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Abstracts

The thesis consists of three research articles. For convencience the respective ref-
erences and abstracts are given here.

Paper I: Perfekt, K.-M. and Putinar, M., Spectral bounds for the Neumann-Poincaré
operator on planar domains with corners, to appear in J. Anal. Math., (2012).

The boundary double layer potential, or the Neumann-Poincaré operator, is
studied on the Sobolev space of order 1/2 along the boundary, coinciding with
the space of charges giving rise to double layer potentials with finite energy in
the whole space. Poincaré’s program of studying the spectrum of the boundary
double layer potential is developed in complete generality, on closed Lipschitz hy-
persurfaces in Euclidean space. Furthermore, the Neumann-Poincaré operator is
realized as a singular integral transform bearing similarities to the Beurling-Ahlfors
transform in 2D. As an application, bounds for the spectrum of the Neumann-
Poincaré operator are derived from recent results in quasi-conformal mapping
theory, in the case of planar curves with corners.

Paper II: Perfekt, K.-M., Duality and distance formulas in spaces defined by means
of oscillation, Arkiv för Matematik, (2012), pp. 1–17 (Online First).

For the classical space of functions with bounded mean oscillation, it is well
known that VMO∗∗ = BMO and there are many characterizations of the dis-
tance from a function f in BMO to VMO. When considering the Bloch space,
results in the same vein are available with respect to the little Bloch space. In
this paper such duality results and distance formulas are obtained by pure func-
tional analysis. Applications include general Möbius invariant spaces such asQK -
spaces, weighted spaces, Lipschitz-Hölder spaces and rectangular BMO of several
variables.
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Paper III: Aleman, A. and Perfekt, K.-M., Hankel forms and embedding theorems
in weighted Dirichlet spaces, Int. Math. Res. Not., 2012 (2012), pp. 4435–4448.

We show that for a fixed operator-valued analytic function g, the boundedness
of the bilinear (Hankel-type) form

(f, h) →
∫

D

tr
(
g′∗fh′

)
(1− |z|2)α dA,

defined on appropriate cartesian products of dual weighted Dirichlet spaces of
Schatten class-valued functions, is equivalent to corresponding Carleson embed-
ding estimates.
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Populärvetenskaplig Sammanfattning

Avhandlingen består av tre matematiska forskningsartiklar.
Den första artikeln, Paper I, undersöker spektrala egenskaper hos Neumann-

Poincaré-operatorer, även kallade dubbelskiktspotentialoperatorer, för områden
med låg regularitet. Operatorernas spektra har kopplingar till elektrostatiska pro-
blem, och författarens intresse inleddes i samband med en tidigare artikel som
behandlade elektromagnetiska egenskaper hos en dielektrisk kub inbäddad i ett
annat dielektriskt material. Mycket fascinerande aspekter av ämnet är de drama-
tiska förändringar som sker i spektralbilden när ett i övrigt glatt område tillfo-
gas hörn och de stora teoretiska och beräkningsmässiga svårigheter som orsakas
av sådana irregulariteter. I Paper I behandlas teorin för Lipschitzområden, vilka
grovt kan beskrivas som områden som tillåter förekomst av hörn. För varje sådant
område placeras motsvarande operator i ett fysikaliskt naturligt ramverk som tyd-
liggör spektrets uppträdande och belyser kontrasten som uppstår när man jämför
operatorns egenskaper för glatta områden och Lipschitzområden. Klassiska idéer
härrörande från Poincaré och Schiffer generaliseras till Lipschitz-fallet, vilket le-
der till principer som kan nyttjas till att bestämma spektret. Teorin tillämpas för
att uppskatta storleken på spektret och det essentiella spektret för områden med
hörn i två dimensioner. Uppskattningarna som erhålls stämmer överens med de
få resultat som funnits tillgängliga tidigare.

Paper II handlar om bidualrum, dualrummens dualrum, till vissa Banachrum.
Givet en samling storheter, av godtycklig natur, betraktas i artikeln BanachrumM
som består av funktioner med egenskapen att storheterna är likformigt begränsa-
de, tillsammans med motsvarande “små rum” M0 som innehåller de funktioner
för vilka storheterna går mot noll under vissa, också godtyckligt valda, villkor. I
många konkreta exempel av ovan beskrivna konstruktion är det känt att bidua-
len M∗∗

0 kan representeras som M på ett naturligt sätt, och att avståndet från en
funktion f ∈ M till underrummet M0 kan beskrivas i termer av storheterna.
Artikelns syfte är att visa att giltigheten av dessa typer av resultat följer allmänt ur
abstrakta resonemang från funktionalanalys och vektorvärd måtteori.

I den sista artikeln, Paper III, ger huvudresultatet en karakterisering av kon-
tinuerliga Hankelformer med vektorvärda symbolfunktioner. En klassisk Hankel-
form svarar mot en matris med oändligt många rader och kolumner där elementen
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är lika längs skevdiagonalerna (de uppåt lutande diagonalerna, sedda från vänster
till höger). Varje ändlig matris ger alltid upphov till en kontinuerlig operator,
vilket i vardagligt språk innebär att en liten förändring i indata inte kan orsaka
drastiska förändringar i utdata. I motsats till detta är det för en given oändlig
matris inte ett trivialt problem att avgöra om motsvarande operator är kontinu-
erlig. Resultaten av många matematikers skilda insatser behövde förenas för att
slutligen kunna visa att en klassisk Hankelform är kontinuerlig om och endast
om symbolfunktionen som genererar dess matriselement uppfyller Carlesons in-
bäddningsvillkor. I artikeln betraktas en variant av Hankelformer, motsvarande
matriser vars element är oändliga vektorer och vars struktur påminner om den
för klassiska Hankelformer. Det visas att kontinuitet gäller om och endast om
motsvarande vektorvärt inbäddningsvillkor är uppfyllt. En intressant följd av re-
sultatet är att samma inbäddningsvillkor omöjligt kan karakterisera kontinuitet
för klassiska Hankelformer med vektorelement.
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Preface

This thesis consists of three independent research articles, ordered by date of pub-
lication:

Paper I: Perfekt, K.-M. and Putinar, M., Spectral bounds for the Neumann-Poincaré
operator on planar domains with corners, to appear in J. Anal. Math., (2012). [11].
Paper II: Perfekt, K.-M., Duality and distance formulas in spaces defined by means
of oscillation, Arkiv för Matematik, (2012), pp. 1–17 (Online First). [10].
Paper III: Aleman, A. and Perfekt, K.-M., Hankel forms and embedding theorems
in weighted Dirichlet spaces, Int. Math. Res. Not., 2012 (2012), pp. 4435–4448.
[1].

Only slight modifications have been made to the papers from their printed ver-
sions, most changes being typographical in nature.

The purpose of the present chapter is to provide an introduction and further
comments to each of the articles. To facilitate reading accessibility, the discourse
will partially take place on a more informal and less precise level than in the
respective papers.

1 Spectral Bounds for the Neumann-Poincaré Op-

erator

Paper I is concerned with examining the spectral features of layer potential oper-
ators associated with the Laplacian. Given a bounded Lipschitz domain Ω ⊂ Rn

with connected boundary, n ≥ 2, the double layer potential operator on the bound-
ary, or the Neumann-Poincaré operator, K, is given by

Kf(x) = −2 p.v.
∫

∂Ω
∂nyG(x, y)f(y) dσ(y), x ∈ ∂Ω,

where f : ∂Ω → C is a function on the boundary, ∂ny denotes the outward
normal derivative at y ∈ ∂Ω, σ denotes surface measure on ∂Ω, and G(x, y) is
the Newtonian kernel

G(x, y) =

{
−ω−1

n log |x− y|, n = 2,

ω−1
n |x− y|2−n, n ≥ 3,
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Preface

normalized with a constant ωn so that ∆xG(x, 0) = −δ.
The author’s initial interest in the operator K arose from the study of an elec-

trostatic problem, where Rn is interpreted as a composite with two constituents,
the exterior domain Ωe = Ω

c
with permittivity constant ε1 ∈ C and the interior

domain Ω with a different permittivity constant ε2 ∈ C. For a given applied unit
field e ∈ Rn, the problem seeks a potential U : Ω ∪ Ωe → C such that





∆U(x) = 0, x ∈ Ω ∪ Ωe,

Trext U(x) = Trint U(x), x ∈ ∂Ω,

ε1∂
ext
n U(x) = ε2∂

int
n U(x), x ∈ ∂Ω,

limx→∞∇U(x) = e.

(1.1)

Here Trext U and Trint U denote the traces (boundary values) of U from the
exterior and interior domains Ωe and Ω, respectively. Similarly, ∂ext

n U and ∂ int
n U

denote exterior and interior trace normal derivatives with respect to ∂Ω.
In many settings, the harmonic potentials V with equal boundary values from

the interior and exterior and decay at infinity correspond to the family of single
layer potentials, V = Sρ. Recall that for a charge ρ : ∂Ω → C, the corresponding
single layer potential is defined by

Sρ(x) =

∫

∂Ω
G(x, y)ρ(y) dσ(y), x ∈ Rn.

Inserting the ansatz U(x) = Sρ(x)+e ·x into the equation of normal derivatives
in (1.1), having already cared for the other conditions, leads to the problem

(K∗ − z)ρ(x) = g(x), x ∈ ∂Ω (1.2)

where z = ε1+ε2
ε2−ε1

and g(x) = 2(e · nx), nx denoting the exterior unit normal of
∂Ω at x.

We have hence related the electrostatic problem (1.1) to the equation (1.2),
motivating the study of the spectrum of K and K∗. In fact, the entire spectral
measure of K, and in particular knowing its support, is of importance to appli-
cations in physics where the system (1.1) appears (for example in computing the
polarizability or effective thermal conductivity of a composite). For further details
and applications of the theory of Paper I, see Helsing and Perfekt [7].

One of the main points made in [7] is that in order to study the physically
natural situation of finite energy single layer potentials Sρ, one has to consider
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charges ρ ∈ H−1/2(∂Ω) in the fractional Sobolev space of order −1/2 along
the boundary ∂Ω. Hence, the spectral properties of the double layer potential
K should be studied when K : H1/2(∂Ω) → H1/2(∂Ω) is considered as an
operator on the Sobolev space H1/2.

It is a striking fact that the spectral properties of K acting on said space H1/2

turn out to be completely different from the properties seen in the more familiar
setting of K acting on L2(∂Ω) = H0. In the case that ∂Ω is a smooth surface
the distinction is not important to make, and the spectrum of the compact op-
erator K : Hs → Hs consists of the same eigenvalues regardless of the choice of
parameter s, 0 ≤ s ≤ 1. However, when ∂Ω is imposed with Lipschitz behavior,
such as giving it a corner, the picture changes. When Ω is a curvilinear polygon
in two dimensions, I. Mitrea [9] has determined the spectrum of K : L2 → L2

acting on L2, showing that it contains closed lemniscate domains extending into
the complex plane, one for each corner of ∂Ω. This is in stark contrast to the
situation on H1/2, where the spectral picture is closer to what may be physically
expected; a first indication of this is that the spectrum is contained in the real line
R, owing to the symmetry that K exhibits on H1/2.

Paper I sets out to study the spectrum of K on H1/2(∂Ω) for Lipschitz do-
mains Ω, a problem for which little has been known. Generalizing the results
of Khavinson, Putinar, and Shapiro [8] to the non-smooth case, a framework
is developed for studying finite energy potentials in the Lipschitz setting. The
framework, of determining the spectrum of K either via a balance of energies
or through a Beurling-Ahlfors type transform, incorporates many classical ideas,
tracing back to Poincaré and M. Schiffer.

The framework is then utilized to give sharp bounds for the spectral radius
and essential spectral radius ofK : H1/2 → H1/2 in the case of curvilinear polyg-
onal domains Ω ⊂ R2. The main difficulty in characterizing the spectrum for
such domains lies in obtaining a suitable localization principle in order to reduce
to the case of studying only one corner, a technique which has proven successful
for studying layer potentials on (weighted) Lp-spaces. See for example [9] and
Qiao and Nistor [12]. In lieu of an available method of localization, we com-
bine in Paper I recent results in quasiconformal mapping theory with the explicit
construction of corner-preserving conformal maps to obtain the desired spectral
bounds, under a hypothesis on the angles related to convexity.
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2 Duality and Distance Formulas

Consider the following two examples.

Example 2.1. Let T denote the unit circle in C, let X = L2(T)/C be the space
of square integrable functions on T modulo constants, and let Y = L1(T). For
each non-empty arc I ⊂ T, define the linear operator LI : X → Y by

LIf = χI
1

|I|(f − fI),

where χI is the characteristic function of I , |I| is the length of the arc, and
fI = 1

|I|

∫
I f ds is the average of f on I , ds denoting the Lebesgue measure on

T. With this notation, the space BMO(T) of functions on T of bounded mean
oscillation may be defined as

BMO(T) = {f ∈ X : sup
I

‖LIf‖Y <∞}.

Similarly, the space VMO(T) of vanishing mean oscillation is given by

VMO(T) = {f ∈ BMO : lim
|I|→0

‖LIf‖Y = 0}.

Central to our discussion will be the two facts that the bidual of VMO can be
identified with BMO under the L2(T)-pairing, VMO(T)∗∗ ≃ BMO(T) (Gar-
nett [6]) and for f ∈ BMO(T) that

dist(f,VMO)BMO ∼ lim
|I|→0

‖LIf‖Y = lim
|I|→0

1

|I|

∫

I
|f − fI | ds

(Stegenga and Stephenson [14]).

Example 2.2. Next consider the subspace BMOA(T) ⊂ BMO(T) consisting
of analytic functions. That is, BMOA = BMO∩H2/C, where H2/C is the
usual Hardy space of the disc, modulo constants. BMOA(T) has an alternate
construction as a Möbius invariant Banach space. For a ∈ D and λ ∈ T, let
φa,λ : D → D denote the conformal automorphism given by

φa,λ(z) = λ
a− z

1− āz
,
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and associate with it the linear map Lφa,λ : H
2/C → H2/C,

Lφa,λf(z) = f ◦ φa,λ.

To elucidate notation that will appear shortly, put X = Y = H2/C. We then
have that

BMOA(T) = {f ∈ X : sup
a,λ

‖Lφa,λf‖Y <∞},

see for example [6]. Similarly, for analytic VMO,

VMOA(T) = {f ∈ BMOA : lim
|a|→1

‖Lφa,λf‖Y = 0}.

Just as in the case of real BMO, it holds that VMOA(T)∗∗ ≃ BMOA(T) under
the H2-pairing, and for f ∈ BMOA(T) that

dist(f,VMOA)BMOA ∼ lim
|a|→1

‖Lφa,λf‖Y = lim
|a|→1

‖f ◦ φa,λ‖H2/C.

See for example Carmona and Cufí [4].

The theme of the previous examples is that of a "large space" M defined by
a big-O condition and a "small space" M0 given by the corresponding little-O
condition. In both cases it holds that M∗∗

0 ≃ M and that the distance from an
element x ∈ M to M0 can be computed in terms of the defining conditions of
M and M0. The purpose of Paper II is to demonstrate that such results can be
obtained in general, relying only on tools of functional analysis.

To explain the main result of Paper II, we require the following notation. X
and Y will be two Banach spaces, with X separable and reflexive. L will be a
given collection of bounded operators L : X → Y that is accompanied by a σ-
compact locally compact Hausdorff topology τ such that for every x ∈ X , the
map Tx : L → Y given by TxL = Lx is continuous from (L, τ) to (Y, ‖ · ‖Y ).
In accordance with the two examples given, the spaces M and M0 are defined by

M(X,L) =
{
x ∈ X : sup

L∈L
‖Lx‖Y <∞

}

and

M0(X,L) =
{
x ∈M(X,L) : lim

L∋L→∞
‖Lx‖Y = 0

}
,
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where the limit L → ∞ is taken in the sense of the one-point compactification
of (L, τ).

We work under the hypothesis thatM(X,L) is a Banach space when normed
naturally, and that it is continuously contained and dense in X . Then the bid-
uality relation M0(X,L)∗∗ ≃ M(X,L) (under the X-pairing) implies that for
every x ∈ M(X,L) there exists a sequence {xn}∞n=1 ⊂ M0(X,L) such that
xn converges to x (weakly) in X with supn ‖xn‖M(X,L) < ∞. To obtain a
result it is therefore necessary to assume that this approximation property holds.
In the two examples given, the property can easily be directly verified to hold by
convolving f ∈ BMO with Poisson kernels and applying standard results.

Under the assumption of the above approximation property, the two main
theorems of Paper II state that the biduality relation

M0(X,L)∗∗ ≃M(X,L) (2.1)

holds in a canonical way, and furthermore that the desired distance formula holds
with equality,

dist(x,M0(X,L))M(X,L) = lim
L∋L→∞

‖Lx‖Y . (2.2)

The theorems not only apply to the examples of BMO already given, but also
to general Möbius invariant spaces of analytic functions including a large class of
QK -spaces, weighted spaces, rectangular BMO of several variables and Lipschitz-
Hölder spaces.

The approach of Paper II is to consider the isometric embedding x →֒ Tx of
M(X,L) into the space Cb(L, Y ) of bounded continuous Y -valued functions
on (L, τ). Note that M0(X,L) embeds into the space C0(L, Y ) of continuous
functions vanishing at infinity. Duality is then studied with help of the Riesz-
Zinger theorem, which identifies the dual C0(L, Y )∗ with a space of measures.

The validity of (2.2) turns out to be intimately connected with the question
of recognizing which elements of M∗∗∗

0 actually belong to M∗
0 . This question is

in turn related to whether M∗
0 is the unique (isometric) predual of M∗∗

0 ≃ M .
As a corollary of the techniques involved in Paper II, it will be obtained that this
is indeed the case.
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3 Hankel Forms and Embedding Theorems

The topic of Paper III is that of Hankel forms on weighted Dirichlet spaces in
the vector-valued setting. To explain the results’ vantage point, let us begin by
combining several aspects of the classical theory of Hankel forms on the scalar-
valued Hardy space H2. Given a holomorphic symbol g : D → C with g(0) = 0
we will by its Hankel form on H2 mean the sesqui-linear form on H2 × H2

defined at least for polynomials f and h by

(f, h)g = lim
r→1−

∫

T

f(z)h(z̄)g(rz)
ds(z)

2π
,

where ds is the Lebesgue measure on T. The form induces a corresponding Han-
kel operator Γg,

〈Γgf, h〉H2 = (f, h)g,

named such because when written as a matrix (Aij) in the standard basis, Aij
depends only on i+ j.

C. Fefferman proved that (H1)∗ = BMOA. In combination with the fac-
torization H1 = H2 ·H2 this shows that (f, h)g is a bounded form if and only
if g ∈ BMOA, an argument due to Nehari. Furthermore, it is a well known fact
that g ∈ BMOA if and only if |g′(z)|2(1− |z|2) dA(z) is a Carleson measure for
H2, where dA is the area measure on D. That is, if and only if the embedding
of H2 into L2(|g′|2(1 − |z|2) dA) is bounded. From the corresponding norm
equivalences we get that

sup
‖f‖2=‖h‖2=1

|(f, h)g|2 ∼ ‖g‖2BMOA ∼ sup
‖f‖2=1

∫

D

|f(z)g′(z)|2(1−|z|2) dA(z).

For p > 1 and β > −1, the weighted Dirichlet space Dp,β consists of
holomorphic functions f : D → C such that

‖f‖p,β = |f(0)|+
(∫

D

|f ′(z)|p(1− |z|2)β dA(z)
)1/p

<∞.

To connect our discussion of H2 with Dirichlet spaces, we recall that the identity
of Littlewood-Paley says that H2 = D2,1, with equivalent norms. The previous
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discussion can hence be summarized as

sup
‖f‖2,1=‖h‖2,1=1

∣∣∣∣limr→1

∫

Dr

(fh)′(z)g′(z)(1− |z|2) dA(z)
∣∣∣∣
2

∼ sup
‖f‖2,1=1

∫

D

|f(z)g′(z)|2(1− |z|2) dA(z).

It is natural to ask if the boundedness of a (small) Hankel form on the Dirich-
let space D2,β , 0 ≤ β < 1, also is equivalent to a corresponding Carleson em-
bedding condition. This question turns out to be very hard to answer, an obvious
obstacle being that the Carleson measures for D2,β are characterized in terms of
capacities, and therefore difficult to deal with. Nonetheless, for β = 0 it has
been answered in the positive direction recently by Arcozzi, Rochberg, Sawyer
and Wick [2], by a method of replacing D2,0 with a discretized version imbued
with a certain tree structure. That is, for the standard Dirichlet space D2,0 we
have

sup
‖f‖2,0=‖h‖2,0=1

∣∣∣∣limr→1

∫

Dr

(fh)′(z)g′(z) dA(z)

∣∣∣∣
2

∼ sup
‖f‖2,0=1

∫

D

|f(z)g′(z)|2 dA(z).

Comparing with the argument of Nehari for the Hardy space, we see that the
natural analogue of H1 is the weak product space D2,0 ⊙ D2,0, a space which
does not appear to have a more direct definition. With respect to the duality
(H1)∗ = BMOA, the natural analogue of analytic BMO is thus the space of
holomorphic functions g such that |g′|2 dA is a Carleson measure for D2,0. For
further discussion on this topic, see the excellent Dirichlet space survey [3]. Recall
that h ∈ D2,0⊙D2,0 if and only if h =

∑
fnhn with

∑ ‖fn‖2,0‖hn‖2,0 <∞.
One may also consider the weak product space ∂−1(D2,β ⊙ ∂D2,β), consist-

ing of functions h such that h′ =
∑
fnh

′
n. Characterizing the dual of this space

corresponds to characterizing the boundedness of the Hankel-type form in which
we replace (fh)′ = f ′h + fh′ with fh′, taking only one "half" of the original
Hankel form. It turns out that these half-forms are considerably less resilient to
analysis; that their boundedness on D2,β is equivalent to the Carleson embed-
ding condition was proven by Rochberg and Wu [13] almost 20 years before the
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corresponding result for the full Hankel form. For β = 0, their result reads

sup
‖f‖2,0=‖h‖2,0=1

∣∣∣∣limr→1

∫

Dr

f(z)h′(z)g′(z) dA(z)

∣∣∣∣
2

∼ sup
‖f‖2,0=1

∫

D

|f(z)g′(z)|2 dA(z).

The two types of Hankel forms therefore are bounded simultaneously. Equiva-
lently,

∂−1(D2,0 ⊙ ∂D2,0) = D2,0 ⊙D2,0.

Note that in the case of the scalar-valued Hardy space, β = 1, it is straightforward
to directly check, using the square function, that

∂−1(H2 ⊙ ∂H2) = H2 ⊙H2 = H2 ·H2 = H1. (3.1)

The main result of Paper III states that the boundedness of the half-form is
equivalent to the Carleson embedding condition for general parameters in the
vector-valued case. Let 1 < p, q < ∞, α ≥ 0, and β, γ > −1 satisfy the duality
relations 1

p +
1
q = 1 and β

p + γ
q = α. Then Theorem 3.1 of Paper III, stated in

the scalar-valued case for simplicity, says that

sup
‖f‖p,β=‖h‖q,γ=1

∣∣∣∣limr→1

∫

Dr

f(z)h′(z)g′(z)(1− |z|2)α dA(z)
∣∣∣∣

∼ sup
‖f‖p,β=1

(∫

D

|g′(z)f(z)|p(1− |z|2)β dA(z)
)1/p

. (3.2)

As before, this result can be recast as a Carleson embedding characterization of
the dual of ∂−1(Dp,β ⊙ ∂Dq,γ).

The vector-valued case is obtained by letting g be a holomorphic operator-
valued function and substituting products with scalar products. We postpone
making a precise statement to Paper III, but remark here that the Carleson condi-
tion is quite curious in the vector-valued setting. For example, we show that the
anti-analytic factor g′(z) in the embedding condition may not be replaced with
the analytic factor g′(z). Furthermore, equation (3.1) is known to be false in the
vector-valued setting (Davidson and Paulsen [5]). Therefore, the boundedness
of the full Hankel form on the vector-valued Hardy space must have a different
characterization.
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