
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Propagators and scattering of electromagnetic waves in planar bianisotropic slabs - an
application to absorbers and frequency selective structures

Andersson, Michael

2013

Link to publication

Citation for published version (APA):
Andersson, M. (2013). Propagators and scattering of electromagnetic waves in planar bianisotropic slabs - an
application to absorbers and frequency selective structures. (Technical Report LUTEDX/(TEAT-7225)/1-
30/(2013); Vol. TEAT-7225). [Publisher information missing].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/a7342f82-164e-49d3-96a6-b2838b14e1ec


Electromagnetic Theory
Department of Electrical and Information Technology
Lund University
Sweden 

CODEN:LUTEDX/(TEAT-7225)/1-31/(2013)

Propagators and scattering of elec-
tromagnetic waves in planar bian-
isotropic slabs — an application to
absorbers and frequency selective
structures

Michael Andersson



Michael Andersson
michael.andersson@gknaerospace.com

Radomes & Antennas
GKN Aerospace Applied Composites
Box 13070
SE-580 13 Linköping
Sweden

Editor: Gerhard Kristensson
c© Michael Andersson, Lund, January 31, 2013



1

Abstract

The concept of propagators for solving scattering problems in planar ge-

ometries has been generalized to accommodate thin homogeneous, in general

anisotropic, resistive sheets embedded in supporting slabs, by the usage of a

well known approximate impedance boundary condition. The slabs can be

arbitrary linear materials i.e., bianisotropic materials, and applications of the

method to the analysis of single and multilayer absorbers i.e., Salisbury and

Jaumann absorbers are given. The generalization of the propagator method

also handles the problem with an arbitrary number of metallic sheets consist-

ing of resistive patch elements embedded in supporting linear, bianisotropic

slabs. The solution of both the case of �nite number of patch elements and the

case where the elements are periodically arranged, is shown by the use of the

Galerkin method. Numerical examples, where comparison to data presented

in the literature as well as measured data, are shown in the paper.

1 Introduction

Wave propagation in planar geometries is a classical canonical scattering problem
well used in science and technical applications for decades, see e.g., [2, 5, 20, 22, 32,
33].

The foundation of the theory presented in this paper is the concept of propaga-
tors, which basically are mappings that relates the total transversal �elds between
points in space. The propagators provide a systematic approach to the analysis
of solutions to complicated scattering problems, and propagators have been used
for decades in e.g., the theory of quantum mechanics [1]. There are, however, few
publications on propagators in connection to electromagnetic problems despite the
fact that the propagator method has similarities with the vector generalization of
the transmission line theory [7, 27].

This paper presents a generalization of the theory of the propagator method
presented in [29] to thin, homogeneous, in general anisotropic, resistive sheets. It
is shown that the impedance boundary condition can be imposed into the concept
of propagators formulated for handling one or several homogeneous resistive sheets
imbedded in supporting slabs, where the materials in the slabs can be arbitrary
linear materials, i.e., bianisotropic materials.

The theory presented in [21] provides a method for solving scattering problems in
planar geometries with an arbitrary number of metallic sheets consisting of aperture
or patch type elements imbedded in supporting linear bianisotropic slabs. This paper
extends the theory in [21] by considering lossy patch type elements by the usage of
the above mentioned impedance boundary condition. The perfect conducting case
reported in [21] is shown being a special case of the lossy case.

An important application of the theory presented in this paper is on the design of
layered structures consisting of thin resistive sheets i.e., radar absorbing materials
(RAM). Absorbers can be constructed by placing one or several resistive sheets
in a strati�ed structure. The classical Salisbury screen is the simplest design which
consists of a single resistive sheet placed λ/4 in front of a perfectly conducting ground
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plane (PEC backing), see e.g., [3, 13, 23�25]. The bandwidth of the Salisbury screen
is relatively small and can be extended by adding more resistive sheets spaced by
suitable dielectrics approximately λ/4 apart. These multilayer absorbers are usually
referred to as Jaumann absorbers, see e.g., [4, 10, 11, 17, 23�25]. Another important
application of the theory in this paper is the frequency selective surface (FSS) [23]
i.e., sheets with metallic scatterers arranged in a periodic pattern embedded into
the structure. If the FSS is made of lossy elements it has been found that it is
possible to modify and improve the absorbing performances of RAM further, [8, 16,
17, 23�25, 30]. Absorbers that contain sheets with resistive elements arranged in a
periodic pattern are referred to as circuit analog absorbers (CAA), brie�y because
they contain resistive as well as reactive components [23]. The main advantage with
the CAA structures is that it is possible to further improve the bandwidth with less
cost in thickness compared to the classical Jaumann absorbers.

Furthermore, periodic structures can be designed to absorb in certain frequency
bands while being transparent in others and those structures are termed as rasor-
bers [24]. Rasorbers are applicable in e.g., radome applications where a protective
structure for an antenna is needed. Speci�cally, stealth radomes are used in low
observable applications [23]. Stealth radomes in principle re�ect power from hostile
radiation outside the antenna frequency band in the desired directions. In applica-
tions where it is di�cult to re�ect power in well de�ned directions, the radome needs
to absorb energy instead and keep the re�ections from the hostile radiation low. The
rasorber concept supports this desired feature. Rasorbers are thus not PEC backed,
and can be constructed by combinations of sheets with metallic as well as lossy
periodically arranged patterns imbedded in supporting slabs, see e.g., [18, 24].

The paper is organized such that we in Section 2 and 3 present the geometry
of the problem and some prerequisities e.g., the Maxwell equations, constitutive
relations and the fundamental equation. The propagators as solutions to the fun-
damental equation for a general strati�ed media are introduced in Section 4. In
Section 5 we present the generalization of the propagator method, where thin, ho-
mogeneous, in general anisotropic, resistive sheets are taken into account by the
usage of a well known approximative impedance boundary condition. Furthermore,
Section 5 is concluded with an application of the method to the analysis of single
layer and multilayer absorbers i.e., Salisbury and Jaumann absorbers. Section 6
continues with the generalization of the propagator method to handle the problem
with an arbitrary number of metallic sheets consisting of resistive patch type ele-
ments imbedded in supporting linear, bianisotropic slabs. The solution of both the
case of �nite number of patch elements and the case where the elements are peri-
odically arranged i.e., periodic case is shown by the use of the Galerkin method.
Section 7 presents some numerical examples where comparison to data presented in
the litterature as well as measured data are shown. An appendix with important
results and expressions derived and presented in earlier published work ends this
paper.
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S1 S2 SN

V1 V2 VN VN+1

z

z0 z1 z2 zN−1 zN zN+1

Figure 1: The geometry of the problem with metallic or resistive sheets at z =
z1, . . . , zN .

2 Geometry

The theory in this paper is formulated for planar structures illustrated by Figure 1.
The structure consitutes of N thin sheets of perfectly conducting or resisitive1,
scatterers denoted by S1, S2, . . . , SN with locations z = zn, n = 1, 2, . . . , N . The
sheets S1, S2, . . . , SN are furthermore supported by bianisotropic slabs occupying
the regions V1, V2, . . . , VN+1, and the ends of the structure are represented by the
coordinates z0 and zN+1. Notice that the coordinate system is choosen such that
the location of the thin scatterers satis�es

z0 < z1 < z2 < · · · < zN−1 < zN < zN+1

The space outside the slabs is assumed to be vacuous and the sources of the
problem are con�ned to the regions located to the left and/or the right of the slabs
in Figure 1, i.e., the sources are contained in the vacuous half-spaces z < z0 and
z > zN+1. The dynamics of the �elds inside the slabs is modeled by the time-
harmonic (e−iωt) Maxwell equations in a source-free region i.e.,{

∇×E = ik0c0B

η0∇×H = −ik0c0η0D
(2.1)

1The impedance boundary condition is not restricted to pure resistances. The imposed
impedance is in general a complex quantity, which also can be a function of frequency modelling
e.g., RCL or LC circuits.
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where the permittivity and permeability of vacuum are denoted by ε0 and µ0, re-
spectively, c0 = 1/

√
ε0µ0 is the speed of light in vacuum, η0 =

√
µ0/ε0 is the intrinsic

impedance of vacuum, and k0 = ω/c0 is the vacuum wave number. The magnetic
�ux vector B and displacement �eld D on the right-hand side of (2.1) can be ex-
pressed in terms of the electric and magnetic �eld E andH , respectively, by the use
of the constitutive relations. The time harmonic constitutive relations of a general
bianisotropic medium [22] is given by

D = ε0 {ε ·E + η0ξ ·H}

B =
1

c0

{ζ ·E + η0µ ·H}
(2.2)

The bianisotropic medium is the most general linear complex medium comprising at
most 36 di�erent scalar constitutive parameters or functions i.e., the bianisotropic
slabs are not restricted to be homogeneous, which means that the slabs may be
functions of depth z and/or angular frequency ω (dispersive media). In the lateral
directions, x- and y-directions, however it is assumed that the material parameters
are constant.

The dyadics ε and µ are the permittivity and permeability dyadics respectively,
which for general anisotropic materials comprise nine paremeters each i.e.,

D = ε0ε ·E

B =
1

c0

η0µ ·H
(2.3)

For isotropic medium ε and µ are proportional to the identity dyadic i.e.,
D = ε0εE

B =
1

c0

η0µH
(2.4)

2.1 Decomposition of dyadics

For the pupose of studying wave propagation problems in layered bianisotropic struc-
tures by the concept of propagators, [29] is it appropriate to decompose each three-
dimensional constitutive dyadic A, according to2

A = A⊥⊥ + ẑAz +A⊥ẑ + ẑAzzẑ (2.5)

2Generally, all linear transformations A can be decomposed into components parallel and per-
pendicular to an arbirary unit vector n̂ according to

A = (I⊥ + n̂n̂) ·A · (I⊥ + n̂n̂) = A⊥⊥ + n̂An +A⊥n̂+ n̂Annn̂

where
I⊥ = I− n̂n̂

is a projection dyadic i.e., a linear transformation that projects an arbitrary vector into a plane
with unit normal n̂.
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where {
A⊥⊥ = I2 ·A · I2

Azz = ẑ ·A · ẑ

{
Az = ẑ ·A · I2

A⊥ = I2 ·A · ẑ

The dyadic A⊥⊥ is a two-dimensional dyadic in the x-y plane and the vectors Az

and A⊥ are two two-dimensional vectors in this plane. Azz is a scalar.
Thus, the four dyadics ε, ξ, ζ and µ in the constitutive relations (2.2) for a

general bianisotropic medium can be decomposed in tangential and normal parts
according to (2.5) i.e., 

ε = ε⊥⊥ + ẑεz + ε⊥ẑ + ẑεzzẑ

ξ = ξ⊥⊥ + ẑξz + ξ⊥ẑ + ẑξzzẑ

ζ = ζ⊥⊥ + ẑζz + ζ⊥ẑ + ẑζzzẑ

µ = µ⊥⊥ + ẑµz + µ⊥ẑ + ẑµzzẑ

3 Lateral Fourier transform of the �elds

The analysis in this paper is not restricted to plane wave incidence by the fact that
the �elds can be decomposed into a spectrum of plane waves. Due to the planar
geometry presented in Section 2, the plane wave decomposition is acomplished by
taking the Fourier transform with respect to the lateral position vector ρ = x̂x+ ŷy.
The Fourier transform is de�ned by

E(kt, z) =

∞∫∫
−∞

E(r)e−ikt·ρ dx dy

where the tangential wave vector kt = x̂kx + ŷky is real-valued and �xed but arbi-
trary. The inverse is

E(r) =
1

4π2

∞∫∫
−∞

E(kt, z)e
ikt·ρ dkx dky

In this paper the argument of the �eld indicates whether the �eld itself E(r) or its
Fourier transform E(kt, z) with respect to ρ is intended.

The lateral wave number kt =
√
k2
x + k2

y is a non-negative real number, which in
general is non-zero, and then it is appropriate to make use of the orthogonal basis
de�ned by {

ê‖(kt) = kt/kt

ê⊥(kt) = ẑ × ê‖(kt)

for the representation of lateral vectors in the x-y-plane [29].
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3.1 The Fundamental equation

The time-harmonic �elds can be uniquely decomposed into their lateral compo-
nents, Exy(kt, z) and η0Hxy(kt, z), and longitudinal (z) components, Ez(kt, z) and
η0Hz(kt, z) according to{

E(kt, z) = Exy(kt, z) + ẑEz(kt, z)

H(kt, z) = Hxy(kt, z) + ẑHz(kt, z)

By making use of these decompositions in the Maxwell equations (2.1), it follows
that the longitudinal �eld components can be eliminated and that the Maxwell equa-
tions for a bianisotropic medium can be transformed into a system of coupled ordi-
nary di�erential equations (ODE) i.e., the fundamental equation for one-dimensional
time-harmonic wave propagation [29]

d

dz

(
Exy(kt, z)

ẑ × η0Hxy(kt, z)

)
= ik0M(kt, z) ·

(
Exy(kt, z)

ẑ × η0Hxy(kt, z)

)
(3.1)

where M(kt, z) is a 4×4 complex-valued dyadic. In a bianisotropic media modelled
by the constitutive relations (2.2) the map M(kt, z) is explicitly given by [29]

M(kt, z) =

(
−J · ζ⊥⊥ J · µ⊥⊥ · J
−ε⊥⊥ ξ⊥⊥ · J

)
+

(
kt/k0 − J · ζ⊥ −J · µ⊥

−ε⊥ J · kt/k0 − ξ⊥

)
+

1

εzzµzz − ξzzζzz

(
−µzzεz − ξzzJ · kt/k0 + ξzzζz µzzkt/k0 + µzzξz · J− ξzzµz · J
ζzzεz + εzzJ · kt/k0 − εzzζz −ζzzkt/k0 − ζzzξz · J + εzzµz · J

)
where the material dyadic decomposition according to Section 2.1 has been used and
J = ẑ × I2 represents a rotation of π/2 around the z-axis, and I2 = ê‖ê‖ + ê⊥ê⊥ is
the identity dyadic in R2 for lateral vectors. Notice that the four dyadics ε, ξ, ζ and
µ depend on z for materials that are strati�ed in the z direction. In homogeneous
regions, the map M(kt, z) is independent of z, and, speci�cally, in a vacuous region
M(kt) is

M0(kt) =

(
0 −I2 + 1

k20
ktkt

−I2 − 1
k20
kt × (kt × I2) 0

)
(3.2)

4 Wave propagation by the notion of propagators

A formal solution of the fundamental equation (3.1) can be written [29](
Exy(kt, z)

η0J ·Hxy(kt, z)

)
= P(kt, z, z1) ·

(
Exy(kt, z1)

η0J ·Hxy(kt, z1)

)
where the propagator P is a linear map (4× 4 complex-valued dyadic) mapping the
tangential electric and magnetic �elds from z1 to z. For a homogeneous material,
an explicit solution of (3.1) can be found, and in this case the propagator is3

P(kt, z, z1) = eik0(z−z1)M(kt) (4.1)

3The order of the z-arguments in the propagator is important.
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A general result for the propagator of a single homogeneous layer can be obtained
using the Cayley-Hamilton theorem, see Appendix A, provided the eigenvalues of
the fundamental dyadic, M, are distinct [29]. Since the exponential is an entire
function, the Cayley-Hamilton theorem gives (d = z − z1)

eik0dM = q0(k0d)I4 + q2(k0d)M ·M + (q1(k0d)I4 + q3(k0d)M ·M) ·M

where the coe�cients, ql(k0d), l = 1, 2, 3, 4, are given by the system of linear equa-
tions

eik0dλl = q0(k0d) + q2(k0d)λ2
l +

(
q1(k0d) + q3(k0d)λ2

l

)
λl, l = 1, 2, 3, 4 (4.2)

provided the eigenvalues, λl, l = 1, 2, 3, 4, of the fundamental dyadic,M, are distinct.
This can generally be assumed unless the medium is isotropic or Tellegen [29]. Let

V =


1 λ1 λ2

1 λ3
1

1 λ2 λ2
2 λ3

2

1 λ3 λ2
3 λ3

3

1 λ4 λ2
4 λ3

4


The system of linear equations (4.2) and its solution can then formally be written

e = V · q, q = V −1 · e

where

e =


eik0dλ1

eik0dλ2

eik0dλ3

eik0dλ4

 , q =


q0(k0d)
q1(k0d)
q2(k0d)
q3(k0d)


For a homogeneous isotropic slab (ξ = ζ = 0, ε = εI3, µ = µI3), the fundamental

dyadic is explicitly given by

M(kt) =

(
0 −µI2 + 1

εk20
ktkt

−εI2 − 1
µk20

J · ktkt · J 0

)
with eigenvalues [29]

λ2 = εµ− k2
t /k

2
0 (4.3)

The single-slab propagator (4.1) can then be shown being given by (d = z−z1), [29]

P(kt, z, z1) = eik0dM(kt) = I4 cos (k0dλ) +
i

λ
M(kt) sin (k0dλ) (4.4)

From (4.3) it is furthermore seen that

k2
0λ

2 = k2
0εµ− k2

t = k2 − k2
t

and thus the longitudinal wave number kz is given by (k assumed real)

kz =
(
k2 − k2

t

)1/2
=

{√
k2 − k2

t for kt < k

i
√
k2
t − k2 for kt > k
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Thus, the propagator for a homogeneous isotropic slab (4.4) can be rewritten in the
�nal form

P(kt, z, z1) = I4 cos(kzd) +
ik0

kz
M(kt) sin(kzd) (4.5)

See, [29] for further details and other explicit expressions of propagators.

4.1 Propagators in strati�ed media

Consider the strati�ed structure shown in Figure 1, and assume that there are no
metallic or resistive sheets at z = z1, . . . , zN i.e., the structure is assumed to be a
layered dielectric structure. Let Mj(kt), j = 1, . . . , N + 1, be the dyadics modelling
the materials of the corresponding regions V1, V2, . . . , VN+1 illustrated in Figure 1.
All slabs are furthermore assumed homogeneous and the ends of the structure are
represented by the coordinates z0 and zN+1, and the space outside the slabs is
vacuous. Thus, MN+2(kt) = M0(kt), where M0(kt) is explicitly given by (3.2),
i.e., ε = µ = I3 and ξ = ζ = 0 in these half spaces. Since the tangential electric
and magnetic �elds are continuous at the boundaries repeated use of the propagator
(4.1) gives [29](

Exy(kt, zN+1)
η0J ·Hxy(kt, zN+1)

)
= P(kt, zN+1, z0) ·

(
Exy(kt, z0)

η0J ·Hxy(kt, z0)

)
where the propagator for the whole strati�ed structure is

P(kt, zN+1, z0) = eik0(zN+1−zN )MN+1(kt) · . . . · eik0(z2−z1)M2(kt) · eik0(z1−z0)M1(kt)

The corresponding relations for the two vacuous half spaces are [21](
Exy(kt, z)

η0J ·Hxy(kt, z)

)
= P(kt, z, z0) ·

(
Exy(kt, z0)

η0J ·Hxy(kt, z0)

)
, z < z0 (4.6)

(
Exy(kt, z)

η0J ·Hxy(kt, z)

)
= P(kt, z, zN+1) ·

(
Exy(kt, zN+1)

η0J ·Hxy(kt, zN+1)

)
, z > zN+1 (4.7)

where the propagators in (4.6) and (4.7) having the form (4.5) with the fundamental
dyadic M(kt) = M0(kt) explicitly given by (3.2).

5 Propagators and homogeneous resistive sheets

The theory of the propagator method presented in [29] cannot accommodate thin
resistive sheets. This section presents a generalization of the method where thin
homogeneous resistive sheets are taken into account by the use of a well known
approximative impedance boundary condition [31]. It is shown that the impedance
boundary condition can be introduced into the concept of propagators and the theory
is formulated for planar structures of one or several homogeneous resistive sheets
imbedded in the supporting slabs.
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z

Sk Sk+1

zk = zk0 zkm

· · · · · ·

zkN+1
= zk+1

Figure 2: The geometry of a subsection of the structure shown in Figure 1 with
one resistive sheet at z = zkm inside a strati�ed structure with N layers between the
boundaries at z = zk and z = zk+1.

Any number of resistive sheets can be introduced in the structure shown in Fig-
ure 1. Assume that one homogeneous resistive sheet islocated between the bound-
aries of z = zk and z = zk+1, see Figure 2. Furthermore, assume that the substruc-
ture between z = zk and z = zk+1 is strati�ed and consists of N + 1 bianisotropic
layers. As was pointed out in the preceeding section, the concept of propagators
relates the total transverse �elds to each other, and for a general bianisotropic strat-
i�ed structure without any resistive sheet, the transverse �elds are continuous at
each location zkn where n = 1, 2, . . . , N i.e.,{

Exy(kt, z
−
kn

) = Exy(kt, z
+
kn

)

η0J ·Hxy(kt, z
−
kn

) = η0J ·Hxy(kt, z
+
kn

)
(5.1)

Introducing the resistive sheet with surface resistivity Zkm , which in general is
complex-valued, at zkm , we make use of the following impedance boundary con-
dition at zkm{

Exy(kt, z
+
km

) = Exy(kt, z
−
km

)

η0J ·
(
Hxy(kt, z

+
km

)−Hxy(kt, z
−
km

)
)

= η0Z
−1
km
Exy(kt, z

−
km

)
(5.2)

The boundary condition (5.2) is well known and used as an approximate boundary
condition for thin structures, see [12, 15, 31]. Letting Zkm → ∞, it is seen that the
boundary conditions for pure dielectric interfaces (5.1) is obtained, and in the limit
Zkm → 0 the location zkm corresponds to a PEC boundary where the magnetic �eld
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Hxy(kt, zkm) has a jump discontinuity i.e., Z−1
km
Exy(kt, z

−
km

) → JS(kt, zkm) when
Zkm → 0. See, furthermore Appendix B, about the di�erent type of boundary
conditions, considered within the theory of this paper.

The continuity of the tangential electric �eld implies that we can reformulate
(5.2) as {

Exy(kt, z
−
km

) = Exy(kt, z
+
km

)

η0J ·
(
Hxy(kt, z

−
km

)−Hxy(kt, z
+
km

)
)

= −η0Z
−1
km
Exy(kt, z

+
km

)
(5.3)

The propagator formalism is written in dyadic form, and to this end, the boundary
condition (5.2) and its equivalent form (5.3) are written in dyadic form

Z±(Z) =

(
Z±ee(Z) Z±em(Z)
Z±me(Z) Z±mm(Z)

)
=

(
I2 0

±η0Z
−1I2 I2

)
(5.4)

The impedance dyadic (5.4) modells an isotropic thin sheet, but can easily be gen-
eralized to anisotropic sheets e.g., modelling of parallel wires imbedded in a di-
electric [31]. The generalized impedance dyadic for an anisotropic sheet at zkm is
written

Z± =

(
Z±ee Z±em
Z±me Z±mm

)
=

(
I2 0

±η0Z
−1
2 I2

)
(5.5)

where the dyadic Z−1
2 is a linear map C2 → C2. The dyadic Z+ maps the tangential

�elds through the resistive sheet from the left to the right i.e., from z−km to z+
km

or
in the reverse direction by Z−. Thus,(

Exy(kt, z
−
km+1

)

η0J ·Hxy(kt, zk−m+1
)

)
= P(kt, zkm+1 , zkm) · Z+ ·

(
Exy(kt, z

−
km

)
η0J ·Hxy(kt, z

−
km

)

)
or (

Exy(kt, z
+
km−1

)

η0J ·Hxy(kt, z
+
km−1

)

)
= P(kt, zkm−1 , zkm) · Z− ·

(
Exy(kt, z

+
km

)
η0J ·Hxy(kt, z

+
km

)

)
where the propagator P for a general linear homogeneous medium is given by (4.1).

Similarly, if there is a resistive sheet at z0 in Figure 1, modelled with the
impedance dyadic Z±0 , for the vacuous half space to the left, we have(

Exy(kt, z)
η0J ·Hxy(kt, z)

)
= P(kt, z, z0) · Z−0 ·

(
Exy(kt, z

+
0 )

η0J ·Hxy(kt, z
+
0 )

)
, z < z0

or in case of a resistive sheet at zN+1 with impedance dyadic Z±N+1, we have for the
vacuous half space to the right(

Exy(kt, z)
η0J ·Hxy(kt, z)

)
= P(kt, z, zN+1) · Z+

N+1 ·
(

Exy(kt, z
−
N+1)

η0J ·Hxy(kt, z
−
N+1)

)
, z > zN+1

The propagators P(kt, z, z0) and P(kt, z, zN+1), respectively, have the form (4.5)
with the fundamental dyadic M(kt) = M0(kt) explicitly given by (3.2).
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z

z1z0

F+(z0)

F−(z0) V1

S1

Figure 3: The geometry of a Salisbury screen i.e., a structure with one resistive
sheet at z = z0 backed with a PEC located at z = z1.

5.1 The Salisbury screen

The basic geometry of a Salisbury screen is shown in Figure 3. Consider �rst the
re�ection dyadic for the PEC backed structure with the resistive sheet absent i.e.,
[29]

r(kt, z1, z0) = −
(
Pee + Pem ·W−1

)−1 ·
(
Pee −Pem ·W−1

)
(kt, z1, z0) (5.6)

where the block dyadics Pee and Pem are de�ned by the propagator decomposition

P(kt, zn+1, zn) =

(
Pee(kt, zn+1, zn) Pem(kt, zn+1, zn)
Pme(kt, zn+1, zn) Pmm(kt, zn+1, zn)

)
and the wave splitting dyadic W−1 is given by

W−1(kt) =
k0

kz

(
I2 +

1

k2
0

kt × (kt × I2)

)
= ê‖ê‖

k0

kz
+ ê⊥ê⊥

kz
k0

By introducing a resistive sheet at z0 with surface resistivity Z0 (isotropic case) we
can express the boundary condition at z1 (PEC) according to(

0
−η0JS

)
=

(
Exy(kt, z1)

η0J ·Hxy(kt, z1)

)
=P(kt, z1, z0) · Z+(Z0) ·

(
I2 I2

−W−1 W−1

)
·
(
F+(z0)

r · F+(z0)

)



12

where F+(z0) denotes the excitation of the structure4 at z0 and Z+(Z0) is given by
(5.4). The upper equation of the boundary condition gives the re�ection dyadic in
case of a resistive sheet at z0. The result is

r(kt, z1, z0) = −
(
Pee + Pem ·

(
Z+
me(Z0) + W−1

))−1

·
(
Pee + Pem ·

(
Z+
me(Z0)−W−1

))
(kt, z1, z0)

(5.7)

where
Z+
me(Z0) =

η0

Z0

I2, Z0 6= 0

Letting Z0 → ∞ in (5.7) it is seen that the result converges to (5.6) i.e., the case
without a resistive sheet at z0. Furthermore, if Z0 → 0 we obtain the case with a
PEC at z0 and r(kt, z1, z0) = −I4 in that case. In the anisotropic case, we simply
replace Z+

me(Z0) in (5.7) with η0Z
−1
2 (Z0) according to (5.5).

Let the incident electric �eld at z = z0 be de�ned by [29]

Ei(z0) = E0(z0)
(
ê⊥ cosχ+ ê⊥ × k̂

+
sinχ

)
where k+ = kt + ẑkz, χ is the polarization angle, χ = 0 (TE polarization) and
χ = π/2 (TM polarization) and E0(z0) is a complex number determined by the
amplitude and phase of the incident �eld at the front end of the structure. The
re�ectance R of the structure is then given by [29]

R =
∣∣r‖‖ sinχ+ r‖⊥ cosχ/ cos θi

∣∣2 +
∣∣r⊥‖ cos θi sinχ+ r⊥⊥ cosχ

∣∣2 (5.8)

where θi is the angle of incidence de�ned by ẑ · k̂
+

= cos θi and r‖‖, r‖⊥, r⊥‖ and
r⊥⊥ are the components of the re�ection dyadic (5.7) i.e.,

r(kt, z1, z0) = ê‖ê‖r‖‖ + ê‖ê⊥r‖⊥ + ê⊥ê‖r⊥‖ + ê⊥ê⊥r⊥⊥

5.2 Multilayer resistive sheet

The results from Section 5.1 can be generalized to the case of a PEC backed structure
with more than one resistive sheet as depicted in Figure 4. The boundary conditions
at zN in this case are(

0
−η0JS

)
=

(
Exy(kt, zN)

η0J ·Hxy(kt, zN)

)
= PZ(kt, zN , z0)·

(
I2 I2

−W−1 W−1

)
·
(
F+(z0)

r · F+(z0)

)
where

PZ(kt, zN , z0) =

(
N−1∏
n=1

Pn+1(kt, zn+1, zn) · Z+
n

)
·P1(kt, z1, z0) (5.9)

with Z+
n in general given by (5.5) and in the isotropic case by (5.4). The upper

equation of the boundary condition gives the re�ection dyadic and the result is cf.,
(5.6)

r(kt, zN , z0) = −
(
PZee + PZem ·W−1

)−1 ·
(
PZee −PZem ·W−1

)
(kt, zN , z0) (5.10)

4The re�ected part of the excitation at z0 is by de�nition r · F+(z0) = F
−(z0).
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F+(z0)

F−(z0)

V1

S1 S2

z2

SN

zNzN−1

V2 VN

· · ·

· · ·

SN−1

Figure 4: The geometry of a multilayer resistive sheet (Jaumann absorber) i.e., a
structure with two or more resistive sheets located at z1, z2, . . . , zN−1, backed with
a PEC at the boundary z = zN .

where PZee and PZem denotes the block dyadics of (5.9) written in the form

PZ(kt, zN , z0) =

(
PZee(kt, zN , z0) PZem(kt, zN , z0)
PZme(kt, zN , z0) PZmm(kt, zN , z0)

)
Similarily letting Zn → ∞ for n = 1, 2, . . . , N − 1 it is seen that Z+(Zn) → I4

(Z+
n → I4) for n = 1, 2, . . . , N − 1 which implies that (5.10) converges to the case

of a PEC backed structure without any resistive sheets cf., (5.6). Furthermore, if
letting Zn → 0 for n = 1, 2, . . . , N−1, we obtain r(kt, zN , z0) = −I4. The re�ectance
R of this structure is computed according to (5.8).

6 Propagators and resistive elements

The theory presented in [21] provides a method for solving scattering problems in
planar geometries with an arbitrary number of metallic sheets consisting of aperture
or patch type elements imbedded in supporting linear bianisotropic slabs. In this
section, we extend the theory in [21] by considering lossy as well as perfect conduct-
ing patch type elements by employing the impedance boundary condition discussed
in Appendix B.

A summary of the explicit relations between the current distributions and the
tangential �elds at the screens derived in [21] based on the propagator formalism is
presented in Appendix C. In this section, we show how the results from Appendix C
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can be used to solve the patch case, where losses are taken into account. It is
furthermore shown that results for the metallic case reported in [21] is a special
case of the resistive case in the limit when the conductivity goes to in�nity. In
Section 6.1 we consider the case with a �nite number of elements and employ the
Galerkin method, and in Section 6.2 we adress the case where the elements are
periodically arranged i.e., the FSS or CAA case.

6.1 Current expansion on patches

Equations (C.2) and (C.7) relate the tangential electric �elds and current distribu-
tions at the screens and the excitation of the entire structure. This section shows
how the current distributions on the screens can be found by expansions of the
currents on the screens in a complete set of expansion functions.

The magnetic �eld H(ρ, zn) has a jump discontinuity in z, due to the presence
of the resitive patches on the screens, see Appendix B. The jump discontinuity is
modelled according to (B.3), and given by

J ·
(
Hxy(ρ, z

+
n )−Hxy(ρ, z

−
n )
)

= χZ−1
n Exy(ρ, zn)

where χ is a characteristic function with support on the patches, i.e., it assumes the
value 1 on the patches and 0 elsewhere. In the limit Zn → 0, we obtain the case
with PEC patches earlier reported in [21], i.e., χZ−1

n Exy(ρ, zn) → JS(ρ, zn), when
Zn → 0, where JS(ρ, zn) is the induced surface currents on the metallic parts of the
sheets, see (B.4).

Assume that Zn 6= 0, and denote χZ−1
n Exy(ρ, zn) = JS(ρ, zn). The fact that

the lateral electric �eld is continuous, then implies that the impedance boundary
condition can be written

χExy(ρ, z
−
n ) = χExy(ρ, z

+
n ) = ZnJS(ρ, zn) (6.1)

The current distributions on the screens are expanded in a complete set of basis
functions in order to employ the Galerkin method i.e.,

JS(ρ, zn) =
∑
l

βl(zn)jl(ρ, zn) on the resistive parts of Sn

where l is a typically multi-index. Employing the Galerkin method, we furthermore
de�ne the following vector-valued weight functions

wk(ρ, zn) =

{
0 outside the resistive parts of Sn

jk(ρ, zn) on the resistive parts of Sn
(6.2)

whith support on the patches of the screen Sn. Application of the Galerkin method
on (6.1) gives

∞∫∫
−∞

wk(ρ, zn)∗ ·Exy(ρ, zn) dx dy = Zn

∞∫∫
−∞

wk(ρ, zn)∗ · JS(ρ, zn) dx dy
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and by using the Parseval's theorem we have

∞∫∫
−∞

wk(kt, zn)∗ ·Exy(kt, zn) dkx dky = Zn

∞∫∫
−∞

wk(kt, zn)∗ · JS(kt, zn) dkx dky (6.3)

for n = 1, · · · , N , and all multi-index k, where wk(kt, zn) is the lateral Fourier
transform of (6.2). In case of general anisotropic thin sheets, the corresponding
identities read
∞∫∫

−∞

wk(kt, zn)∗ ·Exy(kt, zn) dkx dky =

∞∫∫
−∞

wk(kt, zn)∗ ·Zn2 ·JS(kt, zn) dkx dky (6.4)

where the impedance dyadic Zn2 is a linear map C2 → C2 modelling the more
general impedance boundary conditions

Exy(ρ, z
−
n ) = Exy(ρ, z

+
n ) = Zn2 · χJS(ρ, zn) (6.5)

The lateral electric �elds vanish on the metallic parts of the sheets in the metallic
case, which also is seen in the limit Zn → 0 (Zn2 → 0) for n = 1, · · · , N in (6.1) (or
(6.5)). Thus, in the limit the identities (6.3) and (6.4) become

∞∫∫
−∞

wk(kt, zn)∗ ·Exy(kt, zn) dkx dky = 0, Zn2 → 0

for n = 1, · · · , N , which is identical with the corresponding result reported in [21].
Equation (C.2) or (C.7) can now be substituted in either (6.3) or (6.4) to �nd

the unknowns βl(zn). For more than one sheet, i.e., N > 1, we obtain∑
l

N∑
m=1

bnklmβl(zn) =

∞∫∫
−∞

wk(kt, zn)∗ ·Bn0(kt) · F+(kt, z0) dkx dky

+

∞∫∫
−∞

wk(kt, zn)∗ ·BnN+1(kt) · F−(kt, zN+1) dkx dky

for n = 1, · · · , N , and all multi-index k where

bnklm = η0

∞∫∫
−∞

wk(kt, zn)∗ ·
(
Bnm(kt) · jl(kt, zm)− δmn

Zn
η0

jl(kt, zn)

)
dkx dky

or in the general case of anisotropic resistive sheets

bnklm = η0

∞∫∫
−∞

wk(kt, zn)∗ ·
(
Bnm(kt) · jl(kt, zm)− δmn

η0

Zn2 · jl(kt, zn)

)
dkx dky
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6.2 Current expansion on periodic patches

As in Section 6.1 we expand the current density JS(ρ, zj) in a complete set of entire
domain or local basis functions, but due to the periodicity it su�ces to de�ne the
basis functions in the unit cell U [21].

Expand the current density JS(ρ, zj) according to

JS(ρ, zj) =
∑
p∈Λ

Cj
pjp(ρ, zj), j = 1, 2, . . . , N ; ρ ∈ U

where Λ is a countable set of indices and, the scalars Cj
p , the unknown expansion

coe�cients. The lateral Fourier transform of the current expansion is [21]

JS|U(kmn, zj) =
∑
p∈Λ

Cj
pjp(kmn, zj), j = 1, 2, . . . , N (6.6)

where

jp(kmn, zj) =

∫∫
U

jp(ρ, zj)e
−ikmn·ρdxdy, j = 1, 2, . . . , N ; p ∈ Λ

In analogy with Section 6.1, we make use of weigth functions, wp(ρ, zj), sup-
ported on the patches i.e., (6.2) with lateral Fourier transforms de�ned by

wp(kmn, zj) =

∫∫
U

wp(ρ, zj)e
−ikmn·ρdxdy, j = 1, 2, . . . , N ; p ∈ Λ

From the impedance boundary condition (6.1), we have the following identity∫∫
U

wp(ρ, zj)
∗ ·Exy(ρ, zj) dx dy = Zj

∫∫
U

wp(ρ, zj)
∗ · JS(ρ, zj) dx dy

for j = 1, 2, . . . , N ; p ∈ Λ. By the use of the Parseval's theorem for Fourier series5

modi�ed to Floquet expansions6, the identity can be written as

∞∑
m,n=−∞

wp(kmn, zj)
∗ ·Exy|U(kmn, zj) = Zj

∞∑
m,n=−∞

wp(kmn, zj)
∗ · JS|U(kmn, zj)

5If f and g are doubly periodic functions in ρ ∈ R2 with unit cell U = {as+ bt : 0 ≤ s, t ≤ 1},
de�ned by the linearly independent vectors a ∈ R2 and b ∈ R2, and the Fourier coe�cients of f
and g are fmn and gmn, respectively, Parseval's theorem is given by [21]:

1

AU

∫∫
U

f∗(ρ)g(ρ)dxdy =

∞∑
m,n=−∞

f∗mngmn

where the area of the unit cell U is AU = |ẑ · (a× b)|.
6By an application of the Floquet's theorem to the induced surface currents at the periodic

screens, the current densities have the Fourier series representation [21]

JS(ρ, zj) =
1

AU

∞∑
m,n=−∞

JS |U (kmn, zj)e
ikmn·ρ j = 1, 2, . . . , N ; ρ ∈ R

A similar Floquet expansion exists for the lateral electric �eld Exy(ρ, zj).
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for j = 1, 2, . . . , N ; p ∈ Λ, in which equation7 (C.12) and, the lateral Fourier
transform of the current expansion (6.6) are substituted, which yields a system of
equations for the unknown coe�cients Cj

p i.e.,

∞∑
m,n=−∞

wp(kmn, zj)
∗ ·

(
N∑
k=1

Bjk(kmn)− Zj
η0

δjkI2

)
· η0

∑
q∈χ

Ck
q jq(kmn, zk)

=AUwp(k00, zj)
∗ ·Bj0(k00) · F+(k00, z0), j = 1, 2, . . . , N ; p ∈ Λ

(6.7)

Letting Zj → 0 for j = 1, · · · , N in (6.7), we obtain

∞∑
m,n=−∞

wp(kmn, zj)
∗ ·

N∑
k=1

Bjk(kmn) · η0

∑
q∈χ

Ck
q jq(kmn, zk)

=AUwp(k00, zj)
∗ ·Bj0(k00) · F+(k00, z0), j = 1, 2, . . . , N ; p ∈ Λ

(6.8)

which is identical to the corresponding result for the metallic case reported in [21].
The identities (6.7) and (6.8) are in�nite systems of linear equations for the

unknown current coe�cients Ck
q . After truncation they can be written in the form

AC = b

where A is a square matrix, C is a vector containing the unknown coe�cients Ck
q ,

and b is a known vector. The matrix elements for the resistive case are

Ajp,kq =
∞∑

m,n=−∞

wp(kmn, zj)
∗ · (η0Bjk(kmn)− ZjδjkI2) · jq(kmn, zk)

j, k = 1, 2, . . . , N ; p, q ∈ Λ

or in case of anisotropic resistive sheets the elements are

Ajp,kq =
∞∑

m,n=−∞

wp(kmn, zj)
∗ · (η0Bjk(kmn)− δjkZj2) · jq(kmn, zk)

j, k = 1, 2, . . . , N ; p, q ∈ Λ

where the impedance dyadic Zj2 is a linear map C2 → C2 in analogy with the results
in Section 6.1. Furthermore, the elements of the right-hand side b are given by

bjp = AUwp(k00, zj)
∗ ·Bj0(k00) · F+(k00, z0), j = 1, 2, . . . , N ; p ∈ Λ

The theory for computations of re�ection and transmission coe�cients from the
results reported in this section can be found in [21].

7In case of one screen is (C.11) substituded.
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7 Numerical examples

This section presents some numerical examples, where comparison to data presented
in the litterature as well as measured data are shown. The frequency response of
the classical Salisbury and Jaumann absorbers consisting of one or several homoge-
neous resistive sheets is �rst shown, and secondly the frequency response from two
examples with sheets constituting of periodic resistive patches of square patch and
crossed dipole type, respectively.

7.1 Absorbers (Salisbury and Jaumann)

In Section 5, it was shown how the propagator formalism could be modi�ed to thin
resistive sheets by the use of an approximative boundary condition. The method has
been veri�ed against data presented in [25] and [17], respectively, where examples
of frequency response of Salisbury and Jaumann absorbers are shown.

Figure 5 and 6 show the frequency response of a Salisbury and a Jaumann
absorber, respectively, computed by the propagator formalism presented in Section 5
and the corresponding results from [25] and [17] obtained by the PMM program
(periodic method of moments) and CST Microwave studio, respectively. As seen
both in Figure 5 and 6 the agreement is excellent.
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Markers Ref [25]

Figure 5: The frequency response of a Salisbury absorber for normal and oblique
angles of incidence 45◦. Design parameters, ε1 = 1.00, d1 = 7.50, and Z1 = 377
where ε denotes the relative permittivity, d layer thickness in (mm), and Z surface
resistivity in (Ω/Sq).

In the examples above, it was assumed that the supporting slabs where isotropic
and thus modelled by the constitutive relations (2.4) in Section 2. However the
propagator method can handle general bianisotropic materials [29], and one inter-
esting question is to investigate what impact the use of uniaxial materials has on
the frequency response for a given absorber design. Examples of uniaxial materials
in practice are core materials such that Honey comb with a given cell structure and
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Figure 6: The frequency response of the Jaumann absorber for normal and oblique
angles of incidence 45◦. Design parameters, ε1 = 1.80, ε2 = 1.90, ε3 = 1.30, ε4 = 3.00,
εc = 3.20, d1 = 5.50, d2 = 5.10, d3 = 4.00, d4 = 0.76, dc = 0.20 and Z1 = 196,
Z2 = 710, where ε denotes the relative permittivity, d layer thickness in (mm), and
Z surface resistivity in (Ω/Sq).

woven materials e.g., �ber reinforced composites, [28]. The constitutive relations for
a general uniaxial material are given by (2.3) in Section 2 where

ε =

εxx 0 0
0 εyy 0
0 0 εzz

 µ =

µxx 0 0
0 µyy 0
0 0 µzz

 (7.1)

and εxx = εyy 6= εzz and/or µxx = µyy 6= µzz.
Figure 7 presents the frequency response of the Jaumann absorber in Figure 6,

where some of the isotropic layers have been replaced by uniaxial layers according
to (7.1) with the exception that the layers are assumed to be non-magnetic i.e.,
µxx = µyy = µzz = 1, see Figure 7 for details. Figure 7 shows that the introduction
of uniaxial non-magnetic layers with consitutive relations where εxx = εyy 6= εzz only
a�ect the frequency response of the TM polarization for oblique angle of incidence.
This result is physicaly resonable, due to the fact that the uniaxial direction was
choosen normal to the interface of the structure, see (7.1). The opposite change by
letting εxx = εyy = εzz and µxx = µyy 6= µzz will only a�ect the TE polarization for
oblique angle of incidence, and leave the frequency response of the TM polarization
unchanged.

7.2 Resistive periodic structures (Patch and Crossed dipoles)

This section presents results of frequency response from free-standing periodic ar-
rays of perfectly conducting and resistive (lossy) patches as well as resistive crossed
dipoles on a �at printed circuit board (PCB). The frequency response from the ar-
rays was computed by the Galerkin method presented in Section 6.2. The results
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Figure 7: The frequency response of two Jaumann absorbers (i) design in Figure 6
and (ii), where εi, i = 1, 2, 3, 4 in Figure 6 have been replaced with uniaxial material
parameters given by ε1xx = ε1yy = 1.80, ε1zz = 2.00, ε2xx = ε2yy = 1.90, ε2zz = 2.10,
ε3xx = ε3yy = 1.30, ε3zz = 1.50, ε4xx = ε4yy = 3.00, ε4zz = 3.20.

for the patch cases are compared with corresponding results found in [9] and the
crossed dipole case is compared against measured data.

Patch case The method presented in [9] is a fast Fourier transform-based (FFT)
iterative approach for computing the scattered �elds from an in�nite, periodic array
where in general the elements can be perfectly conducting or lossy. The approach
in [9] uses subdomain expansion functions in contrast to the method in this paper,
which uses entire domain basis functions for the patches according to [19]. Figure 8
shows good agreement between results computed by the method in this paper and
the approach in [9].

Crossed dipole case The improved set of entire domain basis functions for the
crossed dipoles presented in [26] has been used in the numerical computations of
the crossed dipole case. Figure 9 shows a comparison between measured and corre-
sponding computed transmission loss of a �at PCB constituting of a periodic array
of resistive crossed dipoles. The PCB has been modelled by a homogeneous isotropic
slab i.e., the constitutive relations (2.4) with thickness 0.13 (mm) where the rela-
tive permittivity and loss tangent values where set to ε = 5.40 and tan δ = 0.0135
respectively. It is seen in Figure 9 that there is good agreement between measured
and computed results.

8 Conclusions

The theory in this paper is based on the concept of propagators to solve scatter-
ing problems in planar geometries with an arbitrary number of metallic or resistive
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Figure 8: Frequency response of a periodic array of resistive patches for TE inci-
dence at angles of incidence θi = φi = 1.0◦. The design parameters are the period
Tx = Ty = 30.0 and the patch width and height Lx = Ly = 15.0 given in (mm) with
surface resistivity Z = 0, 10, 30 and 100 (Ω/Sq) respectively. The curves in each
case where computed with (2 · 8 + 1)2 Floquet modes and 12 entire domain basis
functions [19].

sheets imbedded in supporting slabs, where the materials in the slabs can be arbi-
trary linear materials, i.e., a bianisotropic materials.

The paper presents a generalisation of the method of propagators given in [29],
where thin homogeneous, in general, anisotropic resistive sheets were modelled by
the use of an approximative impedance boundary condition, [9, 12, 15, 31]. Numeri-
cal computations has been compared with corresponding results from [25] and [17]
obtained by the PMM program (periodic method of moments) and CST Microwave
studio, respectively, with excellent agreement.

The paper has also considered a generalization of the propagator method given
in [21] by extending the method to periodic structures with resistive patch type
elements. Results from numerical computations were compared with corresponding
results from [9] with good agreement. In a �nal example a comparison between
measured and simulated data for the case of an array of resistive crossed dipoles
printed on a �at PCB was presented. The improved set of entire domain basis
functions presented in [26] was used in the simulations with good agreement between
measured and computed data.
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Figure 9: Frequency response of a periodic array of resistive crossed dipoles for
TM and TE incidence at angles of incidence θi = 30.0◦ (φi = 0.0◦). The design
parameters are the period Tx = Ty = 10.4 with dipole dimensions Wx = Wy =
1.0 and Lx = Ly = 10.2 given in (mm) with surface resistivity Z = 25 (Ω/Sq)
respectively. The PCB was attached on one side to the dipole array with thickness
0.13 (mm) and relative permittivity and loss tangent values set to ε = 5.40 and
tan δ = 0.0135 respectively. The curves in each case were computed with (2 ·20+1)2

Floquet modes and 16 entire domain basis functions [26].
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Appendix A Cayley-Hamilton theorem

The following theorems are of fundamental importance for computing the action of
an entire function of a square dyadic [6].

Theorem A.1 (Cayley-Hamilton). A quadratic dyadic A satis�es its own charac-
teristic equation:

If pA(λ) = det(λI−A), then pA(A) = 0

From this theorem, one can prove the following important theorem.

Theorem A.2. Let λ1, . . . , λm be the di�erent eigenvalues of the n-dimensional
dyadic A, and n1, . . . , nm their multiplicity. If f(z) is an entire function, then

f(A) = q(A)

where the uniquely de�ned polynomial q of degree ≤ n− 1 is de�ned by the following
conditions:

djq

dzj
(λk) =

djf

dzj
(λk), j = 0, . . . , nk − 1, k = 1, . . . ,m



23

z = zk
1
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I: Dielectric boundary
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III: Dielectric boundary with resistive patches
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2
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η0J ·Hxy1(ρ, zk)

η0J ·Hxy2(ρ, zk) + η0Z
−1
k Exy2(ρ, zk)

η0J ·Hxy2(ρ, zk) + η0χZ
−1
k Exy2(ρ, zk)

η0J ·Hxy2(ρ, zk)

Figure 10: Di�erent boundaries at the planar interface, z = zk. Case I: Dielec-
tric boundary, Case II: Homogeneous impedance boundary, and Case III: Dielectric
boundary with resistive patches.

Appendix B Boundary conditions lateral �elds

The foundation of the theory presented in this paper is based on the concept of
propagators, which are mappings that relates the total transversal �elds between
di�erent points in space. A necessary condition for the use of the propagators
is that the transversal (lateral) �elds are continuous at each boundary, z = zk.
Otherwise, one need to employ an appropriate boundary condition, that takes the
jump discontinuity into account. The analysis in this paper is not restricted to
plane wave incidence by the fact that the �elds can be decomposed into a spectrum
of plane waves. Due to the planar geometry presented in Section 2, the plane wave
decomposition is acomplished by taking the lateral Fourier transform with respect
to the lateral position vector ρ = x̂x+ ŷy, see Section 3. Thus, in order to use the
concept of propagators in the Fourier domain, the lateral Fourier transformed �elds
need to be continuous at each boundary, z = zk, otherwise an appropriate boundary
condition is used to model the jump discontinuity.

Boundaries that are considered within the theory of this paper are depicted in
Figure 10. Case I in Figure 10 illustrates a pure dielectric boundary at z = zk, where
the lateral electric and magnetic �elds are continuous, which implies continuity of
the corresponding lateral Fourier transformed �elds, i.e.,{
Exy1(ρ, zk) = Exy2(ρ, zk)

η0J ·Hxy1(ρ, zk) = η0J ·Hxy2(ρ, zk)
⇒

{
Exy1(kt, zk) = Exy2(kt, zk)

η0J ·Hxy1(kt, zk) = η0J ·Hxy2(kt, zk)

By the introduction of a homogeneous resistive sheet with surface resistivity Zk,
at zk, which in general is complex-valued, we obtain Case II shown in Figure 10. In
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case of a homogeneous impedance boundary, we make use of the following impedance
boundary condition at zk, [31]{

Exy1(ρ, zk) = Exy2(ρ, zk)

η0J ·Hxy1(ρ, zk) = η0J ·Hxy2(ρ, zk) + η0Z
−1
k Exy2(ρ, zk)

(B.1)

Thus, in this case the lateral electric �eld is continuous, but the magnetic �eld has
a jump discontinuity given by the extra term, η0Z

−1
k Exy2(ρ, zk), in (B.1). Letting

Zk →∞, it is seen that the boundary conditions for pure dielectric interfaces, i.e.,
Case I in Figure 10 is obtained, and in the limit Zk → 0 the location zk corresponds to
a PEC boundary, where the magnetic �eldHxy(ρ, zk) has a jump discontinuity i.e.,
Z−1
k Exy(ρ, zk) → JS(ρ, zk) when Zk → 0, where JS(ρ, zk) is the induced surface

current on the PEC boundary. Taking the lateral Fourier transform of (B.1), implies{
Exy1(kt, zk) = Exy2(kt, zk)

η0J ·Hxy1(kt, zk) = η0J ·Hxy2(kt, zk) + η0Z
−1
k Exy2(kt, zk)

(B.2)

The boundary condition (B.2) is used when mapping the �elds through the thinn
homogeneous impedance sheet at z = zk, and the extra term η0Z

−1
k Exy2(kt, zk), in

(B.2) models the jump discontinuity of the lateral magnetic �eld.
Case III in Figure 10, i.e., a dielectric boundary with resistive patches, is in

fact a combination of the two former boundaries. In this case, the extra term
η0Z

−1
k Exy2(ρ, zk) in (B.1) has compact support on the patches, and, thus, the bound-

ary condition is changed according to{
Exy1(ρ, zk) = Exy2(ρ, zk)

η0J ·Hxy1(ρ, zk) = η0J ·Hxy2(ρ, zk) + η0χZ
−1
k Exy2(ρ, zk)

(B.3)

where χ, is a characteristic function of the patches, i.e., it assumes the value 1 on
the patches and 0 elsewhere.

Notice that, χZ−1
k Exy(ρ, zk) → JS(ρ, zk), in the limit Zk → 0, which corre-

sponds to the case with PEC patches earlier reported in [21] i.e.,{
Exy1(ρ, zk) = Exy2(ρ, zk)

JS(ρ, zk) = η0J · (Hxy1(ρ, zk)−Hxy2(ρ, zk))
(B.4)

Appendix C Current and lateral �eld relations

To solve the scattering problem for a structure consisting of one or several screens
depicted in Figure 1 with apertures or patches, one needs expressions for the current
distributions or tangential electric �elds at the screens. The analysis presented in [21]
formulates those relations by the propagator formalism separated into two paths,
depending on whether there are one screen (N = 1), or whether there are several
screens (N > 1). These cases are di�erent due, to the fact that in the �rst case the
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screen has the two half spaces next to the screen, and in the second case there is
always a neighboring screen.

This appendix summarizes the relations derived in [21] between the surface cur-
rents, JS(kt, zn), on the screens and electric �elds, Exy(kt, zn), on the screens and
excitations of the entire slab, denoted by F+(kt, z0) and F−(kt, zN+1), i.e., the
excitations from the left and right, respectively.

C.1 Relations in the non-periodic case

One screen (N = 1): For the case of only one screen it is found in [21] that

η0JS(kt, z1) =A11(kt) ·Exy(kt, z1)

+ A10(kt) · F+(kt, z0) + A12(kt) · F−(kt, z2)
(C.1)

where8 the square (2× 2) matrices Anm(kt), n = 1 and m = 0, 1, 2 are
A10(kt) =− 2(Pem −W ·Pmm)−1(kt, z0, z1)

A11(kt) =− ((Pem + W ·Pmm)−1 · (Pee + W ·Pme))(kt, z2, z1)

+ ((Pem −W ·Pmm)−1 · (Pee −W ·Pme))(kt, z0, z1)

A12(kt) =2(Pem + W ·Pmm)−1(kt, z2, z1)

The dyadics Pee, Pem, Pme and Pmm denotes block dyadics of the propagators
P(kt, z0, z1) and P(kt, z2, z1), and W is given by

W(kt) =
kz
k0

(
I2 −

1

k2
z

kt × (kt × I2)

)
= ê‖ê‖

kz
k0

+ ê⊥ê⊥
k0

kz

=
k0

kz

(
I2 −

1

k2
0

ktkt

)
=
k0

kz
I2 −

k2
t

k0kz
ê‖ê‖

Equation (C.1) is a relation between the surface current, the transverse electric �eld
at the screen, and the excitations of the structure to the left and right respectively.
Notice that the screen is assumed to be located in between two slabs with outer
boundaries located at z0 and z2, respectively.

Relation (C.1) can be inverted, and the transverse electric �eld Exy(kt, z1) can
be found in terms of the surface currents JS(kt, z1) according to [21]

Exy(kt, z1) =B11(kt) · η0JS(kt, z1)

−B10(kt) · F+(kt, z0)−B12(kt) · F−(kt, z2)
(C.2)

where 
B11(kt) = A11(kt)

−1

B10(kt) = B11(kt) ·A10(kt)

B12(kt) = B11(kt) ·A12(kt)

Equation, (C.1), is more adapted for the analysis of the aperture case, while the
second one, (C.2), for the patch case [21].

8The dependence of the block matrices Amn(kt) on the location of the screens are suppressed.
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Several screens (N > 1): The surface current at the �rst screen is [21]

η0JS(kt, z1) =A11(kt) ·Exy(kt, z1) + A12(kt) ·Exy(kt, z2)

+ A10(kt) · F+(kt, z0)
(C.3)

where 
A11(kt) =(Pmm ·P−1

em)(kt, z1, z2)

+ ((Pem −W ·Pmm)−1 · (Pee −W ·Pme))(kt, z0, z1)

A12(kt) =(Pme −Pmm ·P−1
em ·Pee)(kt, z1, z2)

A10(kt) =− 2(Pem −W ·Pmm)−1(kt, z0, z1)

and the surface currents at the interior screens are [21]

η0JS(kt, zn) =Ann−1(kt) ·Exy(kt, zn−1)

+ Ann(kt) ·Exy(kt, zn)

+ Ann+1(kt) ·Exy(kt, zn+1)

(n = 2, · · · , N − 1) (C.4)

where 
Ann−1(kt) = −P−1

em(kt, zn−1, zn)

Ann(kt) = (Pmm ·P−1
em)(kt, zn, zn+1) + (P−1

em ·Pee)(kt, zn−1, zn)

Ann+1(kt) = (Pme −Pmm ·P−1
em ·Pee)(kt, zn, zn+1)

Equation (C.4) is a relation between the surface currents and the transverse electric
�elds at the interior screens and the transverse electric �elds at its two neighbors.
The surface current on the �nal screen is [21]

η0JS(kt, zN) =ANN−1(kt) ·Exy(kt, zN−1) + ANN(kt) ·Exy(kt, zN)

+ ANN+1(kt) · F−(kt, zN+1)
(C.5)

where
ANN−1(kt) = −P−1

em(kt, zN−1, zN)

ANN(kt) = (P−1
em ·Pee)(kt, zN−1, zN)

− ((Pem + W ·Pmm)−1 · (Pee + W ·Pme))(kt, zN+1, zN)

ANN+1(kt) = 2(Pem + W ·Pmm)−1(kt, zN+1, zN)

Combining (C.3), (C.4) and (C.5) into a single expression the relations implies
(n = 1, · · · , N), [21]

η0JS(kt, zn) =
N∑
m=1

Anm(kt) ·Exy(kt, zm)

+ δn1A10(kt) · F+(kt, z0) + δnNANN+1(kt) · F−(kt, zN+1)

(C.6)

where δ denotes the Kronecker delta. Notice that the sum in (C.6) has only at most
three terms, since all matrices Anm vanish if m 6= n, n± 1. Introducing the square
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(2N × 2N) matrix A(kt) = (Anm(kt)) of band block type in accordiance with the
theory in [21] by

A =



A11 A12 0 . . . . . . . . .
A21 A22 A23 0 . . . . . .
0 A32 A33 A34 0 . . .
...

...
...

. . .
...

...
. . . . . . 0 AN−1N−2 AN−1N−1 AN−1N

. . . . . . . . . 0 ANN−1 ANN


equation (C.6) can be written in a form adapted for numerical implementation.
Similar to (C.2), for the case of only one screen, equation (C.6) can be inverted and
the transverse electric �eld Exy(kt, zn) can be found in terms of the surface currents
JS(kt, zm), [21]

Exy(kt, zn) =
N∑
m=1

Bnm(kt) · η0JS(kt, zm)

−Bn0(kt) · F+(kt, z0)−BnN+1(kt) · F−(kt, zN+1)

(C.7)

where Bn0(kt) := Bn1(kt) ·A10(kt) and BnN+1(kt) := BnN(kt) ·ANN+1(kt).
Equations (C.6) and (C.7) constitute the �nal set of equations for the case of

several screens. The �rst equation, (C.6), is the most suitable one for the analysis
of the aperture case, while the second one, (C.7), is more adapted to the the patch
case [21].

C.2 Relations in the periodic case

In FSS or CAA applications, FSS sheets with elements of patch or aperture type
arranged in a periodic pattern need to be considered. In case of periodic sheets, it
is assumed that the periodicity is the same or commensurate on all screens.

If this is the case, Floquet's theorem [14] can be applied, which implies that the
electric �elds and the current densities can be expanded in in�nite exponential series
in terms of lateral wave numbers given by [21]

kmn = 2π

(
−m ẑ × b

ẑ · (a× b)
+ n

ẑ × a
ẑ · (a× b)

)
+ kit, m, n ∈ Z

where Z denotes the set of integers and a and b denote two linearly independent
vectors in the x-y plane, which span the unit cell U = {as+ bt : 0 ≤ s, t ≤ 1} of the
periodic sheets. A general result derived in [21] is that the connection between the
lateral Fourier transforms of any �eld quantity, F S(kt, zj), (e.g., the current density
and lateral electric �eld) and the Fourier transform of its restriction to the unit cell,
F S|U(kmn, zj), is

F S(kt, zj) =
4π2

AU

∞∑
m,n=−∞

F S|U(kmn, zj)δ
2(kt − kmn), j = 1, 2, . . . , N
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Using this relation for the induced surface current densities, JS(ρ, zj), and the
lateral electric �elds Exy(ρ, zj) at the screens, gives

JS(kt, zj) =
4π2

AU

∞∑
m,n=−∞

JS|U(kmn, zj)δ
2(kt − kmn), j = 1, 2, . . . , N (C.8)

and

Exy(kt, zj) =
4π2

AU

∞∑
m,n=−∞

Exy|U(kmn, zj)δ
2(kt − kmn), j = 1, 2, . . . , N (C.9)

where (C.8)�(C.9) are the Fourier transforms of the surface current densities, i.e.,
JS(ρ, zj), and lateral electric �elds, Exy(ρ, zj), respectively at the screens connected
to their restrictions to the unit cell.

The results presented in Appendix C.1 was formulated such that there could be
sources on both sides of the slab, i.e., in the regions z < z0 and z > zN+1. In [21],
a plane wave excitation was assumed only from the left and given by

Ei(r) = Ei
0e
iki·r

where ki = k0(x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ) = kit + ẑkiz, is the constant real
wave vector of the incident wave, where kit = I2 · ki and kiz = ki · ẑ, and Ei

0 is a
constant complex vector, such that Ei

0 · ki = 0. In [21], it is, furthermore, shown
that the Fourier transform of the lateral part of the excitation can be written

F+(kt, z0) = 4π2F+(k00, z0)δ2(kt − k00) (C.10)

where F+(k00, z0) = Ei
0xye

ikizz0 and k00 = kit in accordiance with (C.2) for m = n =
0.

By substituting the equations (C.8), (C.9), and (C.10) into relations (C.1) and
(C.6) in the aperture case, and relations (C.2) and (C.7) in the patch case, respec-
tively, we get the sought relations in the periodic case.

Aperture case: In case of one screen (N = 1) the relation is [21]

η0JS|U(kmn, z1) =A11(kmn) ·Exy|U(kmn, z1)

+ AUA10(k00) · F+(k00, z0)δm0δn0

and for several screens i.e., N > 1, the corresponding relations are [21]

η0JS|U(kmn, zj) =
N∑
k=1

Ajk(kmn) ·Exy|U(kmn, zk)

+ AUAj0(k00) · F+(k00, z0)δm0δn0δj1, j = 1, 2, . . . , N

where the de�nition of A-matrices is given in Appendix C.1.
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Patch case: In case of one screen (N = 1) the relation is [21]

Exy|U(kmn, z1) =B11(kmn) · η0JS|U(kmn, z1)

− AUB10(k00) · F+(k00, z0)δm0δn0

(C.11)

and for several screens i.e., N > 1, the corresponding relations are, [21]

Exy|U(kmn, zj) =
N∑
k=1

Bjk(kmn) · η0JS|U(kmn, zk)

− AUBj0(k00) · F+(k00, z0)δm0δn0, j = 1, 2, . . . , N

(C.12)

where the de�nition of B-matrices is given in Appendix C.1.
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