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1. Introduction 

It is often found not too difficult to compare arguments with respect to their 

comparative strength, or their rational persuasiveness. For present purposes, this 

may be understood as the capacity of reasons to reduce, sustain, or enhance the 

extent to which a rational agent endorses a conclusion. Perhaps the easiest way of 

assessing argument strength consists in asking listeners for an opinion. But, clearly, 

what does persuade need not be coextensive with what should persuade.  

A less simple way consists in deploying a normative standard—here: the 

theory of probability, particularly its notion of evidential support—in order to 

answer two questions: First, what part of probability theory might be used towards 

arriving at a normative account that yields a motivated separation of natural 

language arguments into good and less good ones? Secondly, are the assessments of 

argument strength performed in laymen or institutional contexts (such as a court 

room) to some extent consistent with that theory? 

 Contributions to this volume converge upon the use of Bayes’s theorem 

(which is introduced further below) as the norm in the light of which evidence—

“arriving” in various forms, e.g., as a third party report, a test result, or a direct 

observation—affects the endorsement of some hypothesis. A subset of these 

contributions also report data, some of which has been methodologically hardened in 

controlled experimental settings, on the extent to which arguers comply with this 
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norm, or not. Further contributions address challenges arising in (computationally) 

modeling rational agents and their argumentative interactions, while yet others offer 

novel solutions to long-standing “anomalies.”  

Below follows a brief introduction to the formal apparatus, particularly as it 

applies to the study of natural language argumentation, meant to “pave the way” for 

the novice reader. An overview of the book’s content is provided in Section 3. 

 

2. The Bayesian Approach to Argumentation 

Bayes’s theorem (Bayes 1763) expresses the relations between a hypothesis, H, and 

evidence, E, in terms of probability, P. On a subjectivist interpretation, ‘probability’ 

denotes degrees of belief. These degrees are mapped onto the unit interval [0, 1] 

such that P(H)=1-P(nonH). The relata are variously referred to as:  

 

• P(H)   the prior or unconditional probability of a hypothesis (given 

no evidence) 

• P(E)   the marginal or a priori probability of the evidence  

• P(H|E)  the direct or posterior or conditional probability of a 

hypothesis given the evidence 

• P(E|H)  the inverse or conditional probability of the evidence given 

the hypothesis (aka. the likelihood of the evidence) 

 

To reach terms standardly used in the study of natural language 

argumentation (and episodes of reasoning thus suggested), ‘evidence’ will be 

interpreted as reason, ground or argument, and ‘hypothesis’ as conclusion or 

proposal. Those used to representing argumentative structures as premise-conclusion 

complexes of the form P1, …, Pn; ergo C need to project premises into evidence, 

and conclusion into hypothesis.  

Bayes’s theorem may count as non-controversial and takes the following 

form1, where it is assumed—here and further below—that 0<P(H)<1 and 0<P(E)<1. 
                                                           
1 To arrive at the theorem, one may start from a basic axiom of probability theory 

which states the probability of the conjunction of H and E, P(H&E), to be the 

probability of E multiplied by the probability of H given E, as expressed in (1).  
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(BT)  P(H|E) = P(H) P(E|H)  

        P(E) 

 

The theorem may be said to relate the direct probability of a hypothesis 

conditional on evidence, P(H|E), to the inverse probability of the evidence 

conditional on the hypothesis, P(E|H). A more useful version—more useful, because 

P(E) can be expressed in extant terms2—is the following: 

 

 

(BT’)  P(H|E) =                    P(H) P(E|H)                     f 

         P(H) P(E|H) + P(nonH) P(E|nonH) 

 

The basic idea underlying most uses of Bayes’s theorem is that a hypothesis 

is supported by any evidence which is rendered (either sufficiently or simply) 

probable by the truth of that hypothesis. For the dynamic case, this entails that the 

probability of a hypothesis increases to the extent that evidence is more likely if the 

                                                                                                                                                                   
(1) P(H&E)=P(E) P(H|E) 

The same is stated in (2): 

(2) P(H&E)=P(H) P(E|H) 

This allows us to equate the right sides of (1) and (2) to reach: 

(3) P(E) P(H|E)=P(H) P(E|H) 

Upon which dividing both sides of (3) by P(E) yields (BT): 

(BT) P(H|E)=P(H) P(E|H) 

       P(E) 
2 To express P(E) in extant terms, note that the law of total probability states the 

probability of E to be the probability of H and E, plus the probability of nonH and E 

(where ‘nonH’ designates the complement, or the negation, of H). In terms:  

(1) P(E)=P(H&E) + P(nonH&E).  

Expressed in conditional form (see the previous footnote), this yields: 

(2) P(E)=P(H) P(E|H) + P(nonH) P(E|nonH) 
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hypothesis were true than if it were false. (Novices may want to read the last 

sentence twice!) 

The theorem allows calculating P(H|E), which is the degree of belief in the 

hypothesis H to which (having received) evidence E does lead—or should lead, 

insofar as Bayes’s theorem is treated as a normative update rule—, provided 

assumptions on: 

(i) The initial degree of belief in the hypothesis, P(H). This is normally kept 

distinct from 1 or 0, for otherwise evidence will not affect P(H). Hence, “good 

Bayesians” cannot (without “signing-off” on evidence) entertain full belief, while 

dogmatists cannot (without inconsistency) fully endorse the Bayesian update rule. 

(ii) Qualities of the evidence, P(E). As explained in footnote 2, P(E) can be 

calculated from the values of P(H) and P(E|H). 

(iii) The relation between E and H, particularly how (much more) likely, or 

expectable, evidence would be if the hypothesis were true than if it were false. This 

comes down to comparing P(E|H) with P(E|nonH).  

Bayes’s theorem features two limiting cases. One captures a situation where 

a hypothesis entails the evidence—which, in logical terms, is expressed as H→E, or 

as P(E|H)=1 in probabilistic terms. The other captures the converse situation where 

evidence entails the hypothesis, expressed as E→H or P(H|E)=1. Conveniently, 

amongst others, the following hold:  

 

(1) P(H|E)=1, if P(E|nonH)=0  

(2) P(H|E)<1, if P(E|nonH)>0  

(3) P(E|H)/P(E|nonH) >1, iff P(H|E) – P(H) > 0 

 

In words: (1) we have full belief in the hypothesis given the evidence, if we 

have a zero degree of belief in the evidence given the negation of the hypothesis. (2) 

We have less than full belief in the hypothesis given the evidence, if our degree of 

belief in the evidence given the falsity of the hypothesis is greater than zero. (3) The 

ratio of the evidence likelihoods—i.e., the degree of belief in the evidence given the 

hypothesis over the degree of belief in the evidence given the negation of the 

hypothesis—is greater than one if, and only if, the difference between the degree of 
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belief in the hypothesis given the evidence (aka. the posterior probability) and the 

degree of belief in the hypothesis (aka. the prior probability) is greater than zero. 

Put differently, (1) and (2) assert that fully endorsing H (as true vis-à-vis E) 

requires E to be completely unexpectable under the assumption that H is false. 

Conversely, as long as E is somewhat expectable under the assumption that H is 

false, H cannot be fully endorsed (as true vis-à-vis E). And (3) asserts that a 

difference between prior and posterior probability—thus, any support lent to the 

hypothesis by the evidence—is mirrored by a likelihood ratio greater than 1.  

Perhaps instructively for those more familiar with classical logic, when the 

relation between evidence and hypothesis is neat enough for the truth of one to 

ensure the truth of the other, Bayes’s theorem “degrades” to the bi-conditional of 

deductive logic, H↔E.3 Therefore, some hold that much of what can be done in 

classical logic may be done with (limiting case instances of) Bayes’s theorem. 

Where such neat relations are not at hand, the theorem traces the effect that 

                                                           
3 Floridi (2009) provides an instructive example, here slightly adapted. 

Unrealistically(!), it assumes perfect antivirus software: “Maggie thought that, if ‘the 

email was infected’ [abbreviated as the hypothesis H], then ‘the antivirus blocked it’ 

[abbreviated as evidence E], and since the quarantine folder contains only emails 

blocked by the antivirus, then all the emails in it must be infected. More formally, 

she reasoned that: ‘H→E, E therefore H’. Jill explains to Maggie that the previous 

inference is a typical fallacy (called: affirming the consequent), but that she should 

not feel silly at all. For, consider Bayes’s theorem once again. Look at the formula 

P(E|nonH) […] which indicates the probability that the antivirus blocks the email 

(E) when the email is not infected (nonH). Suppose we have perfect, infallible 

antivirus software. This will generate no false positives (no mistakes). But if there 

are no false positives, that is, if P(E|nonH)=0, then P(H|E)=1 and Bayes’s theorem is 

degraded to a double implication: ‘H↔E, E therefore H’, which is what Maggie 

perhaps had in mind. On the other hand, if there are some false positives, that is, if 

P(E|nonH)>0, then P(H|E)<1 and the formula bears a strong family resemblance to 

the fallacy of affirming the consequent: ‘H→E, E therefore H’, which is what 

Maggie might also have had in mind” (Floridi 2009: 399). 
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(receiving) evidence makes (or should make) on the degree to which a hypothesis is 

supported vis-à-vis endorsing the negation of the same hypothesis, provided a prior 

degree of belief in the hypothesis and an estimate of the likelihood of the evidence.  

Since, formally, this is very much as it should be, challenges arise “only” in 

interpreting the Bayesian terms, and in reasonably choosing the numerical values by 

which these terms express the kinds of evidential considerations featured in natural 

language arguments. Take, for instance, the contention that hypotheses should be 

submitted to severe tests, and that arguments which report severe tests are stronger 

(or more persuasive) than those reporting less severe tests. In Bayesian terms, this 

means the probability of obtaining evidence (in case the hypothesis is true) should 

be comparatively low. So, assuming two tests to choose from, the more severe 

should sport a lower value for P(E|H). 

As pointed out above, evidence supports (“strengthens”) or undermines 

(“weakens”) a hypothesis, or else is irrelevant to it. The degree of confirmation (or 

support) that evidence lends to a hypothesis may be expressed as the difference 

between the posterior and the prior probability of a hypothesis: P(H|E)–P(H). A 

second and equally defensible measure of support is the likelihood ratio: P(E|H) / 

P(E|nonH).4 These measures have been proposed as estimates of the force of an 

argument, since they express the magnitude of a change of conviction which 

receiving evidence brings about vis-à-vis a prior conviction. Relatedly, the absolute 

degree of conviction to which receiving an argument leads—i.e., the posterior 

probability—may then be used to estimate the strength of an argument.  

This coinage goes back to Oaksford and Hahn who observe that, 

consequently, the relative degree of conviction which evidence brings about may be 

the same, even if two agents differ with respect to the prior probabilities they 

endorse. This holds as long as discussants do not disagree about properties of the 

evidence such as being obtained from a trustworthy source or by a reliable method. 

Conversely, arguers would have to differ in ways that point beyond the priors for 

their disagreement to remain rationally reconstructable. In this limited but important 

sense, Bayes’ theorem promises to provide a normative theory of argument strength, 

given assumptions on the quality of reasons.  
                                                           
4 For other support measures, see Fitelson (2001) and Pfeifer (this volume). 
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With a view to natural language argumentation, the Bayesian approach 

recommends itself for its precise expressions, and—other than by successfully 

explaining the quality of arguments/fallacies vis-à-vis various contexts and 

audiences—also receives support from recent results in the study of human 

reasoning. According to authors such as Evans (2002), humans may generally not 

count as “deduction machines.” Rather, much of man-made reasoning appears to be 

consistent with some of the assumptions made in probabilistic modeling. 

Nevertheless, for reasons of computational complexity alone (Korb 2004), it is clear 

that humans are not “Bayesian machines” either.  

The Bayesian approach to natural language argumentation is a quasi-natural 

choice, firstly, for the study of any argument which seeks to support, or undermine, 

a claim on the basis of statistical data. After all, on the Bayesian approach, the 

standards appealed to—i.e., those of inductive logic—will, in one way or another, be 

part of the reconstructive apparatus, and thus be available in argument evaluation.  

Secondly, empirical research on message persuasiveness should find the 

Bayesian approach natural when explaining the differential persuasiveness of 

messages vis-à-vis various sources, contexts, and audiences. For instance, when 

receiving identical messages from a reliable versus an unreliable source, in the first 

case, P(E|H) may reasonably be taken to exceed P(E|nonH), providing one way of 

modeling the impact of trust on the degree to which a message is believed, or not.  

Finally, the Bayesian approach challenges the view that the reconstruction 

and evaluation of natural language argumentation must either rely on informal 

means, or else be unrealistically confined to a comparatively small class of 

arguments which instantiate deductively valid structures. Surely, branding the 

Bayesian approach as the solution appears equally unrealistic. Nevertheless, as the 

contributions to this volume demonstrate, formal tools such as Bayes’ theorem have 

a rightful place both in argument reconstruction and argument evaluation. 

 

3. Chapter Overview 

Comprising theoretical backgrounds and disciplines as diverse as social psychology, 

jurisprudence, and philosophy, contributions remain unified with respect to the 

normative standard to which they relate. While chapters are self-contained, readers 
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may appreciate the division into: The Bayesian Approach to Argumentation; The 

Legal Domain; Modeling Rational Agents; and Theoretical Issues. 

 

3.1 The Bayesian Approach to Argumentation 

Ulrike Hahn, Mike Oaksford, and Adam J.L. Harris lay out a Bayesian perspective 

on testimony and argument. Normally treated as independent variables or alternative 

routes to audience persuasion, the authors build on empirical studies which validate 

a rather precise connection between source and content considerations of argument. 

This yields an alternative to standard default and plausibility treatments, and 

crucially differs from the latter with respect to the principle employed for evaluating 

linked argumentation structures. Rather than the so-called MAXMIN principle, their 

contribution deploys Bayes’s theorem, and extends the investigation to cases of 

witnesses who differ not only with respect to the reliability of testimony, but also 

with respect to the argumentative strength of its content. After contrasting possible 

ways of modeling source reliability either exogenously or endogenously, the authors 

proceed to a “rehousing” of argumentation schemes within a Bayesian framework, 

resulting in a network representation of Walton’s well-known critical questions for 

the appeal to expert opinion. As they content, “reasoning appropriately about source 

reliability in any given context involves Bayesian inference within a suitable model. 

How complex that model needs to be depends on the context, such as the relevant 

dimensions of variation within that context.”  

 Mike Oaksford and Ulrike Hahn report on an empirical study that 

investigates why ad hominem argumentation is found convincing, and contrast their 

findings with recent empirical results obtained from the perspective of the normative 

pragma-dialectical model. In the latter, the reasonableness of an ad hominem 

argument is construed as a function of the discussion stage in which it occurs. The 

argument form is deemed an illegitimate move (aka. a fallacy) only in the opening 

stage of a critical discussion, where it violates the “Freedom Rule” (according to 

which discussants may not prevent each other from forwarding a standpoint). In 

contrast, Oaksford and Hahn deploy a Bayesian model which, amongst others, 

respects considerations of source reliability. Moreover, they also vary further 

conditions such as the initial degree of belief in a conclusion, and whether the ad 



10 

hominem appears as a pro or a con argument. Although further empirical 

investigation into this and other argument forms is deemed necessary, their study 

partly fails to corroborate—and thus challenges—the explanation offered on the 

pragma-dialectical model, insofar as they find “no differences between different 

types of argumentum ad hominem, where the freedom rule was violated, and a 

control, which introduced no violation of the freedom rule.” 

 

3.2 The Legal Domain 

Matthias Grabmair and Kevin D. Ashley distinguish four kinds of interdependent 

uncertainties that lawyers must plan for in litigation cases, then illustrate these vis-à-

vis the claim of trade-secret-misappropriation recently brought against Facebook 

founder Mark Zuckerberg. Typically, in deciding what legal claim to assert, lawyers 

will profit from a structured assessment of what is normally called the “strength of a 

case.” It is for this purpose, then, that factual, normative, moral and empirical 

uncertainties become relevant, insofar as winning or losing a case may be 

understood as a function of having estimated these correctly, or not. Employing an 

extension of the Carneades argumentation model, the authors use probability values 

to model that audiences (here, judges and juries) may accept or reject some 

statement or principle to some degree, or else be undecided about it. This inference 

is a function of probability values representing the audiences’ belief in certain 

assumptions and assessments of an argument’s persuasiveness. The resulting 

Bayesian model, which uses argument weights, can represent pro and con arguments 

for or against some claim. Moreover, it allows for dynamic weights. The authors 

further suggest and illustrate that weights can be subject to argumentation as well. 

Thus, a formal model of legal argument mandates amongst other things “the moral 

assessment of a case [e.g., by a judge] to influence the probability with which certain 

legal arguments will prevail over others.” 

Amit Pundik presents a case study on the use of statistical evidence in 

criminal courts, and defends the standpoint that, under certain assumptions, courts 

can have good reasons to refrain from the use of statistics, and experts delivering 

them. His case involves the correct diagnosis of sudden infant death syndrome 

(SIDS), and addresses the question whether public and scholarly attention has been 
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wrongly directed to the statistics—which, as it happened, were seriously flawed. 

Pundik reviews and rejects extant explanations that purport to show why the SIDS 

statistics have led to a wrongful charge against an innocent mother, then draws on 

the theory of contrastive explanation to provide an alternative account. According to 

this theory, the statistics on spontaneous child death would have made sense in the 

context of this trial only if they had been compared with statistics on the preferred 

contrast class (here: particular acts of murder). Pundik argues that, regardless of 

whether a comparison of probabilities between contrasting explanations is in fact 

possible, it should not be conducted as part of criminal proceedings. He concludes 

that his case study “should serve as a warning against any attempt to prove the fact 

of causation using statistical evidence about the rate of potential exonerating 

causes.” 

 

3.3 Modeling Rational Agents 

Erik Olsson presents a computer-based simulation environment, called Laputa. This 

provides a Bayesian model of group interaction which may be interpreted as 

exchanges of arguments for or against some proposition p among agents/inquirers. 

Provided certain constraints are met—amongst others, that message sources are 

independent; that inquirers cooperate in the sense of providing arguments that are 

novel to their interlocutors; that arguing pro (con) p entails personally endorsing 

(not) p to a reasonable degree; that proponents deem their own arguments sound—

agents can be modeled to update both their degree of belief in p, and their degree of 

trust in the message source. From this basis, Olsson proceeds to show that, over 

time, agents in the group will polarize in the sense of endorsing ever greater degrees 

of belief in p, while assigning ever less trust to those agents endorsing not p (or vice 

versa). Consequently, he can suggest that “polarization on the belief level is 

accompanied, in a sense, with polarization on the trust level.” Moreover, he can 

demonstrate that, on this model, seemingly minute differences between degrees of 

belief and degrees of trust will, over time, lead to polarization. Consequently, these 

simulations support the claim “that even ideally rational inquirers will predictably 

polarize or diverge under realistic conditions.” 
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Gregor Betz provides an outline of his recent theory of dialectical structures, 

and investigates the relation between such structures and truth-likeness 

(verisimilitude). Amongst others, his theory serves to reconstruct attack and support 

relations between premises and conclusion at the level of complex debates (aka. 

“controversies”). In turn, this provides the basis for a structured evaluation of the 

positions endorsed by proponents and opponents. In particular, the pre-theoretic idea 

of a “(comparative) strength of justification” can be rendered formally precise by 

means of the notion “degree of justification”—which obeys Bayes’s rule—and that 

of “degree of partial implication.” Given assumptions on background knowledge, 

Betz’s account yields ways of measuring the inferential density of a given state of a 

debate. Consequently, hypothetical debate progressions may be subjected to 

computer simulation, in order to investigate the relation between the degree of 

justification, the inferential density, and the proportion of true sentences. As he 

demonstrates, “[a]dopting positions with a high degree of justification fosters the 

achievement of a basic epistemic aim [i.e., to acquire true beliefs], and that’s why 

degrees of justification should guide the belief-forming process of rational beings.” 

Robert van Rooij and Kris de Jaegher address argumentation from the 

perspective of game theory. Their starting point is the observation that “[w]e 

communicate more than standard game theory predicts.” Moreover, standard game 

theory is seemingly unable to explain deception and the strategic manipulation of 

messages. This suggests that standard game theory suffers from one or the other 

idealized assumption which reduces its explanatory power in application to natural 

language argumentation. Of these assumptions they identify, and then significantly 

relax, the following three: what game is being played is common knowledge; agents 

are completely rational; the assessment of probabilities and subsequent decision 

making is independent of the way alternatives and decision problems are stated 

(framing effects). In each case, they demonstrate in a formally precise way that 

explanatory scope increases when assumptions are deemed false. For instance, that 

sub-optimal outcomes are chosen, or dominated strategies nevertheless played, may 

be explained by participants’ lack of insight into the full breadth of options. In line 

with recent criticisms of the ideal rational agent assumption, their general conclusion 
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is that “we talk and argue so much because we believe others are bounded rational 

agents.” 

 

3.4 Theoretical Issues 

Tomoji Shogenji addresses the long standing contention that circular argumentation 

or reasoning is defective or fallacious. For instance, it is widely considered bad 

reasoning to invoke perceptual evidence to support the reliability of our sense 

apparatus since the reasoning already assumes the reliability of our sense apparatus 

when it invokes perceptual evidence. To rebuke what he calls the “myth of epistemic 

circularity,” Shogenji distinguishes two senses of the term ‘assume’—viz. to 

presuppose the truth of the hypothesis and to envision the truth of the hypothesis. 

According to Shogenji, assuming the truth of the hypothesis in the second sense is 

no more problematic than assuming the negation of the hypothesis in the reasoning 

of reductio ad absurdum. In reductio ad absurdum, we establish the truth of the 

conclusion by envisioning the falsity of the hypothesis and deriving a contradiction 

from it. In a similar way, Shogenji proposes a procedure of envisioning the truth of 

the hypothesis and then the negation of the hypothesis, to compare their respective 

degrees of coherence with the evidence. He demonstrates in the Bayesian framework 

that the evidence raises the probability of the hypothesis if the evidence is more 

coherent with the truth of the hypothesis than it is with the negation of the 

hypothesis. Applying this procedure to the perceptual support of the reliability of our 

sense apparatus, Shogenji contends that when the perceptual evidence is more 

coherent with the hypothesis of reliability than it is with the negation of the 

hypothesis, the evidence raises the probability of the reliability hypothesis without 

epistemic circularity. 

Niki Pfeifer contrasts probabilistic with deductive logical treatments of 

natural language arguments that contain conditionals and argues for a combination 

of both. He stresses the importance of conditionals which are uncertain and which 

allow for exceptions such as the classic “Birds can fly” from default logic. Working 

within the framework of coherence based probability logic—a combination of 

subjective probability theory and propositional logic—, probability values are 

attached directly to the conditional event, and probabilities are conceived as degrees 
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of belief. Pfeifer’s account traces “how to propagate the uncertainty of the premises 

to the conclusion” in a deductive framework, and yields a formal measure of 

argument strength that depends on two factors: the “location of the coherent 

probability interval” on the unit interval and the “precision” of the probabilistic 

assessment, i.e., the distance between the tightest coherent lower and the upper 

probability bounds of the conclusion. Thus, on Pfeifer’s account, standard problems 

incurred when working with traditional measures of confirmation (e.g., How to 

connect premises containing conditionals?; How to conditionalize on conditionals?) 

are avoided, while the intuition that strong arguments should be those that imply 

precise assessments of the conclusions with high probability is recovered. 

Jonny Blamey presents a novel solution to the preface-paradox by invoking 

considerations of stake size. The paradox pivots on the tension that arises when the 

degree of belief that is assigned to the conjunction of a set of propositions compares 

with the degree of belief assigned to each conjunct in a manner that lets the whole 

(the conjunction) come out as different from the sum of its parts (the conjuncts). 

This is normally accounted for by our intuitive tendency to be certain of each 

conjunct in a set of statements forming a conjunction, but to be less than certain of 

the conjunction seen as a whole. Working within the framework of evidential 

probability, Blamey builds on the idea that “the same evidence can fully justify a 

belief at low stakes but not fully justify the same belief at high stakes.” More 

precisely, he lends himself of a betting model of belief, equates the value of 

knowledge with the value of the stake, and pairs this with the idea that a conjunction 

has greater informational content than the conjuncts such that “conjoining the 

propositions escalates the informational content exponentially by 1 over the 

conditional probability between the conjuncts.” Consequently, Dutch books (i.e., 

bets resulting in sure losses) can be avoided provided, amongst others, that Blamey’s 

minimum constraint is assumed to hold, according to which one “cannot prefer a bet 

at smaller stakes to a bet at larger stakes for the same price.” Thus, it is shown not to 

be incoherent to remain less than evidentially certain at high stakes, while one may 

very well be evidentially certain at low stakes. 
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