verified that even at the
highest intensity, higher-order multiphoton transitions
were still negligible [22], thus not affecting our phase
determination. Increasing the intensity from 0.1 to 1:8�
1012 W=cm2, the R2PI phase varies from�0:7 to 0.9 radi-
ans. Figure 4(b) presents the intensity dependence of all of
the measured phases (circles). We find an almost linear
increase of the phase with intensity, as indicated by the
dark red curve obtained by averaging, with a saturation at
around 1:3� 1012 W=cm2, due to the suppression of R2PI
when part of the two-photon excitation bandwidth moves
partly below the ionization threshold. The light orange line
obtained by TDSE calculations agrees well with our
measurements.
Combining our previous phase measurements as a func-

tion of detuning for a fixed (low) intensity and as a function
of intensity (for a fixed detuning) allows us to determine
the intensity dependence of the 1s2 ! 1s3p transition
energy. Both experimental (dark red solid) and TDSE
(light orange solid) results are shown in Fig. 5(a). The
dashed line is equal to �E1s2 þUp, representing the varia-

tion of the transition energy if the 1s3p state was moving as
a high-lying Rydberg state, following Up [19]. The ac

Stark shift of the fundamental state �E1s2 is very small,
equal to �0:3I eV where the intensity I is in units of
1014 W cm�2 [23,24] so that �E1s2 þUp � Up. We find

that the measured transition energy increases about 40%

FIG. 3 (color online). (a) Measured sideband phases corrected
for the attosecond group delay and normalized at zero for
sideband 18. Different detunings are indicated by the color
code [going from 11 meV below the resonance (dark red, lower
points in order 16) to 190 meV above the resonance (light
orange, upper in order 16)]. (b) Measurements (circles) of the
R2PI phase as a function of detuning. The dark red line indicates
results of a simple perturbative model while the light orange line
shows results of simulations based on solving the TDSE.
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more rapidly with the laser intensity than Up, up to the

saturation at 1:3� 1012 W cm�2.
To better understand this faster than ponderomotive

shift, we have calculated the XUV absorption cross sec-
tion for helium in the presence of an 800 nm field by
numerically solving the TDSE as a function of both
XUV wavelength and laser intensity [Fig. 5(b)]. Using an
XUV bandwidth of 50 meVor smaller we find that beyond
1� 1011 Wcm�2, the 3p resonance has at least two com-
ponents the higher of which shifts significantly faster than
the ponderomotive energy. With the experimental XUV
bandwidth (150 meV), however, the different components
cannot be resolved. As a result, we observe shifts exceed-
ing E1s2 þUp. Experimentally, the predicted structure in

the 3p resonance could be observed using longer funda-
mental laser pulses, leading to spectrally narrower har-
monic peaks.

In conclusion, we have shown how well-characterized
phase-locked high-order harmonics can be used to measure
the phase of R2PI and we have applied it to the determi-
nation of the ac Stark shift of the 1s3p 1P1 state. Although
our resolution was unsufficient to detect the splitting of the
excited state, we observed a nontrivial, faster than pon-
deromotive, ac Stark shift. Our method, here demonstrated
in He, could be applied to the study of numerous resonant
or quasiresonant processes in atoms and molecules.
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intensities with 50 meV resolution. The position of the 1s3p
state is indicated by the dashed line.

PRL 104, 103003 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 MARCH 2010

103003-4

188



Paper XI
Photoemission-time-delay measurements and
calculations close to the 3s-ionization-cross-section
minimum in Ar
D. Guénot, K. Klünder, C. L. Arnold, D. Kroon, J. M. Dahlström,
M. Miranda, T. Fordell, M. Gisselbrecht, P. Johnsson, J. Mauritsson,
E. Lindroth, A. Maquet, R. Taïeb, A. L’Huillier, and A. S. Kheifets.
Phys. Rev. A 85, 053424 (2012).





Paper XI

PHYSICAL REVIEW A 85, 053424 (2012)

Photoemission-time-delay measurements and calculations close to the 3s-ionization-cross-section
minimum in Ar
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We present experimental measurements and theoretical calculations of photoionization time delays from

the 3s and 3p shells in Ar in the photon energy range of 32–42 eV. The experimental measurements are

performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The

theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework

of the random-phase approximation with exchange. The connection between single-photon ionization and the

two-color two-photon ionization process used in the measurement is established using the recently developed

asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare

and discuss the theoretical and experimental results, especially in the region where strong intershell correlations

in the 3s → kp channel lead to an induced “Cooper” minimum in the 3s ionization cross section.

DOI: 10.1103/PhysRevA.85.053424 PACS number(s): 32.80.Fb, 32.80.Rm

I. INTRODUCTION

Attosecond pulses created by harmonic generation in gases

[1,2] allow us to study fundamental light-matter interaction

processes in the time domain. When an ultrashort light pulse

impinges on an atom, a coherent ultrabroadband electron wave

packet is created. If the frequency of the pulse is high enough,

the electronic wave packet escapes by photoionization [3]. As

in ultrafast optics, the group delay of an outgoing electron
wave packet can be defined by the energy derivative of the

phase of the complex photoionization matrix element. When

photoionization can be reduced to one noninteracting angular

channel L, this phase is the same as the scattering phase ηL,

which represents the difference between a free continuum

wave and that propagating out of the effective atomic potential

for the L angular channel. In fact, the concept of time delay

was already introduced by Wigner in 1955 to describe s-wave

quantum scattering [4]. In collision physics, with both ingoing

and outgoing waves the (Wigner) time delay is twice the

derivative of the scattering phase.

In general, photoionization may involve several strongly

interacting channels. Only in some special cases can the

Wigner time delay be conveniently used to characterize delay

in photoemission. One such case might be valence-shell

photoionization of Ne in the 100-eV range [5,6]. In this

case, there is no considerable coupling between the 2s → ǫp

and 2p → ǫs or ǫd channels, and ǫd is strongly dominant

over ǫs, following Fano’s propensity rule [7]. The case of

valence-shell photoionization of Ar in the 40-eV range [8]

is more interesting. In this case, the 3s photoionization is

radically modified by strong intershell correlation with 3p

[9]. As a result, the 3s photoionization cross section goes

through a deep “Cooper” minimum at approximately 42-eV

photon energy [10]. Such a feature is a signature of intershell

correlation and cannot be theoretically described using any

independent electron, e.g., Hartree-Fock (HF) model.

Recent experiments [5,8] reported the firstmeasurements of
delays between photoemission from different subshells from
rare-gas atoms, thus raising considerable interest from the
scientific community. Different methods for the measurements
of time delays were proposed, depending on whether single
attosecond pulses or attosecond pulse trains were used. The
streaking technique consists of recording electron spectra
following ionization of an atom by a single attosecond pulse
in the presence of a relatively intense infrared (IR) pulse, as a
function of the delay between the two pulses [11,12]. Temporal
information is obtained by comparing streaking traces from
different subshells in an atom [5] or from the conduction
and valence bands in a solid [13]. On the other hand,
the so-called RABBIT (reconstruction of attosecond bursts
by interference of two-photon transitions) method consists
of recording photoelectron above-threshold-ionization (ATI)
spectra following ionization of an atom by a train of attosecond
pulses and a weak IR pulse at different delays between the
two fields [14]. Temporal information on photoionization
is obtained by comparing RABBIT traces from different
subshells in an atom [8]. The name of the technique, which
we will use throughout, refers to its original use for the
measurement of the group delay of attosecond pulses in a
train [15].
Both methods involve absorption or stimulated emission of

one or several IR photons, and it is important to understand the
role of these additional transitions for a correct interpretation
of the measured photoemission delays. A temporal delay
difference of 21 as was measured for the photoionization from
the 2s and 2p shells in neon using single attosecond pulses
of 100-eV central energy [5]. Interestingly, the electron issued
from the 2p shell was found to be delayed compared to the
more bound 2s electron. Similarly, delay differences on the
order of ∼100 as were measured for the photoionization from
the 3s and 3p shells in argon using attosecond pulse trains with
central energy around 35 eV. Again, the 3p electron appears to
be delayed relative to the 3s electron, with a difference which
depends on the excitation energy [8].
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These experimental results stimulated several theoretical

investigations, ranging from advanced photoionization calcu-

lations, including correlations effects [6], to time-dependent

numerical approaches [5,16–18] to semianalytical develop-

ments aimed at understanding the effect of the IR field on

the measured time delays [19–21]. The picture which is

emerging from this productive theoretical activity is that when

the influence of the IR laser field is correctly accounted for,

such time-delay measurements may provide very interesting

information on temporal aspects of many-electron dynamics.

The present work reports theoretical and experimental

investigation of photoionization in the 3s and 3p shells in argon

in the 32–42-eV photon energy range. Besides providing a

more extensive description of the experimental and theoretical

methods in [8], we improve the results in three different ways.

(1) We performed more precise measurements using a

stabilized Mach-Zehnder interferometer [22] for the RABBIT

method. The stabilization allows us to take scans during a

longer time and thus to extract the phase more precisely. Some

differences with the previous measurements are found and

discussed.

(2) For the comparison with theory, we determined the

phases of the single-photon ionization amplitudes using the

random-phase approximation with exchange (RPAE) method,

which includes intershell correlation effects [9,23,24]. This

represents a clear improvement to the calculations presented

in [8], using Hartree-Fock data [25], especially in the region

above 40 eV, where photoionization of Ar passes through an

interference minimum, owing to 3s-3p intershell correlation

effects.

(3) Finally, we improved our calculation of the phase

of a two-photon ionization process, thus making a better

connection between the experimental measurements and the

single photoionization calculated phases [20].

This paper is organized as follows. Section II presents the

experimental setup and results. Section III describes the phase

of one- and two-photon ionization processes using perturbation

theory in an independent-electron approximation. Section IV

includes intershell correlation using the RPAE method. A

comparison between theory and experiment is presented in

Sec. V.

II. EXPERIMENTAL METHOD AND RESULTS

The experiments were performed with a titanium:sapphire

femtosecond laser system delivering pulses of 30-fs (FWHM)

duration, centered at 800 nm, with a 1-kHz repetition rate and

a pulse energy of ∼3 mJ. A beam splitter divides the laser

output into the probe and the pump arm of a Mach-Zehnder

interferometer (see Fig. 1). The energy of the probe pulses can

be adjusted by a λ/2 plate followed by an ultrathin polarizer.

The pump arm is focused by a f = 50 cm focusing mirror into

a pulsed argon-gas cell, synchronized with the laser repetition

rate, in order to generate an attosecond pulse train via high-

order harmonic generation. An aluminum filter of 200-nm

thickness blocks the fundamental radiation, and subsequently,

a chromium filter of the same thickness selects photon energies

of about 10-eV bandwidth in the range of harmonics 21 to 27.

The probe and the pump arm of the interferometer are

recombined on a curved holey mirror, transmitting the pump

FIG. 1. (Color online) Schematic illustration of our experimental

setup.

attosecond pulse train but reflecting the outer portion of the

IR probe beam. The exact position of the recombination

mirror with respect to the focal position of the pump arm

is essential in order to precisely match the wave fronts of

the probe and extreme ultraviolet (XUV) beams. A toroidal

mirror (f = 30 cm) focuses both beams into the sensitive

region of a magnetic-bottle electron spectrometer (MBES),

where a diffusive gas jet provides argon as detection gas.

The relative timing between the ultrashort IR probe pulses

and the attosecond pulse train can be reproducibly adjusted

on a subcycle time scale due to an active stabilization of the

pump-probe interferometer length [22].

Figure 2 presents an electron spectrum obtained by ionizing

Ar atoms with harmonics selected by both Al and Cr filters,

with orders ranging from 21 to 27. We can clearly identify three

ionization channels towards the 3s2p5, 3s1p6, and 3s2 3p4nℓ

(nℓ = 4p or 3d) continua [26]. The corresponding ionization

energies are 15.76, 29.2, and ∼37.2 eV. Note that the settings of

the MBES were here chosen to optimize the spectral resolution

at low energy. The large asymmetric profile obtained at high

electron energy can be reduced by optimizing the MBES

settings differently. The spectrum due to 3p ionization is

strongly affected by the behavior of the ionization cross section

in this region. The relative intensities of the 21st to the 27th

harmonics are approximately 0.2:0.7:1:1.

Figure 3 shows a typical RABBIT spectrogram, i.e.,

electron spectra as a function of delay between pump and probe

FIG. 2. Electron spectrum obtained by ionizing Ar with four

harmonics of orders 21, 23, 25, and 27. The ionization channels

are shown on the top.
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FIG. 3. (Color online) Electron spectrum as a function of time

delay between the attosecond pulses and the IR laser. The signal

strength is indicated by colors. The spectrum on the right (3p) follows

that on the left (3s) with a factor of 6 reduction in the color code and

a slight overlap in energy.

pulses. The electron yield is indicated as colors. Compared to

the spectra obtained with the harmonics only, Fig. 3 includes

electron peaks at sideband frequencies, including additional

absorption or emission of one IR photon (see Fig. 4). The

intensity of these sidebands oscillates with a delay at a

frequency equal to 2ω, with ω being the IR laser photon energy,

according to

S2q(τ ) = α + β cos(2ωτ − 1φ2q − 1θ2q ), (1)

where α and β are constant quantities, independent of the

delay, and 2q represents the total number of IR photons

involved, i.e., an odd number to create harmonic 2q − 1

or 2q − 1 plus or minus one IR photon. 1φ2q denotes the

phase difference between two harmonics with order 2q + 1

and 2q − 1, while 1θ2q arises from the difference in phase

between the amplitudes of the two interfering quantum paths

leading to the same final state [Fig. 4(a)]. At high IR intensity,

other quantum paths involving more than one IR photon
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FIG. 4. (Color online) Energy-level scheme of the processes

discussed in the present work: (a) RABBIT principle and (b) different

channels in two-photon ionization from the 3s and 3p subshells.

TABLE I. Time-delay measurements.

Sideband

22 24 26

Photon energy (eV) 34.1 37.2 40.3

τ (2)(3s) − τ (2)(3p), this work (as) −80 −100 10

τ (2)(3s) − τ (2)(3p), Ref. [8] (as) −40 (−90) −110 −80

τcc(3s) − τcc(3p) (as) −150 −70 −40

τ (1)(3s) − τ (1)(3p) (as) 70 −30 50

become possible and may change the retrieved RABBIT

phase [27]. We kept the IR laser intensity low enough to avoid

such higher-order effects, which can be identified through

oscillations at higher frequencies. τA = 1φ2q/2ω can be

interpreted as the group delay of the attosecond pulses [15].

We define in a similar way τ (2) = 1θ2q/2ω arising from

the two-photon ionization process. Since the same harmonic

comb is used for ionization in the 3s and 3p shells, the

influence of the attosecond group delay can be subtracted,

and the delay difference τ (2)(3s) − τ (2)(3p) can be deduced.

The results of these measurements are indicated in Table I

for sidebands 22, 24, and 26. We also indicate in Table I

previous results from [8]. It is quite difficult in such an

experiment to estimate the uncertainty of our measurement.

The stability of the interferometer is measured to be ∼50 as.

The relative uncertainty in comparing the phase offsets of

different sideband oscillations is estimated to be of the same

magnitude or even slightly better.

Our measurements agree well with those of [8] for sideband

24. For sideband 22, the measurements performed in [8]

could not resolve the sideband peak from electrons ionized

by harmonic 27 towards the continuum 3s2 3p4nℓ (see Fig. 3).

A new analysis done by considering only the high-energy

part of the sideband peak leads to the number indicated in

parentheses in Table I, which is in good agreement with the

present measurement. There is, however, a difference for the

delay measured at sideband 26. We will comment on this

difference in Sec. V.

III. THEORY OF ONE- AND TWO-PHOTON IONIZATION

To interpret the results presented above, we relate the

one-photon ionization delays to the delays measured in

the experiment. Using lowest-order perturbation theory, the

transition matrix elements in one- and two-photon ionization

are

M (1)(Ek) = −iEÄ〈Ek|z|i〉, (2)

M (2)(Ek) = −iEωEÄ lim
ε→0+

∫∑
ν

〈Ek|z|ν〉〈ν|z|i〉

ǫi + Ä − ǫν + iε
. (3)

Atomic units are used throughout. We choose the quantization

axis (z) to be the (common) polarization vector of the two

fields. The complex amplitudes of the laser and harmonic

fields are denoted by Eω and EÄ, with photon energies ω

and Ä, respectively. The initial state is denoted |i〉 and the

final state |Ek〉. The energies of the initial and intermediate

states are denoted ǫi and ǫν , respectively. The sum in M (2)

is performed over all possible intermediate states |ν〉 in the

053424-3
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discrete and continuum spectra. The infinitesimal quantity

ε is added to ensure the correct boundary condition for the

ionization process, so that the matrix element involves an

outgoing photoelectron. The magnitude of the final momentum

is restricted by energy conservation to ǫ = k2/2 = Ä + ǫi for

one-photon absorption and ǫ = k2/2 = Ä + ω + ǫi for two-

photon absorption. The two-photon transition matrix element

involving emission of a laser photon can be written in the

same way, with ω replaced by −ω in the energy conservation

relation and Eω replaced by its conjugate.

The next step consists of separating the angular and radial

parts of the wave functions. The different angular channels

involved are indicated in Fig. 4(b). We split the radial and an-

gular dependence in the initial state as 〈r|i〉 = Ylimi
(r̂)Rni li (r)

and use the partial-wave expansion in the final state,

〈r|Ek〉 = (8π )
3
2

∑

L,M

iLe−iηL(k)Y ∗
LM (k̂)YLM (r̂)RkL(r). (4)

We perform the spherical integration in Eq. (1) and obtain

M (1)(Ek) ∝
∑

L=li±1

M=mi

eiηL(k)i−LYLM (k̂)

×
(

L 1 li

−M 0 mi

)

T
(1)
L (k), (5)

where the reduced dipole matrix element is defined as

T
(1)
L (k) = L̂l̂i

(

L 1 li

0 0 0

)

〈RkL|r|Rni li 〉 (6)

using 3j symbols and with the notation l̂ =
√

2l + 1. The

reduced matrix element (6) is real. When the dipole transition

with the increased momentum L = li + 1 is dominant, which

is often the case [7], the phase of the complex dipole matrix

element M (1) is simply equal to

arg[M (1)(k)] = ηL(k) − Lπ/2. (7)

(There is also a contribution from the fundamental field which

we do not write here, as well as trivial phases, e.g., from

the spherical harmonic when M 6= 0 [20]). Similarly, for two-

photon ionization,

M (2)(Ek) ∝
∑

L=λ±1,λ=li±1

M=µ=mi

eiηL(k)i−LYLM (k̂)

×
(

L 1 λ

−M 0 µ

) (

λ 1 li

−µ 0 mi

)

T
(2)
Lλ (k), (8)

where

T
(2)
Lλ (k) = L̂λ̂2 l̂i

(

L 1 λ

0 0 0

) (

λ 1 li

0 0 0

)

〈RkL|r|ρκλ〉. (9)

Here, we have introduced the radial component of the

perturbed wave function,

|ρκλ〉 = lim
ε→0+

∫

∑

ν

|Rνλ〉〈Rνλ|r
∣

∣Rni li

〉

ǫi + Ä − ǫν + iε
, (10)

where the sum is performed over the discrete and continuum

spectra. κ denotes the momentum corresponding to absorption

of one harmonic photon such that the energy denominator goes

to zero (κ2/2 = ǫi + Ä). The summation can be decomposed

into three terms, the discrete sum over states with negative

energy, a Cauchy principal-part integral where the pole has

been removed (both these terms are real), and a resonant term

which is purely imaginary. The important conclusion is that

in contrast to the radial one-photon matrix element, the radial

two-photon matrix element is a complex quantity.

To evaluate the phase of this quantity, as explained in more

detail in [20], we approximate RkL(r) and ρκλ(r) by their

asymptotic values. We have, for example,

ρκλ(r) ≈ −
√

2

πκ
〈Rκλ|r

∣

∣Rni li

〉

× 1

r
exp

{

i

[

κr + ln(2κr)

κ
+ ηλ(κ) − πλ

2

]}

. (11)

This allows us to evaluate analytically the integral 〈RkL|r|ρκλ〉
in Eq. (9). We obtain

arg
[

T
(2)
Lλ (k)

]

≈ (L− λ)
π

2
+ ηλ(κ) − ηL(k) + φcc(k,κ), (12)

where φcc(k,κ) is the phase associated with a continuum-

continuum radiative transition resulting from the absorption

of IR photons in the presence of the Coulomb potential. It

is independent from the characteristics of the initial atomic

state, in particular its angular momentum. An important

consequence is that, when inserting the asymptotic form (11)

in Eq. (8), the scattering phase ηL is canceled out, so that the

total phase will not depend on the angular momentum of the

final state. In the case of a dominant intermediate channel λ,

the phase of the complex two-photon matrix element M (2)(k)

is equal to

arg[M (2)(k)] = ηλ(κ) − λπ/2 + φcc(k,κ). (13)

It is equal to the one-photon ionization phase towards the

intermediate state with momentum κ and angular momentum

λ plus the additional “continuum-continuum” phase. The

difference of phase which is measured in the experiment is

therefore given by

1θ2q = ηλ(κ>) − ηλ(κ<) + φcc(k,κ>) − φcc(k,κ<), (14)

where κ> and κ< are the momenta corresponding to the highest

(lowest) continuum state in Fig. 4(a). Dividing this formula by

2ω, we have

τ (2)(k) = τ (1)(k) + τcc(k), (15)

where

τ (1)(k) = ηλ(κ>) − ηλ(κ<)

2ω
(16)

is a finite difference approximation to the Wigner time delay

dηλ/dǫ and thus reflects the properties of the electronic wave

packet ionized by one-photon absorption into the angular

channel λ. τ (2) also includes a contribution from the IR field

which is independent of the angular momentum,

τcc(k) = φcc(k,κ>) − φcc(k,κ<)

2ω
. (17)

We refer the reader to [20] for details about how to calculate

τcc. Figure 5 shows τcc as a function of photon energy for

the two subshells 3s and 3p and for the IR photon energy
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FIG. 5. (Color online) Continuum-continuum delay τcc as a

function of excitation photon energy for subshells 3s (red solid line)

and 3p (blue dashed line) for an IR photon energy of 1.55 eV (800-nm

wavelength).

ω = 1.55 eV used in the experiment. The corresponding

difference in delays for the 3s and 3p subshells is only due

to the difference in ionization in energy between the two

shells (13.5 eV). We also indicate in Table I the measurement-

induced delays for the three considered sidebands.

The processes discussed in this section can be represented

graphically by the Feynman-Goldstone diagrams displayed in

Figs. 6(a) and 6(b). The straight lines with arrows represent

electron (arrow pointing up) or hole (arrow pointing down)

states. The violet and red wavy lines represent interaction with

the XUV and IR fields. We are neglecting here two-photon

processes where the IR photon is absorbed first [20].

IV. INTERSHELL CORRELATION EFFECTS

To include intershell correlation effects, we use RPAE [9].

In this approximation, the dipole matrix element of single

+ 
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FIG. 6. (Color online) Feynman-Goldstone diagrams represent-

ing (a) one-photon and (b) two-photon ionization processes. (c)

Diagrammatic representation of the RPAE equations. The second and

third diagrams on the right-hand side refer to time forward and time

reversed, respectively. (d) Two-photon ionization including intershell

correlation effects. (e) Two-photon ionization with the XUV photon

absorbed after the IR photon.

photoionization is replaced by a “screened” matrix element

〈k|Z|i〉, which accounts for correlation effects between the 3s

and 3p subshells. These screened matrix elements, represented

graphically in Fig. 6(c), are defined by the self-consistent

equation

〈Ek|Z|i〉 = 〈Ek|z|i〉 + lim
ε→0+

∫

∑

ν

[

〈ν|Z|j 〉〈j Ek|V |νi〉

Ä − ǫν + ǫj + iε

−
〈j |Z|ν〉〈νEk|V |ji〉

Ä + ǫν − ǫj

]

, (18)

where i and j are 3s or 3p or vice versa and V = 1/r12

is the Coulomb interaction. The sum is performed over

the discrete as well as continuum spectra. The Coulomb

interaction matrices 〈j Ek|V |νi〉 and 〈νEk|V |ji〉, represented by

dashed lines in Fig. 6(c), describe the so-called time-forward

and time-reversed correlation processes. (Note that the time

goes upward in the diagrams.) If we replace Z by z in the right

term in Eq. (18), we obtain a perturbative expansion to the first

order in the Coulomb interaction. More generally, the use of

the self-consistent screened matrix elements [Eq. (18)] implies

infinite partial sums over two important classes of so-called

“bubble” diagrams. Each bubble consists of an electron-hole

pair νj , which interacts via 1/r12 with final electron-hole pair
Eki. The energy integration in the time-forward term of Eq. (18)

(first line) contains a pole, and the screened matrix element

acquires an imaginary part and therefore an extra phase. For a

single dominant channel L, the phase of the one-photon matrix

element [see Eq.(7)] becomes

arg[M (1)(k)] = ηL(k) + δL(k) − Lπ/2, (19)

where δL(k) = δi→kL denotes the additional phase due to the

correlations accounted within the RPAE. The photoemission

time delay is then determined by the sum of two terms:

τ (1) =
dηL

dǫ
+

dδL

dǫ
. (20)

The first term represents the time delay in the independent

electron approximation, equal to the derivative of the photo-

electron scattering phase in the combined field of the nucleus

and the remaining atomic electrons. The second term is the

RPAE correction due to intershell correlation effects.

We solve the system of integral equations (18) numerically

using the computer code developed by Amusia and collab-

orators [28]. The basis of occupied atomic states (holes) 3s

and 3p is defined by the self-consistent HF method [29]. The

excited electron states are calculated within the frozen-core HF

approximation [30]. We present some results for one-photon

ionization in Fig. 7. In the top panel, we show the partial

photoionization cross sections from the 3p state calculated

using the HF and RPAE approximations (see figure caption).

From this plot, we see that the 3p → kd transition is clearly

dominant at low photon energies. Intershell correlation effects

are more important for the 3p → ks than for the 3p → kd

transition. The sum of the two partial cross sections calculated

with the RPAE correction (red solid line and green line with

circles) is very close to the the experimental data (solid circles)

[31]. The middle panel presents the calculated cross section

for 3s ionization and compares it to the experimental data
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FIG. 7. (Color online) (top) The photoionization cross sections

σ3p→kd calculated in the HF (blue dotted line) and RPAE (red

solid line) approximations are compared with the σ3p→ks cross

sections (HF, green open circles; RPAE, purple dashed line). The

experimental data for the σ3p cross section are from Ref. [31].

(middle) Photoionization cross sections σ3s calculated in the HF

(blue dotted line) and RPAE (red solid line) approximations are

compared with experimental data [10]. (bottom) Correlation-induced

phase shifts for the 3s and 3p dipole matrix elements.

from [10]. The RPAE correction is here essential to reproduce

the behavior of the cross section, which, in this spectral region,

is a rapid decreasing function of photon energy.

The bottom panel shows the correlation-induced phase

shifts δ3s→kp and δ3p→kd from the same RPAE calculation. We

observe that the RPAE phase correction δ3p→kd is relatively

weak. In contrast, δ3s→kp varies significantly with energy, es-

pecially near the Cooper minimum. This qualitative difference

can be explained by a different nature of the correlations in

FIG. 8. (Color online) Ionization delay for the three angular

channels: 3p → kd (blue dotted line), 3p → ks (green dashed line),

and 3s → kp (red solid line).

the 3p and 3s shells. In the 3p case, the correlation takes

place mainly between the electrons that belong to the same

shell with not much influence of the intershell correlation with

3s. We confirmed this conclusion by performing a separate

set of RPAE calculations with only the 3p shell included.

These calculations lead to essentially the same results for

3p ionization as the complete calculations. In the case of

intrashell correlation, the time-forward process [see Fig. 6(c)]

is effectively accounted for by calculating the photoelectron

wave function in the field of a singly charged ion. It is

therefore excluded from Eq. (18) to avoid double count. The

remaining time-reversed term [second line in Eq. (18)] does

not contain any poles and therefore does not contribute to an

additional phase to the corresponding dipole matrix element.

The small phase δ3p→kd is due to intershell correlation, which

is indeed weak. In contrast, 3s ionization is strongly affected by

correlation with the 3p shell. Consequently, the RPAE phase

correction δ3s→kp, which comes from the correlation with the

3p shell in the time-forward process, is large and exhibits a

rapid variation with energy (a π phase change) in the region

where the cross section decreases significantly.

Finally, we generalize our theoretical derivation of two-

photon ionization to including the effect of intershell corre-

lation on the XUV photon absorption. As shown graphically

in the diagram in Fig. 6(d), we replace the (real) transition

matrix element corresponding to one-XUV photon absorption

by a (complex) screened matrix element, with an additional

phase term. As a consequence the phase of the two-photon

matrix element becomes

arg[M (2)(k)] = ηλ(κ) + δλ(κ) − λπ/2 + φcc(k,κ). (21)

The time delay measured in the experiment is expressed as

before as τ (2)(k) = τ (1)(k) + τcc(k), with τ (1)(k) modified by

intershell correlation:

τ (1)(k) =
ηλ(κ>) − ηλ(κ<)

2ω
+

δλ(κ>) − δλ(κ<)

2ω
. (22)

Figure 8 presents calculated time delays τ (1) for the 3s → kp,

3p → ks, and 3p → kd channels. The ionization delays from

the 3p channel do not vary much with photon energy and
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FIG. 9. (Color online) Comparison between our theoretical calcu-

lations (dashed blue line, HF; red solid line, RPAE) and experiments

(circles, Ref. [8]; crosses, present work)

remain small. The 3p → ks delay is negligible, while it takes

about 70 as more time for the wave packet to escape towards

the d channel due to the angular momentum barrier. The wave

packet emitted from the 3s channel takes considerably more

time to escape, especially in the region above 40 eV, owing

to strong intershell correlation leading to screening by the 3p

electrons.

V. COMPARISON BETWEEN THEORY

AND EXPERIMENT

We present in Fig. 9 a comparison between our experimental

results (see Table I) and our calculations. The dashed blue

and solid red lines refer to the independent-electron HF

and RPAE calculations, respectively. The circles refer to the

results of [8], while the other symbols (with error bars both

in central energy and delay) are the results obtained in the

present work. Regarding the two sets of experimental results,

they agree very well, except for that obtained at the highest

energy corresponding to the sideband 26. Our interpretation

is that we may be approaching the rapidly varying feature

due to 3s-3p intershell correlation. Therefore a small change

in the photon energy between the two measurements may lead

to an important change in the delay. The experimental and

RPAE results agree well for the first sideband but less for

the two higher-energy sidebands. Surprisingly and perhaps

accidentally, the HF calculation gives there a closer agreement

with the experiment.

We now discuss possible reasons for the discrepancy.

Our calculation of the influence of the dressing by the

IR laser field is approximate. It only uses the asymptotic

form of the continuum-wave functions (both in the final

and intermediate states), thereby neglecting the effect of the

core. This approximation should be tested against theoretical

calculations, especially in a region where correlation effects

are important. We also neglect the influence of the two-photon

processes where the IR photon is absorbed (or emitted) first

[32] [see Fig. 6(e)]. The corresponding matrix elements are

usually small, except possibly close to a minimum of the cross

section, where the other process, usually dominant, is strongly

reduced. Interestingly, in such a scenario, the IR radiation

would not simply be a probe used for the measurement of the

phase of a one-photon process but would modify (control) the

dynamics of the photoemission on an attosecond time scale.

Finally, in our theoretical calculation, correlation effects are

only accounted for in the single ionization process (XUV

absorption). Additional correlation effects surrounding the

probing, e.g., after the IR photon is absorbed, might play a

role.

In conclusion, the results shown above point out the need

for explicit time-dependent calculations, which would account

for many-electron correlation and include not only one-photon

but also two-photon ionization. We also plan to repeat these

experimental measurements using attosecond pulses with a

large and tunable bandwidth. Our results demonstrate the

potential of the experimental tools using single attosecond

pulses [5] or attosecond pulse trains [8]. These tools now

enable one to measure atomic and molecular transitions, more

specifically, quantum phases and phase variation, i.e., group

delays, which could not be measured previously.
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