
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

pyParticleEst – A Python Framework for Particle Based Estimation

Nordh, Jerker; Berntorp, Karl

2013

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nordh, J., & Berntorp, K. (2013). pyParticleEst – A Python Framework for Particle Based Estimation. (Technical
Reports TFRT-7628). Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/986ad320-20ba-47fd-9578-bc37ef70b5cd

ISSN 0280-5316
ISRN LUTFD2/TFRT--7628--SE

pyParticleEst – A Python Framework
for Particle Based Estimation

Jerker Nordh
Karl Berntorp

Lund University
Department of Automatic Control

March 2013

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
TECHNICAL REPORT
Date of issue
March 2013
Document Number
ISRN LUTFD2/TFRT--7628--SE

Author (s)

Jerker Nordh
Karl Berntorp

Supervisor

Sponsor ing organization

Ti tle and subti t le
pyParticleEst – A Python Framework for Particle Based Estimation

Abstract

Keywords

Classi fication system and/ or index terms (i f any)

Supplementary bibl iographical information

ISSN and key ti t le
0280-5316

ISBN

Language
English

Number of pages
1-13

Recipient’s notes

Secur i ty classi fication

ht tp://www.control.l th.se/publ icat ions/

Contents

1. Introduction . 2
2. Overview . 2
3. Classes . 3

3.1 ParticleApproximation 3
3.2 ParticleTrajectory . 3
3.3 ParticleFilter . 3
3.4 SmoothTrajectory . 3
3.5 SmoothTrajectoryRB . 4

4. Problem specific methods 4
4.1 Filtering . 4
4.2 Smoothing . 4
4.3 Rao-Blackwellized Smoothing 4

5. Kalman filtering/smoothing 5
6. Implemented model classes 5

6.1 Mixed linear/nonlinear Gaussian 6
6.2 Differential drive with uniform noise 6

7. Example . 7
8. References . 8
Appendix . 9

1

1. Introduction

This technical report describes a python based library implementing a frame-
work for assisting in solving estimation problems using particle based methods,
primarily particle filtering and particle smoothing. For a theoretical introduc-
tion to the methods see e.g. [Arulampalam et al., 2002] and [Doucet et al.,
2000].

When implementing these methods for a problem there are a significant
number of steps that have to be performed and implemented every time. The
aim of this work is to separate these steps using an object-oriented program-
ming style where the developer only has to create a class describing the char-
acteristics of the particular problem. This approach should help streamline
the development process and reduce the number of potential bugs. The draw-
back is that using a generic framework can introduce an overhead compared
to a fully specialised implementation. Thus the main target for this library
currently is for either problems where the major computational effort lies in
the problem specifics, or as a help for prototyping before writing optimized
problem specific code (if needed).

2. Overview

The library introduces a number of classes that describes certain collections of
data and provides methods for common manipulations of them. For a diagram
of all classes and their methods, see Figure 2 in Section 7.

• Particle, the class that has to be reimplemented for each new problem

• ParticleApproximation, a collection of Particles and their associated
weights. The particles and weights constitute a sampled probability den-
sity function

• ParticleTrajectory, a list of ParticleApproximations ordered so
that each index represents a successive time-step for the filtered esti-
mation problem

• SmoothTrajectory, create a smoothed estimate from a filtered trajec-
tory

• SmoothTrajectoryRB, create a rao-blackwellized smoothed estimate

The typical work flow for solving a filtering estimation problem is:

• Create a class describing the mathematical model for which the estimate
is to be made. It has to implement three methods describing the noise
affecting the input, how the system state evolves over time, and lastly a
method to evaluate how likely a measurement is.

• Instantiate a number of particles representing the prior belief of state,
use these to create a ParticleApproximation object.

• Create a ParticleTrajectory that is initialised with the ParticleApproxi-
mation object

• Feed the ParticleTrajectory object with all inputs and measurements

2

The particle trajectory now contains a sequence of ParticleApproximations
where each index represents the posterior probability conditioned on all inputs
and measurements up to that time.

3. Classes

3.1 ParticleApproximation

A ParticleApproximation object contains a NumPy array holding all the
particle objects. It also contains a second array keeping track of the weight for
each particle.

It provides methods for resampling the distribution so that all particles
have equal weights, changing the number of particles and sampling a single
particle. It is also possible to the extract the N best particles, where N is an
integer between 1 and the total number of particles.

Changing the number of particles is accomplished by cloning or discarding
particles according to the weight distribution. This is useful if the estimation
problem has the property that the number of particles needed for a good
approximation changes over time or depends on the measurements or input.
The application-specific code could then detect this and instruct the framework
to change the number of particles depending on the situation, providing both
fast execution time and more efficient memory usage.

3.2 ParticleTrajectory

A ParticleTrajectory object contains a list of particle approximations. The
update method takes an input to the system and then appends a new approx-
imation to the end of the list with the updated estimate. It also provides a
measure method which processes a new measurement, and if desired automat-
ically resamples the underlying particle approximation if the weights of the
particles are too unevenly distributed. This is detected by calculating the so
called ”number of effective particles” and comparing that to the total number
of particles.

Additionally it implements some helper methods for calculating one-step
forward probability densities which are required for the backward rejection
sampling step if smoothing is used.

Methods are provided for creating a new particle trajectory object initial-
ized by the estimation from the current one and for extracting the signal that
have been used to calculate the estimate. This is useful for e.g running par-
tially overlapping filtering/smoothing when it is not possible to do smoothing
over the entire dataset.

3.3 ParticleFilter

This object type is typically used inside a ParticleTrajectory object where it
provides the actual logic for creating the perturbed input signal and handling
the resampling after new measurements are provided.

3.4 SmoothTrajectory

This object is created from a ParticleTrajectory and contains smoothed
estimates where all the linear Gaussian states are collapsed to a single point
estimate. These are stored in a list containing so called collapsed objects, it

3

is the responsibility of the problem specific class to define a class for this and
providing a method, sample smooth, for creating them.

3.5 SmoothTrajectoryRB

This object is created from a SmoothTrajectory and performs a constrained
smoothing of the linear states. The results are stored as a list of non-collapsed
problem-specific objects.

4. Problem specific methods

This section describes the functions required to be implemented for each spe-
cific problem class. It is broken into subsections detailing the methods needed
depending on the choice of estimation algorithm

4.1 Filtering

All methods needed are defined in ParticleFilteringBase.

• sample input noise(self,u) Given the measured input to the system per-
turb it according to the noise distribution. Preferably leaving any parts
with Gaussian noise acting only on linear states intact, and handling that
in the update part with a Kalman filter for those states. The output from
this function is what gets forwarded to the update function.

• update(self, data) Update the system state according to the (perturbed)
input u. A class, KalmanFilter is provided for convenient handling of
the conditionally linear Gaussian states.

• measure(self, y) Should return the likelihood of the provided measure-
ment conditioned on the particles current state. And for CLG states the
estimate should be updated with the new information.

4.2 Smoothing

All the methods from the filtering case are needed and in addition to those
specified in ParticleSmoothingBase.

• next pdf (self, next cpart, u) Evaluate the probability density function
for the next state conditioned on the current state and the input

• collapse(self) Return an (user defined) object containing the nonlinear
state and sampled linear Gaussian states.

• sample smooth(self, filt traj, ind, next cpart) Return a collapsed par-
ticle with the linear states sampled from the distribution obtained by
conditioning on the next particle state.

4.3 Rao-Blackwellized Smoothing

All the methods from the smoothing case are needed and in addition those
specified in ParticleSmoothingBaseRB.

• clin update(self, u) Update the CLG states conditioned on the non-linear
states.

• clin measure(self, y) Do a measurement update of the CLG states con-
ditioned on the nonlinear states.

4

• clin smooth(self, z next, u) Perform a backward smoothing step for the
current CLG states conditioned on the future state.

• get nonlin state(self) Return an object containing the estimate of the
non CLG states.

• set nonlin state(self, eta) Set the nonlinear state to the data provided.

• get lin est(self) Return the mean and covariance of the estimate for the
CLG states.

• set lin est(self, lest) Set the mean and covariance of the estimate for the
CLG states.

• linear input(self, u) Return the part of the input vector only affecting
CLG states.

5. Kalman filtering/smoothing

There are two classes provided for linear Gaussian filtering and smoothing for
sampled system, KalmanFilter and KalmanSmoother. The matrices used
can either be dense or sparse of the type defined in scipy.sparse.

The KalmanFilter class provides methods for creating a filtered estimate
provided the A,B,C,D matrices describing the system and the covariance
matrices describing the noises affecting the system and measurements.

The provided methods are:

• time update Performs a time update of all the system states according
to the specified dynamics using the provided input. Allows for specifying
all the relevant matrices to allow for time-varying systems.

• predict Does the same calculations as the time update function but with-
out updating the internal object state.

• meas update Updates the current estimate using the provided measure-
ment, allows for specifying the measurement matrix to allow for time-
varying dynamics.

The KalmanSmoother class provides one additional method,

• smooth Makes a smoothing estimate of the current state by incorporating
the information from the next state estimate (mean and covariance)

6. Implemented model classes

This chapter details a few models for specific types of problems which are
already implemented so they can be reused or expanded for similar problems
and serve as additional documentation for how to implement new problem
classes.

5

6.1 Mixed linear/nonlinear Gaussian

Provides implementation of filtering and smoothing for problems of the type

ζt+1 = fξ(ξt) + Aξ(ξt)zt + vξ,t

zt+1 = fz(ξt) + Az(ξt)zt + vz,t

yt = h(ξt) + C(ξt)zt + et

where all the noise sources vξ,t, vz,t, et are white Gaussian given the nonlinear
estimate ξt.

To solve this type of estimation problem it is thus only required to im-
plement the function for evaluating the nonlinear functions fξ, fz and the
(time-varying) matrices depending on ξ.

6.2 Differential drive with uniform noise

This a model for the movement in the plane of a robot that can be modelled
as using a differential type drive. The inputs are wheel encoder measurements
of the wheel positions. Due to limitations of the angular resolution there is a
remaining uncertainty of the actual rotational position of the wheel, which in
turn yields an uncertainty of the actual robot position. This is modelled as a
uniform noise on the wheel encoder measurements.

To model other uncertainty and effects such as wheel slip there is also an
additional Gaussian noise affecting the orientation of the robot.

The model as presented here becomes just a dead-reckoning solution, to be
actually useful it has to be extended with a measurement model to determine
which particles have a high likelihood and which can be discarded.

For one such possible extension see [Berntorp and Nordh, 2013].

ξk+1 = f(ξk, uk, vk, wk)

Here, ξk = (xk yk θk PR
k−1

PL
k−1

PR
k−2

PL
k−2

)T is the state vector, with P
R,L
k

being the right and left wheel encoder positions at time index k. Further, the
input uk = (PR

k+1
PL

k+1
)T and the wheel encoder noise vector is assumed

uniformly distributed according to vk ∼ U(−α, α). The process noise wk only
enters in the θ-state with variance Qw. After introducing

θ̄k = θk + (1

2l
−

1

2l
)

(

PR
k−2

PL
k−2

)

+ (1

2l
−

1

2l
) (uk + vk),

6

the kinematics vector f(ξk, uk, vk, wk) is

f(ξk) =



























1 0 0 1

4
a 1

4
a − cos θk − cos θk

0 1 0 1

4
b 1

4
b − sin θk − sin θk

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0



























ξk

+



























1

4
cos θ̄k

1

4
cos θ̄k

1

4
sin θ̄k

1

4
sin θ̄k

0 0

1 0

0 1

0 0

0 0



























(uk + vk) +

























0

0

θ̄k + wk

0

0

0

0

























.

where l is the distance between the center of the wheels, a = cos θk − cos θ̄k,
and b = sin θk − sin θ̄k.

7. Example

As an example of the mixed linear/nonlinear model described above we have
the system

xk+1 =







1 1 0

0 1 0

0 0 1






xk +







0 0

1 −1

0 0






(uk + vk) + wk

yk =
(

xk(3) 0 0
)

xk + ek

vk ∼ N

(

0,

(

0.12 0

0 0.12

))

wk ∼ N






0,







0 0 0

0 0 0

0 0 0.01













ek ∼ N (0, 1)

This example is implemented in the file simple particle.py and running
simple test.py produces the results that can seen in Figure 1.

7

0 5 10 15 20−35

−30

−25

−20

−15

−10

−5

0

5

10

Figure 1 Dots are filtered estimates, lines are smoothed trajectories. The big dots
are the true states. x(1) - green, x(2) - red, x(3) - black

8. References

Arulampalam, M., S. Maskell, N. Gordon, and T. Clapp (2002): “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking.”
IEEE Transactions on Signal Processing, 50:2, pp. 174–188.

Berntorp, K. and J. Nordh (2013): “Rao-Blackwellized particle smoothing for
occupancy-grid based SLAM using low-cost sensors.” In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Tokyo, Japan. Submitted.

Doucet, A., S. Godsill, and C. Andrieu (2000): “On sequential Monte Carlo
sampling methods for Bayesian filtering.” Statistics and Computing, 10:3,
pp. 197–208.

8

Appendix

Figure 2 A figure describing all classes and their methods used in the framework.

9

	7628_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

	7628_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

