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Spatially-Coupled Random Access on Graphs

Gianluigi Liva, Enrico Paolini, Michael Lentmaier and Marco Chiani

Abstract—In this paper we investigate the effect of spatial
coupling applied to the recently-proposed coded slotted ALOHA
(CSA) random access protocol. Thanks to the bridge between
the graphical model describing the iterative interference cance-
lation process of CSA over the random access frame and the
erasure recovery process of low-density parity-check (LDPC)
codes over the binary erasure channel (BEC), we propose an
access protocol which is inspired by the convolutional LDPC code
construction. The proposed protocol exploits the terminations
of its graphical model to achieve the spatial coupling effect,
attaining performance close to the theoretical limits of CSA. As
for the convolutional LDPC code case, large iterative decoding
thresholds are obtained by simply increasing the density of the
graph. We show that the threshold saturation effect takes place
by defining a suitable counterpart of the maximum-a-posteriori
decoding threshold of spatially-coupled LDPC code ensembles.
In the asymptotic setting, the proposed scheme allows sustaining
a traffic close to 1 [packets/slot].

I. INTRODUCTION

Since the introduction of the ALOHA protocol [1], several
random access (RA) schemes have been introduced. Among
them, some feedback-free RA protocols originally proposed
in [2], [3] re-gained attention in the recent past [4], [5]. In
[2], the capacity of the so-called collision channel without
feedback (CCw/oFB) was analyzed, assuming slot-aligned but
completely asynchronous users’ transmissions. Moreover, a
simple approach to achieve error-free transmission (in noise-
free setting) over the CCw/oFB was proposed. In the context
of the CCw/oFB, the capacity is defined as maximum packet
transmission rate per slot, which allows the receiver to recover
the packets with an arbitrarily-small error probability (in noise-
free conditions).

The approach of [2] consists of assigning different peri-
odic protocol (access) sequences to the users. Each sequence
defines in which slots each user is allowed to access the
shared channel. Furthermore, the users encode their packets by
means of erasure correcting codes. The user’s packet can be
recovered whenever a sufficient number of codeword segments
are received collision free. Hence, by selecting proper protocol
sequences, it is possible to ensure that a sufficient number of
segments per user are recovered, even if the beginning of the
different protocol sequences is unsynchronized. In this way, a
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symmetric capacity! equal to 1/e [packets/slot] is achieved
as N — oo, where N is the number of users accessing
the RA channel. The same capacity is achieved also in the
unslotted case. Although simple, the approach of [2] poses
some challenges, especially if a large (and varying) number
of users has to be served [3], [4].

Recently, RA schemes profiting from successive interfer-
ence cancelation (SIC) have been introduced and analyzed
[6]-[9]. These schemes share the feature of canceling the
interference caused by collided packets on the slots where they
have been transmitted whenever a clean (uncollided) copy of
them is detected. In [8], [9] it was shown that the SIC process
can be well modeled by means of a bipartite graph. The anal-
ysis proposed in [8], [9] resembles density evolution analysis
of low-density parity-check (LDPC) and doubly-generalized
LDPC (D-GLDPC) codes over erasure channels [10]-[12].
By exploiting design techniques from the LDPC context,
a remarkably-high capacity (e.g. up to 0.8 [packets/slot])
can be achieved in practical implementations. The schemes
considered in [6]-[8] assume a feedback from the receiver to
achieve a zero packet loss rate.

A scheme based on the coded slotted ALOHA (CSA) of [9]
has been analyzed in the context of the CCw/oFB in [13]. An
upper bound on the maximum load G sustainable at a scheme
rate R, has been derived as the unique positive solution to

G=1-—¢C/R (1)

in [0,1). Stll in [13] it was shown how this bound can be
tightly approached by a careful selection of the distribution of
the codes to be used at users for encoding their packets.

In this paper, we propose another means for approaching
the bound defined by (1), which is based on spatial coupling.
Spatial coupling effects were initially devised in the context of
density evolution analysis of convolutional LDPC codes over
the binary erasure channel (BEC) [14]-[17] and the additive
white Gaussian noise (AWGN) channel [18]. Subsequently, its
application to other settings relying on sparse graph represen-
tations has been investigated (see e.g. [19]-[21]). By imposing
some constraints on the CSA access scheme, we show how the
threshold under the iterative (IT) SIC process saturates towards
a suitably-defined equivalent of the maximum-a-posteriori
(MAP) decoding threshold of LDPC ensembles.

II. CODED SLOTTED ALOHA: ERASURE DECODING
MODEL

We recall next the basic model adopted for the description
of CSA. We consider a slotted RA scheme where slots are
grouped in medium access control (MAC) frames, all with

IThe symmetric capacity is given by the sum-rate capacity under the
hypothesis that all users adopt the same transmission rate.
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Fig. 1. MAC frame composed by M = 4 slots with N, = 3 users attempting
a transmission. Repetition rate d = 2.
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Fig. 2. Residual graph representation for the MAC frame of Fig. 1.

the same length (in slots). Each user is frame- and slot-
synchronous, and attempts at most one burst (i.e., packet)
transmission per MAC frame. Each burst has a time duration
Tuot, Whereas the MAC frame is of time duration 7Tame.
Neglecting guard times, the MAC frame is composed of
M = Thame/Tuor slots. We consider a population of N
users, with NV > M. Users are characterized by a sporadic
activity, i.e., at the beginning of a MAC frame each user
generates a burst to be transmitted within the MAC frame with
probability e < 1, where € is called activation probability.
Users attempting the transmission within a MAC frame are
referred to as active users. On the contrary, users that are
idle during a MAC frame are referred to as inactive users.
We denote the population size normalized to the frame size
by a = N/M. The number of active users is modeled by
the random variable N,, which is binomially-distributed with
mean value E[N,] = Ne. We say that the average offered
channel traffic (representing the average number of bursts
transmissions per slot) is

G =E[N,|/M = eN/M = ea.

We consider a CSA scheme based on (d, 1) repetition codes,
which is equivalent to a d-regular contention resolution diver-
sity slotted Aloha (CRDSA) scheme [6]. More specifically, at
the beginning of a MAC frame, each user selects d slots with
a uniform probability out of the M frame slots. If the user is
active, it transmits d copies of its burst in the d selected slots.
We define R = 1/d as the rate of the scheme. In each burst
replica, a pointer to the position of the other copies is included,

e.g., in a dedicated header field. Whenever a clean burst (i.e.,
a burst which did not collide) is successfully decoded, the
pointer is used to determine the slots where its copies have
been transmitted. Supposing that a another replica of this burst
has collided, it is possible to subtract, from the signal received
in the corresponding slot, the interference contribution of the
twin burst. This may allow the decoding of another burst
transmitted in the same slot. The SIC proceeds iteratively, i.e.,
cleaned bursts may allow solving other collisions. An example
of a MAC frame with M = 4 slots and N, = 3 active users
is depicted in Fig. 1, where the repetition rate is d = 2.

Considering a MAC frame composed of M slots and a
population of N = «aM users, the frame status can be
described by a bipartite graph, ¢ = (B, S, E), consisting of a
set B of N burst nodes (one for each user), a set S of M sum
nodes (one for each slot in the frame), and a set ' of edges. An
edge connects a burst node (BN) b; € B to a sum node (SN)
s; € S if and only if the j-th slot has been selected by the i-th
user at the beginning of the MAC frame. The graph obtained
by expurgating from ¢ the BNs associated with inactive users
and their adjacent edges is called the residual graph and is
denoted by ¥4, = (B,, S, E,). Here, B, C B is the subset of
BN associated with the active users, and E, C F is the subset
of the edges associated with the transmitted burst copies. An
example of the residual graph representing the MAC frame of
Fig. 1 is given in Fig. 2.

The SIC process can be represented through a message-
passing along the edges of the graph. As in [6], [8], we make
use of two assumptions which allows simplifying the SIC
process analysis in the graphical model. First, we assume that
perfect SIC is performed. Second, we claim that, whenever a
clean (collision-free) burst is present in a slot, decoding suc-
ceeds with a probability that is essentially 1. It has been shown
in [6], [8] that these assumptions are accurate enough to model
the SIC process down to low signal-to-noise ratios (SNRs)
with moderate-complexity signal processing algorithms.

Thanks to this simplification, the SIC procedure is equiva-
lent to iterative decoding of an LDPC code with /N variable
nodes and M check nodes over a BEC with erasure probability
€ (coinciding with the activation probability). All variable
nodes have degree d, while the check node degrees follow
a Poisson distribution [8] with average degree dN/M = da.
The nominal code rate is thus Ry =1— M/N =1—-1/a.

For large frames (M — oo) and for a given normalized
population size a, CSA shows a threshold behavior. For an
activation probability € lower than a threshold value eLTockz,
vanishing burst error probability can be achieved by iterating
SIC. The threshold €|]_, can be analyzed via density evolution
over the residual graph ¢, according to the recursions

q =pi; 2)

pe=>_pn (1—(1—qu)h_l) =1-p(—=q), 3
h

2The subscript “block” is here used to emphasize the block-structure of
the MAC frame, in contrast with the spatially-coupled structure introduced in
Section III.



where py, is the fraction of edges in &, connected to SNs with
degree h in the residual code graph, and p(z) = >, gzt
In (2) and (3), q¢ and py denote the probabilities that an edge
in the residual graph carries an erasure outgoing from a BN
and from a SN, respectively, at the /-th iteration. Since the
number of collisions in a slot follows a Poisson distribution,

ﬁ(I) _ efead(lfm). (4)

Thus, the threshold eLTock is given by the supremum of the set
of € > 0 such that

g> (1 - eaeady?!

Vg € (0,1]. )

The threshold can be expressed equivalently in terms of
offered traffic. By recalling that G = eq, the threshold GLI_
is given by the supremum of the set of G > 0 such that

g> (1—e G

IT T
and we have G|, = €0

Vg € (0,1], (6)

III. SPATIALLY-COUPLED CSA: ACCESS MODEL AND
DENSITY EVOLUTION

In this section, we modify the access rules of CSA to
implement a convolutional-oriented structure that enables the
exploitation of the spatial coupling effect.

A. Access Model

The modified access rules are summarized next (see also
Fig. 3). A super-frame is divided into My = [4-d—1 frames of
M slots each. The slots belonging to the same frame constitute
a slot type set. A user becoming active at the beginning of a
frame (with probability €) transmits a burst in a slot picked
uniformly at random within that frame. Furthermore, a copy
of the burst is sent in each of the following d — 1 frames in
a slot picked with uniform probability in each frame. The set
of users becoming active at the beginning of the ¢-th frame is
referred to as the type-¢ user set. Similarly, the slots belonging
to the j-th frame are referred to as type-j slots. The expected
size of a user set is E[N,] = eN. Thus, as before we can
define the offered traffic G as G = E[N,]/M = eN/M.

After transmission of the [-th frame, transmissions from new
users are forbidden, and the following d — 1 frames are filled
just with the copies of the bursts whose transmissions have
been initiated during the past d — 1 frames. Once all the burst
copies have been transmitted, a new transmission cycle begins,
i.e., a new super-frame is initialized.

A (residual) bipartite graph description of the recovery
process is obtained as follows. We associate a BN to each
user. Similarly, we associate a SN to each slot. The BNs
corresponding to users of type ¢ are clustered in type-i BN
groups, whereas the SN related to slots of type ¢ are clustered
in type-¢ SN groups. The number of BN types connected to
a SN type-j group is denoted by d; (degree of the type-j SN
group). Note that §; € {1,...,d}. The type-i BN group is said
to be neighbor of a type-7 SN group (and viceversa) when
the nodes belonging to the type-i BN group are connected
to some nodes in the type-j SN group. The indexes of the

M slots M slots M slots M slots
(Type-1) (Type-2) (Type-3) (Type-4)

-r
Type-1 !
users

Type-2 o
I

users

[ user-sets

77777777777777777777777777777777777777777777777777777777

l+d—1 frames

Fig. 3. Example of a convolutional super-frame structure with 3 users per
user type and M = 4 slots per frame.

groups that are neighbors of the type-j SN group form the
set ./\/'jS , while the indexes of the groups that are neighbors of
the type-i BN group form the set A/P. Note that the period in
which new user transmissions are blocked is equivalent to the
termination in the context of convolutional LDPC codes.®> An
example of a super-frame structure is displayed in Fig. 3. The
bursts transmitted into termination frames experience a lower
collision probability than the other bursts, thus boot-strapping
the iterative decoding process through the coupled structure.

B. Density Evolution

Let p; be the probability that an edge incident on the type-j
SN group carries an erasure message towards the BNs, after
SN processing at the generic SIC iteration. Analogously, let
g; be the probability that an edge incident on the type-j SN
group carries an erasure message towards the type-j SN,
after BN processing at the generic SIC iteration. Moreover,
let g;—,; be the probability that an edge emanating from the
type-i BN group carries an erasure message towards the type-
j SN group (with j € N/?), after BN processing at the generic
SIC iteration. The physical load (i.e., the load including burst
copies) for the i-th sub-frame is given by G = G - §;.

Next, we define SN degree distributions from an edge
perspective as

@) =3 pat
t=0

=exp (—G9;(1 —x))
where pgj ) is the fraction of the edges emanating from type-
7 SNs and incident on type-j SNs with degree ¢. Density
evolution equations can be now derived as follows, where ¢ is
the iteration index. For the type-j SN group we have

pie=1—pP(1—gq50)

1
qj,0 = 5. Z Qv—j,0 -

J vENT

where

3A loss in terms of offered traffic, with respect to G = E[Ny]/M, occurs
when the offered traffic is calculated taking into account the frames in which
new arrivals are blocked. Nevertheless, this traffic loss is negligible for large [.
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Fig. 4. Thrt;sholds Gu—ock and GIT, vs. rate, R = 1/d, for CSA based on
(d, 1) repetition codes.

Moreover, for the type-i BN group, for all 7 € /\/’}’ we have

Gi—jb = H Pu,t—1 -
ueNP\

The SIC IT thresholds for both block-based CSA and its
convolutional counterpart are plotted in Fig. 4 versus the bound
(1), as functions of the rate R = 1/d. The thresholds for
the spatially coupled access scheme are denoted by G'T . to
emphasize the analogy with convolutional LDPC ensembles.
The large SIC IT thresholds attained by the convolutional CSA
scheme allow to tightly approach, already for d = 3, the limit
imposed by (1). For d > 4, an impressive offered traffic, very
close to 1 [packet/slot], can be handled by the convolutional
CSA scheme with vanishing packet (i.e., burst) loss probability
(in the asymptotic setting). The bound for higher rates R could
be tightly approached by spatially-coupled CSA based on non-
trivial (d, k) constituent codes with rate k/d > 1/2 [9].

IV. THRESHOLD SATURATION IN CSA

We now introduce an enhanced decoding algorithm for the
conventional (block) CSA case of Section II, which serves to
derive an upper bound on the achievable threshold for CSA
schemes, and to investigate threshold saturation effects for
the convolutional scheme. This algorithm mimics the MAP
decoder of an LDPC code over the BEC, and we refer to it
as genie-aided maximum-a-posteriori (GA-MAP) decoder.

A. Genie-Aided MAP Decoding

From an analysis viewpoint, the relation between the trans-
mitted bursts and the slot observations can be simplified by to
a matrix representation of the graph via an M X N, binary
matrix Q, where ¢; ; = 1 iff BN b; is connected to SN s; in
9., and ¢; ; = 0 otherwise. We denote by u the length-N,

binary vector whose j-th element u; is associated with the
modulated burst of user j. We also denote by y the length-M
binary vector whose i-th element is associated with the i-th
slot. An equation system relating u and y is thus

uQ” =y. (7

In this simplified setting, the elements of u and y are
binary digits which provide abstraction of the actual bursts
transmitted by the users and the signals received in the slots,
respectively. Upon receiving y and assuming that Q is revealed
by a genie, the GA-MAP decoder solves (7) for u via Gauss-
Jordan elimination (GJE). Note that the iterative decoding
process described in Section II succeeds only if the matrix Q
can be posed in triangular form by row/column permutations,
i.e., only if the equation system (7) can be solved iteratively.
Thus, the GA-MAP decoder performance (which is optimum
with respect to (7)) provides a lower bound on the decoding
error probability of the iterative SIC process.

B. CSA Analysis under GA-MAP Decoding

We establish next a bridge towards the MAP decoding
threshold of LDPC codes under MAP decoding in order
to derive the threshold of a d-regular CSA scheme under
GA-MAP decoding, GMAP. We define %, p.n to be the
ensemble of all length-/NV codes given by the null space of an
M x N binary parity-check matrix H, having constant column
weight d and where the d 1s in each column are placed in
random positions, according to a uniform distribution. Recall
that, for the codes in this ensemble, the nominal rate is given
by Ry = 1 — M/N. From a bipartite graph perspective,
the graph of a code in 6 ps, v possesses a constant variable
node degree, d, = d whereas, as N and M = (1 — Ry)N
tend to infinity, the check node degree distribution follows

a Poisson distribution with mean value d. = dN/M. The
edge-oriented check node degree distribution is thus given by

p(x) = exp(—d.(1 — x)) [8].

Recall that the ensemble under consideration can be placed
in analogy to the scheme introduced in Section II where N is
the user population size, M is the number of slots per frame
and d is the repetition rate for the bursts. The IT decoding
threshold €], over the BEC for the ensemble €y ar, v, N —
00, 1s calculated as the maximum value of the channel erasure
probability e (the analogous of the activation probability, in the
CSA context) for which the erasure probabilities ¢;, p; (where
7 is the iteration index) converge to an arbitrarily-low positive
value, for ¢ — oo, according to

pi=eql ], 8)

¢ =1—p(1 —p;i) =1 —exp(—dcp;). 9)

The average extrinsic erasure probability p.(e) under IT de-
coding is obtained finally as

pil(e) = lim g (10)
11— 00
Defining an average extrinsic erasure probability function

pMAP(€) also for the MAP decoder, from the area theorem

of [22] the area below pMAP(€) equals the ensemble rate. By

€



TABLE I
THRESHOLDS OF DIFFERENT ACCESS SCHEMES, COMPARED WITH THE
UPPER BOUND G*.

d GI., G, GChyw G n

2 0.5 0.5 0.5 0.7969 0.3726
3 0.8184 0.9179 0.9179 0.9405 0.9760
4 0.7722 0.9767 0.9767 0.9802 0.9964
5 0.7017 0.9924 0.9924 0.9931 0.9993
6 0.6370 0.9973 0.9973 0.9975 0.9998

noting that for any €, pMAP(¢) < p!T(¢), an upper bound [23]

€
on eMAP is given by the value eMAP such that

/1
eMA

P
block

pT(€)de = Ry. (11)
This allows us also to get an upper bound on the decoding
threshold for a d-regular block CSA scheme, under GA-MAP
decoding. Letting « = N/M = 1/(1 — Ry), the GA-MAP
threshold of CSA can be upper bounded as

~MAP —MAP
Ghlock = Opjock-

C. Threshold Saturation

Table I illustrates the threshold achievable by conventional
CSA schemes employing a regular distribution at the BNs
based on (d,1) repetition codes. For the spatially-coupled
scheme, a super-frame composed by My = [ +d — 1
frames has been considered, with [ = 200. Moreover, the
normalized user population size is o = 100, i.e. the number
of users is 100 times larger than the number of slots per
frame. We additionally provide the upper bounds on the
threshold achievable by the conventional CSA scheme under
the GA-MAP recovery process. The derivation of the MAP
thresholds serves to illustrate how, also in this context, the
imposition of a convolutional-like structure to the access
scheme allows achieving the threshold saturation effect as
numerically shown in Table I. The upper bound on the
achievable threshold G* according to (1), given by the solution
of G =1 — exp(—G/R), is provided too. Accordingly, we
evaluated the normalized efficiency of the proposed scheme
as

n= GlT

conv/G* :
As already observed in the LDPC context, larger degrees allow
to approach the bound more tightly.

V. CONCLUSION

In this paper we introduced a spatially-coupled RA
scheme for the CCw/oFB which attains capacities close to
1 [packet/slot] in the asymptotic (i.e., for large frames) set-
ting. A bridge between the graphical model describing the
iterative interference cancelation process of the proposed RA
over the random access frame and the erasure recovery process
of low-density parity-check codes over the binary erasure
channel has been set, which allows computing an upper
bound on the capacity achievable by an enhanced (genie-aided)
decoder. The saturation of the SIC IT capacity of the proposed

scheme towards the threshold under genie-aided decoding has
been numerically demonstrated.
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