
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Non-Uniform Windowed Decoding Schedules for Spatially Coupled Codes

Ul Hassan, Najeeb; Pusane, Ali Emre; Lentmaier, Michael; Fettweis, Gerhard; Costello Jr.,
Daniel J.
Published in:
[Host publication title missing]

2013

Link to publication

Citation for published version (APA):
Ul Hassan, N., Pusane, A. E., Lentmaier, M., Fettweis, G., & Costello Jr., D. J. (2013). Non-Uniform Windowed
Decoding Schedules for Spatially Coupled Codes. In [Host publication title missing] IEEE - Institute of Electrical
and Electronics Engineers Inc..

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1cb6aa3e-0d36-4759-9f81-409f0e956a56

Non-Uniform Windowed Decoding Schedules
for Spatially Coupled Codes

Najeeb ul Hassan†, Ali E. Pusane⇤, Michael Lentmaier+, Gerhard P. Fettweis†, and Daniel J. Costello, Jr.‡
†Vodafone Chair Mobile Communications Systems, Dresden University of Technology (TU Dresden), Dresden, Germany,

{najeeb.ul.hassan, fettweis}@ifn.et.tu-dresden.de
⇤Dept. of Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey, ali.pusane@boun.edu.tr
+Dept. of Electrical and Information Technology, Lund University, Lund, Sweden, michael.lentmaier@eit.lth.se

‡Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana, USA, costello.2@nd.edu

Abstract—Low-density parity-check convolutional (LDPCC)
codes, also known as spatially coupled LDPC codes, can be
decoded using a message passing algorithm. In order to limit
decoding latency and complexity, windowed decoding can be
applied. Updates within the window can be performed either in
parallel or serially. However, simulation results show that uniform
updating schedules do not provide the expected reduction in
complexity when applied within the window. Hence we propose
non-uniform schedules for updating the nodes based on measured
improvements in the bit error rate. Nodes within the window that
stop showing any improvement are excluded from the update list
for the next iteration. This results in a reduction of up to 50%
in complexity compared to uniform window schedules.

I. INTRODUCTION

Spatially coupled (convolutional) LDPC codes are gaining
more and more attention due to their ability to achieve the
maximum a posteriori (MAP) threshold of an underlying
LDPC block code with suboptimal message passing decoding.
However, to achieve the MAP threshold [1] [2], a large
termination length L must to be considered. This increases the
complexity and the structural latency [3] of the decoder. The
convolutional structure of the code allows us to define a sliding
window decoder [4] of size W . As a result, decoding latency
and decoding complexity become independent of L. Moreover,
due to the fact that W ⌧ L, the storage requirements for the
decoder are reduced by a factor of L/W compared to a non-
windowed decoder.

LDPC convolutional (LDPCC) codes can be represented
by a bipartite Tanner graph consisting of check and variable
nodes. Considering an additive white Gaussian noise (AWGN)
channel, messages in the form of log likelihood ratios (LLRs)
are passed between the check and variable nodes iteratively.
At each iteration, node updates can be performed according
to a parallel (flooding) or serial (on-demand) rule. In both
schedules, all the nodes in the graph are updated at every
decoding iteration. Hence we refer to these schedules as the

This work was supported in part by the DFG in the CRC 912 HAEC,
European Social Fund in the framework of the Young Investigators Group
3DCSI, TÜBİTAK Grant 111E276, EU FP7 Marie Curie IRG Grant 268264,
NSF Grant CCF-CCF-1161754, and by the European Commission in the
framework of the FP7 Network of Excellence in Wireless COMmunications
NEWCOM# (Grant agreement no. 318306).

uniform parallel and uniform serial schedules, respectively.
Some variants of the serial update rule to reduce the decoding
complexity of the LDPC block codes have been discussed in
[5].

In contrast to uniform schedules, a schedule can also be
defined such that only a portion of the Tanner graph is updated
in a decoding iteration. An example of a non-uniform schedule
is forced convergence decoding [6], where the nodes that
converge to a strong belief after the first few iterations are
deactivated for the following iterations. Another example of
a non-uniform schedule is a sliding window decoder, where
the node updates are limited by the window size (W < L).
Normally, the nodes within the window are updated according
to a uniform schedule, where all the nodes within the decoding
window are updated in every decoding iteration. Note that the
node updates within the window can still be performed either
in parallel or serially. However, it has been shown in [7] that
uniform window schedules are not optimum with respect to
decoding complexity.

For non-uniform window schedules, since only nodes in
the first position are decoded before the window slides to the
next position, a reduction in decoding complexity results by
avoiding unnecessary updates to nodes not directly connected
to the first position in the window. Only nodes that show
improvement based on their bit error rate (BER) compared to
the previous iteration are updated in the next iteration. In [8],
the difference between the value of a message passed along
an edge before and after an update is used to determine the
update order for a uniform serial schedule. By contrast, the
reduction in complexity due to non-uniform window schedules
is mainly due to avoiding unnecessary updates, and we do not
consider adapting the order of node updates based on the BER
improvement. The analysis of non-uniform window schedules
in [7] is limited to the binary erasure channel (BEC) using
density evolution, which assumes infinite code length. In this
paper, we evaluate the performance of non-uniform window
schedules for finite length codes and introduce a periodic
non-uniform window schedule to further decrease decoding
complexity. We show that up to a 50% reduction in complexity
is possible compared to a uniform window schedule. We
further consider both parallel and serial update rules for the
non-uniform window schedules.

B = [3, 3]

B0 = B1 = B2 = [1, 1]

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

mcc = 2

B B0 B1 B2

=)

Fig. 1. Illustration of edge spreading: the protograph of a (3,6)-regular
block code with base matrix B is repeated L = 6 times and the edges are
spread over time according to the component base matrices B

0

, B
1

, and B
2

,
resulting in a terminated LDPCC code.

II. SPATIALLY COUPLED LDPC CODES

Consider the transmission of a sequence of codewords v
t

,
t = 1, . . . , L, using a protograph based LDPC code. A
protograph is a small bipartite graph consisting of n

c

check
nodes and n

v

variable nodes and is represented by its bi-
adjacency matrix B, called the base matrix. An essential
feature of LDPCC codes [9] is that the blocks at different time
instants are interconnected. Instead of encoding all codewords
independently, the blocks v

t

are coupled by the encoder to
other time instants. The largest distance between a pair of
coupled blocks defines the memory m

cc

of the convolutional
code. The coupling of consecutive blocks can be achieved by
an edge spreading procedure [10] that distributes the edges
from variable nodes at time t among equivalent check nodes
at times t+ i, i = 0, . . . ,m

cc

. This procedure is illustrated in
Fig. 1 for a (3,6)-regular protograph with n

v

= 2 and n
c

= 1

and base matrix B = [3, 3]. In order to maintain the degree
distribution and structure of the original protograph, a valid
edge spreading should satisfy the condition

mccX

i=0

B
i

= B . (1)

The resulting code can be described by means of a terminated
convolutional protograph with base matrix

B
[1,L]

=

2

6666664

B
0

...
. . .

B
mcc B

0

. . .
...

B
mcc

3

7777775

(L+mcc)nc⇥Lnv

. (2)

The corresponding sequence of coupled code blocks forms
a codeword v = [v

1

,v
2

, . . . ,v
t

, . . . ,v
L

] of a terminated
convolutional code. Note that the m

cc

n
c

additional check
nodes result in a rate loss due to termination. The block code
with disconnected protographs corresponds to the special case
m

cc

= 0 and B
0

= B. The parity-check matrix H of a
terminated LDPCC code can then be obtained by applying
a graph lifting procedure [11] that replaces each 1 in B

[1,L]

by an N ⇥ N permutation matrix and each 0 by an N ⇥ N
all-zero matrix.

w = 1 w = 2 w = 3 w = 4

W = 4mcc = 2

yt�1 yt yt+1 yt+2yt�2 yt+3 yt+4

(a) window at position t

w = 1 w = 2 w = 3 w = 4

W = 4mcc = 2

yt�1 yt yt+1 yt+2yt�2 yt+3 yt+4

(b) window at position t+ 1

Fig. 2. Window decoder of size W = 4. The green variable nodes represent
decoded nodes and the red nodes are the target nodes within the current
window. The dashed lines represent the read access to the m

cc

previously
decoded blocks.

III. DECODING SCHEDULES FOR SPATIALLY COUPLED
LDPC CODES

A. Uniform Decoding Schedules

Standard uniform parallel or serial decoding schedules can
be applied across the sequence of L coupled codewords. A
uniform parallel (flooding) schedule simultaneously updates
all the variable nodes followed by simultaneous check node
updates. Alternatively, updates can be performed using a pre-
defined uniform serial schedule. In this case, a check (variable)
node is updated immediately after all its neighboring variable
(check) nodes have been updated. Such a schedule ensures that
the newly computed messages from the neighbors of a check
(variable) node are used in the same decoding iteration. In
the uniform parallel schedule, these newly computed messages
can only be utilized in the next decoding iteration. As a result
the required number of iterations for a uniform serial schedule
reduces to almost half compared to a uniform parallel schedule
[5]. An efficient implementation for both uniform parallel and
uniform serial decoding schedules is a pipeline decoder [9]
[12]. The pipeline decoder can decode the input sequence
continuously but at the expense of a large delay. It has also
been shown that the number of required decoding iterations for
the uniform decoding schedules increases linearly with the pa-
rameter L [13]. In order to limit the decoding complexity and
delay, a sliding window decoder was proposed in [4], which
is a one-sided variant of the windowed decoder introduced in
[2] for density evolution analysis.

B. Window Decoding Schedule

Consider two coupled code blocks v
t

and v
t

0 , where
t0 � t + m

cc

+ 1 and t, t0 2 [1 L]. Due to the memory
m

cc

of the convolutional code, these code blocks do not have
any check nodes in common. This characteristic is exploited
to define a latency constrained sliding window decoder. The
size of the windowed decoder, W , must be at least m

cc

+ 1

code blocks, which is the largest distance between two coupled
code blocks. Figure 2 shows an example of a sliding window
decoder with W = 4. The window consists of W received

10

�7

10

�5

10

�3

10

�1

1 2 3 4 5 6 7 8

w

P
b

(
w
)

i = 1

i = 21

i = 41

i = 61

i = 76

Fig. 3. Density evolution results for the BER Pb(w), w = 1, . . . ,W , within
the decoding window over a BEC with the uniform parallel window schedule
as iterations i are performed (W = 8, ✏ = 0.48).

blocks, y
t+w�1

, w = 1, . . . ,W . Additionally, at each window
position, only the nodes in received block y

t

are decoded
(represented in red), and hence they are termed target nodes.
After the received block y

t

is decoded or some maximum
number of iterations I

max

is performed, the window slides to
the next position as shown in Fig. 2(b). Moreover, due to the
memory of the code, the sliding window decoder also requires
read access to the m

cc

previously decoded blocks (represented
by the dashed lines), as shown in Fig. 2.

In sliding window decoding, nodes at position t are updated
in multiple window positions. Hence we define the decoding
complexity, the average number of node updates required to
decode a symbol node, as [13]

U
avg

=

1

L

LX

t=1

U
t

, (3)

where U
t

denotes the number of times a variable node at
position t is updated during the iterative decoding process.

The edge spreading B
0

= [2, 2],B
1

= [1, 1] containing
multiple edges in B

0

is now considered as an example. This
type of edge spreading was proposed in [14] to achieve a
certain desired BER with as small a W as possible. Note
that the structural latency of the code is proportional to W .
Hence a small value of W is desired for latency constrained
applications [3].

Uniform Window Schedules: The updates within the de-
coding window are performed according to a uniform parallel
(flooding) schedule, where all the nodes within a window are
updated in parallel. Alternatively, all the nodes in the decoding
window can be updated serially. Since all the nodes within
the window are updated, we refer to these schedules as the
uniform parallel window and uniform serial window schedules,
respectively. Note that these schedules are uniform only with
respect to the decoding window.

We analyze the convergence of the BER over a BEC with
erasure probability of ✏ = 0.48 when a uniform parallel
window schedule is applied. The analysis is performed using
density evolution. Figure 3 shows the BER P

b

(w) for the

10

�8

10

�6

10

�4

10

�2

10

0

260 280 300 320 340 360 380

U
avg

B
i
t
E
r
r
o
r
R
a
t
e

U-Parallel

U-Serial

Fig. 4. Density evolution results for the BER as a function of the average
number of node updates (U

avg

) when uniform parallel (U-Parallel) and
uniform serial (U-Serial) window schedules are applied, W = 8, ✏ = 0.48.

nodes w = 1, . . . ,W within the decoding window. It can
be observed that the BER for the nodes other than the target
nodes (w > 1) change little with iterations. The same behavior
can be observed for the uniform serial window schedule (not
shown here). Figure 4 shows the BER for the target nodes
(P

b

(w = 1)) as a function of U
avg

when uniform parallel and
uniform serial window schedules are applied for a BEC with
✏ = 0.48. We see that the uniform serial window schedule
converges faster compared to the uniform parallel window
schedule. But the gain in decoding convergence speed is much
less than a factor of two1. In order to further reduce decoding
complexity, the nodes not directly connected to the target
nodes can be switched off after the first few decoding iterations
are performed. This avoids unnecessary updates and results
in a significant complexity reduction compared to uniform
window schedules.

IV. NON-UNIFORM WINDOW SCHEDULES

A non-uniform improvement based window schedule was
proposed in [7]. The variable nodes within the window that
stop showing any improvement in their BER compared to the
previous iteration are excluded from the update list for the
following iterations along with the check nodes connected
to these variable nodes. Hence it is not necessary that all
the nodes within the window be updated in every decoding
iteration. Such schedules are referred as non-uniform window

schedules. Next we focus on non-uniform parallel window
schedules. Non-uniform serial window schedules are discussed
later in the section.

A. Non-Uniform Parallel Window Schedules

In order to define a non-uniform schedule based on the BER
improvement, an estimate ˆP

b

(w), w = 1, . . . ,W is required.
These estimates are calculated using the output LLRs of the
variable nodes at position w. This was termed a soft BER

estimate in [3].

1A factor of two in complexity reduction is visible when a uniform serial
schedule is applied to an LDPC block code or to an LDPCC code across the
entire graph of length L [5] [12], rather than across a window of size W .

1 2 3 4 5 6 7 8

1

20

40

60

w

I
t
e
r
a
t
i
o
n
i
n
d
e
x

(a)

1 2 3 4 5 6 7 8

1

20

40

w

I
t
e
r
a
t
i
o
n
i
n
d
e
x

(b)
Fig. 5. Schedules adopted by a non-uniform improvement based window
schedule for ✏ = 0.48: (a) without using the P

R

parameter and (b) with
P
R

= 5.

Let L
ch

(k) denote the input channel LLR for variable node
k. The messages sent from variable node k to check node j
and check node j to variable node k are denoted as L

vk,cj

and L
cj ,vk , respectively. Algorithm 1 defines a non-uniform

parallel window schedule. The inputs are the window size W ,
the desired BER Pmax

b for the target nodes (w = 1), and the
maximum number of iterations I

max

within the window. In the
initialization phase, the function CalculateSoftBER(w)
computes the average soft BER estimates for the nodes within
the window using output LLRs (L

out

), where the output LLR
L
out

(k) for variable node k is computed as

L
out

(k) = L
ch

(k) +
X

l2N (vk)

L
cl,vk (4)

and N (v
k

) is the set of check nodes connected to variable node
k. Additionally the vector updateList[w] is initialized to
true so that all the positions w within the window are updated
in the first decoding iteration. The iterative process starts from
line 4. The loops at lines 5 and 8 simultaneously update all
the check and variable nodes at position w, respectively, for
which the updateList[w] is true. The node updates are
performed using the functions UpdateCheckNodesAt(w)
and UpdateVariableNodesAt(w) for check and vari-
able nodes given by (5) and (6), respectively,

L
cj ,vk = 2 tanh

�1

0

@
Y

l2N (cj)\k

tanh

✓
L
vl,cj

2

◆1

A , (5)

L
vk,cj = L

ch

(k) +
X

l2N (vk)\j

L
cl,vk . (6)

The function CalculateOutputLLR(w) calculates
L
out

for the nodes at position w. These are used to compute
the new BER estimates ˆP

b,new

. The vector updateList[w]
for the next iteration is recalculated based on the new (ˆP

b,new

)
and old (ˆP

b,old

) soft BER estimates. The window positions w
for which the BER improvement exceeds the parameter ✓ are
updated in the next decoding iteration. The loop at line 4 is
terminated if ˆP

b

(w = 1) is less than Pmax
b . Otherwise, the

iterations continue until I
max

is reached. Algorithm 1 gives
the decoding algorithm for the first window position. For the

Algorithm 1: Non-uniform parallel window schedule
Inputs: W , Pmax

b

, I
max

/* initialization phase */
1 for w 1 to W do
2 ˆP

b,old

(w) CalculateSoftBER(w);
3 updateList [w] true;

/* iterations start here */
4 for i 1 to I

max

do
5 for w 1 to W do
6 if updateList [w] then
7 UpdateCheckNodesAt(w);

8 for w 1 to W do
9 if updateList [w] then

10 UpdateVariableNodesAt(w);
11 CalculateOutputLLR(w);

12 for w 1 to W do
13 ˆP

b,new

(w) CalculateSoftBER(w);
14 if ˆP

b,new

(w) ✓ · ˆP
b,old

(w) then
15 updateList [w] true;
16 ˆP

b,old

(w) ˆP
b,new

(w);

17 else
18 updateList [w] false;

19 if ˆP
b,new

(1) Pmax

b

then
20 break;

following window positions, the soft BER in the initialization
phase is calculated only for the new incoming nodes in the
right side of the window.

Figure 5(a) shows the resultant schedule when Algorithm 1
is applied to the BEC with W = 8 and ✏ = 0.48. The
positions w = 1, . . . ,W that are updated in an iteration i
are represented by a blue circle. It is observed that positions
w = 4, 5, . . . , 8 stop showing any improvement and hence
are not updated after the first few decoding iterations. This
is consistent with the observation made in Fig. 3. Figure 6
shows the number of updates U

t

when a non-uniform parallel
window schedule (blue triangles) is applied to the BEC with
✓ = 0.992and ✏ = 0.48. It is observed that the deactivation of
nodes within the window results in a significant reduction in
decoding complexity compared to the uniform parallel window
schedule3 (black squares).

In [7], the authors determined that a non-uniform window
schedule can also be obtained by performing an exhaustive
search of all possible decoding schedules, under some as-

2The value of ✓ that gives the lowest complexity was experimentally
determined.

3In general, for the uniform schedules, the number of required iterations
for the first window position is more than for the later positions because
previously calculated messages are reused when the window slides. This can
be seen by the jump in complexity for uniform schedules observed in Fig. 6
and Fig. 7 at t = W .

Algorithm 2: Additions to Algorithm 1
Additional input: P

R

3a counter [w] 0;

18a counter [w] counter [w] + 1;
18b if counter [w] == P

R

then
18c updateList [w] true;
18d counter [w] 0;

0

100

200

300

400

0 20 40 60 80 100

t = 1, . . . , L

U
t

U-Parallel

NU-Parallel

NU-Parallel (5)

Computer search from [7]

Fig. 6. Number of updates Ut for symbols at time t = 1, . . . , L for uniform
and non-uniform parallel schedules. W = 8, ✏ = 0.48, L = 100.

sumptions that help reduce the search space. However, the
complexity of such a search quickly becomes untractable as
the window size increases. Furthermore, the schedule must be
computed in advance using density evolution. This makes it
infeasible to be applied to the practical systems.

The schedules obtained from an exhaustive computer search
were periodic, and Fig. 6 shows that the computer search
schedule (green diamonds) in this case is less complex than
the proposed improvement based non-uniform parallel window
schedule. Hence, in order to incorporate this periodic feature
in the proposed schedule, we force nodes to be updated that
were not updated in some number P

R

of previous iterations.
Algorithm 2 gives the additions required to Algorithm 1 to

incorporate the periodicity factor P
R

. Figure 5(b) shows the
schedule adopted when P

R

= 5 is applied. Although the node
updates per iteration increase due to periodically updating
deactivated nodes, Fig. 6 suggests that overall complexity
is reduced by 20%. Furthermore, the non-uniform parallel
schedule with periodic updates achieves essentially the same
performance as the computer search schedule.

B. Non-Uniform Serial Window Schedules

The node updates can also be performed using a non-
uniform serial window schedule. Algorithm 3 gives the mod-
ifications required to the update rule in Algorithm 1. In the
serial update, before updating the check nodes at position w
(line 9 in Algorithm 3), all the neighboring variable nodes
are asked to produce messages along the edges connected to
check nodes at position w. A drawback of a serial decoding

Algorithm 3: Non-uniform serial window schedule
5 for w 1 to W do
6 if updateList [w] then
7 forall the v

i

2 N (c
w

) do
8 Calculate and propagate L

vi,cw if
updateList [w0

] is true where w0 is the
position of v

i

within the window
9 UpdateCheckNodesAt(w);

10 for w 1 to W do
11 CalculateOutputLLR(w);

0

100

200

300

400

0 20 40 60 80 100

t = 1, . . . , L

U
t

U-Serial

NU-Serial

NU-Serial (5)

Fig. 7. Number of updates Ut for symbols at time t = 1, . . . , L for uniform
and non-uniform serial schedules. W = 8, ✏ = 0.48, L = 100.

schedule is that the iterations cannot be fully parallelized, i.e.
all the variable and check nodes within the decoding window
cannot be updated simultaneously. However, with the schedule
of Algorithm 3, it is possible to update all the check nodes
at position w simultaneously, thus allowing us to partially
parallelize an iteration.

The parameter P
R

can also be incorporated in the serial
schedule using the additions from Algorithm 2. Figure 7
compares the values U

t

for the uniform (black squares) and
non-uniform (blue triangles) serial window schedules. Sim-
ilar to the non-uniform parallel window schedule, including
periodicity with P

R

= 5 in the non-uniform serial window
schedule (red circles) also provides a reduction in complexity.
Compared to Fig. 6, it is observed that the serial update
rule provides a gain with respect to the parallel update rule.
Furthermore, the non-uniform serial window schedule results
in more than a 50% reduction in complexity compared to the
uniform parallel window schedule.

V. PERFORMANCE EVALUATION FOR FINITE LENGTH
CODES

In this section, the performance of a finite length LDPCC
code is analyzed for an AWGN channel. The finite length
code is generated using a graph lifting procedure with a lifting
factor of N = 500, so that each coupled code block v

t

is
of length 1000 (Nn

v

) code bits. We use a window of size

10

�8

10

�6

10

�4

10

�2

10

0

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
E

b

/N
o

[dB]

B
i
t
E
r
r
o
r
R
a
t
e

U-Parallel

U-Serial

NU-Parallel (5)

NU-Serial (5)

(a) Bit error rate performance

100

150

200

250

300

350

400

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
E

b

/N
o

[dB]

U
a
v
g

U-Parallel

U-Serial

NU-Parallel (5)

NU-Serial (5)

(b) Average node updates
Fig. 8. Simulation results for the BER and average number of node updates U

avg

for an AWGN channel with N = 500, W = 8. For parallel window
schedules I

max

= 40 is chosen and I
max

= 30 is chosen for serial window schedules.

W = 8 and apply the uniform and non-uniform window
schedules described in the previous sections4. Furthermore,
we only consider non-uniform window schedules with P

R

,
since they achieve the smallest complexity. The maximum
number of iterations is selected such that the BER for the
considered schedules is similar, and we do not apply any
stopping criterion for iterations within a window5. Also, since
serial schedules converge faster to the same BER performance
compared to parallel schedules, we choose a slightly larger
value of I

max

for the parallel window schedules compared to
the serial window schedules. Figure 8(a) shows BER curves
for the uniform and non-uniform window schedules, and we
see that the choice of I

max

results in no significant loss in
performance for non-uniform window schedules compared to
uniform window schedules. Figure 8(b) shows U

avg

for the
considered schedules. We see that the non-uniform parallel
window schedule provides a 35�40% reduction in complexity
compared to the uniform parallel window schedule, and the
gain can be increased up to 50% by using a serial non-uniform
window schedule.

VI. CONCLUSION

We analyzed the potential reduction in decoding complexity
achieved when non-uniform schedules are applied to sliding
window decoding of spatially coupled codes compared to
uniform schedules. The nodes within the window are switched
off once they stop showing BER improvement. This results
in a significant reduction in complexity without any loss in
performance. Moreover, we showed that periodically updating
the deactivated nodes within the window results in a further
reduction in decoding complexity and achieves the same
complexity as the exhaustive computer search schedule from
[7]. Finally, both parallel and serial update rules within the
window were considered.

4The structural latency of the sliding window decoder in this case is
WNnv = 8000 code bits [3].

5This implies that the iteration stopping condition at line 19 of Algorithm 1
is not used and I

max

iterations are performed for every window position.

REFERENCES

[1] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via
spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834,
Feb. 2011.

[2] M. Lentmaier, A. Sridharan, D. Costello, and K. Zigangirov, “Iterative
decoding threshold analysis for LDPC convolutional codes,” IEEE Trans.

Inf. Theory, vol. 56, no. 10, pp. 5274 –5289, Oct. 2010.
[3] N. Ul Hassan, M. Lentmaier, and G. Fettweis, “Comparison of LDPC

block and LDPC convolutional codes based on their decoding latency,”
in Proc. 7’th International Symposium on Turbo Codes & Iterative

Information Processing, Aug. 2012.
[4] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,

and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[5] E. Sharon, N. Presman, and S. Litsyn, “Convergence analysis of gen-
eralized serial message-passing schedules,” IEEE Journal on Selected

Areas in Communications, vol. 27, no. 6, pp. 1013 –1024, Aug. 2009.
[6] E. Zimmermann, W. Rave, and G. Fettweis, “Forced convergence decod-

ing of LDPC codes - EXIT chart analysis and combination with node
complexity reduction techniques,” 11th European Wireless Conference

- Next Generation Wireless and Mobile Communications and Services

(European Wireless), pp. 1 –8, Apr. 2005.
[7] N. Ul Hassan, A. E. Pusane, M. Lentmaier, G. P. Fettweis, and

D. J. Costello Jr, “Reduced complexity window decoding schedules for
coupled LDPC codes,” in Proc. IEEE Information Theory Workshop,
Sep. 2012, pp. 20 – 24.

[8] A. Vila Casado, M. Griot, and R. Wesel, “Informed dynamic scheduling
for belief-propagation decoding of LDPC codes,” in IEEE International

Conference on Communications (ICC), Jun. 2007, pp. 932 –937.
[9] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convo-

lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.

Theory, vol. 45, no. 6, pp. 2181 –2191, Sep. 1999.
[10] M. Lentmaier, G. Fettweis, K. Zigangirov, and D. Costello, “Approach-

ing capacity with asymptotically regular LDPC codes,” in Proc. Infor-

mation Theory and Applications Workshop (ITA), Feb. 2009, pp. 173
–177.

[11] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” In IPN Progress Report 42-154, JPL, Aug. 2003.

[12] A. Pusane, A. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov, and
D. Costello, “Implementation aspects of LDPC convolutional codes,”
IEEE Trans. Commun., vol. 56, no. 7, pp. 1060 –1069, Jul. 2008.

[13] M. Lentmaier, M. Prenda, and G. Fettweis, “Efficient message passing
scheduling for terminated LDPC convolutional codes,” in Proc. IEEE

International Symposium on Information Theory (ISIT), Aug. 2011, pp.
1826 –1830.

[14] M. Papaleo, A. Iyengar, P. Siegel, J. Wolf, and G. Corazza, “Windowed
erasure decoding of LDPC convolutional codes,” in IEEE Information

Theory Workshop (ITW), Jan. 2010, pp. 1 –5.

