Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Isoprenoid emission variation of Norway spruce across a European latitudinal transect

van Meeningen, Ylva LU ; Wang, Min LU ; Karlsson, Tomas LU ; Seifert, Ana ; Schurgers, Guy ; Rinnan, Riikka and Holst, Thomas LU (2017) In Atmospheric Environment 170. p.45-57
Abstract
Norway spruce (Picea abies) is one of the dominant tree species in the European boreal zone with the capacity to grow over large areas within Europe. It is an important emitter of biogenic volatile organic compounds (BVOCs), which can act as precursors of photochemical smog and ozone and contribute to the formation and growth of secondary organic aerosols (SOA) in the atmosphere.

Isoprenoid emissions were measured from Norway spruce trees at seven different sites, distributed from Ljubljana in Slovenia to Piikkiö in Finland. Four of the sites were part of a network of genetically identical spruce trees and contained two separate provenances. The remaining three sites were part of other networks which have been used to conduct... (More)
Norway spruce (Picea abies) is one of the dominant tree species in the European boreal zone with the capacity to grow over large areas within Europe. It is an important emitter of biogenic volatile organic compounds (BVOCs), which can act as precursors of photochemical smog and ozone and contribute to the formation and growth of secondary organic aerosols (SOA) in the atmosphere.

Isoprenoid emissions were measured from Norway spruce trees at seven different sites, distributed from Ljubljana in Slovenia to Piikkiö in Finland. Four of the sites were part of a network of genetically identical spruce trees and contained two separate provenances. The remaining three sites were part of other networks which have been used to conduct studies in the European boreal zone.

There were minimal differences in the standardized emission rates between sites and across latitudes. The emission profile differed between provenances and sites, but there were not any distinct patterns which could be connected to a change in latitude. By using genetically identical trees and comparing the emission rates between sites and with genetically different trees, it was observed that the emission patterns were mostly influenced by genetics. But in order to confirm this possible stability of the relative emission profile based on genetics, more studies need to be performed.

The effects of branch height, season and variation between years on observed emission pattern variations were also investigated. There were indications of potential influences of all three factors. However, due to different experimental setups between measurement campaigns, it is difficult to draw any robust conclusions. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Atmospheric Environment
volume
170
pages
13 pages
publisher
Elsevier
external identifiers
  • scopus:85030115601
  • wos:000415772800005
ISSN
1352-2310
DOI
10.1016/j.atmosenv.2017.09.045
project
Sesquiterpene emissions from boreal forest, and their interactions with climate and tropospheric chemistry
Analysis of climate and seasonality impacts on species-specific BVOC emission capacities to improve a regional/global emission model
language
English
LU publication?
yes
id
3733c258-32ac-45ef-ac47-c0557c8b3b07
date added to LUP
2017-10-03 09:35:38
date last changed
2024-02-13 07:30:18
@article{3733c258-32ac-45ef-ac47-c0557c8b3b07,
  abstract     = {{Norway spruce (Picea abies) is one of the dominant tree species in the European boreal zone with the capacity to grow over large areas within Europe. It is an important emitter of biogenic volatile organic compounds (BVOCs), which can act as precursors of photochemical smog and ozone and contribute to the formation and growth of secondary organic aerosols (SOA) in the atmosphere.<br/><br/>Isoprenoid emissions were measured from Norway spruce trees at seven different sites, distributed from Ljubljana in Slovenia to Piikkiö in Finland. Four of the sites were part of a network of genetically identical spruce trees and contained two separate provenances. The remaining three sites were part of other networks which have been used to conduct studies in the European boreal zone.<br/><br/>There were minimal differences in the standardized emission rates between sites and across latitudes. The emission profile differed between provenances and sites, but there were not any distinct patterns which could be connected to a change in latitude. By using genetically identical trees and comparing the emission rates between sites and with genetically different trees, it was observed that the emission patterns were mostly influenced by genetics. But in order to confirm this possible stability of the relative emission profile based on genetics, more studies need to be performed.<br/><br/>The effects of branch height, season and variation between years on observed emission pattern variations were also investigated. There were indications of potential influences of all three factors. However, due to different experimental setups between measurement campaigns, it is difficult to draw any robust conclusions.}},
  author       = {{van Meeningen, Ylva and Wang, Min and Karlsson, Tomas and Seifert, Ana and Schurgers, Guy and Rinnan, Riikka and Holst, Thomas}},
  issn         = {{1352-2310}},
  language     = {{eng}},
  month        = {{09}},
  pages        = {{45--57}},
  publisher    = {{Elsevier}},
  series       = {{Atmospheric Environment}},
  title        = {{Isoprenoid emission variation of Norway spruce across a European latitudinal transect}},
  url          = {{http://dx.doi.org/10.1016/j.atmosenv.2017.09.045}},
  doi          = {{10.1016/j.atmosenv.2017.09.045}},
  volume       = {{170}},
  year         = {{2017}},
}