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Abstract

This paper concerns scattering of an electromagnetic wave by a bounded object
located inside a parallel plate waveguide. The exciting field in the waveguide
is either an arbitrary source located at a finite distance from the obstacle or
a plane wave generated in the far zone. In the latter case, the generating
field corresponds to the lowest propagating mode (TEM) in the waveguide.
The analytic treatment of the problem relies on an extension of the null field
approach, or T-matrix method, originally developed by Peter Waterman, and
later generalized to deal with object close to an interface. The present pa-
per generalizes this approach further to deal with obstacles inside a parallel
waveguide. This problem shows features that reflect both the two-dimensional
geometry, as well as the three-dimensional scattering characteristics. The anal-
ysis is illustrated by several numerical examples.

1 Introduction

Recent, theoretical progress in the development of useful scattering identities —
sum rules 2,14, 15,28] — have initiated several attempts to verify these identities
experimentally [15,22-26]. These sum rules relate the dynamical behavior of the
scattering and absorption behavior of the scatterer to the static properties of the
scatterer (polarizability dyadics). A detailed investigation of the static properties of
an obstacle between two parallel plates has been reported recently [20].

The scattering identities have successfully been verified in free space [23-26|. In
many respects, the parallel plate waveguide shows a more controlled environment for
these measurements. Initial investigations show that this geometry is accessible [15,
22].

The analysis of wave propagation in a parallel plate waveguide shows many
similarities with wave propagation in stratified media. An excellent introduction to
the topic of wave propagation in stratified media is found in [10]. The presence of
the parallel plates is usually solved by the introduction of an appropriate Green’s
dyadic. In particular, wave propagation in an empty parallel plate waveguide from
a given source configuration can be solved with this technique.

The complexity of the solution increases dramatically if an obstacle is intro-
duced in the waveguide. In the vicinity of the scatterer, the scattered field behaves
as a solution of a three-dimensional scattering problem. However, far away from
the scatterer, the field does not decline as 1/r, as it does for a three-dimensional
problem, but vanishes as 1/,/p, where the distance to the vertical axis is denoted p.
Nevertheless, far away from the scatterer, the problem is still a three-dimensional
scattering problem, since there are variations in the fields in the vertical direction.
Only at frequencies below the first cutoff frequency, defined by kqd = 7, where kg is
the wave number in vacuum, and d is the distance between the plates, the problem
is two-dimensional, in that there are no variations in the vertical direction of the
fields below this frequency.

Again, the introduction of an appropriate Green’s dyadic can be useful in the
solution of the scattering problem. However, in this paper, we do not pursue this



line of solution technique further. Instead, we use the free space Green’s dyadic,
and solve the problem with parallel plates and scatterer simultaneously. The entire
solution employs the integral representation of the solution. This integral represen-
tation approach to solve the scattering problem was originally introduced by Peter
Waterman [30], and it has proven to be a very powerful and useful technique to solve
a large variety of scattering problems, not only electromagnetic, but also acoustic
and elastodynamic problems.

This paper solves the complex wave propagation problem in a planar waveguide
with finite obstacles, and the present geometry is an extension of the results with
buried obstacle close to a planar interface — layered or not [4, 5, 8,17-19, 21|. Similar
technique to solve the electromagnetic scattering problem by obstacles inside a cylin-
drical waveguide has also been reported [7]. Problems with two planar surfaces have
been addressed before, but not for the electromagnetic problem [16]. The present
scattering problem is to some extent equivalent to a scattering problem with infinite
number of images of the scatterer distributed periodically in space. The bookkeep-
ing problems associated with such an approach are, however, an inconceivable task,
and the solution of the problem asks for a more systematic approach. This paper
such an attempt.

The results presented in this paper are inclined towards microwave applications.
There are, however, no such limitations in the results. The technique applies equally
well to applications at higher frequencies, e.g., THz and IR, such as the computation
of the scattering effects of impurities in thin films etc.

2 Formulation of the problem

A finite scatterer with bounding surface S; defines the region V;. Two infinite,
perfectly conducting planes, S, and S_, confine the two disjoint regions V, and V,
see Figure 1. These planes are parameterized by z = 2, and 2z = z_, respectively,
and without loss of generality, it is assumed that z, > 0 and z_ < 0. The location
of the origin O is arbitrary, but it is important for the analysis that it is located
somewhere in V5. The regions above S, and below S_ are denoted by V, and V_,
respectively. The sources of the problem are assumed to be locates in Vi C V,
between the surfaces S, and S_.
To proceed, he time-harmonic electric and magnetic fields satisfy the free-space
Maxwell equations in V, (we use the time convention exp{—iwt}),
{v X B(r) = ilynH(r) el 1)
V x noH (r) = —ikoE(r)

where ky = w/co and 1y are the angular wave number and wave impedance in free
space, respectively. The boundary conditions on the bounding surfaces are

zxE(r)=0, reS uUsS_ (2.2)
Uvx E(r)=0, recbs, '
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Figure 1: The geometry of the direct scattering problem with two perfectly con-
ducting planes S, and S_ and a scatterer with bounding surface S;.

The scatterer V; is here assumed to be a perfectly conducting body. This assumption
can easily be relaxed, see below. With an appropriate radiation condition in V, at
large lateral distances, (2.1) has a unique solution.

2.1 Integral representation of the solution

Let E; denote the incident electric field with sources located in V,, and define the

scattered electric field E, = E—FE;. The incident field F; is the field with no obstacle
or plates present. With the directions of the unit normals defined as in Figure 1,
the solution of (2.1) and (2.2) satisfies the surface integral representation [29]

. %v x (v x // gk, [r — () x mE(r")) dg/)

S US_USs
E(r) recVe
+V x // ko, |r —7'|) (0(r") x E(r")) dS’ = ’
glho e =) (0") x B a8’ = ST TS
S+ US_US;
where the free-space Green’s function for the scalar Helmholtz equation is
eik0|r—r’\
k 7)== ——
g(ko, [r —]) At|r — 7|

The integral representation also contains a surface integral evaluated at large lat-
eral distances, but proper radiation conditions at large lateral distances make this



integral vanish. Due to (2.2), the surface integral representation simplifies to

E(r), reV,

—Ei(r), reV,UV_UV,
(2.3)

1
—£Vx (Vx // G.(ko, |r—7'|)- K(r") dS’) = {
0 S+US—USS

where K = X ngH, and the electric Green’s dyadic

/ 1 /
Ge(ko, |r —7'|) = (13 + PVV) g(ko, [r —7'])
0

This surface integral representation is the starting point in the null-field approach,
which is the approach that we adopt to solve this scattering problem.

3 Basis functions and expansions

3.1 Spherical vector waves

We introduce the out-going or radiating spherical vector waves, w,(kr), defined
as [6] (Urgmi(kT) = Urp (k) = up (k7))

w1, (k) = B\ (kr) Ay, (7)

L h(l) Er)) h(l) Lk (3.1)
wpn(kr) = B D) 4y TR 4
kr r
and regular spherical vector waves v,y (k) as
vln(kr) = ]l(kr)Aln("Aq)
; ! ; 3.2
Von (k1) = WA%('F) N 1)‘”557“) Agp () (3.2)

where j;(kr) and hl(l)(kr) denote the spherical Bessel functions and the spherical
Hankel functions of the first kind, respectively, and where the vector spherical har-
monics,

T=12,3
) ) A oc=e,o0
ATUml(r) = ATn(’r) = An(r) m=20.1 [—1.1
1=01,2.3,. .

where 7 = r/|r|. The index n is a multi-index that consists of three or four different
indices, ¢.e., n = oml or n = Toml, depending on the context, where 7 = 1,2, 3,
c=e0,m=0,1,2,....0l,and [ =0,1,2,.... Their definitions are,

( SIS X (rY,(r :; r)XTr

An(F) = sV X (PY0(F) = e V)
YIS S r r

AQn(T)_ \/m VYTL( )

Az, (1) = 7Y, (7)




The spherical harmonics, Y, (7) = Y,,,(0, ¢), are defined by [6]

Yomi (0, ¢) = Ci P/" (cos 0) {CQS m¢}

sin mao
Em 21 + 1(
o l +m)

and the Neumann factor is defined as ¢, = 2 — 6,,0. The spherical harmonics are
orthonormal on the unit sphere €, i.e.,

// n dQ — Unn/ — 500’5mm’6ll’

3.2 Planar vector waves

where

In a geometry where the medium is laterally homogeneous in the variables z and
y, it is natural to decompose the electromagnetic field outside the source region in
a spectrum of planar vector waves. The plane wave decomposition amounts to a
Fourier transformation of the electric and magnetic fields and flux densities with
respect to the lateral variables x and y. The Fourier transform of a time-harmonic
field, e.g., the electric field E(r,w), is denoted by

E(z, ky,w / E(r,w)e *r dzdy

where the transverse (tangential) wave vector and the spatial position vector in the
plane are
ktzﬁgk‘r—k'gk}y:kté“, p =T+ yy

The length of the transverse wave vector is always a real non-negative number, viz.,

kt:\//{??ﬁ-ﬁ-k;ZO

The unit vector of the transverse wave vector in the x-y-plane is e = k. /ks.
The inverse Fourier transform is defined by

E(r.w) - / Bz, ky, w)e®P i, dk, (3.3)

472

Notice that the same letter is used to denote the Fourier transform of the field and
the field itself. The arguments and the dimensions of the fields differ. The argument
of the field shows what field is intended.



This solution is most conveniently expressed in terms of the two sets of dimension-
less, vector-valued plane waves, gog-t(kt;'r), and, go;—LT(kt;r), j = 1,2, which are de-
fined as:

+ zZ X Kt pptik. s +1 zZX K otk
k . — t° P z k: . - _ t° P z
i (kir) = e o1 (k) = —pe
+ Fhik. + kP2 . +ik.z +1 thik. + K2 g, +ik:z
k . — t P z k . — t* P z
vz (ki m) Arkoks  © 2 (ki) Arkoks  ©

(3.4)
where, as above, ky = |k¢|, and k, is defined by

\/ k& — kZ for ky < kK
1/2 0 ™ t 0
k.= (ki — k)" =

W/ kZ — k3 for ky > ko

Both solutions, cpjt(k:t;r), and, go;ﬂ(kt;T), j = 1,2, satisfy the electric field equa-
tion, ¢.e.,

V x (V X cpj[(k:t;'r')) — kgcpj[(kt;r) =0
The plus super index denotes an exponentially decreasing inhomogeneous (evanes-
cent) wave as z — oo, and similarly for the minus super index as z — —oo. The

index 7 = 1 labels the TE-waves, and 7 = 2 labels the TM-waves. Notice that the
symbol dagger () corresponds to the transformation k; — —k, i.e.,

o (k) = oF (ki)

and that k* - o (ki) = kT - cp;.H(kt; r) =0, where k= = k, + k. 2.
Notice also that an alternative definition of the planar vector waves is

]' 2 ikt ik,z
o1 (k) = 47TktV x (zelkvptik2)
+ 1 5 ikt -pEik,z (35)
o5 (kyr) = 47Tk30k?tv x (V x (ze )

which implies
Vi (kir) = kol (ki) [V x @i (kir) = ko (ki)
V x @j (ki) = ko (ki;7) V x cpf(kt;'r) = k:ogolﬂ(k:t;r)

Notice also that

zelkepEikz —47];k0 z (2 g5 (kyT))
t

These planar vector waves satisfy the following orthogonality relations on S,



which is the plane z = zy, see Appendix A:

r
1
S
5 F +t /1.0 k. ,
(2 x @] (k7)) - ¢y (k) dedy = ij%ﬁ(kt — k)
S

2 j kz ik z
[ 6 x i) - o5 k) oy = (-1 2050, — k)

(3.6)
where the dual index j is defined 1 =2 and 2 = 1.

3.3 Green’s dyadic decompositions

The Green’s dyadic, Ge(ko, |7 — 7|), is decomposed in spherical vector waves [6]

Geo(ko, |r —7']) = ko > vp(kor )t (kors) = iko > wn(kors)vn(kors) — (3.7)

where r_ (7-) is the position vector with the smallest (largest) distance to the origin,
i.e., if r < r’ then r- = r and r- = r’. The summation is over the divergence-free
vector spherical vector waves, 7 = 1, 2. Moreover, we need the decomposition of the
Green’s dyadic in planar vector waves |6|

ko dk, dk
Gk, r — ') —21%2//% kome] ()P @

]12

where the upper (lower) indices are used if z > 2’ (z < 2/).

3.4 Transformation between solutions

To connect the spherical vector waves and the planar vector waves, we need trans-
formation properties between the two sets of solutions. The results that are relevant
in the analysis below are |6, p. 183|

ko dk, dk
o (kor) —22//Bi ko)t (kT )ko o 220 (3.9)
j=12 o 0
where
. z2xk, .. tkik,—kz
B;Z(kﬁ =1 l+TAn ((kt )/]C()) 31 : 1(5]'2# (310)
K kok:

The explicit components are

BL(kt) - i_lClm{_iéTjAlm(kz/kO) {C.OS mﬁ}

sinmpf

— 85" (s o) {‘ n }} (3.11)

cosmpf



where the dual index to j is defined 1 = 2 and 2 = 1, and where k; = ki(Z cos 8 +
ysin 3), and

em 20+ 1(1—m)!

27 2 (I+m)!

B(E),  (t) = l(Hlle_tz)lﬁam(w (3.12)

and

mpy (1= t)"
Al = I+1)

The coefficients B, ;(k;) are obtained from B, (ki) by the use of the parity
relation P/"(—t) = (— 1)”’”]3[”(25))

By;(ky) = i‘l(—l)”mclm{i@jA?”(k:z/k:o) {Cf)s mﬁ}

sinmf3
st -}

or, in a more compact notation
B,(k) = (=) B (ky),  j = 1,2
The coefficients B,jfj(kt) for different 7 and j indices are not independent, i.e.,
Bliomll(kt) Béfrmﬂ(kt)? BQamll(kt) Bliamm(k“t)
or in terms of the dual indices of 7 and j.

Bfamlg(’ct) = BToml (kt) (313)
J

where the dual index j and 7 are defined T =2 and 2 = 1.
There is also a useful transformation between planar vector waves and regular
spherical vector waves. This transformation is [6, p. 183]

cpj (k;T) ZBiT (ky)v,(kor) (3.14)
where

d— zxk o tkik, — k22
B, (ki) =17 A, (ki + k.2) /o) ( alk—t - 15]'2;)
t

kok
This expansion is uniformly convergent in compact domains of R3. Notice that
Byl (—ki) = BE.(k:) (3.15)

where we employed the parity of the vector spherical harmonics, A, pp(—7) =
(_1)Z+T_1A‘raml(7%)~
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Figure 2: The geometry of the sources of the incident field between the two perfectly
conducting planes S, and S_. Notice, no scatterers or plates are physically present
in this geometry.

4 Incident electric field

The sources of the incident field are assumed to be located between the plates Sy
and outside the scatterer V;. We assume they are confined to the region Vi C V..
Denote by Vg the largest spherical region centered at the origin not including V;,
see Figure 2.

Due to the completeness of the planar vector waves and the spherical vector
waves, the incident electric field is assumed to have the following expansions in the
three regions, V1 and V;:

dk, dk
Z// (ko) (k) o eV (4.1)
0

j12

where the upper (lower) sign holds for V. (V_), and

E(r) =) au,(kr), 7€ Vg (4.2)

n

where Vg is a sphere of radius R that does not include the circumscribing sphere of
the source region. These expansions represent the same incident field with different
domains of convergence. In order to be consistent, the expansion coefficients are
related to each other. We claim!

-3 [f oo »
0

]12

LAt this stage it is only an assumption. No formal proof exists. The relation holds for the
examples in Section 11.
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5 Utilizing the surface integral representation

The position vector, r, can take four principle positions, » € Vi, r € V;, and
r € V.. We now explore these possibilities. The decompositions of the Green’s
dyadic in spherical and planar vector waves, see (3.7) and (3.8) are now used.

5.1 Above and below the upper and lower surfaces S

When the position vector is either in V. or in V_, the lower line of (2.3) using (3.7),
(3.8), (3.9), and (4.1) yield

dk, dk
Z// kt¢]kt7) ka
0

7=12
ko dk, dk,
2 Ko
5 f et [ o e s as
j=12 S+US,
ko dk, dk,
+2k§];2//cpji(k:t; ZB}U (ky) //vn (kor") )dS’kz . reVy

Note that we have changed the order of the surface integral and the sum over n.
Since the planar vector waves are linearly independent, we have

)
af _2k2 // Tk r) - K(r') A5’

S+US_

+2k;§ ° B (k) //'vn kor') - K (') dS’

_ g2l / / e r) - K(r') dS"

S+US,

+2kg— ZBM (Fet) //vn (kor') - K (r') dS’

This is the general expression of the expansion coefficients a; F(ky) in terms of
the surface field K (r). From these two expressions we conclude that a* = —af,
where a* denotes ai with k, <+ —k,. To see this, use the definition of the planar
vector waves in Sectlon 3.2 and the definition of Bi 2 (k) in (3.10) to conclude that

@7 (ky;7)  oF (ki) and BE (k) <> BJ,(k,) when k. <> —k,. Thus, we get

a; (k) ——2k;2 // (ky; ") - K(r') dS’

S+US,

(5.1)

\

— QkOk BF(ky) // v, (ko) (r') dS" = —aj (ki)
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5.2 Inside the largest inscribed sphere of V,

When the position vector is inside the largest sphere enclosed in Vj, the lower line
of (2.3) using (3.7), (3.9), and (4.1) yield

Zanvn kor) = ki Zvn kor) //un (kor") (r') dS’
ko dk dE,
+2k22vn ko) Z//Eﬁ k) //cp] ko r') - K(r )dSkz E

j12

# 28 S oulhor) 3 [ Bt [[ o ar) me(r) as

Note that we have changed the order of the surface integral and the sum over n.
Since the regular spherical vector waves, v, (kor), are linearly independent, we have

_kQ//un ko’r )dS/

ko Ak, dk,
+2k02//8+ (k) //(pj (ky:r') - K(r )dS/kO E

]12

+21<:(2)Z//B;j(kt)//go;(kt;r’) K(r )ds’Zdekfk (5.2)
S

Alternatively, expand the Green’s dyadic into planar vector waves, (3.8), and
use (3.14). We get

—k:2//un (kor") (r') dS’

) , ko dk, dE,
D / / B, (k) / [ ! i) () a5
RQ

=12

ko dk, dk,
+2k§2//Bszt //30] (kiir') - K (1) dS'2> E

j=1,2 k.

The symmetry properties gof(kt; r) = (,o;t(—kt;fr) and ij(—kzt) = BJ;(k;) show
that these expressions are identical.



12

5.3 In V., outside the smallest sphere that circumscribes V

When the position vector is outside the circumscribing sphere of Sg in V,, the upper
line of (2.3) using (3.7), (3.8), (3.9), and (4.1) yield

= anun kOT
—|-Z//f+ kt 90] kt, dk dk Z//f kt LP] kt, )dkzgky (5.3)

j=12 =12

= —k2 //'vn (kor') - K(r') dS'
[ (ky) = —2k0 / / (kyr') - K(r') dS’

6 Expansion and elimination of the surface fields

where

(5.4)

\

Expand the currents on the surfaces in planar vector waves and a complete set of
tangential vector functions, & x 1,,, on S;. More precisely, we assume

( R _ dk, dk
> [[ otz gy ean Tz, res,

7j=1,2

R2
_ . dk, dk
K(r)= Z//aj (k:t)zxcpzi(k:t;r) i = res_
Jj=12 R2

> anp(r) xp,(r), TES,

where the dual index j is defined 1 = 2 and 2 = 1.
Introduce the dimension-less ()-matrices of the scatterer. They are defined as

Q= kg//un @ xp,) dS,  Quw = kg//vn (0 x 1) dS
Sg Ss

The orthogonality relations imply, see (3.6) (S is defined as z = z)

k. /
// (ku;7) - z x o (kt,r)> i dy = F 0,50k — k)

-k
// 3 (o) - (5 9T (ki) dardy = +(~1)7 - eT005,55(k, — k)
J 411{70

Equation (5.1) implies
1 . ‘
P e o) 4225 Qs

J

af (k) =
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and

1 , )
aj (ki) = 5. (—af (k) - (—1Ya; (ky)e®*=5-) + 2— ZBM Koo ) Qo

1

Denoting the distance between the plates by d = 2z, — z_, the last two expressions
lead to

- + 1\ju2ikaz_
N L (ki) + aj (ki) (—1)%e
aj (k) = =21 1 — o—2ik.d

ko B, (ki) + B (k) (—1)7 k==
+ 41k_z Z 1 o 2ikd Qi

/

nn

and

aj (ki) + aj (ky)(—1)7eh=

1 — e~ 2ik,d

o (ki) = 21

ko Byi(ky) + B (k) (—1) e k=2
_ 41/{:_Z Z 1 — o—2ikad Q' Ol

Furthermore, from Appendix A, we get
// o (k) - (z X @F(k’-ﬂ) drdy = 25 065(ky + k) (6.1)
7 ) j t 41k0 77 t
s

and (5.2) imply

§ /
- an’an’ - ’Yn
n'

where

=g Y // ) =5 (B 0) Szt (62

J=12"%

The expansion coefficients «,, are formally extracted as
1—1
= Z Q nn’ (an’ + ’YTL/)
n/

which leads to the expressions

aj (ki) + af (k)(—1)7eh=>-
a;“(kt) - _2 1 _ o 2ik=d

ko x— Baj(ke) + B, (k) (—1) ==
B D D s o0 T (e +70)(63)

/

nn
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and
. at (k) + a; (ky)(—1)e2ik=2+
o (ki) = 2i J 13_ =
ko x— Byli(ky) + B () (—1)Te k=2
41k;_ Z : 1 _] o—2ikd T (A + ) (6.4)

nn’

where the T-matrix of the scatterer is
nn’ — Z an” n”n

Insert the formulas of o (k) from above in the expression for 4, in (6.2), and we
get an infinite set of equatlons that can be solved for ~, for every specified incident
field, i.e.,

Cp = dn -+ Z Ann’Tn’n"CTL” (65)

n/n//

where the array ¢, = a, + v,, and the d,, vector is

B (k) + (~1)e* = B, 1(ky,) dk, dk,
Z kt 1 — o—2ik-d kS

j12

Z / (ko) i (k) + (—1)7e 2k B (k) dk, dk,
- t

— o-2ik.d 2
1—e2 kg

Y +a, (6.6)

]12

and the A, matrix is

(k 1) e¥k=2- B (k) ko dk, dk
nn’—_QZ// nj kt nj t) ( ) (t)_O x Uhvy

= 1 — e—2ikzd k, ki
2 (k) + (1) e 2%+ B (k) ko dk, dk,
) B+T n'j Ko .
;; / 1= oo w87

The A matrix is independent of the excitation and the scatterer, and the entries can
be computed once and for all and stored for later use, see Appendix B. We also
conclude, using (3.15) and symmetry to a change of variables k; — —k;, that the
matrix A, is symmetric, ¢.e., A, = App.

Above, we assumed the scatterer was a perfectly conducting body. The main
reason for this was to simplify the theoretical work. At this point, if any other, more
general, scatterer is present, the only change that has to be made, is to replace the
transition matrix of the scatterer with the appropriate one. Therefore, the results
above hold for any scatterer — single or multiple, homogeneous or not — only the
transition matrix is known.
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Finally, we get the expansion coefficients of the scattered field as, see (5.4)

- E Tnn’ Cp/
n/

(6.8)
+ 1 ¥
fi (k) = qziaj (k+)
7 The primary and secondary fields
Equations (5.3), (6.8), (6.3), and (6.4) then give the scattered field
E((r) = EX(r) + EX™(r)
where
(k) + a; (ki) (— 1)/e~Hk=2t dk, dk
dlr . r
E // 1— e—21k: d (‘o;(kt’ T> k2 .
Jj=1,2 0
(ko) + af (k) (—1)Tedr= dk, dk
B Z// 1_6—21k’d p; (ki) 12 :
j=1,2 0
and
E:nom — Z Tnn’cn {Un(k’o"")
Bfi(ky) + By (ky)(—1) e k=2 ko dk, dk
—2 Z // 1 _ e—2ik.d o) (keir) 12 s
Jj=1,2 z 0
ni(ke) + Bl (k) (—1) ek ko dk, dk
_22// S 1_6—21k’d 90j(kt5r>k_ 2 :
71=1,2 z

The total electric field E(r) between the plates can be decomposed in several
ways. The incident field is E;(r), and the scattered field consists of two parts,
E%(r) and E™™(r). As an alternative to this decomposition of the electric field
in an incident and a scattered field, we introduce a decomposition in terms of a
primary and secondary field, i.e.,

E(r) = E(r) + Ei(r) = EP"™(r) + E*(r)

where _ _

EP™(r) = Ei(r) + EZ"(r)

ESEC(T) — E:nom(,,,)
The field E;(r) is the total electric field in the absence of both the surfaces S; and
S_, and the scatterer S;. The scattered electric field Eq(r) is the additional field
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due to these surfaces. In the second decomposition, EP"™(r) is the total electric
field in the absence of the scatterer (surfaces S, and S_ present), and E*(r) is
the correction due to the presence of the scatterer. The explicit expression of these

fields are

rim kt + (I )( ) 2k 2t dk’x dk
EP ( = Z // o—2ik.d on(kt;T) kg .

]12

kt )+ af (k) (—1)iedikes dk, dk
- Z // 1 - e—21kzd LP] (ktar> k(% Y

]12

and

Esec Z Tnn’cn {Un(ko"")
B+ k} + B k —2ik 2z
_QZ// t) ( (=1)e So;_(kt;r)@dkxdky

= 1 — e 2ik=d k, K}
(k) —FBJr (k:t)( 1)Je?ik==- ko dk, dk
-2 nj (ko) 22 M
2 // [ ek R
=Y TuwewFu(r) (7.2)
where the F, (1) vector has the generic form
ko dk, dk
:I: 0 ha My
_22//B ktcpj kt, )kz k%
7=1,2
By (k) + B, (k:t)( 1)Je2ikz+ ko dk, dk
-2 Tl r) =2 Y
Z// T o i
kt —|— B+ (kt)(—l)jemkzz; kO dk, dk
_9 T(kyr) ————2 (7.3
Jzu // 1 — e~ 2ikd #; (ki) k. kg (73)

where the sign & in the first B, (k;) factor depends on whether z 2 0, see (3.9).
As a check of the boundary condition, let z = z.. We then have (rL = p+ 2.2)

dk, dk,

Eprlm tan Z // kt ‘P] kt’ri)|tan k

]12

Fky) + a; (Foy) (—1) e k= dk, dk
o Z // _ ~—2ik.d ¢j<kt;ri)|tan 2 .
1—e kg

]12

(k) + af (k) (— 12z dk, dk
o Z // 1 _6—21k d ij (kt;ri)|tan k2 L= 0
0

j12
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since
—2ik,z4+

SOJ (kfs)ri)’tan (_1)j (p;_(kt;ri)‘tane

In a similar fashion, for the secondary field we get, see (3.9)

ko dk, dk
Iri |tan 22 //B:t kt (‘Pj kt’ri)ltank_z kg Y

7=1,2
B+ (ko) + By (k) (—1)e k=2t ko dk, dk,
—2 Z // 1 _ e—2ik:d Qo;r(kt;ri)‘tan k2
7=1,2 z 0
-~ (ky) +B+ (ko) (—1)etikss koo Ak, Ak
—2 Z // ] —2ik,d (pj (kt;ri”tan k_o k.? . =0
j=1,2 —¢ z 0

This formally solves the scattering problem for a given incident field. The com-
putational flow is:

1. For a given incident field, determine the expansion coefficients a, and af,
see (4.1) and (4.2)

2. Compute the d,, vector in (6.6) and the A,,, matrix in (6.7)

3. Determine the T-matrix of the scatterer, and solve the matrix equation (6.5)
for ¢,

4. Compute the F,(r) vector for the points r of interest, see (7.3), and compute
the secondary field E**(r) in (7.2)

8 Evaluation of the fields

The fields in (7.1) and (7.2) are given as integral expressions of the transverse wave
number k. Our aim here is to evaluate these integrals in terms of pole contributions
(residue calculus).

The integrands have simple poles at

P2 1/2
ktp:i<k:(2)— d2) , p=0,1,2,... (8.1)

In particular, kyy, = £ko. At these poles, k. is

k. — %ﬂ o e likd _

These poles are identified as the parallel plate waveguide modes [11, 27|, see Figure 3,
which shows the locations of the poles.

8.1 Absence of branch point at k; = £k

Most integrands also seem to have a branch point at k; = £ky corresponding to
k. = 0. These branch points are, however, artificial, since for fixed value of k;, the
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A Im kt
®
®
k'() Re kt
—? L @ L 4 0—00 >
—h0
[

Figure 3: The locations of the poles k;,. The first poles are kg = +ko. The red
and green contours depict the curves where Imk, = 0. The poles on the real axis
are the propagating waveguide modes, and the ones on the imaginary axis are the
modes under cutoff. In this particular case, the number of propagating modes are
four.

integrands are even in k, <+ —k.. In fact, if a* denotes aj[ with k, <> —k., we have
from above that a* = —a;, and from the definition of the planar vector waves in
Section 3.2 we conclude that cp]i(kzt; r) <> ¢ (ki;r) when k. < —k..

The integrand of EP"™ in (7.1) is even in k, <+ —k., since

al +a; (—1)7e 2k=+ a; +ajf(—1)eBk=2-
ot~ Y y_ 9t -
i Pj 1 — o 2ik.d j 1 — o-2ik.d P

— 0 1\ja2ik.z + —( 1\ a—2ik,z_
B _¥3F+aj+aj(1)e + 7+aj+aj(1)e N
a; P, 1 — e2ik:d ¥ 1 — e2ik:d ¥
a{r + af(—l)je_mk”* - af<_1)je—21kzz+ o a‘+e—21kzd
=a;p — J J J J iy
J T 1 — e—2ik:d J

o aj—(_l)jemk:zz, + aj_ _ aj—e72ikzd _ a;&-(_l)je%kzz,
+a,p, — - Y. = 0
VAR 1 — e—21kzd J

where the second bracket on the left-hand side is the transformed quantity of the
first bracket.
Similarly, we also have for E**¢ or the F,(7) in (7.3), using B,jfj(k:t) < BYi(ky)
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when k, < —k,

{Bi. + B;Lj + B;j(—l)je*Qikzz-k L ng + B;-j(_l)jemkzz_ -_}
nyjrj -

1 — e—2ik=d J 1 — e—2ik:d
- + | n2ik 22 + — j —2ik.z_
A prer B+ B(=1)/e?¥= B B+ B,(=1)e N
njPj 1 _ odiknd P 1 _ o2iknd P
_ B+ N B;‘] + B;j(_l)jefﬁkzz.t,_ . B’r—i-jefﬁkzd . ng(_l)je*mkv@- N
= Pnj¥ T 1 _ o—2ik:d ®j
B~ + BJr'(_l)jeQikzzf _ Bﬁe—Qikzd o B+-(—1>j62ikzz*
— — nj nj njy nj -
+ B — 1~ o oikod w; =0

We therefore conclude that the only singularities in these integrals are simple poles.

8.2 Interaction terms

The interaction between the scatterer and the parallel plates is quantified by the
d,, vector in (6.6) and the A,,, matrix in (6.7), which both have an integrand that
have the same simple poles as the integrand of the scattered field. Moreover, to
investigate whether k; = ky is a branch point of the integrand of the d, vector or
not, we evaluate

(et gt BT (“1)e e B4 B
4 1 _ o—2ik.d j 1 — o—2iknd

+ ptt

i —2ik.z_ p+1 -1 _ 1\ja2ik,zy 1 +t
_J, (=1)e B + By +a+< 1)/e”™* B, + B, s G
J 1 — e2ik:d J 1 — e2ik:d Jong (T

The choice of the plus or minus sign in this expression depends on whether z-7ry = 0.
This shows that the integrand of the d,, vector is even as k, — —k,. The explicit
evaluation of the d,, vector depends on the explicit form of the incident field. We
postpone these calculations to Section 11.

Similarly, for the A,,, matrix

1 — e—2ik:d nj 1 — e—2ik:d

j £2ikzz— R+ — + j n—2ik, 2 —
{—BJ} (Ve Byt Buy gy By + (2 T By, }

o 2ikzz p— + - jo2iksz
. {—Bﬂ (—1)e B+ B, B B‘TB’” + (—=1)/e**+ B }
nj 1 — eQikzd nj 1— eQikzd

_ _pip- +
=—B,; Bn’j — B, BT—:,_/]'
This shows that the A,,, matrix does not show any even symmetry as k, — —k..

The explicit evaluation of these integrals in A,, , which are independent of the
excitation, is found in Appendix B.
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8.3 The primary field

The primary field depends on the explicit form of the incident field, 7.e., it depends
on a; (k:t) and a,. We postpone the treatment of this field to the examples in
Sectlon 11.

8.4 The secondary field

The secondary field assumes the value E*“(r) = > T,y Fyo(r). We evaluate
the F',(r) in terms of residue contributions in the upper half ki-plane. This is
analyzed in detail in Appendix C. In terms of the circular cylindrical coordinate
system, the components are, see (C.7), (C.8), and (C.9) in Appendix C

Fn('r) - ﬁan(’l”) + QAbanb(r) + '%Fnz(r)

where
. 1 ~ 1 0
- 8gn ktp7¢) 17rpz,/d . H(1)<ktpp)
= TR 2 Z { e sin(mplz — 2)fd) =~
8gf(ktp,¢> g Jd HY (kipp)
— IR T oz i (p (2 — 2y) ) d) P
5 (rp(z — 24)/d) o
i gt (b, 0)e sin(mp(z — 2. /) HLY (keyp)
P —impzy/d .
+ 1@% (Kip, @)e sin(mp(z — zy)/d)Hy, (ktpp)}
and
b Fo(r) = —p-VGC,(r) - b VLH,
n(T) = kop n(r P2 —Hx
iTr - imTpz_
- 2kod gep{ Gn (i, @)™ /M sin(mp(z — z_) /d)H! (ktpp)

+ gy (e, d)e™ ™5+ Asin(mp(z — 24) [d)H}y (/ftpp)

pﬂ- agn (ktPJ ¢) i7rpz,/d . (ktpp)
kod—&b e sin(mp(z — )/d) T

k . HY (k
pﬂ- agn ( tp> ¢) e—17rpz+/d sin(ﬂp(z . Z+)/d) ( tpp) }

+
kod 0¢ Epp
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and

>

17r z—/d
F,(r) Qk‘od Zep {gn (ktp, @)™ /' cos(mp(z — 2_)/d)

+ g (ks @)™ 5/ cos(mp(z — Z+)/d)}Hﬁ)(/’ftp/))
where the functions g (k;, ¢) are, see (C.2)

gn (ke, @) = 17F(£1)H Oy
v (:leagn(k;z Jko) {C.OS m¢} — Sam (ks ko) {_Sm md)})

sin mao cos meo

and the transverse wave number £y, is defined in (8.1). Only a finite number of terms,
identified as propagating modes [11,27], contribute to the sum at large distances
from the scatterer, i.e., only those integers p satisfying p < kod/m, since the Hankel
functions are exponentially decreasing for purely imaginary arguments. The explicit
evaluation of these integrals for frequencies below first cutoff frequency, i.e., kod < m,
is made in Appendix E.1.

9 Scattered power and scattering cross section

The power transport of the scattered field is determined by the Poynting vector.
The expression relevant for the power transport, using (C.15), is

1 1
P, = -Re //(E x H**) . p dS = Rei//(EseC x (V x E*™)) - p dS
2 2k07’]0

p=constant p=constant
- Qk IIIl E Tnn/Cn/T " /HC " / F X V X F //)) : dS
o'to nn'n''n’" p=constant
1 [kod /7]
277 k d E TTL’!L/ CTL’ 2]jt k() E _[ nn'’ ktp 7jj//n///C;;///
0 11

nn/n''n

For an incident plane wave, see Section 11.2, the scattering cross section becomes

_ 2P,
S |Eo|2
[kod/m]
= ( |EO Z B Tm/cn ];H,_, (l{?o + 2 pz; ]nn” (ktp> T;//,n/// C:;NI

Note that the dimension of the scattering cross section is area, which, once again,
shows that the problem is a three-dimensional problem, but shows many two-
dimensional features.
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10 Far field amplitude and the optical theorem

Let S be an arbitrary (cylindrical) surface between the plates that encloses the
obstacle V5. Provided the sources of the incident field, Vi, see Figure 2, lie outside
the surface S, e.g., plane wave incidence, we have from the Maxwell equations

%Re//(ExH*)-ﬁdS:%Re//(ExH*)-f/dS:—Pa
S

Ss

The right hand side is minus the power absorbed by the scatterer, P,. For a PEC
body this quantity is zero. The expression simply expresses power conservation in
the scattering process. Separate in primary and secondary fields, and we get

2Pa — —Re // (Esec % Hsec* 4 Eprim % Hsec* + Esec* % Hprim) . 1) dS

since with V; outside S

Re / (EP™ x HP™) - dS =0

where the incident field is, see (11.4)
Eprim<r) — 2E0eikofci.r

The value of integral on the right hand side is independent on the surface S
as long as it encloses V5, but not the sources of the incident field. Eventually, we
evaluate the integral for a surface far away from the scatterer. Rewrite as

~

1 .
2P, +2F = —Re Ey // (2 x H** + —E** x (k; x 2)) -pelfokiT 48
"o

= —ReE; / / (z x H*° + E x (ki 2)) ek g9

where we specified to a special incident field (plane wave incidence), where k-3 = 0,
see (11.4), and introduced the scattered power

1
P.= 7 Re / (E* x H**) - dS

Insert (7.2), and we get

2P, + 2P, = ——R ESZTnn/Cn

// (—z X (V x Fo(r)) + Fo(r) x (ki x 2)) ook g
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Specialize to a cylindrical surface, p = constant, v = p

1
2P, + 2P, = ——Re B Trn Cr
TR

. p)) efikofci-r dS

X//(ﬁ(a%@ﬂw—& . o
. L. . f,)) ko 4 g

p=constant

1
== Eiir,
fe e / / (1ko o

"o
p=constant

since the term containing the z derivative vanishes when integrating in the z variable
The component 2z - F,,(r) is explicitly given in Section 8.4 and in Appendix C.

TL T' Qko ng {gn ktpu(b) lTI'PZ /dCOS(’]Tp(Z — A )/d)

N>

+ g;(ktpa gb)e_iﬂpZJr/d COS(Tl'p(Z - Z+)/d) }Hg)(ktpp)

Again, we conclude that the integration in the z variable gives zero contribution

except for the fundamental mode p =0, 7.e

P ReEyS Thwew

nn’

X /027r ( H( ) (kop) + H 0 (kop)(k P)) g (Ko, @) TR dg

Pt P=—
2k‘oﬁo

since gt (ko, ®) = g,, (ko, @), see (E.1). Explicitly, we have

_iilerClm

grf(k(b ¢) =
. m cos me m —sinmeo
15T1Al (0) + 57—271—[ (0) CoS m¢

sin mao

The Hankel function has an asymptotic behavior for large arguments [1|, viz

1/2
HO(2) = (7%) S(-=5-5) (14 0(1/2))

This leads to the asymptotic evaluation of the following integral (cos ¢ = k; - p): In

the limit as p — oo, we have

1/2 27
( 2 ) D) [ g0) (1 cosg) et ag
0

mkop
2\Y? . mn s i
h)(———) o (" +5)24(0) (-—-
ko

p—00
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The extinction power becomes

1 4n
P+ P, = Re BX S i ™ Thwen gt (Ko, 0
LR T 2 w9 (Ko, 0)

nn/

We can identify the optical theorem, by noting that, to leading order in 1/(kop),
the secondary field, integrated in the z direction between the plates, is, see (7.2)
and (C.9)

Z4 R Z4 R
/ 2 E*(pk; + 23) dz—ZTnn/cn// 2 F,(pk; + 22) dz

nn’

e S v (o 0) (1+ 0 ((hup) )

nn’

Introduce the far field amplitude, P(I?ci), similar to the one defined in two di-
mension, see e.g., [9].

17Tk0p —1k sec —-m +
= pll)oo A [ — OP/ - FE pk: + ZZ) dz k‘ Z Tnn/cn/gﬁ (k’g, 0)

we get
1 4 .
P+P=—— "R {E*P k; }
- 210 ko e FoP k)
If we define scattering, absorption, and extinction cross section by division of the

incident excitation power per area, |Ey|?/(21,), we obtain the optical theorem

4 ExP(k;)
i = a4 0y = —— Re { 20 W) 10.1
Oext = Oa + O T e{ Eof? } (10.1)

This is formally the same as the optical theorem in two dimensions [9].

11 Examples of excitations

Several examples of explicit sources are of interest. In this section we examine the
vertical electric dipole and the plane wave.

11.1 Vertical electric dipole

A first explicit example of an incident field is a vertical electric dipole located at

ro = py + 202 = po (cos po& + sin ¢oyY) + 202z, where z_ < 2y < z;. The expansion

coefficients, a; *(ky), of the incident field of this field in terms of planar spherical

waves can be found from the transformation expression in (3.9) specialized to 7 = 2,
=1, m=0,and 0 =e.

dk, dk,
Ei(’r) = 'Ulge(]l(]fo T — ’I"() Z // kt (Pj kt, ) k} s z 2 20 (111)

j12
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where

ko
k.

3 ky

k) =2—
<t) 87rk:

B;eou(kt)ﬁspe i(ketk=2)r0 _ 9 s 2e—i(kt:|:kzi)-1-0

The expansion coefficients, a,,, in terms of regular spherical vector waves are

ap = P2e01n(—d)

where the translation matrix P, is explicitly given in [6].
The primary field becomes, see (7.1)

Eprlm — 9./ = // _Slgn z - ZO ktk + k z lkr(P—Po)-&-ikz\z—zoI& dk, dk,
8 Amkok, k. k2
T D // e k=20 | olkz20 o —2ikzz4 —kik, + kgzeikt-(P*Po)Jrikzzﬂ dk, dk;y
V 87 1 — e 2ik=d Amkoky, k., k2
R2

V 87 1 — e 2ikzd Akok k, k2
R2

In particular, the vertical component is, see (C.1)

k k. dk, dk
Edlr . t k‘ ikz|z— z0| t S My
\/%// Tl = gyt S

\/>/oo —1k;zz0 + elk‘zzoe 2ik,z4 kt (k ’ D ik, Zkt kt dkt
. 1— e_zlkzd ko O\THIP T Po k, ki

I [ e ek b
e 1 _ o-2iknd ko t1P = Po k, k2

After using 2Jo(z) = H"(2) + HP(2) and HP (ze7™) = —e"™H{V(2), this ex-
pression leads to the following expression of the vertical component of the primary
electric field, see also [10, p. 147]:

' R k3 . . k.2 —ik,z
Eprlm(r) L5 = CO/Ck_tH(gl)<kt‘p —_ pOD {elkz‘z of —+ A(k)t)e k + B(kt)e kz } dkt

where the contour C' is depicted in Figure 4, and

e—ikzzo + eikzzoe—Qikzz+

Alky) =~

1 — ef2ikzd
e—ikzzoe2ikzz, + eikzzo

B(ki) = —

1 — e—2ikzd

3 1
“=\ 5o

and
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Figure 4: The two complex contours C'; and C. The contour ] starts at the origin,
and the contour C' starts at infinity along the negative real axis. Both contours end
at infinity along the positive real axis. The branch cuts are depicted in red.

Note that the function
(eikz\z—zo\ +A(kt)eikzz+B(kt)e_ikzz) /kz

is an even function in k,, and therefore has no branch point at ky = +ko (k. = 0).
Calculus of residues gives

. 0 k2 i . i .
Eprlm(,r,) 3 =70, Z €p QtCIi’ H(l)(ktp|p . p0|){ (e—lpﬁzo/d + elpwzo/de—21p7r2+/d> elpwz/d
p=0

+ (efipﬂ'zo/deﬁpﬂz_/d + eipﬂ'zo/d) eipwz/d}

t 17TZ —Z_
VSWQkOdZ pkfﬂ (iplp — po|){ pr(o=2)/d cos(mp(z — 2-) /d)

+ e P =20)/d o5 (1p (2 — Z+)/d)}

(11.2)
The explicit values of the remaining k; integral evaluated below the first cutoff
frequency is found in Appendix E.2.
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Similarly, the horizontal components are, see (C.1)

I'lm Slgn Z 1 zZ—Z k dk
B =iy oV [ 2 (ki — polyete = G
o) —1kzz0 ikyzo0 o—2ik, 2
+ eF=%0¢ + 1 ik, 2 e Ak
eV [ el — el

00 —1k:zzoe21kzz7 + elkZZO 1 /{Jt dkt
/3 V k —ik,z
87T t/ 1 — e—21kzd k() ( t’p pOD k(Q)

or
EP"™ (1) = iCysign(z — 29)V, / kH (k| p — po|)e*=l===l dk,
+ iCOVt/ A(k)kH (ke p — po)e*=* dk
c
—iCoV, / B(k) ke HS (ke p — pol)e** dk;
c
To evaluate the scattered field by this source, we also need to find the d,, vector,
see (6.6)

—_9 71k 20 B;; kt) + e21k’zz_ Bn2 (kt)
- 87T 1 — e—2ik=d

v Bl (k) + e @ B (k) ki dk, dk,
ik, 2 n2 \fvt n2 \vt ik.zo DLt —lkt g Vb
e 1 — o 2ik=d — TR B (k) ' [

The choice of the plus or minus sign in this expression depends on whether 2.7y = 0.
From (C.1) we get

1 {Cf)smﬁ}eikt.pdﬁ _m {cpsm¢} Ton(Kep)
0

2m sinmf sin mg

which gives

3 > —ik,z e2ik227 g%—(kta d)O) + gﬁ_ (kt7 (;50)
dy, = —47m/8—7r/0 {e 0 | o2k

e PR g (ko) + g (K, o i dk
4 k=20 gnl(_tj_ogikZdQ (K, do) eijzo (kg ¢0)} <ktp0)k ]<;2t

where gF(k;, ) are defined in (C.2).
The remaining integration in the k; variable can be transformed into a contour
integration. Proceed as above, and we get

3 —ikyz ezikzz_g%—<kta ®0) + g (K, o)
dn = _2m/8_7r /{e 0 1 — o—2ik.d

1K 2 24 _QIkzz+nk7¢ +nk7¢ 1Kz 24 kdk
et gl(_teoz)lkzdg (i do) _ T2 g7 (ky, o) H(l)(k’PO)k k;
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Calculus of residues gives

/3 k
n 87T Z Ep k;“é?{ —iprzo/d ( 2iprz_/d +<ktp7 ¢0) + gn (ktzn qbo))

+ P/ (e72me g (o) + gt (K, ¢o))} ) (kippo)

[ ktp {elmz /g% (K, do0) cos(mp(zo — 2-)/d)

+ e_lpWZJr/d _<ktp7 ¢0) COS(?Tp( - ZO)/d)} o (ktppo)

The explicit values of the remaining k; integral evaluated below the first cutoff
frequency is found in Appendix E.3.

11.2 Plane wave incidence

As a second illustration of the results, we specialize to an incident field of a TEM
wave excitation. We orient the z-axis such that the wave propagates in this direction,
i.e., ky = kox. The appropriate expansion coefficients are:?

a; (ky) = =0 Eokimé (ke — ko) (1 — e 2*=7)
and, see the consistency relation in (4.3)
a, =0

The incident field then is, see (4.1)

dk, dk
Z// (k)@f (kir) =t =0, re Vs
0

j12

with analytic continuation into the region between the plates, and, see (7.1)

[ (k) + aj (ki) (—1)7e 202 dk, dk
d1r ‘ ’
E 3212 // 1-— 6_21]‘3 d (P;_(kt’ ,r) kg Y
(ko) + aj (ko) (—1)7eh= dkydk, .
> // . 1 —2lkzd Py (keir) — 5 L= 2Epe™" (11.3)
j=1,2 —¢€ 2

Then the primary electric field becomes

EP"™(r) = Ei(r) + EY¥(r) = 2Epe'*” (11.4)

2To be more precise, replace a; E(ky) = (1—e £ (k) everywhere in the analysis, and

then let a j (kit) = —(5]2E0]€07T5(kt k‘oil?)

—2ik, d)
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The d,, vector, see (6.6), is
A = 27 By (B (ko) + B, (ko) ) = 27 By (By(~ho@) + B ~ko))

Insert the B,2(k;) from (3.11), and we obtain
d, = —27rEoi—l(—1)mc,m{ (14 (=1)"™) 6:177"(0)d50

Fi(1— (=)™ 572A?(0)5oe}

or, see Appendix E

dp = =47 Eoi ™ (—=1)™Clpp {6:177(0)5g0 4 1070A(0) 656 }

12 Numerical examples

In a few numerical examples, the analysis presented in this paper is illustrated. The
verification of the numerical code has been verified with the optical theorem and
the sum rule, see (10.1) and (12.2), both with good agreement.

12.1 Vertical electric dipole excitation

Let the source be a vertical electric dipole located at ro = —xox + 202. This source
was analyzed in Section 11.1. In all examples zy/d = 10.

The absolute value of the vertical component of the electric field of the primary
field, |2 - E*"™(r)|, see (11.2), as a function of frequency kod (up to five times
the first cutoff frequency) is shown in Figure 5. The frequency interval below the
second cutoff, kyd € [0, 27|, the red and the blue curves show no oscillations due to
symmetry in the excitation, zo/d = 0.

The absolute value of the vertical component of the secondary electric field,
|2 - E°°(r)], at the point » = x& + 22, as a function of frequency, kod, (up to
three times the first cutoff frequency) for a perfectly conducting sphere is depicted
in Figure 6. The fields at two different vertical positions are shown, and only the
contribution due to the propagating modes is included — no evanescent modes. The
incident field is given by (11.1), and the curves are normalized with the absolute
value of the vertical component of the primary field evaluated at the origin. In the
normalization field, only the contribution of the fundamental mode is included, i.e.,
all higher modes are ignored in the normalization field, since these higher modes show
strong oscillatory behavior, see Figure 5, and for this reason they are unsuitable as
normalization fields. In the frequency interval below the second cutoff, kod € [0, 27],
the two curves are identical due to symmetry of the excitation, and there is no
variation in the vertical component of scattered field.

If the sphere contains a dielectric material, which has a resonance below the first
cutoff, kgd = 7, the situation is different. This situation is depicted in Figure 7. In
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Figure 5: The absolute value of the vertical primary field, |2 - EP"™(7)|, at a
fixed point r as a function of frequency, kod, for a vertical electrical dipole located
at rg = —xo + 202, where xy/d = 10 and zy/d = 0 (red and blue curves), and
xo/d = 10 and zp/d = 0.2 (black curve). The curve shows the contribution to
the primary field due to the propagating modes. The locations of the planes are
z4/d = 0.5 and z_/d = —0.5, and the field point is r = 2@ + 22, where z/d = 10
and z/d = 0 (red curve) and z/d = 0.3 (blue and black curves). The green curve
shows the contribution of the fundamental mode alone.

this example, we adopt a Lorentz model for the permittivity, i.e.,

w2

(wy=1— ——L2 (12.1)

w? — w + ivw

The explicit data of the example are given in the caption. Figure 7 shows a sharp
resonance peak at about kgd ~ 0.33, which corresponds to kga =~ 0.15. The curve is
normalized in the same way as the curves in Figure 6.

In the next example, we illustrate the scattered power scattered by a perfectly
conducting sphere excited by a vertical dipole, see (11.1). The result is shown in
Figure 8. The result is normalized by the power flow of the fundamental mode of
the primary field at the origin, see (11.2). The contributions of the higher modes
are excluded in the normalization field, since these contributions oscillate to a great
extent, see Figure 5.

12.2 Plane wave excitation

In the last numerical example, the first propagating mode is taken as the exciting
field, which is a vertically polarized plane wave, see (11.4). In Figure 9, the scattering
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Figure 6: The absolute value of the vertical component of the secondary field,
|z - E°¢(r)]|, at the point r = z& + 22, where z/d = 10, as a function of frequency,
kod, for a vertical electrical dipole, see (11.1), located at ro = —x0& + 202, where
zo/d = 10 and zy/d = 0. The locations of the planes are z;/d = 0.5 and z_/d =
—0.5, and two different positions are shown, z/d = 0 (solid line) and z/d = 0.3
(dashed line). The scatterer is a perfectly conducting sphere of radius a/d = 0.45
located at the origin.

cross section is depicted as a function of kod for a perfectly conducting sphere of
radius a. The scattering cross section is here equal to the extinction cross section.
The results of two different radii are depicted. In this example, the frequency interval
is such that the first three modes propagate at the highest frequency, i.e., 0 < kqd <
3m. The explicit data of the example are given in the caption.

Scattering by a perfectly conducting sphere in free space shows a resonance at
about koa ~ 1 [9]. As seen in Figure 9, the resonance is located at a slightly lower
frequency, koa = 0.68, when the sphere is confined between two parallel plates.
Moreover, in free space, the scattering cross section remains almost constant after
the first resonance. Located between the parallel plates, the scattering by the sphere
shows interesting additional resonance behavior.

12.2.1 Sum rule

The appropriate sum rule for an incident plane wave, see (11.3), is [28]

o ex k Ak A - A - A

/ Ukt:Q()dk::g<e-’ye~e+(k:i><e)*-7m-(k:i><e)) (12.2)
0

This identity holds also for the parallel plate waveguide, provided the fundamental

mode is considered. This identity is verified by numerical simulations for a dielectric
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Figure 7: The absolute value of the vertical component of the secondary field,
|z - E*(7)|, at the point r = z& + 2%, where z/d = 10 and z/d = 0.3, as a
function of frequency, kod, for a vertical electrical dipole, see (11.1), located at

ro = —Xo& + 202, where zo/d = 10 and zo/d = 0. The curve shows the contribution
due to the propagating modes. The locations of the planes are 2z, /d = 0.5 and
z_/d = —0.5, and the scatterer is a non-magnetic, u = 1, dielectric sphere of radius

a/d = 0.45 located at the origin. The data of the permittivity in the Lorentz
model (12.1) are w, = 0.7¢p/a, wy = 0.2¢/a, and v = 0.05¢¢/ a.

(Lorentz model) sphere to three decimal places.

13 Conclusions

By the use of the integral representation of the scattered field, the solution to a
complex electromagnetic scattering problem of an obstacle inside a parallel plate
waveguide has been solved. The solution is an extension of the null field method,
originally proposed by Peter Waterman, to geometries with two planar interfaces.
Similar geometries have been addressed in the past, see e.g., [17-19,21], but this
problem shows more complexity. The approach is well suited to numerical imple-
mentation, and a series of numerical examples shows the usefulness of the method.
Several ways of testing the numerical are suggested, e.g., the optical theorem (appro-
priately formulated) and the sum rule. All these verifications show good agreement.
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Figure 8: The scattered power P, by a perfectly conducting sphere, centered at
the origin, as a function of frequency, kod, for a vertical electrical dipole, see (11.1),
located at rg = —xo& + 202, where xy/d = 10 and 29/d = 0. The locations of the
planes are z, /d = 0.5 and z_/d = —0.5.
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Appendix A Orthogonality relations

From the definitions of the planar vector waves in (3.4)

+ 2 Xkt otk +1 Z2X ke otk
k . — t° P z k . — _ t P 2z
1 ( t;r) 47let S 1 ( t7’r) 47let e
+ Fhik: + k22 i ptin.- +f tkik. + k2 g pines
k . — t° P z k . — t P z
¢ (ki) Arkoks ¢ 2 (ki) Arkoks ¢
we get

Oiir (ke —K)- 0jj
// of (kir) - o3 (ki) dedy = £ 075 // TR d dy = ok — )
s R

Moreover, we have

- kt eikt -ptik, z
47T1kt

N>

X <Pf(kt§7°) =

zZ X kik: g pik. -
47Tk50kt

N>

X <P§E(kt$"°) =+
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Figure 9: The scattering cross section, oy, for a PEC sphere of radius a, centered
at the origin, as a function of kyd and vertically polarized incident plane wave. The
cross section is scaled with d?. The locations of the planes are 2, /d = 0.5 and
z_/d = —0.5.

From these expression, we derive

/ k /
// (ki) - (2 x @] (kg r)) dedy = o e ——07;0(ky — k)
’ j /{32 +2ik. z l
k:t, (2 x ] “(ky;r)) dedy = j:(—l)j4 e °05,,0(ky — KY)
1Rg

where the dual index j is defined 1 = 2 and 2 = 1.
Furthermore, we get

. k.
// cpf(kt;fr) : (z X go;(k;;r)) dedy = :Frk‘oéjjlé(kt + k)

The orthogonality relations in (3.6) and (6.1) are then proved.
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Appendix B The A,,; matrix
The evaluation of the integrals in the A matrix in (6.7)

k 2ik,z_ B+ k
Y TRy T
nj 1—e" 2ik.d kz k,g

]12

+ (—1)e 8% B (k) ko dk, dk
—22//3“1% B + (1) s (R ko dk, dk,

_ p—2ik.d 2
J=12 1 € kz ko

is somewhat technical, and we prefer to collect the results in this appendix.
We proceed in two steps in cylinder coordinates (k, 5) of ki, i.e.,

ki = ki(x cos 3 + ¢ sin 3)

The first step involves the § integration. Define (upper and lower signs on the left-
and right-hand sides are read together)

2
=3 [ BBk 05
7j=1,2

and

=2 / 1By (k) B, (k) 48

7j=1,2
where k, = kot. We get

dt

4 _ 1 e?ikoz_tHT:n/ (t) + Gr_m’ (t) + G:L_n/ (t) + 672ik0z+tHT—z—n/ (t)
" 1 — e 2ikodt

where we have used k; dk, = —k, dk, = —k, ko dt.
The functions G ,(t) and HZ,,(t) are readily computed by orthogonality over
the interval [0, 27). The integrands in G ,(t) are

(B (k) BE, () = i Clp Co (£1) 407

c{disaapn { il - {00

i " cosm'f8 m' —sinm/f3
X {:FI(STQA[/ (t) {Sin m/ﬂ } - (57-/277'1/ (t) { cos m//@ } }
B:QT (kt)Bni’Q (kt) = ilillc’hnc(l’m/ (:‘: 1)l+m+ll+m’

X {—5T17rlm(t) {_C(S);nn%ﬁ} +15,0A7(t) {Z?S;Zg}}
o s (it
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This results in
G (1) =ClBuan = (D {5 (AP (1) + 7 () (1)
i (1) (AP (7 (8) + 7 (D AT (1))

where the dual indices @ and 7, € =0, 0 = e and 1
and where

;o (241 (0 =m)! 2 1 (I —m)! 1o — -1, o=e
m = 2 (I4+m) 2 (I'+m)V (=17 = 1 =

The integrands in H,(t) are

=2, 2 = 1, have been employed,

(B, (k) B, (k)
{imapo {0
x {iidqu?f’ (t {Z’s e } — bpmy (1) {_Cffsnm%ﬁ }}
) (kt) _ ilfl’clmcllm/(il)ler(:Fl)l’er’
sy {5mm) s {oonme) )
{ S (t

m —sinm/f . m cosm/3
iy (¢) { cosm’f3 } 108" (1) {sin m’ﬂ}}

HE (1) = Gl (1) (1)
X { Baorteas (<17 (AP (AP (E) + 7" (O (1)
o 150 (—1)77 (AP (0)1 (1) + 7 (AP (D)) }

Notice that G (t) = G-, (t) and HZ (t) is symmetric, i.e., HZ (t) = HS (t).

n'n
The structure of the A,,, matrix in the 7 and ¢ indices is

B, (K

B;ljl kt — il—l’ClmCllm,(il)l+m(:F1)l’+m/
B,

X

X

\

This results in

le 20 lo 2e
1 2
Ay =800 200 A A, ? g
1
2e 0 0 Ay A

and we observe that the index pairs {le,20} and {lo,2e} do not couple.
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All entries in the A,,, matrix can be written in terms of a combination of the
integrals

FAPOAR () + ()T (E)

[lll/m(k()z, kod) = / 1 — eiQikOdt e—2ik02’t dt
H 1 4k, —2ikozt
the 0
I /
= Zak(l,l ,m)/ TR dt
k=0 ico
and
1
AT ()T (t MOAT(E .
12, (ko2 kod) = / z()ml (_ );;'jw(t VAL () sioet gy
1 1 4k, —2ikozt
the 0
/
-y bk(z,z,m)/ e
k=0 ico

for some real-valued coefficients ax(l,!’,m) and bg(l,’,m). This is clear since,
see (3.12)

(1 . t2)1/2

m
A'(t) = ——ZL—P™(t), @"(t) = P™(t
[0 = =S B0, ) = e )
with special case
A(t) = —————PMt), (1) = 0
I(1+1)
and
1+
AT OAR () + 7 (6w () = > ar(l, 1, m)t*
k=0
I+ —1

AP () + 7 (AR = 3 bill, 'y m)e*

Both integrals I}, (koz, kod) and I}, (koz, kod) are symmetric in the [ and {" indices.
The matrix entries of A,,, therefore are

ATJmlTJ’l’m’ = _2500’5mm’01/l/mil_l/ { (_1)l+m+7+1[lll/m(_k02—a k’od) + Illl’m(07 k‘od)

(D) L (0, kod) + (1) ™ L (o, W}
and

A’raml?a’l’m’ = _21500’5mm’01/l/mil_l/(_1)0{_(_1)l+m+TIl21/m(—kQZ_, kf()d)

+12, (0, kod) — (=)' 12, (0, kod) + (=1 ™12, (kozy, k:od)}
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The integrals I};,,, (koz, kod) and I, (koz, kod) can both be evaluated in terms of
the Lerch function [13], see Section B.1.

B.1 Lerch function
The main result in this section is that for b >a >0, n=0,1,2,...
1 yn, —iat n+l :k
t"e ; i"n! :
Liab)= | —— dt=e"Y — & k,1—a/b
(a,5) /iool—elbt ¢ ;(n—l—l—k)!bk (% k. 1 —afb)
where the Lerch function is [13]

@(ﬁ,y,,u) :ZL

(1 +mn)”

n=0

From [13, p. 353] we have

ooxu—le—,u,x > Bn
—dsz(u)Z— Rep> 0,18 <1,8#1,Rerv >0
0

1= fe 2 ity
The sum on the right-hand side is Lerch function
(o9} /Bn
o 67 v, ) = T N,
( ) = (n+n)

Introduce the parametrization of the integration path ¢t = 1 + iz, = € [0, 00).

% (1 s\ ai(b—a) (1+ix) ) (1 s \na—(b—a)x
In(a,b) = i/ (1+iz)"e dz = iel(b“)/ (1 +io)"e dx
0 0

1 — eib(1+iz) 1 — elbe—bz

The binomial expansion of the numerator implies

n o .k,—(b—a)x
_ . i(b—a) ny .k €re
I.(a,b) =ie g (k}) i /0 T dz

k=0
n o 1—k—1, k. ,—(1—a/b)y
_ :ni(b—a) ny\ .k b y-e d
: ,; <k) 1 /o ooy 7
and in terms of Lerch function, we get
i(b—a) n ik+1n! “
In(a,b):e Zm@(e ,k+1,1—a/b)
k=0

The integrals I}, (koz, kod) and I2, (koz, kod) are
I+
Ly (Ko, od) =~ ar(l,1';m) I (2koz, 2kod)
k=0

and
I+ —1

L (oz, od) = > bg(1,1',m)I(2koz, 2kod)
k=0
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Appendix C The F,(r) vector

The F,,(r) vector has the formal form, see (7.3) and (3.5)

1 1
F,(r) = —2xVG,(r) + 5V x (2 x VHz(r))
where
1 + ikeprikoz| | Bai(ke) — B, (ky)e 2k=7+ ke p-tiks 2
Gn(r) = o //{Bnl(kt)e prhifalsl _ 1 — o—2ik.d s
RZ

_ B (k) — B?ﬁ(kt)emzz_ oikep—ikzz dk, dk,
1 — e—2ikzd kzkt

and using (3.13)

1 wepsinsl Bk + Br (ke 2hm
Hn(’l‘) _ _% //{B$1<kt)e1kt~p+1kz|z o nl( t) + nl( t)e elkt'p-i-lkzz
R2

1— efQik:Zd

 Bpi(ke) + By (Ky)et== oikep—ik.z | ARz dFy
1 — e—Qikzd k‘zk’t

and the dual index of n is defined as 7 = Toml.
Both these functions satisfy

VG (r) = —koGa(r),  VPHu(r) = —kgH,(r)

and
v%Gn(r> = _thGn('r)? Van(T) = _thHn(r)

Perform the integration in polar coordinates, ki = k;(cos & + sin 5g), and the
integration in [ gives

Gn(r) = — /Ooo{gf(k‘t, el

+ k, ikoz _ Aikz(22-—2) g k, —ik.z _ Likz(2—22z4) dk
RO e )

1 — e—2ikzd k.z

Hy(r) = - /Ooo{gf(kt,cb)eik”'

g (ky, ¢) (eikzz + eikz(2z,—z)) + g7 (ky, @) (e—ikzz + eikz(z—2z+)) Ak,
B 1 — o—2ik-d I (ke p) 2
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where we used [1]
1 [* (cosmf3 iky-p .m | cosme
o 0 {Sin mﬁ} ¢ =i sin mg Jn (ki) (C1)

and

G (ke, ) = 1T (£1) T iy

x (qzéﬂA{”(kZ/ko) {COS m¢} T 6, (ks /o) {_Si“m¢}) (C.2)

sin mao cos meo
Notice that as functions of the complex k; variable these functions have symme-
try relations, e.g., gZ (ke ™, ¢) = e (mFUTgE (L, ¢), since sin (ze7'") = e "sinz,
and cos (ze_i“) = cosz. Moreover, gF(k¢,¢) — gF(ki,¢) as k. — —k.. For real
argument (both k; and k. real), we also have (¢ (k;, ¢))* = g (k, ¢).
The remaining integral in the k; variable is performed by calculus of residues. A
typical integral is

1

/OO Jm(ktp)h(kt) dky = 2 /OO (H,(,P(ktp) + Hr(nQ)(ktP)) h(kt) dky
1

5 [ (D) = D (™) bk
0

1 [e’e) 1 . 0 .
= 5/ H (kep)h(ke) dk; + 561(7"“)”/ H) (kup)h(kie ™) dk
0 —o0

where we used HY (kype ™) = —e™™ H\Y (kyp). If h(kee™™) = e~ M+ D7 (), then

/ T (kep) (k) dly = / " (ko)) dk,
Ch 0

1 [~ 1
=5 [ ) ak = 5 [ HD ) di
N /

where the contours C; and C' are depicted in Figure 4. Rewrite in terms of the
contour integral C as

1 .
Gn(r) = =3 /{gﬂf(ffu¢)‘3lkz'z|
C
il 0) (7 = @) b (k) (T ) )y
1 — e—2ik:d P k.
and
1 .
) =3 [ {gi(kt,as)el’“z”'
C

g:(kta ¢) (eikzz + eikz(Zz,—z)) + g;(km ¢) (e—ikzz + eikz(z—22+)) ) dkt
- 1 _ e*Qikzd Hm (ktp) k
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Closing the contour in the upper k; plane gives residue contributions at the poles
ki = kyp, but the branch cut for Hy(kp) is not crossed. The contributions of the

residues at the poles, ky = ky, = (k§ — ]927r2/0l2)1/2 are, cf., the residues in Section D

— irpz/d _ —imp(z—2z_)/d
Gn 7’ 4]{Z0d Z pktp {gn ktpa ¢) ( e )

+ g; (ktpa ¢) (e—iwpz/d . e—iﬁp(22+—z)/d) }HS) (ktpp)
(C.3)

-5 dz . k{g (Fips €)™~ sin(mp(= = =) /)

= gy (uy, 0)e ™5 P sin(mp(z — Z+)/d)}H$)(/ﬁpﬂ)

and

o0

T ko :
H — L irpz/d —inp(z—2z_)/d
") = " Thd Zp - pktp{g”( @) (777 4 e )
+ g;(ktpy ¢) (efiﬂpz/d + efiﬂp(2z+fz)/d) }H$)<ktpp)

(C.4)

™ > k‘o + :
= ——— e, g (kyy, 0™/ cos(mp(z — z_) /d
Qkod pgo pktp{g ( tp ¢) ( p( )/ )

+ g (ks @)e™ ™5/ cos(mp(z — Z+)/d)} W (ko)

Only a finite number of terms contribute in the sum is not exponentially decreasing,
i.e., only those p values satisfying p < kod/7, contribute to the radiated field. The
functions G,,(r) and H,(r) satisfy

0 0
5 S _ 120 _ oY
V x (2 x VG,) = 2V°G, 82VG" 2k G, Vaan
and P
Vx (2 x VH,) = ~2kH, - V5-H,
2

This implies

2 (Vx (2xVG,)) = ViG, = —kiGy(r) (©5)
z-(Vx(zxVH,)) = Van = —kan(r) '
Notice that on r. = p+ 242
0
Gn(’f‘i) = 0, Vth(’ri) = O, —Hn(ri) =0 (06)

0z
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In terms of the circular cylindrical coordinate system, the components are

~

Fn(r) - ﬁan<r) + ¢Fn¢(r) + 2Fnz(r)

where
1 - 1 0
p-F =——0- — —=p-V—H-
p-F,(r) kod) VG, (r) kgp v@z -

it o g (Keps ) spesa ' (kipp)
= 2hd ;gp{ 96 e sin(mp(z — )/d) Fop

ag;(ktp’ ¢) —impzy/d Hﬁ)(ktpp)
_ 8—¢e sin(mp(z — Z+)/d)Tpp

+1mgn (kupy @)™ sin(mp(z = 22) [d)H (ki)

.pr —impz
0 by )™ sin(mp(z — 21) /) HY) %w%

and
b For) = - VG, (r) - %&-V%Hn
T2k dzg”{ =g (kg @)™ sin(mp(z — 2 ) /) L, (kiy)
5 D sinrp(z 2 L e
i %8gn Eakq;m(b) e/ sin(mp(z — 2-) /d) kt(f;pp)
and

z- Fy(r) %Odz {gn (Kip, @)™~/ cos(mp(z — ) /d)

+ g (kips @)™ ™5/ cos(mp(z — 24) /d) }Hﬁ)(’ftpp)

(C.8)

(C.9)
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C.1 Power flux

To compute the power flux in the © direction, we need to evaluate the following
integral: (-2 =0)

1 1 1
—v-(F,x(VxF;))=v- (—2 x VG, + -5V x (2 x VHn)>
0 kO ko
1 . L
X (—2V X (2 x VG,,)+ —2z x VH*,)}
kg ko n
1
= Eﬁ A2 x VG,) x (Vx(2xVGy))}
0
1
+ ﬁ') A(Vx(2xVHy) x (Vx(2xVG)))}
0
1
+ 5P {(V x (2 x VHy)) x (2 x VH)}
0
Rewrite as, see (C.5)
1 N * 1 ~ 2 vk 1 ~ * 2
—0-(F,x (VxF}))=— - -V,G,) V;Gs, — — (v - VHY) ViHy
k’o ]{30 kO "
clo e, v o) « (a2a v e
kg om 0z " 0! oz "
1 1
=5 (v - ViG,) ViGy — i (v -V H5) Vil
1. .0 . . .0
— k—gll . {ant X (Z& n’> - n,Vt X <Z&HH)}
1 0 0
—U- —H;V—G,,
+ kéy {V X (82 nVaZGn)}

(C.10)
If we integrate over a cylindrical surface between the two parallel plates, z = z4,
the last term vanishes due to Stokes’ theorem, and the fact that 0,H, vanishes on
z = z4, see (C.6). The second last term also vanishes, since the term can rewrite as

5. {ant < (zﬁa*,) -GV (zﬁﬂn)}
oz " " 0z
=U- {ant X (QQG*/) + gHﬁVt X (2G*/) — Vt X (2 <2Hn) G*/>}
oz " 0z " 0z "
J . s . (0 .
:&l/ . {Hﬁvt X (ZGn/)} —UV: {Vt X (Z (aHn> Gn’)}

and both these terms vanish when integrating over a cylindrical surface between the
two parallel plates, z = z4 — the first term due to an exact z derivative and the
fact that VG, vanishes on z = z4, and the second term vanishes due to Stokes’
theorem and the fact that G, vanishes on z = zy, see (C.6). The conclusion of this
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analysis is that only the first two terms in (C.10) contribute to the final result of an
integral over a cylindrical surface between the two parallel plates, z = 2.

To evaluate the power flux through a cylindrical surface, we need to evaluate
four canonical integrals w.r.t. z, viz.,, (d =24y — z_, p,p’ =0,1,2,...)

/Z+ sin (mp(z — 2_)/d) sin (7p'(z — 2_)/d) dz

= /Z+ sin (mp(z — 24)/d) sin (7p'(z — 24)/d) dz

d [~ d
:—/ sinptsinp't dt = =3, (1 — d,0)
T Jo 2

/Z+ sin (mp(z — 2_)/d) sin (7p' (2 — 24 ) /d) dz

— /Z+ sin (mp(z — 24 )/d) sin (7p' (2 — z_)/d) dz
4 /O7r sinptsinp'(t — ) dt = (—1)pg5ppr(1 — 0p0)

™

and
/ cos (mp(z — z_)/d) cos (mp'(z — z_)/d) dz

- /Z+ cos (mp(z — z4)/d) cos (mp'(z — zy)/d) dz

d " d
=— / cosptcosp't dt = —6,
™ Jo p

where ¢, is the Neumann factor, and similarly
24
/ cos (mp(z — z_)/d) cos (mp/(z — z,)/d) dz

Z4
:/ cos (mp(z — zy)/d) cos (mp'(z — z_)/d) dz
:é/ cosptcosp'(t —m) dt = (—1)7’16@/
™ Jo p

The two canonical integrals w.r.t. z, then become (d =z —z_, p,p’ =0,1,2,...)

/Z+ {a_ sin (mp(z — 2_)/d) + a™ sin (7p(z — z+)/d)}

{b‘ sin (7p'(z — z_)/d) + b* sin (7p/ (2 — Z+)/d)} dz (C.11)

:gépp/(l —0p0) (™" +a7b” + (=1)P(a™b” +a™b7))

:gépp’(l — bpo) (a4 (=1)Pa™) (b + (=1)%b7)
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and

/Z+ {a_ cos (mp(z — z_)/d) + a™ cos (mp(z — z+)/d)}

(C.12)

{ cos (mp/(z — z_)/d) + b* cos (7p’ (z—z+)/d)}
i o (a0t +a7b” + (=1)P(aTb” +ath))

_ja (a* + (=1pPa”) (b + (=10

p
Only considering the propagating modes, i.e., only terms in the sums with in-
tegers p < kod/m, the power flux P through a cylindrical surface S, p = constant,
U = p, then becomes, see (C.10), (C.3), (C.4), (C.11), and (C.12)

1 A *k 1 ~ * *
T //p- (Fp, x (Vx F%)) dS = W //p- {V\G. VG, — ViH;V H5} dS
S S

T Q[kOd/ﬂ—} kt
1
=pd<2kod) > e kal(ktpp)H( )" (kipp)
p=0

2
></ (gg(ktp,¢)el”p2*/d+(—1)”9%(/%;),925)6_””“”)
0

(0 (g 0)e ™4 (1P (hey )54 ) do

2 [k:od/ﬂ k,‘
t (H*
— 2pd (2/{:0 ) Z pH(l) k;tpp)H (kepp)

2w
: / (95 (kip, @)™ /4 — (=1)P g, (i, @)™ ™+/7)
0
(950 Gy @)™/ — (=1)7g," (ki $)e ™+ /%) dg

Note that the value of the flux is independent of the surface S as long as the surface
encloses the scatterer S;. We will use this fact, and evaluate the flux in the limit as
the cylindrical surface approaches infinity, i.e., p — oo.

It is convenient to introduce the following notion (read the first (second) + on
the left-hand side together with the first (second) £ sign on the right-hand side):

2w
Iii(ktp) - / g:@t(ktpu gb)gi:/*(ktp? ¢) d¢
0
Since for propagating modes (g (ky, #))* = gF (ki, @), we have
(I+i<ktp)) I (ktp) ( nn' (ktp)> = [;—n:":(ktp) (C13)

We also have the symmetries

(IJFi(ktp))* = [ijzr(ktp)’ ([rzni'(ktp))* = [j’;(ktp) (C.14)
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Explicit values of 1775 (k,) for m > 0
]—H:(k?tp) == 7T(5mm11 Clm(]l/ (:l:l)l/+m

{500/ {£6:10,1 AT (pr [ kod) A (pr [ kod) + 07000 (p7 / kod) 7)) (pr [ Kod) }

—10,57(—1)7 {0:102A]" (pr/ kod) 7)) (p [ kod) £ 5T25T/17rlm(pﬂ/kod)AlT,”(pw/kod)}}

and

Ir?rit’(ktp) = dem’illilclmcl’m<_1)l+m<i1>l,+m

{5001 {$57157/1A}” (p’]T/k‘od)A?l(pW/k‘od) + 57—2(57-/27Tlm (pﬂ/kﬁod)ﬂ}?(p’ﬂ'/k’od)}

+ 10,57 (—=1)7 {6102 A7" (pr [ kod) ) (p7 [ Kod) F 5r25r'17ﬁm(Pﬂ/k‘od)ﬁmpﬁ/kod)}}

where the function g (k, ¢) in (C.2) has been used, and where

The explicit values for m = 0 are
I (ki) = £2706 i’ ' ClomnClrin (£1) 8560516011 6,1 AT (p1 [ kod) AR (p [ Ko )
and

I E (k) = F208mmi ' CimClrn (— 1) (£1) Gpe00re0:10,1 AT (p70 ko d) AT (prr [ ko)

This integral is diagonal in the m index, and we get

kioé/ﬁ-(an(VXF:;,)) ds

- 2 [kod/7] .
i (i) S ey B ()
p=0

(L) 4 I )+ L2 () T o700

Q[kod/ﬂ] ke,
20t (5) D G ) HLY )

(L5504 i) = 5 )" = 019

nn'
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We extract the first mode, p = 0, k;, = ko, since this is special is special and
always propagate. The result is (use I++(k0) = I (ko) = I, (ko) = I (ko))

kio//p.wnx(vXF;;,))ds

—pd (1) o) Y ()5 )

2 [k:od/ﬂ k‘t
2 (Zk:o ) Z T B (k) Hy O (ki)
X <I;ni/_(ktp) -+ [:;(k:tp) + [77—(]{:t )627ripz+/d + [ﬁ—n;i;(ktp)e—Qﬂipz+/d>

2 [’fod/7T
_ E tp (1) HL*

(I++(k3tp> + ]n (ktp) I _/(ktp)e27ripz+/d - ];nf(ktp)e_%pu/d)

nn

Notice that all entries of "% (ko) are real-valued, since 7;"(0) has only non-zero
values for [ + m even, and A]"(0) has only non-zero values for [ +m odd.

Keeping only the dominant contribution as p — oo (use the asymptotic value of
the Hankel function as p — oo [3,12]) gives

1 ‘d2
& [y as -~ fari
k?g g (k0d> nn
[kod/m]
+ Z ([-H- ktp ‘l‘I:_,(k'tp) +I, /(k )627ripz+/d+[ﬁ—ni;(ktp)e—2wipz+/d

nn

I++(ktp) + 1, (k) — I nj(ktp)ezwipz+/d _ If(ktp)e—%ip@/d) }

The I=% (k) in terms of the 7o indices are (m > 0, for m = 0 only 70 = le
survives)

le 20 1o 2e
e [ APAT iAPRm O 0
S 0 m m -m
I+-’/_ = ﬂ-émm’l lClmCl/ -1 Al' Ty 0 ) 0
0 0 APAD —jAmngm
2e 0 0 in" Ay wtmy
le 20 lo 2e
e [ CAPAR iAPTR 0 0
e 20 m mom
I = 1! Cip G (— 1)+ 2 [ AEAE gt 00
| 0 0 —APAR _iAPg

2e 0 0 e VAV i v



48

le 20 lo 2e
le ( —ATPAT —IATT? 0 0
1 2 1T
It — s O O 1)i+m 0 —1m"Ap wtmt 0 0
nn! — TOmm/l Im l’m(_ ) mAm IAM._M
10 O 0 _Al Al/ lAl 7Tll
2e 0 0 in" A wtt
le 20 lo 2e
le  ATPAY —1A T 0 0
2 fm A™M m,m
A Wémm/il/_lszCz’m(_1)l+l/ °| A T 0 0
" lo 0 0 APAD AT
Ze 0 0 —imP A wt
and the matrices with dual indices:
le 20 lo 2e
le f mtmy Amt AT 0 0
]ﬁ? = 7T6mm’1 ClmCl’m 1 m_m C mAm
° 0 0 mimyt —Imt Ay
2e 0 0 AT APAT
le 20 lo 2e
le f wtmy —inPAR 0 0
IJF, — 5 .l/,lC C _1 '4+m 20 —lAznﬂ'Z/n —A;HA;/H 0 0
—— = TOmm/1 lm l’m( ) m,.m somAM
nn lo 0 0 T Amt AL
2e 0 0 AT —APAR
le 20 lo 2e
le (- mtmt amt AR 0 0
[,Jr — 5 .l/,lC C _1 l+m 20 lAlmﬂ'lm —AlmA?/’L 0 0
_— = TOmm/1 Im l’m( ) m,._m omAmM
mn lo 0 0 ' =it A
2e 0 0 —1APTR —ATAR
le 20 lo 2e
le fmmt —1m" AP 0 0
2 FAM, M mAmMm
I— =nb, i ', Ol (—1)l+l, o 1AM ATAY 0 0
——7 mm Im“l'm m_m C mAm
mn lo 0 0 it it A]
2e 0 0 —1AP T ATAR

The following sum has to be evaluated (the row and column indices are sup-
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pressed, m > 0, for m = 0 only 70 = le and 70 = 2e survive):

L () = 1225 (K )+I“( )+I+ ( )2/ g [ (o™ 2mEe/d

4 [++( ) 27r1pz+/d - ]7+,(k'tp)6727ripz+/d
Xil'm Hﬂw 0 0
(ool 1¢ll/ Xll’ 0 . 0
Xirm  —1Uwm
0 Wim — Xurm
Xirm  —1Wm 0 0
. | Wurm Xurm 0 0
-+ 7T(5mm/1l lCmC/m —1)H! .
mCrm(=1) 0 0 Xirm — Wwm
0 0 —1Vm  Xwm
Xum  —ium 0 0
J— "+m _iwll/m —XUW'm 0 0 2mipzy /d
+ T0mmdl " Cln Clhrm (— 1)1 T . e TPt
- ( ) 0 0 Xirm — Wum
0 0 Wiwm —Xuwm
Xirm — 1Wum 0 0
m | Wuwm  —Xwm 0 0 —2mipzy /d
+ 70 mm At " CimCirm H . e TP
mCrm(=1) 0 0 Xirm — —1Uum
0 0 —iuwm = Xurm
where the new combinations xy.,, = APAD + n*n and Yy, = AP + TP AR

have been introduced. Notice that these functions are all symmetric in [ and [/, and
that for propagating modes I,,,,, = I*

n'n*
The relevant sum in the computation of the flux density is

kioé/f)-(an(VxF* dS——// (F% x (V x F,)) dS

. [kod /7]
id?m * *
= Gy | 2w (o) + 2B (o) - D () + Lalki)) ¢ (C.15)

p=1

22 Hrod/ 7

= -3 Inn’ k
(kiod)g nn Z tp

Appendix D Calculus of residues
The generic denominator of the integrals has the form

f(ky) = (1 - e‘mzd) k,
The derivative is

df (k)
dk

: : dk, _ : : k
_ (2ikzde—21kzd +1— e—21kzd) e (2lk’zde_2lkzd +1— e—21kzd) g
dk; k

z
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which at the poles, ky = Ky, in (8.1), assumes the values

df(ky,)  [FA(RE - pr)?, p=1,2,...
dkt :F4l]€0d, p = 0

where the upper (lower) sign holds for the poles on the red (green) contour in
Figure 4. More compactly, with the Neumann factor, ¢, = 2 — 0y

df(ktp> 4i 2 12 2 9\1/2
—— =F— (kod” — =0,1,2,...
dk't :Fsp ( 0 pT ) ) b ) Ly 4y
The residues then become
1 Fe
R . = P =0,1,2,... D.1
(S} (1 _ e_21kzd) kz koo, A3 (kng . p27r2)1/2’ p ) ( )
Similarly,
1 Fpr
Res ——— = =0,1,2,... D.2
(Gh 1 — e—2ik:d —— %id (k:gdZ . p27'('2)1/27 p ) Ly 4 ( )
and for p =0
1 k.,
Res — =— = =0 (D.3)
k- ke=keo ke kt=k¢o

Appendix E Evaluation of integrals at frequencies
below first cutoff

As a first illustration of the results, we specialize to an incident field with a frequency
below the first cutoff frequency kod = 7, .e., at frequencies in the interval 0 < f <
co/2d. Under this condition, only one pole, p = 0 in (8.1) (k; = ko), contributes to
the radiated field — all other poles give exponentially decreasing contributions in
the lateral direction. This pole has residues, see (D.1) and (D.3)

1
(1 _ e—Qikzd) kz

1 1
= ———, Res —

Res - ,
ke—ko dikod k.,

kt=ko

Both the vertical component of F,(r) and the d,, vector contain the functions
gE(ki, ), which at k; = ko simplify to, see (C.2)

gn (Ko, @) = 17 (E1D)F"Clyp,
x (;iaﬂAlm(m {COS m¢} — §,5m"(0) {_Sm m¢})

sin mao cos meo
and from Section 3.4 we get

m _ 1 m/ 7.{_m — m m
A"(0) = —l(l+1)Pl 0), m"(0) = —=—=—==F"(0)
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where

0, [+m odd

and

P (0) = 0, [+ meven
: )l U+m)Pm(0) = —(1—m+1)P7(0), 1+m odd

This implies
2 ko) =~
. . cosm m —sinm (E-L)
y (15T1Az (0) {sin mz} + dr9m"(0) { cos mf})

E.1 The vertical component of F,(r)

The vertical component of the F,,(r) vector is, see (C.9)

9 (ko, @) + gz (Ko, 9)

Z-Fo(r)=m Send H) (kop)
which simplifies to
iflerﬂ.Ol
5 F (r) = L "im
z (r) Tod
< (Gamm () L5 mOL s Am0) dMOLY oy g )
T cos ma T2 sin mo m \op

At r = za this expression simplifies further to

i_l+m7TClm

z-F,(zx) = — d

(0:1050m(0) + 10,2056 AT (0)) HY (ko)

This quantity is non-zero only for the combinations {7, 0,1+ m} = {1,0,even} and
{r,0,l+m} ={2,e,0dd}.

E.2 The primary field

The primary field at a frequency below the first cutoff frequency kod = 7, i.e., at
frequencies in the interval 0 < f < ¢y/2d is now evaluated. Then only the pole at
ki = ko contributes when the contour is closed in the upper half complex k; plane.

The result is
EP™(r) -z = 27“ 5 (kolp — pol) = =\V5 —H " (Kolp — po)
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E.3 The d, vector

The evaluation of the d,, vector below cutoff follows the same procedure. We have

3 g (ko, do) + g5 (ko, ¢o)
dy, = 277 | — T mR T HO) (k
n Q0 S k’od m ( OpO)

With the results and notation from above, we get

3 i—l+mCl
d, = —dr?y | ——tm
"N8r T kd

< (@ { ot s isaar (o) { ot ) HD )

coS Moy sin may

At r = —xo this expression simplifies to

3 iy, .
d, = —4n?y/ gle (011050 (0) + 10,20, ATH(0)) HY (koazo)

Again, this quantity is non-zero only for the combinations {7, 0,l+m} = {1,0,even}
and {7,0,l +m} = {2,e,0dd}.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions.
Applied Mathematics Series No. 55. National Bureau of Standards, Washington
D.C., 1970.

[2] A. Bernland. Integral Identities for Passive Systems and Spherical Waves in
Scattering and Antenna Problems. PhD thesis, Lund University, 2012.

[3] N. Bleistein and R. A. Handelsman. Asymptotic Expansions of Integrals. Dover
Publications, New York, 1986.

[4] A. Bostrom and A. Karlsson. Broad-band synthetic seismograms for a spherical
inhomogeneity in a many-layered elastic half-space. Geophys. J. R. Astr. Soc.,
89(2), 527-547, May 1984.

[5] A. Bostrom and A. Karlsson. Exact synthetic seismograms for an inhomogene-
ity in a layered elastic half-space. Geophys. J. R. Astr. Soc., 79, 835-862,
1984.

[6] A. Bostrom, G. Kristensson, and S. Strom. Transformation properties of plane,
spherical and cylindrical scalar and vector wave functions. In V. V. Varadan,
A. Lakhtakia, and V. K. Varadan, editors, Field Representations and Intro-
duction to Scattering, Acoustic, Electromagnetic and Elastic Wave Scattering,
chapter 4, pages 165-210. Elsevier Science Publishers, Amsterdam, 1991.



53

[7] A.Bostrom and P. Olsson. Transmission and reflection of electromagnetic waves
by an obstacle inside a waveguide. J. Appl. Phys., 52(3), 1187-1196, 1981.

[8] A. Bostrém and G. Kristensson. Scattering of a pulsed Rayleigh wave by a
spherical cavity in an elastic half space. Wave Motion, 5(2), 137-143, 1983.

9] J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi. Flectromagnetic and
Acoustic Scattering by Simple Shapes. North-Holland, Amsterdam, 1969.

[10] W. C. Chew. Waves and fields in inhomogeneous media. IEEE Press, Piscat-
away, N.J, 1995

[11] R. E. Collin. Field Theory of Guided Waves. TEEE Press, New York, second
edition, 1991.

[12] L. B. Felsen and N. Marcuvitz. Radiation and scattering of waves. IEEE Press,
Piscataway, NJ, 1994. (Originally published by Prentice-Hall in 1973).

[13] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products.
Academic Press, San Diego, seventh edition, 2007.

[14] M. Gustafsson, C. Sohl, and G. Kristensson. Physical limitations on antennas
of arbitrary shape. Proc. R. Soc. A, 463, 2589-2607, 2007.

[15] M. Gustafsson, I. Vakili, S. E. B. Keskin, D. Sjoberg, and C. Larsson. Optical
theorem and forward scattering sum rule for periodic structures. IEEE Trans.
Antennas Propagat., 60(8), 3818-3826, 2012.

[16] A. Karlsson. Scattering of Rayleigh-Lamb waves from a 2D-cavity in an elastic
plate. Wave Motion, 6, 205-222, 1984.

[17] A. Karlsson and G. Kristensson. Electromagnetic scattering from subteranean
obstacles in a stratified ground. Radio Sci., 18(3), 345-356, 1983.

[18] G. Kristensson. Electromagnetic scattering from buried inhomogeneities—a
general three-dimensional formalism. J. Appl. Phys., 51(7), 3486-3500, 1980.

[19] G. Kristensson. The electromagnetic field in a layered earth induced by an
arbitrary stationary current distribution. Radio Sci., 18(3), 357-368, 1983.

[20] G. Kristensson. The polarizability and the capacitance change of a bounded
object in a parallel plate capacitor. Physica Scripta, 86(3), 035405, 2012.

[21] G. Kristensson and S. Strom. Scattering from buried inhomogeneities — a
general three-dimensional formalism. J. Acoust. Soc. Am., 64(3), 917-936,
1978.

[22] C. Larsson, S. E. Bayer, M. Gustafsson, G. Kristensson, D. Sjéberg, C. Sohl,
and I. Vakili. Scattering measurements in a parallel plate waveguide — first
results. In Proceedings of the XXXth URSI General Assembly, page B06.6,
2011.



54

23]

24]

[25]

[26]

[27]

28]

[29]

[30]

C. Larsson, C. Sohl, M. Gustafsson, and G. Kristensson. Wideband ex-
tinction measurements for thin and planar samples.  Technical Report
LUTEDX/(TEAT-7166)/1-10/(2008), Lund University, Department of Electri-
cal and Information Technology, P.O. Box 118, S-221 00 Lund, Sweden, 2008.
http://www.eit.lth.se.

C. Larsson, M. Gustafsson, and G. Kristensson. Polarimetric measurements of
the extinction cross section. In International Conference on Electromagnetics
in Advanced Applications (ICEAA), pages 311-314, Turin, Italy, September
14-18 2009.

C. Larsson, M. Gustafsson, and G. Kristensson. Wideband microwave mea-
surements of the extinction cross section — experimental techniques. Technical
Report LUTEDX/(TEAT-7182)/1-22/(2009), Lund University, Department of
Electrical and Information Technology, P.O. Box 118, S-221 00 Lund, Sweden,
2009. http://www.eit.1lth.se.

C. Larsson, C. Sohl, M. Gustafsson, and G. Kristensson. Measuring the extinc-
tion cross section. In &rd European Conference on Antennas and Propagation,
pages 3633-3636, Berlin, Germany, March 23-27 2009.

D. M. Pozar. Microwave Engineering. John Wiley & Sons, New York, third
edition, 2005.

C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband
scattering by heterogeneous obstacles. J. Phys. A: Math. Theor., 40, 11165—
11182, 2007.

S. Strom. Introduction to integral representations and integral equations for
time-harmonic acoustic, electromagnetic and elastodynamic wave fields. In
V. V. Varadan, A. Lakhtakia, and V. K. Varadan, editors, Field Representations
and Introduction to Scattering, volume 1 of Handbook on Acoustic, Electromag-
netic and FElastic Wave Scattering, chapter 2, pages 37-141. Elsevier Science
Publishers, Amsterdam, 1991.

P. Waterman. Matrix formulation of electromagnetic scattering. Proc. IEEE,
53(8), 805-812, August 1965.



