
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Diabetes Mellitus Glucose Prediction by Linear and Bayesian Ensemble Modeling

Ståhl, Fredrik

2012

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ståhl, F. (2012). Diabetes Mellitus Glucose Prediction by Linear and Bayesian Ensemble Modeling. [Licentiate
Thesis, Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 27. Apr. 2024

https://portal.research.lu.se/en/publications/7ef10a78-2042-4125-a622-b5faa9f88471


Diabetes Mellitus Glucose
Prediction by Linear and

Bayesian Ensemble Modeling

Fredrik Ståhl
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Preface

In 2002, I was diagnosed with diabetes type 1. Being an engineer with a control
and systems oriented curriculum I realized that this was a control problem, how-
ever, set in an unfamiliar context, and I decided to put my newly earned skills to
the test by trying to identify my own data in my Master Thesis.By then, frequent
data sampling was less developed and not readily available,making identifica-
tion an even harder task than it is today, which was a bit discouraging.

Six years later, Rolf invited me to join the department and the newly started
EU FP7 IP DIAdvisor project. During the years since graduation, major leaps in
sensor technology had been achieved, changing the playing field dramatically–
well-sampled data could now be easily attained. Four years later, the project
has ended, adding new knowledge to the rapidly growing body of knowledge
of diabetes glucose metabolism, and bringing new hope of technical solutions
to support the management of this often difficult medical condition. Lots of re-
search and development is pursued both in academia and in theindustry. Since
1999, two scientific journals on diabetes technology have been established, and
both the U.S. and E.U. are putting major funding into diabetes technology ori-
ented cross-disciplinary research projects. Being affected with type 1 diabetes
I embrace this development, and I feel extremely fortunate to get a chance of
being part of this endeavour, which in the end may make both mine and millions
of other people’s daily lives easier to manage.

Lund, December 3rd 2012

Fredrik Ståhl
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Abstract

Diabetes Mellitusis a chronic disease of impaired blood glucose control due to
degraded or absent bodily-specific insulin production, or utilization. To the af-
fected, this in many cases implies relying on insulin injections and blood glucose
measurements, in order to keep the blood glucose level within acceptable lim-
its. Risks of developing short- and long-term complications, due to both too high
and too low blood glucose concentrations are severalfold, and, generally, the glu-
cose dynamics are not easy too fully comprehend for the affected individual—
resulting in poor glucose control. To reduce the burden thisimplies to the patient
and society, in terms of physiological and monetary costs, different technical so-
lutions, based on closed or semi-closed loop blood glucose control, have been
suggested.

To this end, this thesis investigates simplified linear and merged models of
glucose dynamics for the purpose of short-term prediction,developed within
the EU FP7 DIAdvisor project. These models could, e.g., be used, in a decision
support system, to alert the user of future low and high glucose levels, and, when
implemented in a control framework, to suggest proactive actions.

The simplified models were evaluated on 47 patient data records from the
first DIAdvisor trial. Qualitatively physiological correct responses were imposed,
and model-based prediction, up to two hours ahead, and specifically for low
blood glucose detection, was evaluated. The glucose raising, and lowering ef-
fect of meals and insulin were estimated, together with the clinically relevant
carbohydrate-to-insulin ratio. The model was further expanded to include the
blood-to-interstitial lag, and tested for one patient dataset. Finally, a novel al-
gorithm for merging of multiple prediction models was developed and validated
on both artificial data and 12 datasets from the second DIAdvisor trial.
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1

Introduction

1.1 Motivation

Diabetes Mellitusis a chronic metabolic disease where the affected patients have
disturbed glucose regulation, which, if left untreated results in elevated blood
glucose levels. The disease is divided into two categories;type 1 diabetes and
type 2 diabetes. In type 1 diabetes, the pancreas no longer produces insulin due
to an auto-immune destruction of the pancreatic insulin producingβ -cells. Type
2 diabetes is a common diagnosis for several different underlying causes to de-
teriorating glucose control, such as reduced insulin sensitivity and prolonged or
deteriorated pancreatic insulin response. There is a strong genetic component to
the risk of both type 1 and type 2. The etiology behind the sudden auto-immune
attack leading to type 1 is still obscured, but some evidencepoint to that viral in-
fections may play a key role in the triggering mechanism [Christenet al., 2012].
Type 2 diabetes typically evolves over a number of years before diagnosis, and
is strongly connected to sedentary life-style and overweight, but the incidence
also increases with age.

The incidence of both types of diabetes, especially type 2, increases at an
alarming rate on a global scale. In year 2000, WHO estimated 171 million to
be affected [Wildet al., 2004], and in 2011 the International Diabetes Federa-
tion (IDF) estimated the number to 366 million (of which 183 million are undi-
agnosed) [International Diabetes Federation, 2012], already exceeding the 2030
forecast from WHO in 2000. By 2030, the expected number exceeds 500 million
in IDF’s recent analysis [International Diabetes Federation, 2012]. In Sweden,
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Chapter 1. Introduction

Table 1.1 Comparison of the cost structure for an average patient and apatient with both
micro and macrovascular complications. Costs in SEK (1998)[Henrikssonet al., 2000].

Average Patient Patient with both micro- and macro-
vascular complications

Hospitalization 10 599 29 555

Ambulatory Care 7 719 11 053

Drugs 6 665 9 520

Total 24 983 50 128

the total number is about 365.000, of which about 40.000 are type 1 patients
[The Swedish National Board of Health and Welfare, 2012a]. In general, about
10% of the patients are of type 1. Along with the increasing numbers of af-
fected, the total costs increase dramatically. In Sweden, the total direct cost of
diabetes treatment was estimated to 7 billion SEK in 1998, considering only type
2 diabetes patients [Henrikssonet al., 2000], and globally, figures of 465 billion
USD has been stated, amounting to 11% of the total healthcareexpenditure for
adults (20-79 years old) [International Diabetes Federation, 2012]. The main
cost drivers are costs related to treatment of acute and latecomplications re-
sulting from poor glycemic control [Henrikssonet al., 2000], see Table 1.1, and
the indirect costs, related to loss of productivity resulting from mortality and
disability from these complications—in Sweden estimated to 5.4 billion SEK
[Bolin et al., 2009].

These complications spring from either too low glucose values, hypoglyce-
mia, which may result in acute seizure, coma and death, and too high blood
glucose concentrations, hyperglycemia, which, over a longer time period may
lead to impairment of the inner organs due to micro and macro cardiovascular
implications, and result in, e.g., renal failure, amputation and blindness. Studies
show that, in general, almost half of the diabetic population in Sweden have a
mean glucose value, measured as HbA1c, above the guideline value, implying a
significantly increased risk of the afore-mentioned long-term complications [The
Swedish National Board of Health and Welfare, 2012b], and there is good rea-
son to believe that these numbers translate globally. Thus,means to improve the
metabolic control for these patients are seminal to cut backthe dismaying rate
of growth of monetary and physiological costs of this disease, and to lighten the
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1.2 Publications

heavy burden this implies on the healthcare programmes and institutions. In or-
der to contribute to this end, this thesis investigates individualized mathematical
models of glucose dynamics—describing the relationship between carbohydrate
and insulin ingestion and the blood glucose evolution—aiming for use in an arti-
ficial pancreas or a decision support system. These models have been developed
within the European FP7 IP research project DIAdvisor [DIAdvisor, 2012].

Even though these problems affect both type 1 and type 2 patients, focus of
this thesis will be on type 1 diabetes and insulin-treated type 2 patients, here-
after lumped together as a common cohort, insulin-dependent diabetes mellitus
(IDDM). The reason for this is the following. In order to treat type 1 patients, ex-
ternal insulin must be administrated. For non-insulin dependant (NIDDM) type
2 diabetes, insulin sensitivity promoting oral agent, together with changes in
lifestyle, may suffice to improve the metabolic control. However, for many type
2 patients, insulin is required after a few years. Thus, there is a fundamental
and significant difference in treatment between the IDDM andNIDDM groups,
which also implies differences in time perspectives of the glucose dynamics. For
IDDM, the appropriate amount of insulin to administer is often hard to estimate
and steep changes of the glucose level may suddenly arise. Anundesirable, or
even dangerous, situation may thereby quickly arise, calling for new treatment
decisions. For NIDDM, the variations are slower, the numberof decision points
over the day are less and different, and the acute risks less pronounced. The
need, prerequisites and type of decision support or automatic control is there-
fore very different between these two groups. For the IDDM, continuous sup-
port to optimize the insulin regime may have a profound affect on the possibility
to maintain normal glucose levels, whereas management of diet, exercise and
other lifestyle-related changes, and long-term follow-upthereof, is the core to
improved NIDDM type 2 metabolic control.

1.2 Publications

This thesis is based on the following publications:

Ståhl F. and Johansson R., ”Diabetes Mellitus Modelling and Short-Term Pre-
diction Based on Blood Glucose Measurements”, InMathematical Biosciences,
217, pp. 101-117, January 2009.

Ståhl F., Johansson R. and Renard E.,”Models of Diabetic Glucose Dynamics:

11



Chapter 1. Introduction

Challenges of Identifiability and Physiological Correctness”, Submitted toIEEE
Transactions on Biomedical Engineering.

Ståhl F., Johansson R. and Renard E.,”Investigation of therelationship between
elevated levels of insulin antibodies and prolonged insulin action”, Accepted
for presentation at6th International Conference on Advanced Technologies and
Treatments for Diabetes, Paris, France, Feb 27-March 2, 2013.

Ståhl F. and Johansson R., ”Observer Based Plasma Glucose Prediction in Type
1 Diabetes”, InProc. 3rd IEEE Conf. on Systems and Control, pp. 1620-1625,
Yokohama, Japan, 8-10 Sept, 2010.

Ståhl F, Johansson R. and Renard E., ”Bayesian Combinationof Multiple Plasma
Glucose Predictors”, InProc. 34th Annual International IEEE EMBS Confer-
ence (EMBC 2012), pp. 2839-2844, San Diego, CA, U.S, Aug 28-Sept 1 2012.

Ståhl F. and Johansson R.,”Receding Horizon Prediction byBayesian Combi-
nation of Multiple Predictors”, Accepted for presentationat 51st Annual IEEE
Conf. on Decision and Control (CDC2012), Maui, Hawaii, U.S, Dec. 10-13,
2012.

Other publications:

Ståhl F. and Johansson R., ”Short-Term Diabetes Blood Glucose Prediction Based
On Blood Glucose Measurements”, InProc. 30th Annual International IEEE
EMBS Conference (EMBC2008), pp. 291-294, Vancouver, British Columbia,
Canada, August 20-24, 2008.

Ståhl, F., Cescon M., Johansson R., and Renard E., ”Infinitehorizon prediction
of postprandial breakfast plasma glucose excursion.” InProc. of the 9th Annual
Diabetes Technology Meeting (DTM2009), p. A163, San Francisco, CA, U.S,
Nov. 5-7, 2009.

Cescon, M., Ståhl F., Landin-Olsson M., and Johansson R., Subspace-based
model identification of diabetic blood glucose dynamics. InProc. of the 15th
Symposium on System Identification (SYSID2009), pp. 233-238. Saint-Malo,
France, July 6-8, 2009.

Ståhl F., Johansson R., Renard E., ”Post-Prandial Plasma Glucose Prediction in
Type I Diabetes Based on Impulse Response Models”, InProc. 32nd Annual
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1.3 Outline and Contributions

International IEEE EMBS Conference (EMBC 2010), pp. 1324-1327, Buenos
Aires, Argentine, Aug 31-Sep. 4, 2010.

Ståhl, F., Johansson R., and Renard E., ”Can Blood Glucose Drops During Exer-
cise Be Predicted From Heart Rate Data?”, InProc. of the 11th Annual Diabetes
Technology Meeting (DTM2011), p. A175, San Francisco, CA, U.S, Oct. 27-29,
2011.

1.3 Outline and Contributions

This thesis is organized as follows with the following contributions:

Chapter 2 provides an introduction to diabetes, a brief description of the
metabolic physiology and a presentation of the DIAdvisor project.

Chapter 3 presents the DIAdvisor data and an analysis of these in termsof
some specific data characteristics, typical of diabetic glucose data.

Chapter 4 describes simplified linear models with qualitatively correct re-
sponses to insulin and carbohydrate digestion. The models are validated for
short-term glucose prediction, including hypoglycemic detection, on 47 patient
data sets from the first trial of the DIAdvisor project, and estimates of the carbo-
hydrate-to-insulin ratio are given.

Chapter 5 presents an augmented model including the dynamics relatedto
the glucose measurements. The concept is evaluated for reduced lagging of the
short-term prediction on one patient data set from the first trial of the DIAdvisor
project.

Chapter 6 introduces a novel algorithm for ensemble prediction, using sev-
eral models derived for short-term glucose prediction. Thesuggested method is
validated on simulated data, as well as 12 patient data sets from the second DI-
Advisor trial.

Chapter 7, finally, concludes the thesis and directions for future research are
outlined.

13



2

Background

2.1 Diabetes Type 1 and the Glucoregulatory System

Diabetes type 1 is, as previously mentioned, a chronic disease where theβ -
cells of the pancreas have stopped to produce insulin. This is in most cases due
to an auto-immune attack, but may in rare cases also be causedby sustained
injuries from accidents or pancreatic cancer. In order to understand the disease,
a brief overview of the glucoregulatory system is presented, see, e.g., [Nussey
and Whitehead, 2001] for a more extensive review.

The Glucoregulatory System

The glucoregulatory system is concerned with glucose metabolism and the in-
sulin/glucose mechanisms needed to maintain normoglycemia. Fig. 2.1 presents
a simplified overview of the flow of glucose and insulin between the most impor-
tant organs relevant for this system. Below, a short description of these organs
and their role in the so-called absorptive state and the post-absorptive state, the
two parts that make up the metabolic cycle, is given. A brief description of in-
sulin absorption from insulin injections will also be presented. Emphasis will be
put on the digestive system and insulin absorption from injections.

The absorptive state is the time following a meal during which the ingested
carbohydrates are digested and absorbed. During this period, excess glucose is
absorbed and stored for later use. The post-absorptive state is the time after a
meal when the gastro-intestinal tract is empty and energy has to be provided by
the body’s own storages.
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2.1 Diabetes Type 1 and the Glucoregulatory System

Gut

Blood System
   (glucose)

IIT

IDT

Liver

Pancreas

Glucagon

Insulin

: flow

: affect

Figure 2.1 Overview of the glucoregulatory system describing the relationship between
the flux from the gut into blood system and the interaction with the insulin-dependent tissue
(IDT), the insulin-independent tissue (IIT), the pancreasand the liver.

During the absorptive stage, glucose is converted and stored as the polysac-
charide glycogen, mainly in the liver, but also to some extent directly in the
muscle cells. This process is stimulated by insulin. Duringthe post-absorptive
stage, the liver glycogen storage is broken down to glucose and released into
the blood stream, providing energy for the body cells. This process is stimulated
by glucagon and inhibited by insulin. Apart from convertingglycogen to glu-
cose, new glucose can be formed from protein and fat by gluconeogenesis. The
metabolism of consumed alcohol inhibits this process [Siler et al., 1998], which
may result in severe hypoglycemia in IDDM patients [Turneret al., 2001].

In the pancreas, two important hormones relevant to the glucoregulatory sys-
tem are synthesized, namely insulin and glucagon. Insulin release is mainly stim-
ulated by elevated blood glucose concentration. Therefore, substantial amounts
are released in the absorptive stage, when the glucose levelis raised due to the
absorption from the gut. Glugacon, which has the opposite effect on the hep-
atic balance, is accordingly released when blood glucose concentration falls.
These two hormones are thus in a feedback arrangement with the blood glu-
cose concentration—controlling the glucose metabolism. In type 1 patients the
insulin feedback is not functional. Another hormone group of importance dur-
ing the absorbtive stage is the incretine gut hormone group.Incretine is secreted
during meal uptake and stimulates pancreatic insulin release and inhibits the
glucose flux from the gut into the blood stream. Impaired incretine function is
believed to play an important role to the reduced and impaired insulin response
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Chapter 2. Background

of type 2 patients [Naucket al., 2004].
Insulin-dependent tissue (IDT) is dependent on insulin to utilize glucose.

This mechanism is discussed in the insulin section below. A significant portion
of the insulin-dependent tissue is made up of skeletal muscles. In the absorp-
tive state, skeletal muscle cells not only consume the glucose directly, but also
convert some to glycogen, providing an energy storage for later use in a local
depot.

Insulin independent tissue (IIT), such as the brain and the central nervous
system, do not need insulin to utilize glucose.

Insulin

Insulin is the main hormone controlling the glucose metabolism. It is a protein
consisting of three peptide parts; an A-, B- and C-chain. In healthy subjects
it is produced in theβ -cells in the pancreas, whereas IDDM patients depend
mostly on injections of artificially produced insulin analogs. Three categories
of different types of therapeutic insulins exist; rapid-, intermediate and long-
acting insulins. The long-acting insulins are used to coverthe basal metabolism,
i.e., mainly to support the insulin-dependent tissue in thepost-absorptive state.
The most recent insulin types of this category, detemir [LevemirTM, 2012] and
glargine [LantusTM, 2012] type have almost flat pharmacokinetic profiles. Rapid-
acting insulins, such as lispro [HumalogTM, 2012], aspart [NovologTM, 2012]
and glulisine [ApidraTM, 2012] are designed to handle the glucose flux follow-
ing a meal in the absoptive state. Therefore, these insulinshave a short pharma-
cokinetic profile with a distinct peak after about 60 minutes. Intermediate-acting
insulin are a mix of both, and are often used to support in cases when some
insulin production is still left, i.e., insulin-dependenttype 2 patients or the so-
called latent auto-immune diabetes (LADA) patients [Landin-Olsson, 2002].

Insulin is normally injected in the subcutaneous tissue of the torso or legs.
Rapid-acting insulin is injected in the abdominal fat layer, whereas long-lasting
insulin is usually taken in the upper side of the thigh. From these depots the
insulin is transferred to the blood system via the capillaries. The absorption rate
depends on a series of factors. One contributing factor is the capillary density.
A higher density results in a greater diffusion area betweenthe depots and the
capillaries. The abdominal region has the highest capillary density and the thigh
the lowest [Home, 1997]. This explains why rapid-acting insulin is preferably
infused in the abdominal fat layer and long-lasting in the thigh.

The size of the insulin molecules is a dominant rate limiter.Large molecules
will have difficulties passing through the capillary pores.The structure of the
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2.1 Diabetes Type 1 and the Glucoregulatory System

Figure 2.2 Insulin receptor and glucose transporter cycle. Reproduced from [Sasaki,
2002].

insulin molecules are either monomer, dimer or hexamer. Insulin will sponta-
neously form hexamers if the concentration is sufficiently high. This so-called
self-association can be catalyzed by zinc ions. Therefore,zinc is added to the
insulin solution in slow-acting insulins, thereby considerably reducing the ab-
sorption rate [Home, 1997]. In the rapid-acting insulins, the insulin molecules
are mainly monomeric or dimeric. They have been modified so that hexamer for-
mation is completely avoided [Shoelson and Halban, 1994], and are also called
monomeric insulins. Another major factor affecting the absorption rate is the size
of the injection dose. A large dose reduces the ratio betweenthe absorption area
and the depot volume, thus reducing the absorption. A numberof studies have
been undertaken, all indicating a linear relationship between insulin dose and
absorption half-time [Hildebrandtet al., 1984] and [Planket al., 2005]. These
studies have been performed using slow-acting or intermediate-acting insulins.
However, studies indicate that the linear relationship is not valid for monomeric
insulin [Brange and Vølund, 1999]. Finally, blood flow and temperature of the
injected site have a significant contribution to absorptionrate. Raised temper-
ature enhances the disassociation of hexameric insulin andaccelerates insulin
diffusion, and increased blood flow raises absorption rate.Thus, exercise plays
a key role for absorption, since it raises both body temperature and blood flow.
After the absorption from the depots, the insulin is circulated in the blood system
and finally interacts with a insulin receptor at the cell surface.

The insulin receptors are so-called tetramers, consistingof two α- and two
β -subunits. Theα-subunits are entirely extracellular and serve as a bindingsite
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Chapter 2. Background

for the insulin molecule. When the insulin has attached to theα-subunits, a sig-
nal process is initiated via theβ -subunits, resulting in increased glucose trans-
porter activity. The glucose transporters facilitate glucose cell membrane cross-
ing, thereby reducing blood glucose concentration. The receptor/transporter cy-
cle can be seen in Fig. 2.2. There are different types of glucose transporters and,
so far, five different types have been found [White and Kahn, 1994]. Not all of
these types require insulin to become active. Therefore, the glucose utilization is
divided into insulin-dependent and insulin-independent utilization. It is a well-
known fact that exercise enhances insulin sensitivity and is therefore one part
of common type 2 therapy. However, what actually causes the increased insulin
sensitivity is still not well understood. Studies indicatethat the GLUT4 trans-
porter activity is stimulated, resulting in increased insulin-dependent glucose
utilization [Kahn, 1997].

Treatment

The most common therapy for IDDM patients is the multi-dose injection (MDI)
basal-bolus regime. The patients use insulin pens, or perhaps the new Swedish
mini pen—the DailyDose [Daily Dose, 2012]—to administer basal insulin, once
or sometimes twice a day, and rapid-acting insulin for each meals as well as for
additional corrections. An alternative therapy is to use aninsulin pump, which,
loaded with rapid-acting insulin, provides a continuous infusion, corresponding
to the basal need and bolus doses accordingly.

Doses are based on heuristic rules derived from the patient’s understanding
of his/her metabolism, assessment of current glucose levelfrom glucose meters
and expected future evolution and estimates of carbohydrate content in digested
meals. One common measure used in this regard is the carbohydrate-to-insulin
ratio, which is an estimate of how many insulin units to administer to match
the amount of digested carbohydrates. To avoid acute and long-term complica-
tions, the goal is to maintain normoglycemia (blood glucoseG between 70-180
mg/dl) as far as possible, and especially to avoid insulin-induced hypoglyce-
mia (G <70 mg/dl) altogether, and to minimize time spent in hyperglycemia
(G>180 mg/dl). An extensively used evaluation criterion of theoutcome is the
glycosylated hemoglobin (HbA1c) blood measure, which provides an assess-
ment of average blood glucose level over a 8-12 week period [Hanas and John,
2010].

Current research is focused on improving the therapy along two main direc-
tions; closed-loop control and semi-closed loop control bymeans of decision
support systems.
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2.1 Diabetes Type 1 and the Glucoregulatory System

Closed-loop control, or as it is often referred to in the diabetes context—the
artificial pancreas—is most often suggested in the form of a regulator controlling
an insulin pump by glucose sensor feedback. The earliest closed-loop system
in this sense dates back to the ’60s and ’70s and the first commercial closed-
loop system, the bed-side Biostator system, was introducedin 1977, relying on
venous insulin infusion and glucose measurement. Today, the prerequisites have
changed dramatically with major improvements in pump and sensor technology,
and both academic researchers and biotechnology companiespursue the closed-
loop control using primarily the subcutaneous route. The first step to implement
an autonomous function in a commercial outpatient system has been made in
the MedTronic Veo pump, which automatically suspends for two hours when a
predefined hypoglycemic threshold is passed (this feature is so far only available
in the E.U.) [MedTronic, 2012]. Reviews of current and historical development
and of the challenges ahead can be found in, e.g., [Cobelliet al., 2011] and
[Bequette, 2012].

Closed-loop control is in many aspects a promising technology, but espe-
cially two major concerns need to be considered when evaluating the prospects
of this technology to resolve glucose control for a larger part of the IDDM pop-
ulation. Firstly, using a closed autonomous system calls for a robust safe design.
This aspect needs to be considered all throughout the systemdesign, and identi-
fied hurdles, concerning, e.g., sensor accuracy and reliability, modeling and pa-
rameter estimation errors, disturbance detection and rejection and programming
and software errors, still remain to be resolved. The secondaspect is the cost
aspect, as such a system relies on many expensive components. Unless prices
are forcefully reduced, it is unlikely that an artificial pancreas system will be
the default therapy for a majority of the IDDM population in the near future.
An alternative technology is to provide the patient with decision support. The
advantages of such an approach in comparison to the artificial pancreas, is that
it is more flexible in underlying therapy format, as it is not locked to the pump
technology, no injections are made automatically—providing an opportunity to
detect wrongful and potentially dangerous actions—and that the total cost is
lower, implying possible better cost effectiveness. On theother hand, the depen-
dency on user interaction makes it more vulnerable in many aspects. Unless user
confidence to the system is achieved, poor compliance to the suggested deci-
sions may prove the system useless. Furthermore, in situations where the user
is unable to respond, no action can be taken. Also, the potential risk reduction,
associated with capturing dangerous actions, relies on an independent basic in-
sight to the glucose dynamics of the user, and a sound non-authoritarian attitude
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Chapter 2. Background

Figure 2.3 User Interface of the DIAdvisor system patient applicationimplemented on
the UMPC. On the screen, the user can follow the present and recent glucose values to-
gether with a projected future trajectory within specified uncertainty limits. Other vital
signs, such as heart rate (see upper left screen corner), mayalso be possible to follow. User
inputs, regarding, e.g., insulin and meal intake, are provided by a menu system controlled
by the buttons at the bottom of the screen. Reproduced from [The DIAdvisor Consortium,
2012].

to the system. Of course, to the extent possible, self-monitoring and evaluation
need to be implemented at a system level, to catch such errorsbefore actions are
suggested to the user.

2.2 The DIAdvisor Project

The DIAdvisor project [DIAdvisor, 2012] was an EU FP7 Integrated Project
(IP) running between 2008 and 2012. The aim of the project wasto develop a
personal decision support system for IDDM patients using user-provided input,
minimally invasive sensors and individualized models of glucose dynamics, in
order to provide the user with short-term predictions of glucose evolution, to-
gether with insulin therapy decision support.

A mobile research system, incorporating these aspects, wasdeveloped and
successfully evaluated under clinical conditions at threeclinical sites covering
50 patients, with a significant reduction of time spent in hypoglycemia, and in-
crease in time in normoglycemia [The DIAdvisor Consortium,2012]. Using an
Ultra Mobile PC (UMPC), the user could follow his/her glucose curve together
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2.2 The DIAdvisor Project

Figure 2.4 DIAdvisor system network. The UMPC communicated with the sensors at-
tached to the patient, see Chapter 3, and transmitted the information to the clinician’s laptop
through a wireless network. After each visit the clinical team uploaded the data to a com-
mon FTP-server. Reproduced from [The DIAdvisor Consortium, 2012].

with an estimate of the near-time (2 hours) ahead projection, see Fig. 2.3. The
same information was concurrently provided to the clinician’s laptop application
by a wireless network according to the network layout in Fig.2.4.

The project consortium consisted in total of 14 partners, both academic insti-
tutions and commercial companies—each providing expertise in areas relevant
for the development of the system. Especially noteworthy for the coming chap-
ters are the three clinical partners where the data were collected; Montpellier
University Hospital, Department of Clinical and Experimental Medicine (Mont-
pellier), University of Padova, UNIPD (Padova) and the Institute for Clinical and
Experimental Medicine, IKEM (Prague).

The models and algorithms presented in this thesis have beendeveloped and
used within this project, and were implemented in the systemdescribed above.
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3

Protocol and Data

characteristics

3.1 The DIAdvisor Data

The clinical part of the DIAdvisor project consisted of three clinical studies; the
data acquisition (DAQ) trial (2009), the DIAdvisor I (2010)and DIAdvisor II
(2011-2012) trials. The purpose of the first trial was to collect data in order to
facilitate model and algorithmic development of the individual modules of the
DIAdvisor system. The two following trials were set up for testing and validating
the entire system in clinical settings. The results presented in this thesis are based
on retrospective analysis of the data collected in the DAQ and DIAdvisor I trials.

A total of 90 patients participated (29 Montpellier, 31 Padova, 30 Prague) in
the DAQ trial, including users of both MDI and subcutaneous pump therapy. For
this thesis, the data were assessed for data completeness and data consistency.
Exclusion criteria were missing bolus doses and missing meal data in the diary,
missing continuous glucose measurement (CGM) data and large discrepancies
between the CGM and the reference glucose meter data. Data segments not ful-
filling the criteria were rejected, and only data records containing at least 48
hours of consecutive qualitative data were included in the study. In all, 47 out of
the 90 patient data records reached the quality standards ofinclusion (17 Mont-
pellier, 19 Padova, 11 Prague). A summary of collected population statistics can
be found in Table 3.1.

The DAQ trial was divided into two main parts; a three day hospitalized
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3.1 The DIAdvisor Data

study and an ambulatory second part, where the patients wereallowed to bring
the system home under normal living conditions. In this thesis, data from the
hospitalized part of the trial were used in Chapter 4, 5 and 6.

In the second trial, the first configuration of the DIAdvisor system was tested
for some of the patients that participated in the DAQ trial, as well as for some
new patients. The trial was divided into six different sub-trials, DIAdvisor I A-
F—each with a specific evaluation purpose. Trial A was a data collection study in
order to validate that the system could retrieve data from the external sensors as
expected, the B and C trials had identical protocols but withdifferent purposes.
The intention of trial B was to test the predictive performance, whereas trial C
aimed at an assessment of the therapeutic advices provided by the system. In
trial D, the patients underwent two different exercise tests, and in trial E, free
meals, not regulated by the standardized procedure, were allowed. In the final
F trial, periods of hypo- and hyperglycemia were induced. Trials A, B, D were
conducted at the Montpellier hospital, trial E at the Padovasite and trial F in
Prague. Trial C was evaluated at all three sites. Data from the B and C trials
were used in this thesis in Chapter 6. Six patients data records, namely patients
3, 7, 8, 18, 25 and 30 from Montpellier, who also participatedin the DAQ trial,
fulfilled the necessary quality standards outlined above.

The third trial, DIAdvisor II, was set up to validate the finalperformance
against the project endpoints using on updated version of the DIAdvisor system.
Data from this trial has not been analysed in this thesis.
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Table 3.1 Population Statistics of the DAQ trial. Mean values and [min-max].

Parameter Montpellier Padova Prague

Male/Female 13/4 10/9 6/5

Pump/MDI 9/8 10/9 8/3

Rapid Insulin 11 Aspart / 1 Glulisine / 5 Lispro 15 Aspart / 4 Lispro 4 Aspart / 7 Lispro

Age 44 [22-68] 42 [25-67] 33 [19-65]

BMI [kg/m2] 24.2 [19.7-30.1] 24.5 [18.7-33.2] 25.0 [16.8-35.9]

HbA1c [mmol/mol] 7.7 [5.6-9.1] 8.0 [6.0-9.3] 7.8 [6.4-9.7]

Daily Total Insulin [IU] 47 [18-82] 44 [22-74] 22 [6-54]

Antibodies [% binding] 15.6 [0-62.1] 20.4 [0-75] 12.9 [0-53]
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3.2 Equipment

3.2 Equipment

During the trials, the patients were equipped with sensor devices in order to
collect vital signs of potential interest in metabolic modeling.

Glucose Sensors

Blood glucose is generally measured manually by the individual patient using
a personal glucose meter. A small blood sample is analysed ina test strip by
the meter using enzymatically catalyzed-based electro-chemical or photometric
methods [Höneset al., 2008]. Today, there exist more than 27 different per-
sonal glucose meters from 18 different manufacturers [Freckmannet al., 2010].
The accuracy requirements of these is generally quite demanding, e.g., meters
marked with the European CE mark should comply with the DIN ENISO 15197
standard, specifying that the measurements may not differ more than 15 mg/dl
for glucose concentration below 75 mg/dl and less than 20 % for glucose con-
centration above 75 mg/dl [Freckmannet al., 2010], when evaluated against a
laboratory equipment such as a Yellow Springs Instrument Analyzer [Yellow
Springs Instrument, 2012]. Other norms and regulations have similar require-
ments [Tonyushkina and Nichols, 2009].

Self-monitored blood glucose (SMBG, BG or G) thus provides very accu-
rate readings, but reveals little about the dynamics, unless sampled frequently
enough. Generally, the diabetic population seem to measuretheir glucose level
far too seldom, considering, e.g., the average HbA1c level [The Swedish Na-
tional Board of Health and Welfare, 2012b], and numerous different studies
show a definite positive correlation between increased testing frequency and
lowered HbA1c [St Johnet al., 2010].

The HemoCue Glucose 201+ Analyzer (Fig. 3.1, [HemoCue Glucose 201+
Analyzer, 2012]) is a high-quality glucose meter of laboratory precision [Stork
et al., 2005]. This meter was used as blood glucose reference in both trials.

Frequent automatic glucose measurements have become commercially avail-
able over the last ten years. Today, there are three companies with commercial
systems, and this number will increase in the coming years, e.g., Roche and
BD are researching and developing similar systems. These sensor systems are
called Continuous Glucose Measurement (CGM) Systems and consist of a dis-
posable sensor including a subcutaneous probe, a radio transmitter connected
to the external part of the sensor and a receiver device to administrate and dis-
play the results. The sensor lasts for 3-7 days, depending onsystem, after which
it is replaced. The measurements are made in the interstitial fluid and do not
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Chapter 3. Protocol and Data characteristics

Figure 3.1 The HemoCue 201+ Analyzer, [HemoCue Glucose 201+ Analyzer,2012]

.

Figure 3.2 CGM systems used in the DIAdvisor project; the Abbott Freestyle CGM sys-
tem, [Abbott Freestyle Navigator, 2012] (left), and the Dexcom Seven Plus CGM system
[Dexcom Seven Plus, 2012] (right).

directly correspond to the blood glucose level, due to the first-order diffusion-
like relationship between the blood stream and the interstitial compartment, see
e.g., [Rebrin and Steil, 2000b]. The use of CGM has been shownto promote
improved glycemic control with decreased level of HbA1c [Chettyet al., 2008].

In the DAQ trial, the patients were equipped with the Freestyle CGM system
(Fig. 3.2) from Abbott [Abbott Freestyle Navigator, 2012].The system provided
a CGM reading every 10 minutes, but the raw current signal from the sensor was
also collected on a one-minute basis at the Montpellier and Padova sites. The
sensors require initialisation during 10 hours and have a life time of 5 days,
where after they need to be replaced. In the DIAdvisor I trial, the CGM system
Seven Plus (Fig. 3.2) from Dexcom was used [Dexcom Seven Plus, 2012]. This
sensor has an initial calibration time of 2 hours and is replaced after 7 days. Both
systems need to be recalibrated every 12 hours.
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3.3 Vital Signs Sensors

Figure 3.3 Vital signs sensor systems used in the DIAdvisor project; the VivoMet-
rics’ LifeShirt system [VivoMetrics, 2012] (left), and theSensium Life Pebble sensors by
Toumaz [Toumaz, 2012] (right)

3.3 Vital Signs Sensors

During the DAQ trial the patients wore the Clinical LifeShirt (Fig. 3.3) from
VivoMetrics [VivoMetrics, 2012], which is specially designed for clinical trials.
This non-invasive monitoring system continuously collects, records and analyses
several vital signs. To measure respiratory function, sensors are woven into the
shirt around the wearer’s chest and abdomen. A single-channel ECG measures
heart rate, a three-axis accelerometer records posture andactivity level, and a
thermometer measures the skin temperature.

In the DIAdvisor trial, the LifeShirt was replaced by the Sensium Life Peb-
ble sensors (Fig. 3.3) developed by Toumaz [Toumaz, 2012]. These continuously
monitor ECG, heart rate, physical activity (3-axis accelerometer) and skin tem-
perature, and stream the data using a wireless datalink overa short range (5 m).

3.4 Experimental Protocols and Conditions

The DAQ and the DIAdvisor I trials followed the same basic protocol. Standard-
ized meals were served for breakfast (08:00), lunch (13:00)and dinner (19:00),
according to the protocol. The amount of carbohydrates included in each meal
was about 40 (45 in DAQ), 70 and 70 grams, respectively. Additional snacks, in
some cases related to counter-act hypoglycemia, were also digested. No specific
intervention on the usual diabetes treatment was undertaken during the studies,
since a truthful picture of normal blood glucose fluctuationand insulin-glucose

27



Chapter 3. Protocol and Data characteristics

interaction was pursued. Meal and insulin administration were noted in a log-
book, glucose was monitored by the Continuous Glucose Measurement system
and by frequent blood glucose measurements in the DAQ trial (37 measurements
daily according to the protocol). The outcome, however, wasthat 39, 37 and 7
measurements (Montpellier, Padova and Prague) were made onaverage every
day. In the DIAdvisor B and C trials, even more reference measurements were
collected, making the average 43 measurements a day.

3.5 Graphical Data Evaluation Tool

The trial data was continuously uploaded into an Oracle database on a com-
mon FTP-server, from which the model developers could download data as they
became available. In order to facilitate data overview and management, a stand-
alone Graphical User Interface (GUI), see Fig. 3.4, was developed in Matlab
code [MathWorks, 2012]. Using this GUI, different data channels and time pe-
riods could be selected for any individual patient in order to evaluate the data
for completeness and correctness, before extracting and exporting them into a
single Matlab data file. The evaluation described in section3.1 was performed
using this tool.

3.6 Glucose Data Characteristics

Before digging into modeling and prediction of glucose dynamics, some inter-
esting features of the glucose data are worthwhile to explore a little more in-
depth.

Optimal sampling frequency

An interesting question is how often sampling is needed in order to reconstruct
the most important features of the glucose signal, and thus how important CGM
measurements may be, and whether interpolation of frequentBG measurements
can be used to reconstruct the glucose curve. According to [Worthington, 1990],
at least 8 samples per day are needed to get the lowest essential dynamics of
the system, namely the rise and fall of the blood glucose level due to the car-
bohydrate intake. This is a rigid assumption, relying on that the meal-related
period is about 6 hours, and that the subject follows a strictschedule. In real-
ity, people tend to have more irregular routines. This is generally overcome by
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3.6 Glucose Data Characteristics
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Figure 3.4 The Graphical User Interface (GUI) to manage the DAQ data. Different data
sections from both the clinical and the home-monitored partof the DAQ trial can be anal-
ysed. The upper plot always shows the linearly interpolatedCGM (blue curve) and the
HemoCue reference measurements (circles). The lower windows can be used to display
any of the recorded signals. In this example, the three days data from the clinical part of
the trial has been selected. The second plot from the top shows timing and amount of in-
gested carbohydrates, the third plot depicts bolus and correction insulin doses, and in the
bottom window the pump basal curve has been chosen for investigation.

non-equidistant sampling, collecting data on an event-driven basis, rather than a
time-scheduled ditto.

Method In order to evaluate how much information is lost as the sampling
rate decreases, the CGM data collected at the Montpellier hospital 3-day visit
of the DAQ trial were used. The data was down-sampled to a sampling period
of 20, 40, 60 min and then interpolated by piecewise splining. Likewise, the
frequent BG measurements were also interpolated by the samemethod. Error
analysis of the down-sampled signals in comparison to the original signal was
done by frequency analysis, see [Johansson, 2009], and statistical analysis of the
time-domain data.

Results Obviously, the frequency content diminished with increased sampling
period, as seen in Fig. 3.5, where the periodogram of the original signal and the
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Figure 3.5 Periodogram of the SMBG, the original and the down-sampled CGM signals.
Average for the Montpellier patients.

Table 3.2 Comparison between the original and the resampled CGM signals in terms of
Root Mean Square Error (RMSE) and maximum error. Average over the DAQ population.

Criteria Sampling period [min]

20 40 60 80 100

RMSE [mg/dl] 1.4 4.0 7.0 10.4 12.7

maximum error [mg/dl] 8 18 30 45 51

interpolated signals can be seen.
The spectrum of the blood glucose signal is very similar to that of the CGM

signal. For the down-sampled CGM signals, the energy decreases for the higher
frequencies as expected. However, frequency assessment does not easily trans-
late to clinically relevant information. Turning to the time-domain, the difference
between the signals deteriorates as depicted in Table 3.2. Already at a reduced
sampling period of 60 min, the maximum average error amountsto more than
30 mg/dl. This is not surprising, as the glucose rise/drop over an hour can be in
the magnitude of -35 mg/dl to +60 mg/dl (95 % conf. bound) at glucose levels
of 100 mg/dl, and with an even wider spread for higher glucose levels, see Fig.
3.6.

Discussion It should be borne in mind that these values are under-estimated
considering the low-pass character of the relationship between interstitial and
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Figure 3.6 95 % confidence bounds of the deviation distribution over different time hori-
zons. Average for all three clinical sites.

blood glucose value. This aspect also inhibits the possibility for direct compari-
son between these signals. However, the frequency responseshows that the inter-
polated BG curve incorporates the same frequency content asthe original CGM
signal and should thus be a reasonable approximation of the true blood glucose
evolution. Thus, even though only 37 samples were collecteda day, making the
average sample period about 40 min, the applied sampling schedule made it pos-
sible to capture the dynamical changes. In general, glucoseself-monitoring does
not follow a strict sampling schedule. Rapid changes in the blood glucose can
be recognized by persons with normal hypoglycemic sensitivity as hypoglyce-
mia, changes into hypoglycemia or hyperglycemia are often detected, and these
circumstances call for unscheduled measurement to establish glycemic status.
Therefore, the high and low peaks are, for many instances, represented in home-
monitored data, but as the hypoglycemic sensitivity decreases over the years
since diagnosis, the risk of undetected hypoglycemia increases [Mokanet al.,
1994].

Distribution

In order to investigate the range of excitation in the data interms of glucose level,
and to determine if there are any systematic differences in this aspect between
the different sites, the distribution of the CGM data was analysed.

Method The distribution of the CGM data from the DAQ trial was assessed
by standard statistical methods for all three clinical sites.
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Figure 3.7 Total distribution of glucose levelG(t) and the 20 minute glucose deviation,
G(t +20)−G(t). Montpellier patients.

−100
−50

0
50

100

0 50 100 150 200 250 300 350 400

0

100

200

300

400

Glucose Deviation [mg/dl]Glucose [mg/dl]

In
c
id

e
n

c
e

 [
−

]

Figure 3.8 Total distribution of glucose levelG(t) and the 20 minute glucose deviation,
G(t +20)−G(t). Padova patients.
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Figure 3.9 Total distribution of glucose levelG(t) and the 20 minute glucose deviation,
G(t +20)−G(t). Prague patients.
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3.6 Glucose Data Characteristics

Table 3.3 Likelihood of each glycemic zone [%], and average mean glucose [mg/dl] for
the patient data from each clinical site.

Glycemic Zone Zone Limits Montpellier Padova Prague
[mg/dl]

Severe Hypoglycemia G≤ 50 0 0 0

Hypoglycemia 50< G≤ 75 3 2 4

Lower Euglycemia 75< G≤ 125 32 23 37

Upper Euglycemia 125< G≤ 175 31 30 34

Lower Hyperglycemia 175< G≤ 225 20 27 15

Hyperglycemia 225< G≤ 275 14 18 10

Upper Hyperglycemia G> 275 0 0 0

Mean Glucose [mg/dl] - 153 169 142

0 50 100 150 200 250 300 350 400
0

100

200

300

400

In
c
id

e
n
c
e
 [

−
]

CGM value [mg/dl]

Figure 3.10 Total distribution of CGM glucose level. All DAQ patients.

Results The dynamical total distribution of glucose levelG(t) and glucose
deviations over 20 minutes,G(t+20)−G(t) can be seen in Fig. 3.7, 3.8 and 3.9.
There is a clear difference in distribution between the clinical sites. The glucose
range can be divided into 7 different zones of different clinical importance, and
the likelihoods of each zone are found in Table 3.3.

The glucose data clearly do not follow a Gaussian distribution, as seen from
Fig. 3.10, depicting the total distribution of the accumulated CGM readings col-
lected at all three site. The samples fluctuate around an average of about 160
mg/dl, but the deviations are not normally scattered aroundthis mean. This phe-
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nomenon has been noted in [Kovatchevet al., 1997] as well, where the follow-
ing data transformation was suggested to transform the datainto a Gaussian
distributed variable with zero mean.

f (BG,α,β ) = (logBG)α −β (3.1)

The parametersα andβ should be 1.084 and 5.381 when using the milligram-
per-dl scale. The accumulated data from each site was transformed in this man-
ner and the distributions can be seen in Fig. 3.12, 3.13 and 3.14. The data from
Padova do not fit the normal distribution very well, but the data from the other
sites show better resemblance. However, the normal hypothesis was rejected in
every case (Kolmogorov-Smirnov test, [Johansson, 2009]),contrary to the re-
sults in [Kovatchevet al., 1997]. From Fig. 3.12, 3.13 and 3.14 it can be seen
that the upper tail of the normal distribution is missing or deformed, which is
due to the low incidence of hyperglycemia, see Table 3.3.

Discussion The Prague patients have the most aggressive glucose control,
with fewer high values and more time spent in hypoglycemia. The Padova pa-
tients have more hyperglycemic events, but also half as muchtime spent in hypo-
glycemia compared to the Prague patients. This is also reflected in the average
mean glucose values, which are statistically significantlydifferent from each
other (p<0.01 for all possible comparisons).

The total distribution was found to be non-Gaussian, but thelog-normal like
distribution suggested by [Kovatchevet al., 1997] could not be confirmed. Under
free-living conditions, the hyperglycemia tendency is generally higher than for
the DIAdvisor DAQ data evaluated here, which may explain why[Kovatchev
et al., 1997] found that 203 out of 205 transformed home-monitoredSMBG data
sets confirmed the normal hypothesis.

The data transformation stems from an intention to create a risk value de-
scribing the increased clinical risk associated with hypoglycemia and hyper-
glycemia. By taking the square of the transformated glucoselevel and multi-
plying by 10, the risk function of [Kovatchevet al., 2000] is retrieved, see Fig.
3.11. This function forms the basis for the cost function used in Chapter 6.

Time-variability

Another important aspect of diabetic glucose data is the question of time-varia-
bility. The circadian rhythm may have a significant impact oninsulin sensitivity
over the course of the day [Van Cauteret al., 1997a], especially in the early
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Figure 3.11 Risk function using Kovatchev’s transformation.

morning, when counter-regulatory hormones (primarily growth hormone, corti-
sol and adrenalin) are released—triggering increased hepatic production [Per-
riello et al., 1991].

Variability over longer time horizons has not been thoroughly investigated in
the literature, which may be explained by the scarcity and difficulty of obtaining
qualitative longer data records. Very few longitudinal data sets longer than a few
days, or weeks at best, seem to be available for type 1 diabetics in the research
community. The data set used in [Ståhl and Johansson, 2009]is thus quite unique
in this aspect. This data set was collected during the first months of a newly di-
agnosed type I patient (the author). This period of time is generally referred to
as the ’honey-moon period’, during which the pancreaticβ -cells recover some-
what, resulting in temporary remission with considerably varying insulin doses
and glycemic response [Abdul-Rasoulet al., 2006]. Mathematically, this trans-
lates into time-varying model parameters.

Method The honey-moon data were analysed. In order to estimate and vali-
date different models, data segments with constant parameter values are needed.
To find such segments, the data were investigated using the Adaptive Forget-
ting Multiple Model change detection algorithm (AFMM), implemented in the
Matlab command ”SEGMENT” [MathWorks, 2012].

Results In Fig. 3.15, the variations of the estimated ARMAX parameter over
the time period can be seen.

Discussion The model parameters shifted a number of times during the honey-
moon period, giving an indication of both more stable and unstable data sections,
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Figure 3.12 Empirical and Approximated Distribution of transformed CGM data. Mont-
pellier patients.
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Figure 3.13 Empirical and Approximated Distribution of transformed CGM data. Padova
patients.
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Figure 3.14 Empirical and Approximated Distribution of transformed CGM data. Prague
patients.
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Figure 3.15 Data segmentation using the Matlab command SEGMENT. Variability of
the parameters of the recursive ARMAX model over approximately 200 days.

and this behavoir is expected during this remission phase. The last stable param-
eter section is more than a month in length, signalling the end of the honey-moon
period. It may also be noted that the parameter values end up close to the origi-
nal values, which may be another indication that the temporary β -cell recovery
has ended. Longer time-variability in non-newly-diagnosed patients is generally
less dramatic, but should not be overlooked, especially forthe so-called ’brittle’
patients [Voulgariet al., 2012].

Blood-to-Interstitial Glucose Delay

The diffusion-like relationship between the blood and interstitial compartments
implies a low-pass character in the response to glucose changes, which means
lagging glucose levels in the CGM sensor in comparison to thereference SMBG.

Methods The CGM signal and the blood glucose reference measurements
from the DAQ trial were analysed as follows. To retrieve an initial non-parametric
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Figure 3.16 Delay between blood glucose reference measurement and the corresponding
CGM measurement vs. BMI for the DAQ data from the three clinical sites.

estimate of the magnitude of the lagging between the blood glucose reference
BG(t) and the CGM signal, the lag was approximated to a delay, and was found
by finding the delay∆ which minimized the Root Mean Square Error (RMSE)
between the blood glucose measurementsBG(tBG) and the corresponding back-
ward-translated CGM measurementsCGM(tBG+∆) for the time pointtBG, cor-
responding to time points when the blood glucose reference measurements were
sampled. The measurement error was also assessed by RMSE between the un-
translated CGM signal and the blood glucose reference, and apossible correla-
tion between sensor delay and Body Mass Index (BMI) was investigated.

Results In Tables 3.4, 3.5 and 3.6 the estimated delay and RMSE between
the CGM signalCGM(t) and the HemoCue referenceG(t) is given for every
included patient. The BG-CGM delay was statistically larger for the Prague pa-
tients than for the Montpellier patients (p<0.05) and for the Padova patients
(p<0.001), and the BG-CGM delay of the Montpellier patients waslarger than
that of the Padova patients (p<0.02). In terms of BG-CGM measurement error,
the Prague patients had a significantly larger BG-CGM RMSE than the Padova
patients (p<0.002) and the Montpellier patients (p<0.003). No correlation be-
tween BMI and BG-CGM delay was found, see Fig. 3.16.

Discussion The differences between the Prague data and the other sites could
be explained by the significantly lower number of reference measurements at
the Prague site (7 measurements) compared to the Padova (37 measurements)
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3.6 Glucose Data Characteristics

and the Montpellier (39 measurements) patients, and the simplified assumption
of estimating the delay and not the lag. The low number of samples, mainly
collected during periods of substantial glucose changes, where the low-pass filter
relationship causes long delays and mismatches, result in that the delay estimate
is biased. Thus, the estimates for the Prague patients should be disregarded.

Intuitively, a correlation was expected between high BMI, often indicating a
thicker abdominal layer, and longer BG-CGM time delay, as a possible explaina-
tion for the large interpersonal differences. However, thediffusion may be more
dependent on other factors than mere amount of abdominal fat, such as capillary
density and blood turn-over rate.
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Table 3.4 Glucose Data Statistics Montpellier

Patient ID BG-CGM BG-CGM

Delay [min] RMSE [mg/dl]

102 15 19.8

103 6 11.8

104 5 22.1

105 7 14.7

106 12 27.7

107 22 28.1

108 8 15.3

111 9 19.6

112 18 23.9

115 8 15.4

117 20 27.6

118 11 23.7

120 16 24.9

122 7 17.9

126 12 21.5

127 8 14.4

130 1 34.3

Mean (std) 10.9(5.7) 21.3(6.0)
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Table 3.5 Glucose Data Statistics Padova

Patient ID BG-CGM BG-CGM

Delay [min] RMSE [mg/dl]

201 1 22.8

202 10 14.5

203 5 27.2

205 10 30.1

209 1 21.5

211 12 24.6

212 6 21.9

213 10 20.6

214 1 16.2

215 5 15.6

216 3 24.0

217 8 14.8

219 13 25.6

220 13 19.8

221 15 23.3

222 4 30.0

226 10 28.4

227 9 24.2

231 1 18.3

Mean (std) 7.2(4.6) 22.3(4.9)
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Table 3.6 Glucose Data Statistics Prague

Patient ID BG-CGM BG-CGM

Delay [min] RMSE [mg/dl]

301 20 30.7

310 20 22.0

313 15 41.0

316 17 36.2

317 30 50.3

318 17 16.8

322 12 34.5

324 15 28.9

325 1 17.7

326 30 44.5

328 2 23.3

Mean (std) 16.3(9.2) 31.4(11.6)
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4

Modeling and Prediction

Prediction of glucose changes in type 1Diabetes Mellitushas received a consid-
erable amount of scientific and commercial interest over thelast decade. The
driving force behind this surge in research can in large be explained by the
recent advances in sensor technology [Vaddirajuet al., 2010], and the thereto
attached promises and hopes of closed, or semi-closed, loopcontrol of dia-
betic glucose dynamics. Predicting models play a key role inmany of these
concepts—providing the essential simulation tool in MPC-oriented closed loop
arrangements of an artificial pancreas [Cobelliet al., 2011], or as a component in
a decision support system—providing predictions directlyto the user [Poulsen
et al., 2010].

However, even though many of these models indicate good predictive perfor-
mances, less attention has been put into establishing whether the physiological
responses are qualitatively correct and safe. Evaluation under strict clinical pro-
tocols, or even during normal life style, may not reveal short-comings due to a
flawed identified model that may produce dangerous or suboptimal prediction
under less strict conditions. Furthermore, identifying models with these features
may be non-trivial, with regards to the opposite influence onthe glucose level
from the main driving inputs– carbohydrates and insulin.

In this chapter, low-level models of glucose dynamics are investigated, con-
sidering the aspects of identifiability and physiological correctness outlined above,
and concerning the ability to detect hypoglycemia in advance.
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4.1 Previous Work

Models of glucose dynamics for predictive purposes can mainly be divided into
two categories; physiologically-oriented models and data-driven black-box ap-
proaches. The latter sometimes incorporate physiologicalsub models of insulin
and glucose infusion following insulin administration andmeal intake, but the
main part of the dynamics stem from the statistically derived relationships.

The development of physiological diabetic glucose modeling started with
the simple models of [Bolie, 1961] and [Ackermanet al., 1965], aiming at de-
scribing the relationship between glucose and insulin utilization. External meal
and insulin administrations were not considered, and the models found little use
beyond basic insight to the dynamics of this interaction. Following these efforts,
the slightly more complex and well-established minimal model [Bergman and
Cobelli, 1980] was suggested as a means to estimate insulin sensitivity from
an intravenous glucose tolerance test (IVGTT). Detailed models of the glucose
metabolism; separating insulin and non-insulin dependentglucose utilization,
incorporating models of hepatic balance, renal clearance,and in some cases pan-
creatic insulin synthesis and release, have surged since then. In [Lehmann and
Deutsch, 1992], a simulation model was presented, and laterthe decision sup-
port system AIDA [Lehmann, 1994] was developed using this model. The sys-
tem was validated on a set of 24 subjects with parameter convergence achieved
in 80% of the cases [Lehmannet al., 1994].

A large model with 19 tunable parameters was proposed in the Sorensen
thesis [Sorensen, 1985], a model often used as a verificationtool to assess dif-
ferent control approaches, e.g., [Eren-Orukluet al., 2009a]. The web-based ed-
ucational simulation model GlucoSim [Agaret al., 2005] has been developed
based on another thesis [Puckett, 1992]. Generally, these models are difficult to
fit to an individual person, and may lack structural identifiability. This makes
them unsuitable for predictive purposes, but synthetic subjects may be created
for simulation studies. Currently, the most influential simulation model is the
University of Virginia and Padova University (UVa/Padova)model described in
[Dalla Man et al., 2007a] and [Dalla Manet al., 2007b], which has been ac-
cepted by the Federal Drug Administration of the U.S. (FDA) to be used as a
substitute for animal trials in preclinical trials of closed-loop development [Ko-
vatchevet al., 2008]. To this purpose, 300 artificial subjects have been derived
from estimated parameters from population studies, and used in, e.g., [Leeet al.,
2009].

A simpler model, with only five tunable parameters, is the Hovorka model
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[Hovorkaet al., 2004], later extended and altered for the critically ill in[Hov-
orkaet al., 2008]. The former model has been validated for predictive capacity
on 15 subjects with a RMSE of 3.6 mg/dl for a prediction horizon of 15 minutes.
Parameter estimates were retrieved recursively from a sliding data window us-
ing a Bayesian approach. This model is also used extensivelyfor MPC-oriented
closed-loop validation, e.g., in the evaluation of PID control in [Farmeret al.,
2009], which also make use of the Sorensen [Sorensen, 1985] and the minimal
model [Bergman and Cobelli, 1980].

Data-driven models have been investigated on CGM time-series alone, or by
considering inputs as well. The meal sub models of [Dalla Manet al., 2007b] and
[Lehmann and Deutsch, 1992] are furthermore often used as input generating
components in data-driven models to approximate the glucose flux input from
the gut following a meal intake. Here, the focus has been prediction for the
purpose of early hypoglycemic detection, e.g., to be used for alarm triggering
in CGM devices, or temporary insulin pump shut-off, as well as establishing
models suitable for model-based control.

Time-series analysis by Auto-regressive (AR) models started with [Bremer
and Gough, 1999], who evaluated the basic underlying assumptions concerning
stationarity and auto-covariance that AR modeling is basedupon, concluding
that diabetic data generally is non-stationary, but highlyauto-correlated, thus
recommending the models to be recurrently re-estimated. Following this, AR
and ARMA models were developed in [Ståhl, 2003] and [Ståhland Johansson,
2009] using glucose data from a recently diagnosed type 1 diabetic. In [Spara-
cinoet al., 2007], first-order recursive AR models were investigated for 28 sub-
jects using a low-pass filtered CGM signal from the GlucoDay CGM system.
The results indicate that hypoglycemia can be detected by the model 25 min
before the CGM signal passes the same threshold. Another example of recur-
sive AR and ARMA models of third order, incorporating a change detection
feature for more rapid parameter re-estimation when large changes in the dy-
namics are detected, is found in [Eren-Orukluet al., 2009b]. The models were
evaluated for 30 healthy, 7 glucose-intolerant and 25 type II diabetic subjects,
with less than 4% mean Relative Average Deviation (RAD) and almost no val-
ues in D or E zones of the Clarke Error Grid (p-CGA, see section4.5 below for
definition) for the 30-minute predictions in comparison to the CGM Medtronic
Gold reference [MedTronic, 2012]. Contrary to the above, the authors of [Gani
et al., 2009] claim that a generic patient- and time-invariant AR model of order
30 can be identified from any patient and used for glucose prediction for any
other patient. Very promising results were achieved in [Gani et al., 2010], where
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the model was evaluated for three different datasets, each utilizing a different
CGM device, and the patient cohorts included both type I and type II diabetes.
The prediction error was on average, in terms of RMSE, less than 3.6 mg/dl
for a 30-minute prediction, with negligible delay, and with99% of the paired
prediction-reference points in the A and B zones of the p-CGA. However, these
results were achieved by filtering the CGM signal in both training and test data
using a non-causal filter, removing the high frequency components. In [Luet al.,
2011] the causality aspect of the input filtering was addressed. The AR model,
here reduced to order 8 after model complexity considerations, was reformulated
as a linear model with a Kalman filter, and the filter parameters were adjusted to
account for the filtering of the CGM signal. For evaluation purposes, the refer-
ence was however still filtered in the same non-causal way as before. Using this
approach on the same data set as in [Ganiet al., 2010], yielded more moderate
results with an average prediction error of 16 mg/dl, and a 9 minute lag for the
20-minute prediction.

Algorithms specifically developed for hypoglycemic detection has also been
proposed. In [Palermet al., 2005], a Kalman filter approach was proposed, es-
timating the states corresponding to the interstitial glucose level, and the first
and second derivative thereof, i.e., rate of glucose changeand acceleration. In
[Palerm and Bequette, 2007] this method was evaluated for 13hypoglycemic
clamp data sets. Using a hypoglycemic threshold of 70 mg/dl,the sensitivity and
specificity were 90 and 79%, respectively, with unknown alarm time. Combining
three different methods for hypoglycemic detection with the ARMA model of
[Eren-Orukluet al., 2009b], data from insulin-induced hypoglycemic tests for
54 type 1 subjects were evaluated in [Eren-Orukluet al., 2010]. With a hypo-
glycemic threhold of 60 mg/dl, sensitivity of 89, 88, and 89%and specificity of
67, 74, and 78% were reported for each method, respectively.Mean values for
time to detection were 30, 26, and 28 minutes. In [Dassauet al., 2010], five dif-
ferent algorithms were used together in a voting based detection system called
hypoglycemic prediction algorithm (HPA). The system was developed using 21
datasets from a 24-hour Abbott Navigator CGM trial for children with type 1 di-
abetes, and was validated on hypoglycemic induced studies on 22 type 1 patient
records. With a voting scheme of 3-out-of-5, and a hypoglycemic defined as 60
mg/dl, a sensitivity of 91% was achieved, and when 4-out-of-5 positive alarms
were required, the sensitivity dropped to 82%.

A short-coming of the AR models and the algorithms above is the lack of
input-output relationship, excluding them from being usedin a model-based
control framework. A natural extension to the AR concept is to include exter-
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nal inputs, transforming the model to an ARX model. This typeof model has
been considered in, e.g., [Finanet al., 2009a], where both batch-wise and recur-
sively identified patient-specific ARX-models have been analysed for 9 patients
with a mean 30-minute prediction error RMSE of 26 mg/dl. In [Cescon, 2011]
both ARX, ARMAX and state space models were investigated using different
identification methods for 30-, 60-, 90- and 120-minute prediction for 9 Mont-
pellier patients from the DAQ trial. The best performance was achieved with the
ARX and the ARMAX models. The ARX model gave a standard deviation of the
prediction error of 17, 34, 46 and 56 mg/dl on average for the 30-, 60-, 90- and
120-minute prediction, respectively. The corresponding results for the ARMAX
model were 16, 30, 39 and 44 mg/dl.

Another type of transfer function model, cast in the continuous domain, was
approached in [Percivalet al., 2010], where it was evaluated for 9 type I subjects
on separated meal and insulin intakes. Model parameters were determined both
heuristically and by least-squares estimation. The carbohydrate and insulin im-
pacts of the model, i.e., the steady-state rise and drop of glucose following these
intakes, were further compared to the corresponding practically used estimates
of these factors. No independent prediction validation wasgiven. This model
was later evaluated in a control framework in [Percivalet al., 2011], where two
data sets were created by the Hovorka (4 subjects) and Padova(10 subjects) sim-
ulation models. Here, the model could approximate the simulated data very well,
with a 3-hour look-ahead prediction error of 26 mg/dl reported. A very similar
model structure was used in [Kirchsteigeret al., 2011], the difference being a
time delay changed into a time lag. In this paper, breakfast glucose excursion
prediction was addressed for 10 Montpellier patients from the DAQ trial. For
each patient, model parameters were determined by constrained least squares
for two breakfast meals and validated on a third breakfast, with an average fit
value of 42%.

Neural network (NN) models have been shown to be a competitive approach
in [Daskalakiet al., 2012], where a feed-forward NN model was compared
against an AR and an ARX model on a 30 patient dataset, retrieved from the
Padova simulation model. Here, the NN clearly outperformedthe competing
models with an average RMSE of 4.9 mg/dl versus 29 mg/dl (AR) and 26 mg/dl
(ARX) for the 45-minute prediction. Apart from meal and insulin information,
emotional factors, hypoglycemic/hyperglycemic symptomsand lifestyle/ activ-
ities, were collected in an electric diary and used as inputsin the NN model of
[Pappadaet al., 2011]. Training was performed on a dataset from 17 patients, and
performance was evaluated on 10 patient data sets not included in the training
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set, with a RMSE of 44 mg/dl for the 45-minute prediction.
A fully connected three-layer (5,10,1 neuron per layer) NN,with sigmoidal

transfer functions in the first two layers and a linear for theoutput block was
used in [Pérez-Gandı́aet al., 2010]. No insulin nor meal information were used,
but the concurrent and previous CGM values, up to 20 minutes back, acted as
inputs. The model was evaluated on two datasets with different CGM devices
(Abbott Freestyle and MedTronic Guardian). Three subject data sets were used
for training for each patient group and were thereafter excluded from the vali-
dation data. For the 6 Guardian patients and the 3 Abbott Freestyle patients the
performance was 10, 18 and 27 mg/dl for the 15, 30 and 45-minute prediction,
with a delay of around 4, 9, and 14 min for upward trends, and 5,15, and 26 min
for downward trends. In [Zecchinet al., 2011], the linear predictor from [Spara-
cinoet al., 2007] worked in a cascade-like configuration with a NN model, which
also used both CGM and glucose flux from the meal model of [Dalla Manet al.,
2007b] into account as inputs. Training and validation was done using 15 patient
records from the 7-day free-living conditions set of the DAQtrial, see Chapter 3.
The NN was trained and validated on 25 time series, each one ofthree days, se-
lected so as to ensure a wide variety of glycemic dynamics. Nine daily profiles,
containing several hypo- and hyperglycemic events, were used to test the NN
with an average of 14 mg/dl and a 14 min delay for the 30-minuteprediction.
For an assessment on 20 simulated subjects using the UVa/Padova model, the
corresponding metrics were 9.4 mg/dl and 5 min. Both insulinand carbohydrate
digestion were considered by incorporating input-generating sub models in the
support vector machine of [Georgaet al., 2011]. Additionally, exercise-induced
glucose and insulin absorption variations were also considered as inputs by pro-
cessing a metabolic equivalent (MET) estimate, derived from a SenseWear body
monitoring system (BodyMedia Inc.) used in the study, in a model by [Roy and
Parker, 2007]. The NN was trained individually for 7 type 1 patients with RMSE
of 9.5, 16, 25 and 36 mg/dl for the 15, 30, 60 and 120-minute prediction.

Deeper reviews can be found in [Makroglouet al., 2006] and [Balakrishnan
et al., 2011] and [Georgaet al., 2011].

4.2 Identifiability

The challenges of identifiability in physiologically-basedmodels (structural iden-
tifiability) have been widely recognized [Chiset al., 2011], and specifically for
the diabetic glucose dynamics [Dochertyet al., 2011], and optimal experimental
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design to facilitate parameter estimation [Galvaninet al., 2009; Galvaninet al.,
2011]. Empirical black-box identification problems have received less attention,
but the problems associated to identification of ARX models of glucose dynam-
ics have been considered in [Finanet al., 2009b].

In diabetic real world data, the problem is especially important, since the
two main inputs affecting the dynamics, meal and insulin intake, have opposing
impact and similar dynamics, and generally act simultaneously. The aspect is
further problematic since safety concerns impose constraints on the possibility to
excite the system sufficiently (which of course does not apply to simulated data).
Thus, from an identification viewpoint, the impact from inputs may be entangled
with one another, and it may be impossible to separate the impact of each input
without considering constraints to the identification routine, incorporating prior
information of the expected qualitative response. In [Percival et al., 2010], this
was resolved by applying an experimental protocol, where a small meal and
the corresponding bolus dose were separated by a few hours. However, such an
approach yields only short data sets and may be infeasible, e.g., if re-estimation
recurrently is required due to, e.g., shifting dynamics.

4.3 Data

Data from the three day hospitalized part of the DAQ trial wasassessed for data
completeness and data consistency. Exclusion criteria were missing bolus doses
and missing meal data in the diary, missing CGM data and largediscrepancies
between the CGM and the reference glucose meter data. Data segments not ful-
filling the criteria were rejected, and only data records containing at least 42
hours of consecutive qualitative data were included in the study. Thereafter, the
data was divided in batches of 24 hours, two hours apart, thusproviding 9 data
sets for a 42-hour period and 24 data sets for a 72-hour period.

A total of 47 out of the 90 patient data records reached the quality standards
of inclusion (17 Montpellier, 19 Padova, 11 Prague).

The CGM data were interpolated to a 5-minute sampling periodby linear
interpolation, giving the discrete-time CGM glucose signal GCGM(k) sampled at
time instancestk ∈ (5,10, . . .) min. For the Montpellier and Pdavoa patients, the
blood glucose reference was also interpolated to a five minute sampling rate by
piece-wise splining, for use in the hypoglycemic detectionassessment.
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4.4 Modeling
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Figure 4.1 Overview of the modeling approach. Notation: Plasma Insulin Ip(t), Rate of
Glucose Appearance following a mealRa(t), Blood glucoseG(t), Capillary glucoseGC(t),
Interstitial GlucoseGI (t), CGM raw current signalGI ,raw(t) and CGM signalGCGM(t).
M1 represent the model describing the glucose-insulin interaction in the blood and inner
organs (GIIM), theM2 model represents the diffusion-like relationship betweenblood and
interstitial glucose and the CGM sensor dynamics, andM3 is the joint model ofM1 and
M2.

For modeling purposes, the system was considered to consistof three main parts:
the Glucose Sub Model (GSM), the Insulin Sub Model (ISM) and the Glu-
cose/Insulin interaction Model (GIIM), including blood-to-interstitial dynamics,

50



4.4 Modeling

as outlined in Fig. 4.1. The GSM describes the absorption of glucose from meal,
the ISM the absorption of insulin from insulin injections and the GIIM the inter-
action of glucose and insulin in the blood system and organs.For now, we ignore
the division ofM3 into M1 andM2, and letM3 represent the GIIM as a single
model. In other words, we use the CGM signalGCGM(t) as a proxy for blood
glucoseG(t), and ignore the lag, described in Chapter 3, between these signals.

Insulin Sub Model

The transport of rapid-acting insulin from the subcutaneous injection site to the
blood stream has been described in quite a few models of insulin pharmacoki-
netics, see [Nucci and Cobelli, 2000] and [Wilinskaet al., 2005] for reviews.
Among these, the Insulin Sub Model (ISM), was based on the compartment
model in [Dalla Manet al., 2007a] and [Dalla Manet al., 2007b], as follows.

İsc1(t) =−(ka1+ kd) · Isc1(t)+D(t) (4.1)

İsc2(t) = kd · Isc1(t)− ka2 · Isc2(t) (4.2)

İp(t) = ka1 · Isc1(t)+ ka2 · Isc2(t)− (m2+m4) · Ip(t)+m1 · Il(t) (4.3)

İl (t) = m2 · Ip(t)− (m1+m3) · Il(t) (4.4)

m2 = 0.6
CL

HEb ·Vi ·MBW
(4.5)

m3 =
HEb ·m1

1−HEb
(4.6)

m4 = 0.4
CL

Vi ·MBW
(4.7)

Following the notation in [Dalla Manet al., 2007a] and [Dalla Manet al., 2007b],
Isc1 is the amount of non-monomeric insulin in the subcutaneous space,Isc2 is
the amount of monomeric insulin in the subcutaneous space,kd is the rate con-
stant of insulin dissociation,ka1 andka2 are the rate constants of non-monomeric
and monomeric insulin absorption, respectively,D(t) is the insulin infusion rate,
Ip is the level of plasma insulin,Il the level of insulin in the liver,m3 is the
rate of hepatic clearance, andm1,m2,m4 are rate parameters. The parameters
m2,m3,m4 are determined based on steady-state assumptions—relating them to
the constants in Table 4.1 and the body weightMBW.

Only rapid-acting insulins were considered. This means that the dynamics of
the basal doses of the MDI patients were not included in the insulin signal.
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Glucose Sub Model

The initial stages of glucose metabolism, describing the digestive process and
the flux of glucose from the intestines, have been modeled less extensively. How-
ever, two models have been widely used; the model by [Lehmannand Deutsch,
1992] and [Dalla Manet al., 2006]. The latter, a nonlinear compartment model,
was used in this study:

qsto(t) = qsto1(t)+qsto2(t) (4.8)

q̇sto1(t) =−kgri ·qsto1(t)+C(t) (4.9)

q̇sto2(t) = kgri ·qsto1(t)− kempt·qsto(t) ·qsto2(t) (4.10)

q̇gut(t) =−kabs·qgut(t)+ kempt·qsto(t) ·qsto2(t) (4.11)

Ra(t) =
f ·kabs·qgut(t)

MBW
(4.12)

where, again following the notation in [Dalla Manet al., 2006],qsto is the amount
of glucose in the stomach (qsto1 solid, andqsto1 liquid phase),qgut is the glucose
mass in the intestine,kgri the rate of grinding,kempt is the rate constant of gas-
tric emptying,kabs is the rate constant of intestinal absorption,f is the fraction
of intestinal absorption which actually appears in the blood stream,C(t) is the
amount of ingested carbohydrates andRa(t) is the appearance rate of glucose in
the blood.kempt is a non-linear function ofqsto andC(t):

kempt(qsto) = kmin+ k · {tanh[α(qsto−b ·G(t))]+ (4.13)

− tanh[β (qsto−d ·G(t))]+2} (4.14)

with k=(kmax−kmin)/2,α = 5/2D(1b), β = 5/2Dc, with parameterskmax, kmin,
b, andd.

Both models were evaluated using generic population parameter values ac-
cording to Table 4.1.

GIIM

The outputsIp(tk) andRa(tk) from these models were fed, using the generic pa-
rameter values in Table 4.1, as inputsu(k) = [Ip(tk) Ra(tk)]T into a linear state
space model of the Glucose-Insulin Interaction (GIIM), generating the final out-
put - the blood glucoseG(k) at timetk ∈ (5,10, . . .) min. The model equations,
with model ordern, are:

x(k+1) = Ax(k)+Bu(k)+w(k) (4.15)

G(k) =Cx(k)+ v(k) (4.16)
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Table 4.1 Generic parameter values used for the GSM and ISM.

Parameter Value Unit

kgri 0.0558 [min−1]

kmax 0.0558 [min−1]

kmin 0.008 [min−1]

kabs 0.0568 [min−1]

b 0.82 [-]

d 0.01 [-]

f 0.9 [-]

Parameter Value Unit

ka1 0.004 [min−1]

ka2 0.0182 [min−1]

kd 0.0164 [min−1]

kd 0.0164 [min−1]

m1 0.1766 [min−1]

V i 0.05 [L/kg]

CL 1.1069 [L/min]

with system matricesA∈ R
nxn, B ∈ R

nx2, C ∈ R
1xn, and process and measure-

ments noisesw(k) andv(k).

4.5 Identification

Subspace Identification

To identify the GIIMΣ : {A,B,C,D}, including a prediction feedback vectorK,
the subspace algorithm N4SID was used. The CGM glucose levelGCGM was
normalized by subtracting the mean value over the data section, and the station-
ary basal insulin level, equal to the minimum insulin level over the data section,
was removed from this input.

For each 24-hour data segment, models of model ordern (2-4) were identi-
fied. In order to fulfill the a priori constraints of physiological correctness, mod-
els that exhibited initial improper input response (risingglucose due to insulin
administration or lowered glucose after meal intake) were discarded. Thereafter,
the best model was determined by the Minimum Description Length (MDL) cri-
terion [Johansson, 2009], for the 2-hour ahead prediction error for all estimated
models. These models will hereafter be referred to as the automatically identified
models.

Models were also identified by manual selection of suitable data sections, no
longer than 24 hours. These models were subject to the same screening criteria as
the automatically identified models described above. To facilitate manual model
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identification, a graphical user interface was developed inMatlab, see Fig. 4.2.
These models will hereafter be referred to as the manually identified models.

Short-term predictions,p steps ahead, were evaluated using the Kalman fil-
ter:

x̂(k+1) = Ax̂(k)+Bu(k)+K(y(k)−Cx̂(k)) (4.17)

x̂(k+ p) = Ax̂(k+ p−1)+Bu(k+ p−1) (4.18)

Ĝ(k+ p) =Cx̂(k+ p) (4.19)

where meal and insulin announcement was assumed at leastTPH minutes ahead,
implying thatu(k+ l) was known for all 0≤ l ≤ p. For validation purposes, the
predictions were evaluated on the entire feasible data set,by means of RMSE
and by Clarke Error Grid Analysis (p-CGA, see below), for prediction horizons
TPH = 20−120 min (p= 4−24).

The Clarke Error Grid Analysis The Clarke Error Grid Analysis (p-CGA)
[Clarkeet al., 1987] is a metric originally developed to evaluate blood glucose
meters, relating the measurement error to clinical implications. This metric is
also often used to rate CGM precision, and recently to assessprediction perfor-
mance as well. It will be used in this aspect in this and the coming Chapters 5
and 6. Estimated glucose is plotted against the reference measurements and eval-
uated according to how the points fall into the different error zones, each with a
different clinical interpretation, see Fig. 4.3. For comparative purposes, the triv-
ial zero-order hold predictor (ZOH),G(t+TPH) = G(t), was used as a reference
of a non-informative, minimum performance predictor. Predictions with similar
or worse performance than the ZOH, measured as

γ =
RMSEGIIM

RMSEZOH
(4.20)

are not providing any predictive value and were thus considered as flawed.
The ability to detect hypoglycemic events beforehand was also assessed.

Hypoglycemia was defined as glucose values below 72 mg/dl forat least 20 min-
utes. The hypoglycemic episode was considered to have endedwhen euglycemia
was restored, here defined as glucose level above 100 mg/dl. The hypoglycemia
was considered detected by the predictor, at timeTth, when the predicted value
was below the hypoglycemic alarm thresholdGth, and the same alarm lasted
until the predicted value was above 100 mg/dl for at least 20 minutes. Assess-
ment was performed by calculating the sensitivity, the rateof false alarms and
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Figure 4.2 A Graphical User Interface (GUI) developed in order to facilitate manual model identification. Patient specific data can
be loaded from each of the DIAdvisor trials and displayed in three different columns of data windows. The top windows depict glucose
data, where the blue circles correspond to blood glucose reference values, the blue line represents the splined interpolation of these
valuesG and the dark green line is the interpolated Continuous Glucose Measurements (GCGM). The light green bar corresponds the
hypoglycemic threshold, 72 mg/dl. The middle plots show theplasma insulin levelIp, given by the Insulin Sub Model (ISM), derived
from basal and bolus doses. The lower plots describe the corresponding results from the Glucose Sub Model (GSM), yielding the rate
of appearance of glucoseRa following meal intakes. Different types of models can be evaluated by changing in the scroll-down menu
in the header of the GUI, and previous developed models can also be imported for comparative purposes. Model evaluation plots can
be requested using the push buttons in the upper right cornerof the GUI header.
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Figure 4.3 The Clarke Error Grid [Clarkeet al., 1987] is divided into different zones; the
A zone corresponds to error of little clinical significance,the B zone represent values that
deviate more than 20% from the reference, but would lead to benign or no treatment deci-
sions if acted upon, the C zone error could result in overcorrection, the D zone represents
failure to detect dangerously low or high glucose values andzone E corresponds to predic-
tions that would lead to erroneous and dangerous treatment decisions (e.g. administrating
insulin when already hypoglycemic).

the warning time for each prediction horizon. The warning time was calculated
for the issued alarms,

Twarn = T72−Tth+TPH (4.21)

whereT72 is the time instant when the glucose level first drops below 72mg/dl.
The sensitivity is defined as

Sensitivity=
TP

TP+FN
(4.22)

whereTPcorresponds to the true positive alarms, i.e., the number oftimes when
an alarm was triggered before an event when the glucose leveldropped below
72 mg/dl.FN, false negatives, correspond to that the predictor missed the hypo-
glycemic event or raised an alarm too late, i.e., if no positive warning timeTth is
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provided. The false alarm ratioρ was defined as:

ρ =
FP

TP+FP
(4.23)

where, the false positivesFP correspond to the number of times the predicted
glucose levelĜ(k) was belowGth, while the reference blood glucoseG(k) was
above 72 mg/dl.

Input Impact Modification

All models identified in this manner will have a pole close to the integrating
pole atz= 1 on the unit circle. Not surprisingly they are all slightly off, since
the data series is finite, and it only takes a small perturbation, to shift the pole
in either direction of ’1’. This means that the total stationary impact from either
input goes to zero (or explodes, if the model is unstable), which of course is
non-physiological for a diabetes patient. In order to have models suitable not
only for short-term prediction, but also for longer predictions, the total impact
over longer time horizons should be correct. Thus, the integrating term has to be
fixed. Simply moving the closest pole to ’1’ would alter the gain and dynamics
in an unacceptable way.

Physiologically qualitatively correct models, incorporating the necessary in-
tegrating term, are retrieved based on the models identifiedby the subspace al-
gorithm as follows for the second order system. New poles of the dynamics are
determined from the characteristic polynomial as

(z− pnew)(z−1) = (z− p1)(z− p2) (4.24)

wherep1 andp2 represent the existing poles, andpnew is the second pole in the
modified model. The equation lacks solutions, andpnew is approximated as the
average of the second and third coefficient of the characteristic polynomial:

pnew=
p1+ p2+ p1p2−1

2
(4.25)

The new poles are introduced by transforming the system intothe companion
canonical form and replacing the terms of the characteristic polynomial in the
right column of the new A-matrix.
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Now, in order to determine the new B matrix, the following constrained reg-
ularized Least Squares (LS) optimization is undertaken

min
b

||Y−ΛX||2+
3

∑
k=1

||H(k)−CA3kB||2 (4.26)

X = ΦX+ΓU (4.27)

Gi, j =CAiB(:, j) (4.28)

Gi,1 < Gi−1,1 < 0, i ∈ {1, . . . ,20} (4.29)

Gi,2 > Gi−1,2 > 0, i ∈ {1, . . . ,20} (4.30)

whereY = [y1 . . .yN]
T is the 24-hour CGM estimation record used to identify the

GIIM, X = [x1 . . .xN]
T is the corresponding stacked state matrix,U = [u1 . . .uN]

T

is the vectorized input record,H(1), H(2), H(3) is the 15-, 30- and 45-minute
impulse response of the GIIM,Gi, j is thei:th term of the impulse response from
input j of the modified model, andb is the vectorizedB matrix. Φ, Γ andΛ
represent the dynamical relationship of the model as:

Φ =







0 . . . 0

A 0 . . .

0 A
. . .







n·N,n·N

Γ=







B . . . 0

0 B . . .

0 . . .
. . .







n·N,n·N

= Π ·b (4.31)

Λ =







C . . . 0

0 C . . .

0 . . .
. . .







N,·n·N

(4.32)

whereΠ is a suitable transformation matrix. The regularization allows for a
sound balance between approximating the model to the GIIM initial response
(the first 45 minutes) and fitting the long term impact to the data. The constraints
guarantee qualitatively correct impulse responses. Here,constraints over 100
minutes,i = 20 in (4.29) and (4.30), was considered long enough to guarantee
sign-correct impulse responses.

4.6 Results

The selected model order wasn= 2 for all models. The summarizing results of
the predictive performance for 20-, 40-, 60- and 120-minuteahead prediction
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for the automatically identified GIIM in terms of RMSE are found in Tables 4.2.
The corresponding results for the p-CGA is found in Tables 4.3, 4.4, 4.5. In Fig.
4.4, an example of a 40-minute ahead prediction can be seen, and in Fig. 4.5
the relative performance in comparison to the ZOH predictoris presented. The
performance slowly deteriorates as the prediction horizonincreases, and seems
to converge to a value of 0.7 for long prediction horizons. The predictions were
similar when the manually identified GIIM models or the modified models were
used.

Table 4.2 Mean RMSE prediction results for the 20-, 40-, 60- and 120-minute ahead
predictions [minimum and maximum values]. Automatically identified models.

RMSE [mg/dl]

T [min] Montpellier Padova Prague

20 9 [6-13] 8 [5-11] 9 [4-11]

40 17 [13-23] 15 [10-21] 18 [9-23]

60 25 [18-33] 21 [14-31] 24 [14-33]

120 40 [20-57] 35 [26-49] 37 [25-58]

Table 4.3 Montpellier mean p-CGA results for the 20-, 40-, 60- and 120-minute ahead
predictions [minimum and maximum values]. Zone A and B are presented separately, but
the erroneous zone C and the dangerous zones D and E were lumped together. Automati-
cally identified models.

Montpellier

T [min] A [%] B [%] CDE [%]

20 98.6 [95.1-100] 1.0 [0-4.2] 0.4 [0-1.6]

40 94.6 [83.7-99.7] 4.4 [0.4-15.9] 0 [0-3.3]

60 91.6 [79.0-99.3] 7.1 [0.7-17.9] 0 [0-4.3]

120 87.8 [65.9-99.3] 9.6 [0.7-30.5] 0.1 [0-14.7]

Depending on the length of acceptable data, between 9 and 24 models were
automatically identified for each patient. On average, about 80% of the models
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Table 4.4 Padova mean p-CGA results for the 20-, 40-, 60- and 120-minute ahead pre-
dictions [minimum and maximum values]. Zone A and B are presented separately, but the
erroneous zone C and the dangerous zones D and E were lumped together. Automatically
identified models.

Padova

T [min] A [%] B [%] CDE [%]

20 99.1 [96.4-100] 0.5 [0-2.8] 0.3 [0-2.6]

40 96.1 [92.3-99.7] 2.6 [0.3-7.1] 1.3 [0-3.8]

60 93.5 [86.5-99.3] 4.5 [0.9-11.1] 2.0 [0-5.3]

120 89.9 [80.0-99.3] 6.2 [1.6-11.4] 3.9 [0-11.7]

Table 4.5 Prague mean p-CGA results for the 20-, 40-, 60- and 120-minute ahead pre-
dictions [Minimum and maximum values]. Zone A and B are presented separately, but the
erroneous zone C and the dangerous zones D and E were lumped together. Automatically
identified models.

Prague

T [min] A [%] B [%] CDE [%]

20 99.2 [97.6-100] 0.6 [0-1.4] 0.2 [0-1.2]

40 96.0 [90.6-98.7] 3.0 [0.8-5.5] 1.1 [0-3.8]

60 93.1 [87.3-98.4] 5.2 [1.2-10.1] 1.7 [0-4.2]

120 91.9 [83.7-97.4] 6.5 [2.6-13.6] 1.6 [0-6.2]

fulfilled the screening criteria, but with large interpersonal differences. For two
patients only one, out of all evaluated models, was acceptable, whereas for 21
patients, all models were satisfactory in terms of qualitative response.

In Fig. 4.6, a typical example of the model response for meal and insulin
can be seen for both the modified and the original model derived from the au-
tomatically identified model. The modified model responses follow the original
models closely up until about 100 minutes after insulin or meal intake.

The values of the stationary estimated insulin and carbohydrate impact levels
are found in Fig. 4.7. The distribution of the ratio between these was estimated
by a log-normal distribution and by the Parzen estimate method using a Gaussian
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Figure 4.4 Example of a 40-minute ahead predictionĜ compared to the reference CGM
signalGCGM.

0 20 40 60 80 100 120 140
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

, 
γ
 [

−
]

Prediction Horizon [min]

 

 

Montpellier

Padova

Prague

Figure 4.5 Mean relative performance in comparison to the ZOH predictor including
standard deviations.

kernel (σ = 2.0) [Bishop, 2006]. The results are found in Fig. 4.8. Similarresults
were achieved when the modified models were derived from the automatically
and the manually identified models.

The Carbohydrate-to-Insulin Ratio (CIR) was estimated from the modified
models, and is a common metric in clinical diabetological practice, used to es-
timate the insulin need for different meals [Davidsonet al., 2008]. The actual
CIR was calculated for each individual, by dividing the summarized amount of
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Figure 4.6 Example of response to 1 Insulin Unit (IU) of rapid insulin and 10 g of car-
bohydrates. Black curve: Modified model, Red dotted curve: Original prediction model
(automatically identified).

digested carbohydrates and insulin over the study. In Fig. 4.9, the actual and
the estimated CIR were compared. The similarity is quite good (regression:
y = a · x,a = 1.05± 0.05, R= 0.8, p < 0.05), apart for some outliers and for
some of the Prague patients, where there is a clear bias.

The dynamical aspect of the insulin and carbohydrate impactdescribed by
the time constantsτIns andτCarb (corresponding to the time it takes to reach 63%
of the stationary level), as determined by the modified model, are illustrated in
Fig. 4.10. The time constants were heavily distributed onτIns= 110 minutes and
τCarb= 70 minutes. There was no principal difference in distribution between the
three sites.

The data were reviewed for hypoglycemic events. In total, 57(35 Mont-
pellier, 22 Padova, 0 Prague) hypoglycemic events were found for 21 patients
(13 Montpellier, 10 Padova, 0 Prague), when reviewing the blood glucose refer-
ence records. Due to the low number of blood glucose samples collected at the
Prague site, no interpolation could be undertaken, and no analysis in terms of
hypoglycemic detection could therefore be performed from those data records.

62



4.6 Results

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

In
s
u
lin

 I
m

p
a
c
t 

[m
g
/(

d
l⋅I

U
)]

Carbohydrate Impact [mg/(dl⋅10 g)]

 

 

Montpellier

Padova

Prague

Figure 4.7 Levels of stationary carbohydrate and insulin impacts.
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sites.

Four different settings of the alarm threshold were analysed; 72, 78, 84 and 90
mg/dl, for prediction horizons 10,15, . . . ,60 min of the underlying predictors.
In Fig. 4.11 and 4.12, the sensitivity, false alarm ratio andwarning time are
plotted for every combination of threshold level and prediction horizon for the
Montpellier and the Padova sites. The Montpellier results shown are based on
the automatically identified models, and the Padova resultshave been retrieved
using the manually identified models.

For the Montpellier patients, the automatically identifiedmodels were slightly
better than the manually identified models. A threshold ofGth =90 mg/dl and
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Figure 4.9 Actual versus estimated Carbohydrate-to-Insulin Ratio (CIR).

TPH = 40 gave a sensitivity of 70%, a false alarm rate of 49% and a warning time
of 24 minutes. On the contrary, the manually identified models were the better
choice in this aspect for the Padova patients. A threshold ofGth =90 mg/dl and
TPH = 20 gave a sensitivity of 76%, a false alarm ratio of 47% and a warning
time of 34 minutes. Using the ZOH, the sensitivity, false alarm ratio and warning
time results can be found in Tables 4.6 and 4.7.

Table 4.6 Performance metrics for the hypoglycemic detection using the comparative
ZOH model, triggered at the different alarm threshold levels Gth. Montpellier patients

Gth [mg/dl]

72 78 84 90

Sensitivity [%] 3 15 17 37

False Alarm Ratio,ρ [%] 89 63 81 79

Warning time [min] 10 8 12 8

The relationship between level of insulin antibodies and time constant of the
ISM was investigated, with no positive outcome, see Fig. 4.13.
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Table 4.7 Performance metrics for the hypoglycemic detection using the comparative
ZOH model, triggered at the different alarm threshold levels Gth. Padova patients

Gth [mg/dl]

72 78 84 90

Sensitivity [%] 0 15 31 34

False Alarm Rate,ρ [%] 100 78 80 82

Warning time [min] N/A 5 12 12

4.7 Discussion

Prediction

The selected linear model structure of the GIIM is in many aspects a crude ap-
proximation to known non-linearities, e.g., in terms of theinverse relationship
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Figure 4.11 Average hypoglycemic sensitivity (a), specificity (b) and warning time (c),
using different thresholds and prediction horizons. Montpellier patients.

between insulin sensitivity and glucose level [Chanet al., 2010], and different
aspects of time-variability, see Chapter 3. Furthermore, the generic parameters
used in the sub models are also non-optimal, and can be expected to reduce the
predictive performance (see discussion on the insulin sub model’s influence on
the input response further down). However, these choices are to some extent
driven by the available data. On average, the investigated patient records con-
tained 58 hours of data, or about 700 samples collected with a5-minute sampling
period. Considering splitting these data into estimation and validation data, fur-
ther reduces the available data for identification—settinga limit for the parame-
ter complexity of the model. The sub models were chosen in order to transform
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Figure 4.12 Average hypoglycemic sensitivity (a), specificity (b) and warning time (c),
using different thresholds and prediction horizons. Padova patients.

the meal and insulin impulses into a continuous signal to be usable in the chosen
state-space framework. Individual parametrization of thesub models, even on
the individual meal composition, see e.g. [Cesconet al., 2009], would have been
preferred, but the modeling errors introduced by the generic parameters in these
sub models can to some extent be handled by the GIIM model, following the sub
models in a cascade-like manner. Furthermore, the protocollacked identifiabil-
ity concerns in terms of that it was not designed to, e.g., provide excitation to
the system over the entire glucose range, to excite the system with a single input
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Figure 4.13 Time constant of the insulin impact in relation to the level of antibodies.

channel separately, or to test a wider range of input magnitudes. This, together
with the short data set, makes assessment of time-variability or non-linear effects
very difficult, and should therefore not be addressed in a first modeling attempt.

The aspects outlined above may also be responsible for the variable degree
of identifiability, experienced for some data segments of the patient data. Non-
linearity, time-variability and large inter-variabilitybetween meal responses may
be perceived as data inconsistencies to the model. However,on the positive side,
it should be noted that the patient data contained extra snacks and insulin correc-
tions during the three day course (on average 5 meals and 4 bolus doses in total
over a day). These unscheduled inputs, often separated in time, provided some
extra excitation to the system identification.

Despite these short-comings in terms of modeling, the predictive quality of
the simplified model is quite good for short prediction horizons. The Clarke Grid
evaluation (Tables 4.3, 4.4, 4.5) indicates that clinically acceptable results (here
defined asA+B> 98%) in general could be achieved for prediction horizons up
to 60 minutes.

Comparing the three clinical sites, no significant difference in predictive
quality was found. However, it was found that the predictiveperformance was
significantly better for the MDI patients than for the pump patients (0.05 sig-
nificance level,∀T ≤ 90 min, when Montpellier and Padova where considered,
∀T ≤ 40 min, when the Prague patients were included. Data not shown).

The main difference between these two groups, with regards to modeling, is
in terms of the insulin signal. Here, the basal dose is included for the pump pa-
tients, whereas the insulin signal used for the MDI patientsonly take bolus doses
from the rapid-acting insulin into account. The basis for this choice was that the
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action profiles of the long-acting insulins used by the MDI patients (glargine and
detemir) are very flat, with low dynamic impact, and is not expected to directly
influence the short-term dynamics investigated. The basal dose for pump patients
on the other hand, utilizes the same rapid insulin as used forbolus purposes. The
short action profile of the rapid insulins allows for sudden changes in basal dose,
a feature that often is exploited to optimize the 24-hour basal regime for these
patients. The fast response to these changes is a strong argument for including
the basal level in the insulin signal for the pump patients. However, a difficulty in
modeling and identifying pump patients with shifting basallevel is to establish
the true reference level, i.e., the basal level corresponding to a stationary glucose
level when no other external inputs affect the system. An argument for not in-
cluding the basal level for pump patients is that the intention of the shifting basal
therapy regime is to match the circadian rhythm of the metabolism [Van Cauter
et al., 1997b], and that the selected basal dose thus matches the true reference.
In reality, mismatches are expected. Considering these aspects, the models were
identified both with, and without, the basal level, but without principal differ-
ence in result. The underlying reason for better predictiveperformance of the
MDI patients thus remains unknown.

Comparing the results to previously published predictors is not always easy
due to the use of different evaluation metrics. However, below some compara-
ble results have been found. In [Finanet al., 2009a] both batch-wise and recur-
sively identified patient-specific ARX models have been analysed for 9 patients
and compared to a ZOH predictor for 30-, 45- and 60-minute ahead prediction.
The corresponding mean relative performance was 0.91 for all three prediction
horizons, and the absolute RMSE values are summarized in Table 4.8 together
with results for the following studies. A neural network approach was utilized in
[Zecchinet al., 2012] for 30-minute predictions on 9 subjects, and supportvec-
tor regression was applied to the problem in [Georgaet al., 2011] for 7 patients.
In this latter study, the results were also evaluated with the p-CGA, see Table
4.9. Comparing these results with the results from this study in Tables 4.2, 4.3,
4.4 and 4.5, show that the results achieved are competitive.

For hypoglycemic detection, a sound balance between sensitivity, false alarm
rate and maximum warning time is crucial. The results show a very high false
alarm rate. However, this metric depends on the binary counting of whether the
blood glucose level passed the hypoglycemic threshold, which makes it sensitive
to small changes. As it turns out, many of the false alarms were close misses.
The mean value of the blood glucose reference at these instances, was 88 and
93 mg/dl for the Montpellier and the Padova site, respectively, with many values
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Table 4.8 Comparative values of previous publications.

RMSE [mg/dl]

Publication
Prediction Horizon [min]

Nr of subjects 15 30 45 60 120

[Finanet al., 2009a] 9 N/A 26 34 40 N/A

[Zecchinet al., 2012] 9 N/A 14 N/A N/A N/A

[Georgaet al., 2011] 7 9.6 16.2 N/A 24.9 35.8

Table 4.9 Comparative Clarke values [%] from [Georgaet al., 2011].

Zone
Prediction Horizon [min]

15 30 60 120

A 98.8 92.5 80.0 62.9

B 1.1 7.0 18.5 33.7

C 0 0 0.1 0.4

D 0.1 0.5 1.4 3

E 0 0 0 0

close to the hypoglycemic threshold. Considering these results, the high false
alarm rate should not be overstated, and comparing the predictor alarms’ overall
results to the corresponding results for ZOH predictor, significant improvements
are apparent. Furthermore, it should be borne in mind that the low incidence of
hypoglycemic events has a high impact on the estimate of these performance
metrics. Considering the strong amplification of the insulin action in the hypo-
glycemic zone, reported in [Chanet al., 2010], a specialized low blood glucose
model may well improve these results. However, the hypoglycemic episodes of
the data sets used here are short, and are shadowed by the datain euglycemia
and hyperglycemia in the identification process.

70



4.8 Conclusion

Long-term Impact Response

It is interesting to note that the impact responses of the GIIM models are similar
to the modified models up until about 100 min (Fig. 4.6). This is sufficient to
ensure short-term predictions within this range, as the prediction results indi-
cate. However, the entanglement of the inputs after this point makes the models
unsuitable for control strategies dependent on long-term impact, such as manual
control, and the modified models should be employed instead.

The estimated time constants of the model from each input were heavily
distributed in the lower end atτins = 110 andτCarb = 70 min, see Fig. 4.10.
Looking at the dynamics of the sub models in section 4.4, it can be concluded
that the ISM has a time constant close to 110 minutes. Thus, itseems likely that
the generic model was too slow for some of the patients. The GSM, evaluated
in the same manner, has a time constant of 58 min, which is lower than 70 min,
and this sub model is therefore not subject to the same problem.

Case studies suggest that high levels of insulin antibodiescould have a neg-
ative effect on glucose regulation in insulin-dependent diabetic patients, such as
post-prandial hyperglycemia, followed by, in some cases, hypoglycemia, long
time after the expected duration of the insulin action [Van Haeften, 1989]. The
causal pathways to such an influence would be the binding of insulin, result-
ing in prolonged, and initially dampened, insulin impact. These adverse effects
have not been found in large cross trial analysis, [Lindholmet al., 2002], but
the numerous case studies suggest that the problem can be significant for some
individuals, see e.g. [Hirata and Uchigata, 1994]. The individual specific condi-
tions explaining the case reports remain to the revealed. Ifsuch binding effect
was present in the data at hand, the estimated insulin impactwould possibly
have a large time constant for patients with high antibody levels. However, the
results, see Fig. 4.13, suggest the opposite—the large estimated time constants
belong to the patients with low antibody levels, possibly suggesting that most of
antibodies identified in our patients are of high affinity forinsulin, thus forming
stable immune-complexes, which are not prone to on/off binding to insulin, and
consequently have minimal effect on insulin action.

4.8 Conclusion

In this study, patient-specific models were identified for 47different patients.
The predictive quality was competitive to previously published results, and it
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was found that there is a significant difference in prediction quality between the
MDI and pump patient groups for short prediction horizons. The reason for this
is unknown. No difference was found between the different clinical sites, but
large interpersonal differences. Further in-depth analysis should be undertaken
to investigate whether any stratifications are possible based on basic patient char-
acteristics, as those collected in the study, see Chapter 3.Hypoglycemic alarm
triggering was evaluated with an average sensitivity of 73%, 28 minutes in ad-
vance with a 48% false-alarm rate. However, the average glucose value when
the false alarms were raised was 90 mg/dl, with many values close to the hypo-
glycemic threshold. Thus, most of the false alarms were nearmisses, reducing
the significance of the high false alarm rate. The models provide a significant
improvement in the possibility to detect hypoglycemia in advance, in compar-
ison to relying on CGM data alone. Furthermore, the estimated impacts of the
modified models seem plausible and the estimated Carbohydrate-to-Insulin Ra-
tio (CIR) matched the true ratio well. Overall, the results indicate that the used
modeling and identification approach may prove useful for short-term predic-
tion, utilized in a decision support system or an artificial pancreas.
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5

Augmented Model

Incorporating Sensor

Dynamics

Predicting the glucose level in a real-time setting means relying on CGM data.
In Chapter 4 the delay between the blood glucose and the measured interstitial
glucose level was ignored, and the CGM signal was used as a proxy for blood
glucose. Actually, this is the most common way of glucose modeling and pre-
diction, and applies to all the models listed in Chapter 4. However, in many
cases there is a significant lag between the interstitial glucose and the blood glu-
cose due to physiological and sensor dynamics [Keenanet al., 2009]. Ignoring
this delay in the modeling implies corresponding delays in the prediction, an
aspect of special importance during falling glucose levelsand impending hypo-
glycemia, when an hypoglycemic alarm, based on the prediction, could warn the
patient and instigate corrective actions. For an assessment of the delay between
these signals in the data at hand, see Chapter 3. The capillary and sensor charac-
teristics of the finger-stick measurement sensors are, in this context negligible,
and are generally disregarded (and the delay is indicated tobe small [Dyeet al.,
2010]). In this chapter, the GIIM,M1 in Fig. 5.1, and the interstitial and sensor
dynamics (here treated as one modelM2, see [Boyneet al., 2003] for a brief dis-
cussion on the contribution of each term to the delay) are identified separately,
and thereafter merged together into one single grey-box model. Using an ob-
server, the blood glucose evolution is predicted ahead, based on the raw sensor
output.
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G (t)
CGM

Glucose
Subsystem

Meal

Subsystem
Insulin

Insulin

Dynamics
Capillary

Sensor
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GIIM

Dynamics
Sensor

Dynamics
Interstitial

G (t)I

M 1

M 2

M 3

G(t)

G (t)
I,raw

R (t)a I  (t)p

G  (t)c

Figure 5.1 Overview of the modeling approach. Notation: Plasma Insulin Ip(t), Rate of
Glucose Appearance following a mealRa(t), Blood glucoseG(t), Capillary glucoseGC(t),
Interstitial GlucoseGI (t), CGM raw current signalGI ,raw(t) and CGM signalGCGM(t).
M1 represent the model describing the glucose-insulin interaction in the blood and inner
organs (GIIM), theM2 model represents the diffusion-like relationship betweenblood and
interstitial glucose and the CGM sensor dynamics, andM3 is the joint model ofM1 and
M2. Same figure as Fig. 4.1.

The interstitial and CGM sensor dynamics have been investigated assuming
a first-order diffusion model in [Kovatchevet al., 2006] and [Facchinettiet al.,
2007]. In [Facchinettiet al., 2007], the blood glucose level was recovered from
the CGM signal using deconvolution, and in [Bequette, 2004]an early attempt
at observer-based estimation was presented. In [Lealet al., 2010] a third order
Box-Jenkins model was used to estimate the glucose level from the raw sensor
signal. However, so far (to the best of the author’s knowledge) no attempts have
been made on merging all the modules together for the purposeof blood glucose
prediction.
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5.1 Data

Based on the assessment of blood-to-interstitial delay in Chapter 3 and data com-
pleteness, one patient was chosen from the total DAQ data set. In order to show
significant results, a patient with large lag was chosen (patient 107 from Mont-
pellier).

Signals

The HemoCue measurements were interpolated using a shape preserving spline
interpolation method (pchip in Matlab [MathWorks, 2012]) to retrieve an equidis-
tant sampled signalG(t) with sampling period 5 minutes.

Apart from theGCGM(t) signal (10 min sampling rate), an intermediate sig-
nal GI ,raw(t) from the glucose sensor was collected (1 min sample rate). The
signal, corresponding to the electrical current measured by the sensor, was nor-
malized to the same amplitude as the blood glucose data and resampled to a
5 minute basis, and was used in the identification instead of the CGM signal
GCGM(t).

5.2 GIIM Modeling - M1

Denoting the blood glucoseG(tk), at sampling timetk, with y(k), and the raw
CGM signalGI ,raw(tk) with z(k):

ζ =

[

y(k)

z(k)

]

=

[

G(tk)

GI ,raw(tk)

]

(5.1)

and the filtered inputsuk = [Ip(k) Ra(k)]T , the GIIM is modeled with a discrete-
time state space modelM1.

x(k+1) = A1x(k)+B1u(k)+ω(k) (5.2)

y(k) =C1x(k)+υ(k) (5.3)

wherex(k) ∈ R
n is the state vector andω is process noise andυ is the finger-

stick measurements noise with covariances:

E
{

(

ω
υ

)(

ω
υ

)T
}

=

[

Q1 0

0 R1

]

(5.4)

The model order was determined using the Akaike criterion [Johansson, 2009].
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5.3 Interstitial and Sensor Model - M2

The dynamics between blood glucosez and interstitial glucosey, as measured
by the sensor, was modeled as an ARX process.

A(z) ·z(k) = B(z) ·y(k−d)+e(k) (5.5)

whereA, B are polynomials of the zero-order-hold operatorz, d is a delay, and
e(k) is the CGM measurement noise. The model ordersnA, nB andd evaluated
for values according to Table 5.1 are determined using the MDL criterion. The
choice of evaluated model orders covers the compartment model suggested in
[Rebrin and Steil, 2000a].

Table 5.1 Evaluated model orders

Parameter Value

nA 1-2

nB 1-2

d 1-4

5.4 Model Merging - M3

Converting the sensor ARX model into a state-space modelM2 : {A2,B2,C2}
with process and measurement noisesQ2 andR2, the GIIM and sensor models
are merged into one modelM3 : {A3,B3,C3}, with the augmented state vectorξ
and the outputζ .

A3 =

[

A1 0[nA1
×nA2

]

B2 ·C1 A2

]

, B3 =

[

B1

0[nA2
×2]

]

(5.6)

C3 =

[

C31

C32

]

=

[

C1 0[1×nC2
]

0[1×nC1
] C2

]

(5.7)

Q3 =

[

Q1 0

0 Q2

]

, R3 =

[

R1 0

0 R2

]

(5.8)
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5.5 State Estimation and Sensor Fusion

Data is available at different rates from the two measurement devices, and at
least from the finger-stick measurements, in a non-equidistant manner. Thus,
combinatorially there are 3 (4) possibilities; (1) data from both, (2) Data from
HemoCue and (3) Data from the CGM sensor, ((4) No data). This calls for time-
varying system of switched dynamics. The boolean variablesδ1 andδ2 are used
to keep track of which signal that is present in the feedback,and the new system
becomes:

ξ̂ (k+1) = A3ξ̂ (k)+K(ζ (k)−C3ξ̂ (k)) (5.9)

ζ̂ (k) =
[

δ1 0

0 δ2

]

C3ξ̂ (k) (5.10)

where the time-varying Kalman gainK depends on the unknown covariance
of the process noiseQ and measurement noisesR1 and R2. The accuracy of
the finger-stick HemoCue glucose monitor [HemoCue Glucose 201+ Analyzer,
2012] has been studied in [Storket al., 2005], which indicate a standard deviation
in the area of 10-15 mg/dl when compared to a state of the art laboratory device
(Yellow Spring Instrument [Yellow Springs Instrument, 2012]). The study indi-
cates a linear relationship between noise and glucose level, which is common
for glucose meters. No information on the measurement noiseof the relatively
new Abbott CGM system [Abbott Freestyle Navigator, 2012] has been found,
but a standard deviation of 20 mg/dl is not an unrealistic assumption (compare
to the BG-CGM deviation in Chapter 3). Also for CGM systems a proportional
increase in noise level to the glucose level is found. Current evaluation methods
to assess the performance of CGM systems is based on comparing the CGM
signal to a blood glucose reference. As the previous discussion shows, the sig-
nal to reference deviation incorporates deviation due to the time lag between the
signals and does not accurately capture the stochastic variation in the CGM sig-
nal. Recent developments in CGM error assessment aim to quantify these error
dynamics, but do not address the estimate of CGM variation per se [Clarke and
Kovatchev, 2009]. In this thesis, the initial guess for noise level standard devia-
tion was chosen to correspond to 15 mg/dl for the HemoCue device and 20 mg/dl
for Abbott CGM. The measurement errors were considered to beuncorrelated.

Given the initial guesseŝQ0 and R̂0, Q andR can be iteratively estimated
by first calculating the state estimation sequenceΞ̂N = [ξ̂1 . . . ξ̂N] and the esti-
mation error sequencêWN = [ŵ1 . . . ŵN] from the estimation data{YN,UN, Ξ̂0}
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[Johansson, 2009].

Ξ̂N+1 = AX̂N +BUN+K(YN −CΞ̂N) (5.11)

ŴN =CΞ̂N −YN (5.12)

Thereafter the covariance estimates

S= E{(ξ̂ − ξ )(ξ̂ − ξ )T}, R= E{ŵŵT} (5.13)

are determined. Given that the sequence is stationary

lim
N→∞

SN = S (5.14)

and
lim

N→∞
RN = R (5.15)

Now {A,B,C} may be re-estimated again by recognizing that:

ξ̂k+1 = (A−KC) ξ̂k+[B K][uT
k γT

k ] (5.16)

ŵk− γk =−Cξ̂k (5.17)

Finally,

Q̂= SN −ASN AT −K RN KT (5.18)

R̂=CSNCT −RN (5.19)

Note that this computation may result in sign-indefinite solutions [Johansson,
2009].

Estimation and Validation

The overnight data between the first and the second day were used together with
breakfast meal data from the second day for estimation. It was decided to use
overnight data together with meal data, in order to have a data set with sufficient
amount of excitation. Using meal data alone is problematic,since both inputs act
simultaneously during these circumstances. An assessmentof the importance of
input excitation to identification using simulated diabetic data sets is made in
[Finan et al., 2009b]. The first and third days’ breakfasts were used for cross
validation. Additionally, to challenge the predictor, allHemoCue measurements
were removed from the validation data sets.
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5.6 Evaluation Criteria

To evaluate the predictive performance of the model, 20, 40 and 60 minute pre-
dictions were considered. The correspondence to the reference HemoCue mea-
surements were assessed using the Clarke Pointwise Error Grid Analysis (p-
CGA), see Chapter 3, RMSE and maximum absolute error. The performance
was compared to the CGM signal’s ability to measure the bloodglucose.

5.7 Results
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Figure 5.2 Example of Clarke Error Grid Diagram, 40 min prediction Day 3. Prediction
versus the interpolated HemoCue blood glucose reference.

First, the GIIM M1 was identified. Using the interpolated HemoCue data and
the meal and insulin sub models to retrieve the filtered inputs, a second-order
state-space model was identified using the N4SID command of the System Iden-
tification Toolbox in Matlab [MathWorks, 2012]. The model was stable and re-
sponded qualitatively correctly to input (not shown). The interstitial modeM2

was thereafter identified from the interpolated blood glucose dataG and the raw
CGM signalGI ,raw. The model order chosen according to the MDL criteria was
nA = 2, nB = 1 andd = 1. Converting theM2 model to state space format, the
merged modelM3 was retrieved.
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Since only CGM data were available in the validation data (δ1 = 0), the
system became time-invariant and a stationary Kalman filterwas designed.

Using the initial guess forQ andR produced noisy predictions. The attempt
to estimate the noise characteristics from the estimation data broke down into
non-positive definite covariance matrices. Instead,Q andR were heuristically
chosen to strike a sound balance between signal smoothness and responsiveness
to model-to-feedback mismatch.

In Fig. 5.3, the 20, 40 and 60 minutes predictions together with normalized
GI ,raw signal and theGCGM signal can be seen, and in Fig. 5.2 an example of
p-CGA can be seen. All performance metrics have been summarized in Table
5.2.

Table 5.2 Performance evaluation for theM3 predictor and theGCGM in comparison to
the blood glucose referenceG on validation data.

Prediction p-CGA[%] RMSE max | e |
Horizon A B CDE [mg/dl] [mg/dl]

20 84.2 15.8 0 19 42

40 84.9 15.1 0 20 46

60 83.7 16.3 0 21 45

GCGM 45.9 51.6 2.5 47 90

5.8 Discussion

Error Analysis

To determine the source of the prediction error, the simulation errors of the sen-
sor model,

εz = z− ẑ (5.20)

and of the GIIM model
εy = y− ŷ (5.21)

were investigated separately. In Fig. 5.4, the simulation error between the simu-
lated raw CGM signal̂GI ,raw and the true signal can be seen. The error distribu-
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Figure 5.3 Plasma glucose predictions. Interpolated HemoCue measurements (thick
solid blue),GCGM (solid black),GI ,raw (dash dotted magenta) andM3 predictions (dashed
red) for estimation data (middle plot) and validation data (left and right plots).
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Figure 5.5 Simulation errorεy of blood glucosey(k) given inputsu(k) usingM1. Esti-
mation data (middle plot) and validation data (left and right plots).

tion is clearly non-Gaussian. This could be explained by time-varying dynam-
ics, and in [Sparacinoet al., 2007] a recursive sensor model is used to handle
such occurences. However, the evaluated time periods are short, and applying
the model over the entire data record gives a more even distribution (Fig. 5.6).
Given a tolerance interval of±20 mg/dl, corresponding to the p-CGA A zone for
a 100 mg/dl blood glucose value, the model error can be considered acceptable.
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Figure 5.6 Distribution of the simulation error of the sensor model over the entire data
record.

The simulation error of the GIIM can be seen in Fig. 5.5. The contribution is
significantly larger. For breakfast day one, the model underestimates the glucose
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drop after the peak. On day three on the other hand, the model overestimates
the same drop. Given that these are infinite-horizon prediction without any mea-
surement feedback, a maximum error in the magnitude of 40 mg/dl should be
considered to be a very good result. In fact, the error is almost within the p-CGA
A zone at all times.

Looking at the predictions in Fig. 5.3, the behavior of the prediction error can
be understood from the error contribution from the sensor model, sensor errors
and the GIIM. As the prediction horizon increases, the GIIM error becomes more
and more dominant.

The corresponding prediction error for the model from Chapter 4, without
the sensor model and with CGM as feedback signal, in terms of RMSE, can be
found in Table 5.3. Compared to the results in Table 5.2, an improvement can be
seen for every evaluated prediction horizon, with a relatively larger improvement
as the prediction horizon increases.

Table 5.3 Prediction error assessment for the model without incorporated sensor model
in terms of RMSE.

Prediction RMSE [mg/dl]

Horizon [min] vsGCGM vsG

20 8.0 25.0

40 16.3 31.4

60 24.4 37.6

Glucose and Insulin Sub Models

Major sources of uncertainty are the intermediate inputsRa andIp and the as-
sumptions made to retrieve them. Unfortunately, these obstacles are hard to over-
come in the applied modeling framework. Neither the rate of glucose appearance
following a meal nor the plasma insulin level are normally available for measure-
ment. Estimates ofRa have been made in [Dalla Manet al., 2006] and require
a tracer based experiment.Ip can be obtained from lab assays of blood samples.
Obviously, such arrangements cannot be expected in a normalday setting. Fur-
ther work to assess the intra- and inter-individual variations of these processes,
and on mitigations to handle these principle obstacles, is needed.
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IG Dynamics

These dynamics were assumed to be time invariant, and homogeneous in di-
rection and magnitude of glucose change and glucose level. The assumption of
independence of the sign of the glucose change has been shownto be ques-
tionable, see [Kovatchevet al., 2009], where statistically significant differences
in response time, depending on the direction of glucose change, are presented.
However, in this study no such differences could be observed.

5.9 Conclusions

The comparison of the merged prediction to the CGM signal clearly shows that
the augmented model manages to significantly reduce the delay, that otherwise
is present when only relying on the CGM signal to estimate theblood glucose.
Furthermore, the results indicate that the underlying GIIMmodel seems to, with
acceptable accuracy, describe the combined impact of a breakfast and the sub-
sequent insulin injection. Further research is needed to evaluate the concept on
more patient data, to investigate whether generic sensor models can be utilized—
thereby reducing the necessity of well-sampled reference blood glucose data—
and to investigate potential non-linear sensor characteristics and time-variability
associated with sensor drift.
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6

Ensemble Prediction

Diabetic glucose dynamics is known to be subject to time-shifting dynamics, as
indicated in Chapter 3. Considering this, and the vast number of models devel-
oped in the literature, as described in Chapter 4, it is unclear if a single model can
be determined to be optimal under every possible situation.This raises the ques-
tion whether it is more useful to use one of the models solely,or if it is possible
to gain additional prediction accuracy by combining their outcomes. Accuracy
may be gained from merging, due to mismodeling or to changingdynamics in
the underlying data creating process, where a single model capturing the system
behavior may be infeasible, e.g., for practical identification concerns. Thus, by
an ensemble approach, robustness and performance may be improved. In this
chapter, a novel merging approach—combining elements fromboth switching
and averaging techniques, forming a ‘soft’ switcher in a Bayesian framework—
is presented for the glucose prediction application.

6.1 Related Research

Merging models for the purpose of prediction has been developed in differ-
ent research communities. In the meteorological and econometric communities
regression-oriented ensemble prediction has been a vivid research area since the
late ’60s, see e.g. [Rafteryet al., 2005] and [Elliottet al., 2006].

Also in the machine learning community, the question of how different pre-
dictors or classifiers can be used together for increased performance has been
investigated, and different algorithms have been developed, such as the bag-
ging, boosting [Breiman, 1996] and weighted majority [Littlestone and War-
muth, 1994] algorithms, and online versions of these [Oza, 2005; Kolter and
Maloof, 2003].
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Chapter 6. Ensemble Prediction

In most approaches the merged prediction ˆye
k at timek is formed by a linear

weighted average of the individual predictorsŷk.

ŷe
k = wT

k ŷk (6.1)

It is also common to restrict the weightswk to [0,1]. The possible reasons for
this are several, where the interpretation of the weights asprobabilities, or rather
Bayesian beliefs, is the dominating. Such restrictions arehowever not always ap-
plicable, e.g. in the related optimal portfolio selection problem, where negative
weight (short selling) can reduce the portfolio risk [Eltonet al., 1976].

A special case, considering distinct switches between different linear system
dynamics, has been studied mainly in the control community.The data stream
and the underlying dynamic system are modelled by pure switching between
different filters derived from these models, i.e., the weights wk can only take
value 1 or 0. A lot of attention has been given to reconstructing the switching
sequence, see e.g. [Gustafsson, 2000; Ohlssonet al., 2010]. From a prediction
viewpoint, the current dynamic mode is of primary interest,and it may suffice
to reconstruct the dynamic mode for a limited section of the most recent time
points in a receding horizon fashion [Alessandriet al., 2005].

Combinations of specifically adaptive filters has also stirred some interest in
the signal processing community. Typically, filters with different update pace are
merged, to benefit from each filter’s specific change responsiveness, respectively
steady state behaviour [Arenas-Garciaet al., 2006].

Finally, in fuzzy modeling, soft switching between multiple models is of-
fered using fuzzy membership rules in the Takagi-Sugeno systems [Takagi and
Sugeno, 1985].

6.2 Problem Formulation

A non-stationary data streamzk : {yk,uk} arrives with a fixed sample rate, set
to 1 for notational convenience, at timetk ∈ {1,2, ...}. The data stream con-
tains a variable of primary interest calledyk ∈ R and additional variablesuk.
The data stream can be divided into different periodsTSi of similar dynamics
Si ∈ S= [1...n], and wheresk ∈ S indicates the current dynamic mode at timetk.
The system changes between these different modes accordingto some unknown
dynamics.
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6.3 Sliding Window Bayesian Model Averaging

Givenm number of expertq-steps-ahead predictions, ˆy j
k+q|k, j ∈ {1, ..m} of

the variable of interest at timetk, each utilizing different methods, and/or dif-
ferent training sets; how is an optimalq-steps-ahead prediction ˆye

k+q|k of the
primary variable, using a predefined norm and under time-varying conditions,
determined?

6.3 Sliding Window Bayesian Model Averaging

Apart from conceptual differences between the different approaches to ensemble
prediction, the most important difference is how the weights are determined.
Numerous different methods exist, ranging from heuristic algorithms [Takagi
and Sugeno, 1985; Arenas-Garciaet al., 2006] to theory based approaches, e.g.,
[Hoetinget al., 1999]. Specifically, in a Bayesian Model Averaging framework
[Hoeting et al., 1999], which will be adopted in this chapter, the weights are
interpreted as partial beliefs in each predictorMi , and the merging is formulated
as:

p(yk+q|Dk) = ∑
i

p(yk+q|Mi ,Dk)p(Mi |Dk) (6.2)

wherep(yk+q|Dk) is the conditional probability ofy at timetk+q given the data,
Dk : {z1:k} received up until timek, and if only point-estimates are available, one
can, e.g., use:

ŷe
k+q|k = E(yk+q|Dk) (6.3)

= ∑
i
E(Mi |Dk)E(yk+q|Mi ,Dk) (6.4)

= wT
k ŷk (6.5)

w(i)
k = E(Mi |Dk) (6.6)

p(w(i)
k ) = p(Mi |Dk) (6.7)

whereŷe
k+q is the combined prediction ofyk+q using information available at

timek, andw(i)
k indicates positioni in the weight vector. The conditional proba-

bility of predictorMi can be further expanded by introducing the latent variable
Θ j .

p(Mi |Dk) = ∑
j

p(Mi |Θ j ,Dk)p(Θ j |Dk) (6.8)
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or in matrix notation

p(wk) =
[

p(wk|θk=1) . . .p(wk|θk=n)
]

p(Θ|Dk) (6.9)

Here,Θ j represents apredictor modein a similar sense to the dynamic modeSj ,
and likewiseθk represents the prediction mode at timek. p(Θ|Dk) is a row vector
of p(Θ j |Dk), j = {1. . .m} andp(wk|Θi

) is a row vector of the joint prior distri-
bution of the conditional weights of each predictor model given the predictor
modeΘi .

Data for estimating the distribution forp(wk|Θi
) is given based upon using a

constrained optimization on the training data. In cases of labelled training data
sets, the following applies:

{wk|Θi
}TSi

= argmin
k+N/2

∑
m=k−N/2

L (y(tm),wT
k|Θi

ŷi), k∈ TSi (6.10)

s.t.∑
j

w( j)
k|Θi

= 1

whereTSi represents the time points corresponding to dynamic modeSi , N is
the size of the evaluation window andL (y, ŷ) is a cost function. From these
data sets, the prior distributions can be estimated by the Parzen window method
[Bishop, 2006], giving meanw0|Pi

= E(wk|Θi
) and covariance matrixRΘi . An

alternative to the Parzen approximation is of course to estimate a more parsimo-
niously parametrized probability density function (pdf) (e.g., Gaussian) for the
extracted data points. For unlabelled training data, with time pointsT, the corre-
sponding datasets{wk|Θi

}T are found by cluster analysis, e.g., using a Gaussian
Mixture Model (GMM) [Bishop, 2006].

Now, in each time stepk, the wk|θk−1
is determined from the sliding win-

dow optimization below, using the current active modeθk−1. For reasons soon
explained, onlywk|θk−1

is thus calculated:

wk|θk−1
= argmin

k−1

∑
j=k−N

µk− j
L (y j ,wT

k|θk−1
ŷ j) (6.11)

+(wk|θk−1
−w0|θk−1

)Λθk−1(wk|θk−1
−w0|θk−1

)T

s.t.∑
j

w( j)
k|θk−1

= 1
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6.3 Sliding Window Bayesian Model Averaging

Here,µ j is a forgetting factor, andΛΘi is a regularization matrix. To infer the
posteriorp(Θ|Dk) in (6.9), it would normally be natural to set this probabil-
ity function equal to the corresponding posterior pdf for the dynamic mode
p(S|Dk). However, problems arise ifp(S|Dk) is not directly possible to estimate
from the datasetDk. This is circumvented by using the information provided by
thep(wk|θk

) estimated from the data retrieved from equation (6.10) above. The
p(wk|θk

) prior density functions can be seen as defining the region of validity
for each predictor mode. If thewk|θk−1

estimate leaves the current active mode
regionθk−1 (in a sense thatp(wk|θk−1

) is very low), it can thus be seen as an indi-
cation of that a mode switch has taken place. A logical test isused to determine
if a mode switch has occurred. The predictor mode is switchedto modeΘi , if:

{

p(Θi|wk,Dk)> λ , and

p(wk|Θi ,Dk)> δ
(6.12)

where

p(Θi |wk,Dk) =
p(wk|Θi,Dk)p(Θi |Dk)

∑ j p(wk|Θ j ,Dk)p(Θ j |Dk)
(6.13)

A λ somewhat larger than 0.5 gives a hysteresis effect to avoid chattering be-
tween modes, andδ assures that non-conclusive situations, evaluated on the out-
skirts of the probability functions, don’t result in switching. Unless otherwise es-
timated from data, the conditional probability of each prediction modep(Θi |Dk)
is set equal for all possible modes, and thus cancels in (6.13). The logical test is
evaluated using the priors received from the pdf estimate and thewk|θk

received
from (6.11). If a mode switch is considered to have occurred,(6.11) is rerun
using the new predictor mode.

Now, since only one prediction modeθk is active; (6.9) reduces top(wk) =
p(wk|θk

).

Parameter choice

The lengthN of the evaluation period is, together with the forgetting factor µ ,
a crucial parameter determining how fast the ensemble prediction reacts to sud-
den changes in dynamics. A small forgetting factor will put much emphasis on
recent data, making it more agile to sudden changes. However, the drawback is
of course that noise sensitivity increases.

ΛΘi should also be chosen, such that a sound balance between flexibility
and robustness is found, i.e., a too small||ΛΘi ||2 may result in over-switching,
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Chapter 6. Ensemble Prediction

whereas a too large||ΛΘi ||2 will give a stiff and inflexible predictor. Furthermore,
ΛΘi should force the weights to move within the perimeter definedby p(w|Θi).
This is approximately accomplished by settingΛΘi equal to the inverse of the
covariance matrixRΘi , thus representing the pdf as a Gaussian distribution in
the regularization.

Nominal mode

Apart from the estimated prediction mode centres, an additional predictor mode
can be added, corresponding to a heuristic fall-back mode. In the case of sensor
failure, or other situations where loss of confidence in the estimated predictor
modes arises, each predictor may seem equally valid. In thiscase, a fall-back
mode to resort to may be the equal weighting. This is also a natural start for the
algorithm. For these reasons, a nominal modep( w̄0) ∈ N(1/n, I) is added to the
set of predictor modes.

Summary of algorithm

1. Estimaten numbers of predictors according to best practice.
2. Run the constrained estimation (6.10) on labelled training data and

retrieve the sequence of{wk|Θi
}Tθi

,∀i ∈ {1, ..,n}.
3. Classify different predictor modes, and determine density functions

p(wk|Θi
) for each modeΘi from the training results by supervised

learning. If possible; estimatep(Θi |D).
4. Initialize mode to the nominal mode.
5. For each time step; calculatewk according to (6.11).
6. Test if switching should take place by evaluating (6.12) and (6.13),

and switch predictor mode if necessary and recalculate newwk

according to (6.11).
7. Go to 5.

The ensemble engine outlined above will hereafter be referred to as Sliding
Window Bayesian Model Averaging (SW-BMA) Predictor.
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6.4 Choice of Cost Function L

Cost function should be chosen by the specific application inmind. A natural
choice for interpolation is the 2-norm, but in certain situations asymmetric cost
functions are more appropriate. For the glucose predictionapplication, a suitable
cost function for determining appropriate weights should take into account that
the consequences of acting on too high glucose predictions in the lower blood
glucose (G) region (<90 mg/dl) could possibly be life threatening. The margins
to low blood glucose levels, that may result in coma and death, are small, and
blood glucose levels may fall rapidly, as seen in Chapter 3. Hence, much empha-
sis should be put on securing small positive predictive errors and sufficient time
margins for alarms to be raised in due time in this region. In the normoglycemic
region (here defined as 90-200 mg/dl), the predictive quality is of less impor-
tance. This is the glucose range that healthy subjects normally experience, and
thus can be considered, from a clinical viewpoint in regardsto possible compli-
cations, a safe region. However, due to the possibility of rapid fluctuation of the
glucose into unsafe regions, some considerations of predictive quality should be
maintained.

Based on the cost function in [Kovatchevet al., 2000], the selected cost func-
tion incorporates these features; asymmetrically increasing cost of the prediction
error depending on the absolute glucose value and the sign ofthe prediction er-
ror.

In Fig. 6.1 the cost function can be seen, plotted against relative prediction
error and absolute blood glucose value.

Correspondence to the Clarke Grid Error Plot

A de facto accepted standardized metric of measuring the performance of CGM
signals in relation to reference measurements, and often used to evaluate glu-
cose predictors, is the Clarke Grid Plot [Clarkeet al., 1987], described in Chap-
ter 3. This metric meets the minimum criteria raised earlier. However, other as-
pects makes it less suitable; no distinction between prediction errors within error
zones, instantaneous switches in evaluation score, etc.

In Fig. 6.2, the isometric cost of the chosen cost function for different predic-
tion errors at differentG values has been plotted together with the Clarke Grid
Plot. The boundaries of the A/B/C/D/E areas of the Clarke Grid can be regarded
as lines of isometric cost according to the Clarke metric. Inthe figure, the iso-
metric cost of the cost function has been chosen to correspond to the lower edge,
defined by the intersection of the A and B Clarke areas at 70 mg/dl. Thus, the
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Figure 6.1 Cost function of relative prediction error.

area enveloped by the isometric cost can be regarded as the corresponding A
area of this cost function. Apparently, much tougher demands are imposed both
in the lower and upperG regions in comparison to the Clarke Plot.
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Figure 6.2 Isometric cost in comparison to the Clarke Grid.
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6.5 Example I: Approximate Lower-Order Models

Data

Data were generated using a switched fourth-order ARX system, where the A-
polynomial switches between three different modelsMA,MB,MC, with poles ac-
cording to Table 6.1. The B-polynomial was simply a one step delay, and white
noiseN(0,0.25) was added to the output channel. A PRBS signal was used for
input.

Table 6.1 Poles of the data generating processes.

Model Poles

MA 0.8,0.1,−0.3+ i
√

0.41,−0.3− i
√

0.41

MB 0.9,0.2,−0.2,−0.5

MC 0.8,−0.2,−0.4,−0.4

The active dynamic modesk ∈ Sswitches between dynamic mode A, B and
C according to a Markov Chain with transition matrixM.

M =







0.99 0.005 0.005

0.005 0.99 0.005

0.005 0.005 0.99






(6.14)

A labelled training set of 2000 samples and a 2000 sample validation set
were simulated in 40 different batches. An example of a training data set can be
seen in Fig. 6.3.

Predictors

To simulate modeling errors, three prediction modelsMI −MIII were set up as
reduced order approximations of the corresponding state-space models of the
data generating processes. Model reduction was undertakenby singular value
evaluation to the second order [Johansson, 2009]. Using these models and their
associated Kalman filters, 50 step prediction length was evaluated.

Cost function

For this example the 2-norm was used.
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Figure 6.3 Training Data. Upper plot: input, middle plot: output and lower plot: switch-
ing sequence of dynamic mode. Example I.

Parameter Choices

Different values for the tunable parametersN andµ were evaluated; 20 batches
for the combinations of{10,20,30} and{0.8,0.9,1}, and 20 batches for the
combination of{25,50,75} and{0.7,0.8,0.9}. The parametersλ andδ were
fixed to 0.6 and 3·10−3.

Evaluation Metric

To evaluate the predictive performance, the squared sum of prediction errors
was compared to the squared sum of prediction errors using a pure switching
strategy, where it (optimally) has been assumed that the dynamic mode at the
time of prediction was known.

Results

Training the Mode Switcher Using the labelled training set, the pdf:sp(wk|Θi
)

were estimated for each batch using the differentN values. For this example
the best evaluation record length for the estimation task was 10. In Fig. 6.4, an
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Figure 6.4 Distribution of weights in the training data retrieved by (6.10). Blue stars
representstk ∈ TA for Mode A, Red circles:TB for Mode B and Green crosses:TC for Mode
C. Example I.

example of the distribution of{wk|Θi
}Si along the{w1+w2+w3 = 1,0≤wi ≤1}

plane can be seen for one representative training batch.
The corresponding probability distribution for each mode,projected onto the

(w1,w2)-plane, estimated by Parzen window technique, can be seen inFig. 6.5
together with the pdf of the nominal mode. The densities havehigher values in
the corners[1,0,0], [0,1,0] and[0,0,1], and the meansw0|1 = [0.57,0.03,0.4],
w0|2= [0.18,0.76,0.06]andw0|3= [0.25,0.03,0.72], define the expected weights
for each predictor mode.

Evaluation of Parameter Choices Comparing the predictive performance for
the different value combinations ofN andµ , the slightly better choice over the
others was[25,0.8]. Table 6.2 summarizes the predictive performance for each
combination ofN andµ .

Predictive Performance The merged prediction was compared on the valida-
tion data, using the best choices ofN = 25 andµ = 0.8, to; 1) each individual
predictor, 2) an unregularized version of (6.11) without switching functionality,
and 3) to the optimal pure switching strategy. The results are summarized in
Table 6.3.
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Figure 6.5 Estimated probability density functions for the weights inthe training data,
including the nominal mode. Batch 4. Example I.

Table 6.2 Summary of predictive performance using differentN andµ on validation data
over all simulated batches, evaluated as mean∑e2

N,µ/∑e2
opt, whereeN,µ is corresponding

prediction error(pe) andeopt is the pe when using the optimal switching strategy. Example
I.

N/µ 1 0.9 0.8 0.7

10 0.92 0.91 0.90 -

20 0.95 0.94 0.92 -

25 - 0.91 0.87 0.87

30 0.94 0.92 0.88 -

50 - 1.05 1.04 1.01

75 - 0.95 0.90 0.88

Compared to the other approaches a 7% improvement can be seento the
unregularized version, and a 13% improvement to the optimalswitching scheme.

Looking at the distribution of the weights for the validation data in Fig. 6.6,
it is apparent that the merging mechanism has concentrated these around the pre-

96



6.5 Example I: Approximate Lower-Order Models

Table 6.3 Summary of predictive performance on validation data over all simulated
batches. Example I.

Predictor ∑e2/∑e2
opt

Predictor I 1.07

Predictor II 2.76

Predictor III 1.39

Merged Predictor 0.87

Unregularized Merged Predictor 0.93

Optimally Switched Predictor 1.0
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Figure 6.6 Distribution of weights in the test data using the estimatedpdf:s and expected
weights. Batch 4. Example I.

diction mode centres, especially if comparing to the corresponding distribution
for the unregularized version, see Fig. 6.7.

Switching between the different prediction modes, in comparison to the dy-
namic mode for the validation data, can be seen in Fig 6.8 for arepresentative
batch.
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Figure 6.7 Distribution of weights in the test data using the unregularized merging pre-
dictor. Batch 4. Example I.
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Figure 6.8 Example of switching between different predictor modes in the validation
data. Predictor mode 4 represents the nominal mode. ExampleI.

Discussion

Parameter Choice The optimal choices ofN andµ , are unsurprisingly, closely
connected. These parameters must be set with the specific dynamics in mind, and
are probably difficult to determine beforehand.λ andδ should probably not be
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set too low in order to avoid uncalled for switching, and the values used are
deemed correct from this aspect.

Predictive Performance The merged predictor clearly outperformed each of
the individual predictors, and also the unregularized version as well as the op-
timal pure switching predictor. The latter can be explainedby that the merged
predictor offers some extra robustness to sudden dynamicalchanges, as all pre-
dictors to some extent are used in all situations. The unregularized version has
quite good performance, but the regularization in the proposed merging mecha-
nism reduces the impact of noise, making it slightly better.

6.6 Example II: The UVa/Padova Simulation Model

Data

Data was generated using the non-linear metabolic simulation model, jointly
developed by the University of Padova, Italy and Universityof Virginia, U.S.
(UVa) and described in [Dalla Manet al., 2007b], with parameter values ob-
tained from the authors. The model consists of three parts that can be separated
from each other. Two sub models are related the influx of insulin following an
insulin injection and the rate of appearance of glucose fromthe gastro-intestinal
tract following meal intake, respectively, and have been described in Chapter 4.
The final part of the total model is concerned with the interaction of glucose
and insulin in the blood stream, organs and tissue, including renal extraction,
endogenous glucose production and insulin and non-insulindependant glucose
utilization. The model equations are found in [Dalla Manet al., 2007b].

Twenty datasets, each corresponding to 8 days, were generated. Two dy-
namic modesA and B were simulated by, after 4 days, changing four model
parameters (following the notation in [Dalla Manet al., 2007b])k1,ki , kp3 and
p2u, related to endogenous glucose production and insulin and glucose utiliza-
tion. One data set was used for training and the others were considered test data.

A section of four days, including the period when the dynamicchange takes
place, of an example training and test data set can be seen in Fig. 6.9.

Timing and size of meals were generated with some normal randomization
for each data set, according to Table 6.4. The amount of insulin administered
for each meal was based on a fixed carbohydrate-to-insulin ratio, perturbed by
normally distributed noise, with a 20% standard deviation.
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Table 6.4 Meal amount and timing randomization. Standard deviation in parenthesis.

Meal Time Amount carbohydrates (g)

Breakfast 08:00 (30 min) 45 (5)

Lunch 12:30 (30 min) 70 (10)

Dinner 19:00 (30 min) 80 (10)
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Figure 6.9 Four days of the blood glucose data of the training and test data for one of the
20 generated datasets. The upper plot correspond to the training data, and the lower plot
represents the test data. For both plots, a mode switch takesplace after 2 days (t = 48h).
Example II: UVa/Padova Model.

Process noise was added by perturbing some crucial model parameterspi in
each simulation step;pi(t)= (1+δ (t))p0

i , wherep0
i represent nominal value and

δ (t) ∈ N(0,0.2). The affected parameters are (again following the notationin
[Dalla Manet al., 2007b]))k1,k2, p2u,ki ,m1,m30,m2,ksc, and represents natural
variability in the underlying physiological processes.

Predictors

Three models, based on subspace based technique, were identified using the
N4SID algorithm of the Matlab System Identification Toolbox. Model order[2−
4] was determined by the Akaike criterion [Johansson, 2009]. The first modelI
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Figure 6.10 Estimated probability density functions for the weights inthe training data,
including nominal mode. Example II.

was estimated using data from dynamic mode A in the training data, and the
third III from the modeB data, and the final modelII from the entire training
data set. Thus, modelI andIII are each specialized, whereasII is an average of
the two dynamic modes. The models were evaluated for a prediction horizon of
60 min.

Results

Training the Mode Switcher The three predictors were used to create three
sets of 60 minute ahead predictions for the training data. Using (6.10) withN =
10, the weightswk were determined. The corresponding probability distribution
for each mode, projected onto the(w1,w2)-plane, was estimated by Parzen win-
dow technique. The densities are well concentrated to the corners[1,0,0] and
[0,0,1], with meansw0|1 = [0.83,0.11,0.06] andw0|2 = [0.25,0.1,0.65] defin-
ing the expected weights for each predictor mode. The nominal mode probabil-
ity density function was set toN(1

3
1
3

1
3,0.1I). In Fig. 6.10 all density functions,

including the nominal mode, projected onto the(w1,w2)-plane, can be seen to-
gether.

Ensemble Prediction vs Individual Predictions Using the estimated pdf:s and
expected weightsw of the identified predictor modes, the ensemble machine was
run on the test data. An example of the distribution of the weights for the two
dynamic modesA andB can be seen in Fig. 6.11.
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Figure 6.11 Example of the distribution of weights in the test data usingthe estimated
pdf:s and expected weights. Example II.

An example of how switching between the different modes occurs over the
test period can be found in Fig 6.12.

For evaluation purposes, all predictors were run individually. In Table 6.5,
a comparative summary of the predictive performance between the different
approaches, in terms of mean Root Mean Square Error (RMSE) over the test
batches, is given.

Table 6.5 Performance evaluation by RMSE for the 60 minute predictorsusing different
approaches.

RMSE [mg/dl]

Predictor Type Section A Section B A+B

Predictor I 8.3 16.3 13.0

Predictor II 9.1 11.2 10.9

Predictor III 14.3 7.9 12.6

Merged prediction 8.7 10.5 9.6
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Figure 6.12 Example of switching between different predictor modes in the test data.
The transition from dynamic modeB to modeA takes place at 5760 min (4 days). Mode
3 represents the nominal mode, and the gaps (mode=0) correspond to time instances when
no pi(w|D) fulfilled the criteria (in which case the mode stays at the thecurrent predictor
mode). Example II.

6.7 Example III: The DIAdvisor Data

Data and evaluation criteria

Predictors Three different predictors of different structure were used in this
study; the state-space-based model (SS) of Chapter 4, a recursive ARX model
[Estradaet al., 2010] and a kernel-based predictor [Naumovaet al., 2011], all
developed within the DIAdvisor project. The SS and ARX models utilized in-
puts, generated by the population parametrized sub models describing the flux
and digestion of insulin and glucose following an insulin injection or meal in-
take [Dalla Manet al., 2007b], described in Chapter 4. For further information
regarding the ARX and the kernel-based predictors, see [Estradaet al., 2010]
and [Naumovaet al., 2011].

Training and Test Data Data from the clinical part of the DAQ trial and the
DIAdvisor I B and C trials were used. A number of patients participated in all
three trials. Based on data completeness, six of these have been selected for this
study. CGM data was used for model identification, whereas the interpolated
frequent blood glucose reference measurements, see Chapter 3, were used for
validation purposes.
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Figure 6.13 Example of distribution of weights in the training data by (6.10) and clusters
given by the k-means algorithm. The red ellipses represent the fitted Gaussian covariances
of each cluster (patient 0103, Trial B).

The first trial data (DAQ) was used to train the individual predictor mod-
els. The second and third trial data (DIAdvisor I.B and C) were used to train
and cross-validate the SW-BMA, i.e., the SW-BMA was trainedon B data and
validated on C data, and vice versa.

Evaluation Criteria The prediction results were compared to the interpolated
blood glucoseG in terms of Clarke Grid Analysis, see Chapter 4, and the com-
plementary Root Mean Square Error (RMSE).

Results

Training the Mode Switcher

Cluster Analysis - Finding the Modes The three predictors were used to cre-
ate 40 minute ahead predictions for both training data setsDTB(C)

. Using (6.10)
with N = 20, the weights{wk}TB(C)

were obtained; example depicted in the
(w1,w2) plane in Fig. 6.13. The weights received from the training are easily
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Figure 6.14 Example of estimated probability density functions for thedifferent predic-
tor mode clusters in the training data (patient 0103, Trial B).

visually recognized as belonging to different groups (truefor all patients, not
shown). Attempts were made to find clusters using a Gaussian Mixture Model
(GMM) by the EM algorithm, but without viable outcome. This is not totally
surprising, considering, e.g., the constraints 0≥ wi ≥ 1 and∑w = 1. A more
suitable distribution, often used as a prior for the weightsin a GMM, is the
Dirichlet distribution, but instead the simpler k-means algorithm was applied
using four clusters (number of clusters given by visual inspection of the distri-
bution of{wk}TB(C)

), providing the cluster centersw0|Θi
.

The corresponding probability distribution for each modep(w|Θi), projected
onto the(w1,w2)-plane, was estimated by Parzen window technique, and an
example can be seen in Fig. 6.14. Gaussian distributions were fitted to give the
covariance matricesRΘi used in (6.11).

Feature Selection The posterior mode probabilityp(Θ|Dk) is likely not de-
pendent on the entire dataDk, but only a few relevant data features, possible to
extract fromDk. Features related to the performance of a glucose predictormay
include meal information, insulin administration, level of activity, measures of
the glucose dynamics, etc. By plotting the training CGM data, colored according
to the best mode at the prediction horizon retrieved by the training, interesting
correlations become apparent (Fig. 6.15). The binary features in Table 6.6 were
selected.
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Figure 6.15 Example of CGM coloured according to best predictor mode in 40 minutes
together with active features (patient 0103, Trial B).

When extracting the features, meal timing and content were considered to be
known 30 minutes before the meal.

From the training data, the posterior mode probabilitiesp(Θi| f j ), given each
feature f j , were determined by the ratio of active time for each mode over the
time periods when each feature was present. Additionally, the overall priorp(Θi)
was determined by the total ratio of active time per cluster over the entire test
period.

The different features are overlapping, and to resolve thisissue they were
given different priority—only allowing the feature of highest priority, f ∗k to be
present at each time steptk. Thereafter,p(Θ|Dk) = p(Θ| f ∗k ) is determined. If no
feature is active, thep(Θ|Dk) is approximated by thep(Θi) estimate.

Prediction Performance on Test Data

Using the estimated mode clusters{w0|i ,R0|i}, i = [1. . .M], and the estimated
posteriorsp(Θi | f ∗) from Trial B (C), the ensemble machine was run on the Trial
C (B) data. The parameterµ was set to 0.8 andN to 20 minutes. An example
of the distribution of the weightswk for the three predictors can be seen in Fig.
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Table 6.6 Selected features.ε corresponds to the maximum amplitude of glucose rate-
of-appearance,Ra after digesting 10 g CHO, and∆G= Gk−Gk−5

Feature Threshold Priority

Meal max(Rak, ..,Rak+30)> ε 1

Rising mean(∆Gk−10, . . . ,∆Gk) 2

G > 30 mg/(dl· h)

Falling mean(∆Gk−10, . . . ,∆Gk) 3

G <−18 mg/(dl· h)

Meal and See above. 4

rising G

Meal maxRa(k−30, ...,k)< ε and 5

Onset maxRa(k, ...,k+30)> ε

6.16.
Table 6.7 summarizes a comparison of predictive performance over the dif-

ferent patient test data sets for the RMSE evaluation criteria, and in Table 6.8
the evaluation in terms of Clarke Grid Analysis is given. Theoptimal switch-
ing approach, here defined as using the non-causal fitting by Eq. (6.10), is used
as a measure of optimal performance of a linear combination of the different
predictors.

Table 6.7 Performance evaluation for the 40 minute SW-BMA predictioncompared to
the optimal switching and the individual predictors. The metric is the Root Mean Square
Error (RMSE), normalized against the best individual predictor M1−M3 for each patient.

median RMSE/RMSEbest [min-max]

Merging Strategy Trial B Trial C

SW-BMA 1.03 [0.75-1.04] 1.03 [0.94-1.05]

Optimal switching 0.97 [0.54-1.0] 0.94 [0.73-1.0]

2:nd best individual pred. 1.16 [1.09-1.27] 1.21 [1.04-1.37]

Worst individual pred. 1.44 [1.25-1.73] 1.45 [1.18-1.83]
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Figure 6.16 Example of the distribution of weights in the test data usingthe estimated
clusters and feature correlations (patient 0108, Trial B).

Table 6.8 Performance evaluation for the 40 minute SW-BMA predictioncompared to
the optimal switching and the best individual predictor by the amount of data (%) in the
acceptable A/B zones vs. the dangerous D and E zones.

Merging Strategy Trial B Trial C

A/B D E A/B D E

SW-BMA 95.5 2.2 0 95.3 3.0 0.1

Optimal switching 96.2 1.7 0 96.9 1.3 0

Best individual pred. 94.8 2.6 0 95.0 3.4 0

6.8 Discussion

In Example I it was shown how the merged predictor could reduce the impact of
the switching dynamics, resulting in performance beyond the optimal switching
strategy. Example II outlined how the technique may be applied to the specific
example of diabetes glucose prediction under sudden changes in the underly-
ing physiological dynamics. Also in this example, the merged prediction turned
out to be the best choice. In Example III, applying the algorithm to real-world
data, the SW-BMA has, for most patients, the same RMSE and Clarke Grid per-
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formance as the best individual predictor. In one case, the merged prediction
clearly outperformed also the best predictor (RMSE/RMSEbest= 0.75). How-
ever, comparison to the optimal switcher indicates that there is still further room
for improvement. To fill this gap, timely switching is most important. To this pur-
pose, features with significant correlations to mode switching, may prove useful
in order to improve the likelihood that the best predictor mode is used at each
time. Further research is needed to investigate and improvethis aspect.

6.9 Comparison to Other Merging Techniques

Compared to the strategy of pure switching between different predictors, the
evaluation indicates that the proposed algorithm is more robust to sudden changes
and in reducing the impact of modeling errors. Apart from that, in many appli-
cations, transition between different dynamic modes is a gradual process rather
than an abrupt switch, making the pure switching assumptioninappropriate. The
proposed algorithm can handle such smooth transitions by slowly sliding along a
trajectory in the weight plane of the different predictors,perhaps with a weaker
Λ if such properties are expected. Furthermore, any type of predictor may be
used, not restricting the user to a priori assumptions of theunderlying process
structure.

In Tagaki-Sugeno (TS) system, a technique that also gives soft switching, the
underlying assumption is that the switching dynamics can beobserved directly
from the data. This assumption has been relaxed for the proposed algorithm ex-
tending the applicability beyond that of TS systems.

In [Raftery et al., 2010], another interesting approach to online Bayesian
Model Averaging is suggested for changing dynamics. In thisapproach, the as-
sumed transition dynamics between the different modes is based on a Markov
chain. However, in our approach no such assumptions on the underlying switch-
ing dynamics are postulated. Instead, switching is based onrecent performance
in regards to the applicable norm, and possibly on estimatedcorrelations be-
tween predictor modes and features of the data streamP(Θi |Dk), see Eq. (6.13).
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6.10 Conclusions

A novel merging mechanisms for multiple predictor has been proposed for time-
varying and uncertain conditions. The approach was evaluated on both artificial
and real-world data sets, incorporating modeling errors inthe individual predic-
tors, time-shifting dynamics and different cost criteria.

The results show that the merged prediction has a predictiveperformance in
comparison with the best individual predictor in each case,and indicates that the
concept may prove useful when dealing with several individual (glucose) pre-
dictors of uncertain reliability– reducing the risk associated with definite a priori
model selection, or as a means to improve predictive qualityif the predictions
are diverse enough.

Further research will be undertaken to investigate how interesting features
correlated to expected predictor mode changes should be extracted, and in re-
gards to the possibility of making the algorithm unsupervised.
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7

Conclusions and Future

Work

7.1 Conclusions

This thesis has investigated prediction of glucose evolution in insulin-dependent
diabetes patients. To this purpose, minimum order linear models were identified
by a subspace-based method in Chapter 4 for a data set containing 47 individual
patient data records from the DIAdvisor project. Model identification of diabetic
data is obstructed as the two main inputs have opposing effects on the glucose,
and in most cases act simultaneously. Furthermore, the a priori knowledge of
the static gain of each input is not guaranteed to be incorporated into the model
when using the subspace method, nor is the expected integrator-like response.
For this reason, the identification results were constrained to satisfy physiologi-
cally qualitatively correct responses to the inputs, and the models were corrected
in the sense that the pole closest toz= 1 was artificially moved to this point, with
corresponding corrections of the other pole in order to minimize the disturbance
of the characteristic polynomial of the model. The retrieved models were there-
after used for short-term prediction and assessed for performance. The results
were compared to previous published results, developed by using other modeling
and identification approaches, and proved competitive despite the low complex-
ity. The estimated carbohydrate-to-insulin ratio, a metric often used in clinical
practice to optimize the insulin therapy, were compared to the true ratio (amount
of digested carbohydrates divided by total administrated bolus doses) with good
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correspondence. Some population stratifications, in termsof prediction perfor-
mance, were also found between the multi-dose injection andthe pump patient
cohorts.

Another problematic aspect to glucose dynamic modeling andidentification
was tackled in Chapter 5. The glucose measurements that can be retrieved in
a frequent and automatic fashion,i.e., the CGM measurements, are sampled in
the interstitial compartment—a tissue that has a diffusion-like relationship to the
compartment of primary interest—the circulatory blood system. This aspect is
often overlooked in glucose modeling, but significant lagging of the glucose pre-
diction of those models may result, as indicated by the evaluation of the lagging
between the CGM signal and the corresponding reference blood glucose mea-
surements in Chapter 3. This is unacceptable, as hypoglycaemia may quickly
arise due to rapid glucose drops (see Chapter 3), and these models will, unless
perfectly matched, in many cases be unable to capture these potentially dan-
gerous situations. To overcome this deficiency, a modeling approach where the
basic subspace identified model of Chapter 4 was augmented, to incorporate the
dynamics responsible for the sensor delay, was developed. To prove the concept,
an individual dataset with significant sensor lag, retrieved from the same data
set as above, was identified in this manner, and short-term post-prandial predic-
tion was evaluated. The results show that the lag of the glucose estimate and
prediction were successfully reduced.

Diabetic glucose dynamics is known to comprise both short and more long
term time-variability. Merging different diversified models may prove to be a
successful approach, as a means to improve performance and robustness under
such conditions. In Chapter 6, a novel merging algorithm based in a Bayesian
setting was developed. The suggested method admits for softswitching and in-
terpolation between the different models based on an evaluation of the different
predictors’ recent performance, using a sliding data window, and by looking
for data feature identified to be correlated to switching. Different aspects of the
merging approach were investigated, using two simulated data series, and the
concept was thereafter successfully validated using 12 data sets from the DIAd-
visor project.

7.2 Future Research

Generally, biomedical engineering has a wide spectrum of unsolved problems in
both basic and applied science. This is certainly the case indiabetology where
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still many low hanging fruits are ripe to pick. A list of possible direction for
future research could thus be made very long, but below, the outlook has been
narrowed down to a few direction for future research endeavours related to the
problems addressed in this thesis.

Constrained Identification The method applied in this thesis is heuristic and
does not guarantee that any model fulfils the constraints imposed. Further re-
search into constrained identification, e.g., inspired by the possibility to incor-
porate constrains directly in the subspace identification routine, may be an inter-
esting direction.

Sensor delay The concept of augmenting the model with a sensor model,
describing the sensor lag, needs to be further validated by more data examples.
Additionally, alternative, more complex models of the sensor dynamics, e.g.,
incorporating sensor drift, should be addressed.

Time-varying dynamics Time-variability is an important aspect of any time-
series, with major implications to the choice of modeling and parameter esti-
mation approach. The data sets analysed in this thesis were not long enough to
evaluate long-term time-variability. However, the ambulatory data sets collected
during the DAQ trial may prove useful in this regard, and could be evaluated for
parameter consistency.

Population Stratification The diabetic population may be possible to strat-
ify into smaller patient cohorts. Finding such classifications could potentially
simplify parametrization of previously unmodelled patients, if model behavior
could be linked to directly available, or easily measured, biomarkers. Deeper
classification analysis of identified models may indicate such relationships.

Ensemble Predictor In order to detect the optimal switching point as soon as
possible, the feature monitoring of the SW-BMA ensemble engine is an interest-
ing functionality. However, finding and extracting relevant features is non-trivial
and no systematic approach is utilized.
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