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Abstract

A method to compute antenna Q using an electromagnetic simulation at a sin-

gle frequency is described. This method can easily be integrated into global

optimization algorithms. In this way the optimization time of some antenna

parameters, e.g., bandwidth, may be signi�cantly reduced. The method is val-

idated by direct comparison with the physical bound of the analyzed structure.

Numerical examples for rectangular antennas and antennas with a rectangular

ground plane illustrate the integration of the method into a genetic algorithm.

The results predicted by optimization agree very well with those obtained

using a commercial electromagnetic solver. These results suggest that the

method can be used to yield antennas with Q factors within 20% of their

corresponding physical bound.

1 Introduction

Antenna performance may be improved, when necessary, through global optimiza-
tion algorithms. Mathematical considerations and examples of such algorithms are
presented in [3, 5, 17]. Deterministic approaches are prohibitive for some antenna
optimization problems due to the size and unpredictability of the solution space
studied. However, heuristic methods, e.g., genetic algorithms, particle swarm opti-
mization, etc., have provided reasonable solutions to such problems [13, 16, 21�23].
One parameter frequently included in antenna optimization goals is the bandwidth.
This parameter is commonly evaluated from multiple frequency samples of the an-
tenna input impedance. The computation of these samples accounts in general for
the greatest part of the solution time of an optimization algorithm.

Here, we estimate the Q factor from the current excited on an antenna computed
at a single frequency. Using the results by Vandenbosch [24] and Geyi [4] we compute
the electric and magnetic energies stored in the �elds excited by an antenna and the
radiated power. We assume the studied antennas are electrically small, i.e., Q� 1,
such that the error in the Q computation is negligible (equal to ka � 1 [11]). The
previously introduced computation is performed following the procedure in [8, 10],
at a single frequency, usually the center of the intended operating band. Considering
the input impedance of antennas described by a resonance model [7, 26], the Q factor
can be used as a direct measure of the bandwidth. This approach for computing
the Q factor is implemented in a standard Method of Moments (MoM) code [8, 10].
The implementation requires minor modi�cations of the code and does not increase
the computation time signi�cantly.

This method is applied to antennas that may take arbitrary shapes within a
rectangular region. A genetic algorithm (GA) with MoM simulation is implemented
following the GA/MoM approach described in [16, 21, 23]. Using rectangular mesh
elements, a mother impedance matrix is computed prior to launching the actual
optimization. Similar �mother� matrices are computed at the same time for the
stored electric and magnetic energies and radiated power. This approach reduces the
actual optimization process to �nding the rows and columns of these mother matrices
that give optimum performance. A more realistic situation is also considered that
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describes typical devices with limited space for antennas. Such situations resulting
in large solution times can be more e�ciently handled by imposing a block matrix
decomposition as described in [16, 21]. The results are veri�ed using the commercial
electromagnetic solver E�eld1. The agreement between the Q factors resulting from
optimization and simulation is very good.

Antenna performance is evaluated during optimization as a linear combination
of three parameters. These parameters are the Q-factor, the di�erence between the
stored electric and magnetic energies, and metallic area (all appropriately normal-
ized). They have been chosen to illustrate the single frequency antenna Q compu-
tation method. Other important parameters such as losses, radiation resistance or
matching are not considered here. The energy-di�erence mentioned above represents
the quantitative measure of self-resonance used during optimization. This resonance
was compared with the corresponding resonance of the input impedance obtained
from the commercial solver E�eld. The optimization-predicted and impedance
self-resonance agree to a large extent, con�rming the validity of the expressions
in [4, 10, 11, 24].

Physical bounds can be used to evaluate the optimization solution quality and
stop an optimization process. The performance of the structures considered here
has been compared with the physical bounds for rectangular structures [6, 9, 10],
and structures with a rectangular ground plane [8]. This comparison shows that
the optimized structures perform close to their physical bounds. In addition the
rectangular ground plane results verify the theory presented in [8].

The paper is organized as follows. The method to compute the Q factor of anten-
nas using a single frequency electromagnetic solution obtained from an MoM solver
is described in Sec. 2. A possible integration of this method in a genetic rectangu-
lar antenna optimization algorithm is presented in Sec. 3.1. Further improvements
to this algorithm for �xed pattern antennas are described in Sec. 3.2. The phys-
ical bounds used to compare the optimized antenna performance are described in
Sec. 4. Section 5.1 describes the setup for the numerical simulations performed. Sec-
tions 5.2 and 5.3 present numerical results for rectangular antennas and antennas
with a rectangular ground plane respectively. The paper ends with conclusions in
Sec. 6.

2 Computation of Antenna Q in the Method of Mo-

ments

The quality factor of a lossless antenna is de�ned as [26]

Q =
2c0kmax{We,Wm}

Prad

, (2.1)

where c0 is the speed of light in free space, k is the wavenumber, We and Wm are
respectively the electric and magnetic energies stored in the �elds excited by the

1www.e�eldsolutions.com
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antenna, and Prad is the power radiated by the antenna. This de�nition is valid
both for resonant and non-resonant antennas. Equation (2.1) is equivalent to the
de�nition in [1] for resonant antennas.

A resonance model can be used to describe many antennas, [7, 26]. This model
allows an approximation that relates the input impedance behavior to the Q factor
of antennas:

QZ′ =
k0|Z ′(k0)|
2R(k0)

, (2.2)

where k0 is the resonance wavenumber, Z
′ is the �rst derivative with respect to the

wavenumber of the input impedance (tuned to resonance), and R is the radiation
resistance. Equation (2.2) requires the input impedance be known at least for two
di�erent frequencies. This multiple frequency requirement is not necessary for eval-
uating (2.1). In this case it su�ces to know the stored energies and radiated power
at a single frequency. From these single frequency quantities the bandwidth can be
estimated based on its inverse proportionality to the Q factor [26].

The stored electric and magnetic energies in (2.1) can be expressed using the
results in [4, 24]. Here we consider, for simplicity, surface currents. The stored
electric and magnetic energies are respectively We = µ0w

(e)/(16πk2) and Wm =
µ0w

(m)/(16πk2), see also [11]. Correspondingly the total radiated power is Prad =
η0p

(rad)/(8πk). In the previous expressions µ0 and η0 are respectively the free space
permeability and impedance, and

w(e) =

∫
∂V

∫
∂V

∇1 · J1∇2 · J∗2
cos(kR12)

R12

− k

2

(
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
)
sin(kR12) dS1 dS2, (2.3)

w(m) =

∫
∂V

∫
∂V

k2J1 · J∗2
cos(kR12)

R12

− k

2

(
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
)
sin(kR12) dS1 dS2, (2.4)

and

p(rad) =

∫
∂V

∫
∂V

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kR12)

R12

dS1 dS2, (2.5)

where J1 = J(r1), J2 = J(r2) and R12 = |r1 − r2| are short notations for the
surface current density J �owing on the boundary of volume V occupied by the
entire structure and position vector r.

The computation of stored energies and radiated power using (2.3), (2.4), and (2.5)
is straight forward if implemented as an extension of an MoM code. Usual MoM so-
lutions of the electric �eld integral equation (EFIE) use a set of local basis functions
to approximate the surface current excited on the analyzed structure by a certain
source [19]. Denoting by ψp the basis functions, this approximation is

J(r) ≈
N∑
p=1

Jpψp(r). (2.6)
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The unknowns of the algorithm with this discretization are the coe�cients J =
(J1, J2, . . . , JN)

T. These coe�cients are determined from the system of equations
ZJ = V where V is a discrete representation of the incident �eld (e.g., the voltage
gap model) and Z is the normalized impedance matrix computed based on a mixed
potential formulation (equivalent to EFIE [15]) with the elements [19], normalized
to η0/(4πk),

Zpq = j

∫
∂V

∫
∂V

(
k2ψp(r1) ·ψq(r2)−∇1 ·ψp(r1)∇2 ·ψq(r2)

)e−jkR12

R12

dS1 dS2. (2.7)

With the discretization de�ned by (2.6) the stored electric energy can be approxi-
mated using

w(e) ≈
N∑
p=1

N∑
q=1

J∗pXe,pqJq = JHXeJ. (2.8)

Apart from Xe, two other matrices, Xm and Rrad, are introduced in a similar way
respectively for the approximation of the stored magnetic energy and radiated power.
These matrices have the same dimension as the impedance matrix, N ×N , and the
elements:

Xe,pq =

∫
∂V

∫
∂V

∇1 ·ψp1∇2 ·ψq2

cos(kR12)

R12

− k

2

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)
sin(kR12) dS1 dS2, (2.9)

Xm,pq =

∫
∂V

∫
∂V

k2ψp1 ·ψq2

cos(kR12)

R12

− k

2

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)
sin(kR12) dS1 dS2, (2.10)

and

Rrad,pq =

∫
∂V

∫
∂V

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)sin(kR12)

R12

dS1 dS2. (2.11)

With these notations the Q factor (2.1) becomes

Q ≈ max{JHXeJ,J
HXmJ}

JHRradJ
. (2.12)

Quadratic forms similar to JHRradJ have been used in [14, 20] to express di�erent
types of power in radiating structures printed on dielectric substrates. These ex-
pressions have been further employed in the optimization of the radiation e�ciency.
A similar approach has been followed in the optimization of antenna arrays in free
space [12].

As stated in the previous paragraph, an MoM solver can be extended to com-
pute (2.9), (2.10) and (2.11). This extension does not signi�cantly increase the



5

computational complexity of the solver. We compare the original impedance matrix
Z with the newly introduced matrices Xe, Xm and Rrad. This comparison shows
that

Zpq = Rrad,pq + j(Xm,pq −Xe,pq), (2.13)

and the second and third terms of Xe,pq and Xm,pq (correction terms introduced
in [24]) are both equal to

−k
2

∫
∂V

∫
∂V

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)
sin(kR12) dS1 dS2. (2.14)

Equation (2.13) gives the elements of Rrad directly. The same equation gives the
�rst terms of Xm,pq and Xe,pq. Little computational e�ort is required to separate
these terms from the imaginary part of Zpq. The remaining correction terms (2.14)
are non-singular. Their computation can be integrated in the calculation of the
impedance matrix (2.7). These correction terms resemble the imaginary part of Zpq

except for the term causing the singularity, R12. This resemblance can be utilized
to reduce the computational overhead required by the correction term calculation
with a standard MoM code.

In addition to the Q factor computation, the relationship between the energies
stored in the �elds can be used as a measure of resonance. These energies are equal
when the antenna is self resonant.

3 Implementation Example

3.1 Rectangular Regions

In�nitely thin lossless, i.e., perfectly electrically conducting (PEC), metallic struc-
tures are considered in the following. These structures may take arbitrary shapes
within a rectangular region with the length l and width h. In order to limit the
arbitrariness to a �nite set of possible solutions, a discretization rule is established
following the approach in [8, 10]. The natural choice is to use the same discretiza-
tion as in the MoM solver used to determine the electromagnetic solution. This
simpli�es the optimization procedure and the MoM algorithm, as described in the
following. Even though triangular mesh elements are more common, rectangular
mesh elements [12, 18] pertain better to the considered regular shapes and illus-
tration purposes of this study. Using rectangular mesh element discretization the
optimal structures may take arbitrary shapes made of any of the mesh elements
within the rectangular region. An example of such an antenna is depicted in Fig. 1.

The solution space of the optimization problem is made of all possible combina-
tions of discrete elements. There are 2NxNy such combinations, where Nx and Ny

are the number of mesh elements in the x and y directions, respectively. Usually
the number of combinations is large rendering prohibitive to study all solutions in
the solution space.

One class of algorithms that search through an unknown solution space are
heuristic global optimizers, e.g., genetic algorithms, random search, particle swarm,
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Figure 1: Example of discrete arbitrary structure within a rectangular region.
The uniform rectangular grid de�nes the discretization of the region. Gray-shaded
elements represent metallic patches on which a surface current density J(r) can
exist. The feeding edge is marked F . The �rooftop� amplitude of one of the basis
functions is represented in transparent red shading.

ant colony, etc. Genetic algorithms have been used in electromagnetic optimization
with remarkable results, see [13, 21, 23] for a description of the method and its appli-
cations. It is known that genetic algorithms feature an acceptably fast convergence
to suboptimal solutions and avoid local extrema [21]. A genetic algorithm has been
chosen here due to its well known principles, ease of adjustment and availability of
sample codes. Other global optimization methods can be used similarly with the
expressions in Sec. 2.

The fundamental principle of genetic optimization is to improve an initial ran-
dom population towards an optimum in stages � generations � using evolutionary
principles. To apply this algorithm to the situations considered here we de�ne indi-
viduals and their �tness. A set of these individuals de�nes the population in each
generation. Their �tness is a measure of optimality computed using the solution
determined by the MoM solver.

Each individual corresponds to a single solution (combination of discrete mesh
elements). Imposing a rule of numbering the elements of the mesh, the genotype of
each individual is made of NxNy possible genes in a single chromosome. Each gene
determines if an element is metal or not present in a certain individual. A reason-
able encoding for the genetic information is binary, 1 de�ning a metallic and 0 a non
present element. At least two genes are eliminated from the genotype as the edge
between them de�nes the feed of the antenna represented by the individual. Pat-
terned antennas can also be optimized by removing some of the genes corresponding
to the �xed metallic areas. An example of such patterned antennas is described in
Sec. 3.2 and 5.3.

The �tness of the individuals is given by the optimized parameter/parameters.
Usually a linear combination of parameters is evaluated for each individual. Such
parameters may be the Q factor, matching, directivity, radiation pattern, metallic
area, etc. These antenna parameters are computed here by an MoM solver with rect-
angular basis functions. Such basis functions usually decrease the number of MoM
unknowns thus improving the solution time. Furthermore uniform discretization in
both directions makes the basis functions equal (except for a spatial displacement).
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h

l

Fixed Ground Plane

Antenna Region

Figure 2: Example of simpli�ed phone model with antenna region occupying ap-
proximately 15% of the total length of the device.

This fact is exploited to further improve the solution time.
The integration of the electromagnetic solver into the optimization algorithm

follows the description in [21, Ch. 9]. The mother impedance matrix (2.7) of size
N = 2NxNy − Nx − Ny is computed once prior to the optimization. During the
optimization the genotype of each individual determines which rows and columns
of (2.7) compile the impedance matrix describing that individual. The rows and
columns with the same indexes compile the matrices corresponding to Xe, Xm and
Rrad for each individual. The impedance matrix is used to compute the surface
current density. This current can be used to compute other relevant parameters, e.g.,
Q factor (2.12), radiation pattern, radiation resistance, etc. The advantage of this
approach is that impedance matrix compilation time is smaller than computation
time with formulation (2.7).

3.2 Antennas Integrated into Devices

From the electromagnetic wave generation point of view, many mobile devices that
integrate antennas can be thought of as consisting of two spatial domains. One of
the domains is represented by the space reserved for the structure (antenna) fed by
the transmitter(s). This domain will be denoted in the following as the antenna
region. The other domain contains all other parts integrated in the device. This
domain usually contains metallic parts that act as ground for the structure in the
antenna region. For this reason the second domain will be denoted ground plane in
the following. In general the structures in both domains contribute to the radiated
�elds. It is also observed that the antenna region usually occupies a small fraction
of the entire device.

We consider planar rectangular structures to further simplify the description of
the previous paragraph. The two domains introduced above are de�ned as in Fig. 2.
The optimization algorithm searches for metallic structures that may take arbitrary
shapes within the antenna region. The other domain is a �xed rectangular metallic
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ground plane. This ground plane extends a signi�cant part of the structure (75, 85
and 94% of the area for the structures in Sec. 5.3). The metal is considered lossless
as in the previous section, i.e., PEC. Such structures can be studied using the same
approach as in Sec. 3.1. However this implementation is rather ine�cient due to
the presence of the �xed ground plane. The large extent of this ground plane in
the structure translates into large individual impedance matrices (i.e., comparable
in size with the mother impedance matrix). Such large matrices may result in an
MoM solution time prohibitive for optimization.

It is more computationally e�cient to use block matrix decomposition as de-
scribed in [16, 21]. The solution of the MoM algorithm can be obtained from the
system of equations (

ZAA ZAG

ZGA ZGG

)(
JA

JG

)
=

(
V
0

)
(3.1)

where the indexes A and G denote the antenna region and the ground plane respec-
tively, ZAA, ZAG, ZGA and ZGG denote blocks of elements of the mother impedance
matrix (2.7) with pq correspondingly in the domains de�ned by AA,AG,GA,GG, JA

and JG are the blocks of basis function coe�cients that de�ne the current �owing on
the antenna region and ground plane respectively, and V is the matrix correspond-
ing to the feeding model. The structure is fed only in the antenna region, thus the
0 in the right hand side. The solution is{

JA = (ZAA − ZAGZ
−1
GGZGA)

−1V
JG = −Z−1GGZGAJA = Z′JA

(3.2)

The preprocessing becomes more computationally demanding due to the necessity
to express the inverse of ZGG. However this does not a�ect the actual optimization
process because the size of the matrices manipulated during this process reduces
to the size of ZAA using a concept similar to the mother impedance matrix for the
right hand sides of (3.2). Using the same approach the evaluation of the stored
energies and radiated power necessary for the evaluation of the Q factor (2.12) can
be improved:

JHXeJ = JH
A

(
Xe,AA + 2Re{Xe,AGZ

′}+ Z′HXe,GGZ
′)JA (3.3)

where Xe,AA, Xe,AG and Xe,GG are the blocks of Xe de�ned in the same way as
those of Z. It should be noted that the block matrix decomposition is performed
in terms of basis functions, i.e., the matrix elements in (3.1) correspond to basis
functions de�ned on adjacent mesh elements. The inherent overlapping of the basis
function domains of de�nition allows the existence of metallic elements supporting
basis functions across the border between the ground plane and antenna region.

4 Physical Bounds

Physical bounds may be used as stopping criterion for an optimization process.
They can also be used to compare the performance of optimized antennas. This
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comparison is illustrated in Sec. 5.2 and 5.3 respectively for antennas limited to
rectangular regions and antennas with a �xed rectangular ground plane. These
antennas are obtained through a genetic optimization process stopped by genetic
stability during 50 generations. The Q factors of these antennas do not deviate
more than 30% from their physical bound. This suggests that carefully integrated
bounds may be used as stopping criterion in optimization algorithms.

The results in [6, 9] are used to derive the physical bounds for antennas whose
shapes are limited to rectangular regions2. The maximum D/Q ratio is computed
with closed form expressions assuming main radiation direction orthogonal to the
rectangle. The physical bound for the Q factor can be derived further assuming that
the antenna has directivity 1.5. The previous assumptions hold for many electrically
small antennas.

Bounds for antennas with a �xed rectangular ground plane, see Fig. 2, are com-
puted using the procedure described in [8, 10]. This procedure can be applied to
structures with arbitrary shapes. The problem of determining the physical bound
for the D/Q quotient of an antenna is solved using convex optimization [8]. This
problem is equivalent to minimizing the energy stored in the �elds excited by the
antenna [10]. The current that minimizes this energy is determined by convex opti-
mization. This current gives the minimum Q factor of an antenna and the maximum
D/Q quotient achievable by that antenna. It should be noted that this current may
be unphysical thus impossible to excite on real structures. In this formulation it is
assumed that the main radiation direction is orthogonal to the structure.

The bounds [8, 10] become those in [6, 9] when the antenna region occupies the
entire rectangular region, i.e., when antennas limited by a rectangular region are
solved by convex optimization.

5 Results

5.1 Simulation Setup

The genetic algorithm used here is based on Holter's implementation distributed
with the PB-FDTD package [23]. We use a 200 individual population. Using tour-
nament selection 80 randomly chosen individuals compete to become one of two
breeding parents. Child generation is subjected to crossover and mutation. O�-
spring are generated in pairs and returned to the initial population. Then the
population is decreased by removing the least �t two individuals.

Crossover happens at two random positions in the genotype with probability
0.8. The mutation rate is 0.2 when the population evolves naturally; in this situ-
ation a single gene is mutated at a time. The probability of mutation becomes 1
when the population does not improve during an entire generation. In all succeeding
generations, all o�spring will have 10 random genes mutated at a time. Due to ran-
domness, the actual number of genes that are mutated may take any value between
1 and 10. If a new individual with better performance is found, the evolution returns

2see also http://www.mathworks.com/matlabcentral/�leexchange/26806-antennaq
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to �natural� conditions, 0.2 single gene mutation probability. This behavior should
increase the chances of �nding better solutions in less generations. Even though the
population evolution shows the expected behavior, a thorough performance study
has not been carried out.

The stop condition of the algorithm is genetic stability of the population during
50 generations. This condition can be replaced by the best individual performance
in the current population. When this performance is close enough to the physical
bounds [6, 8�10] the optimization process can be stopped.

The objective function of the optimization algorithm is a linear combination of
antenna parameters, i.e.,

minimize αQQ+ αR

∣∣∣∣JHXeJ− JHXmJ

JHRradJ

∣∣∣∣+ αAN
AN, (5.1)

where αQ, αR and αAN
are the weights associated with the Q factor, resonance

and normalized metallic area AN, respectively. For illustrative purpose resonance
is evaluated from the di�erence between the stored electric and magnetic energies.
This di�erence is normalized to the radiated power. The area is normalized to the
entire rectangular region area (antenna region area for antennas with a rectangular
ground plane).

The weights introduced in the previous paragraph control the optimization pro-
cess. Either αQ or αR is emphasized at a time for obtaining the data presented
in the following. As a result either antennas with minimum Q or resonant are
targeted, respectively. The normalized area weight has been maintained constant,
αAN

= 1. This parameter has been included in order to decrease the metallic area
of the structures and eliminate some isolated mesh elements.

The MoM solver integrated into the genetic algorithm is an EFIE based in-house
simulator. Galerkin testing is used [19] with rooftop basis and testing functions. The
amplitudes of these functions have linear variation on two adjacent mesh elements,
as exempli�ed in Fig. 1. Their direction is perpendicular to the common edge and
pointing from the �rst to the second mesh element (considering a numbering rule
imposed on the elements).

The optimization results are compared with simulation data obtained from the
E�eld MoM solver. This solver uses rooftop basis functions de�ned on triangular
mesh elements. Non-self-resonant antennas have been loaded inductively such that
they achieve resonance at the frequency they were optimized for. This loading has
been used to con�rm that tuning does not change the performance of the optimized
antennas.

5.2 Rectangular Regions

The optimization algorithm has been run for rectangular regions with an aspect
ratio of l/h = 2. Such regions can achieve the maximum D/Q ratio when operated
optimally, [9, 10]. The antennas inside these regions are considered thin metallic
sheets without losses, i.e., PEC. The frequencies were chosen such that the elec-
trical dimensions are in the range kl = 0.1 . . . 1.3 (ka ≈ 0.06 . . . 0.7). In this way
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Q Physical bound
None, Q
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None, Resonance
Single, Resonance
Double, Resonance

0 1.4

Figure 3: Optimized antenna Q factors compared with the physical bound [6, 9, 10]
for rectangular regions. The best result from 5 runs for each symmetry (none, single
and double) and optimization criterion (Q factor or resonance) is depicted.

some of the electrical dimensions usually considered small have been studied. The
discretization was Nx = 64, Ny = 32 such that the discrete elements are square. A
voltage gap model has been used to feed the antennas. Two mesh elements have
been marked as �xed metallic areas and removed from the genotype. These elements
are the two closest to the center of the rectangular region such that the voltage drop
is applied along the x-direction, see Fig. 1.

From the symmetry point of view, three groups of structures have been consid-
ered: non-symmetric, symmetric with respect to x̂ and symmetric with respect to x̂
and ŷ, see Fig. 1. These are denoted as �None�, �Single�, and respectively �Double�
in Figs 3 and 4. The corresponding number of genes in the genotype is: 2046, 1023
and 512.

Two optimization criteria have been imposed. They target to �nd either an-
tennas with the optimal Q or antennas as close as possible to a resonance. The
corresponding objective functions have αQ = 4, αR = 1 and αQ = 1, αR = 4
respectively.

The smallest Q factor of 5 optimized antennas for each symmetry and criterion
is depicted in Fig. 3. The physical bound for a rectangular region with the same
dimensions is computed using the results in [6, 9, 10] and included for comparison.
This computation is performed assuming main radiation direction orthogonal to
the rectangle and directivity 1.5. The relative deviation of the Q factor from this
physical bound is depicted in Fig. 4. The antennas with the smallest Q in all runs
per kl value have been simulated with E�eld. Four of these antennas are depicted
in Fig. 5. The resulting Q factors computed according to [7, 26] are included in
Fig. 4 for comparison. These antennas have radiation patterns resembling that of
an electric dipole. Their directivities are between 1.49 and 1.52 in a direction within
30◦ of the normal of the rectangle.

Some observations can be made even though the number of runs is rather small.
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Figure 4: Deviation of the Q factors depicted in Fig. 3 relative to the physical
bound Qmin [6, 9, 10]. The deviations of the Q factors computed from simulation
data using the procedure in [7, 26] are also included.

kl=0.1 kl=0.5 kl=0.9 kl=1.3kl=0.3 kl=0.7 kl=1.1

Figure 5: Four of the structures simulated in E�eld whose Q factors are depicted
in Fig. 3. Feeding edges are circled.
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Antennas symmetric in the l-direction have the smallest Q factors. Antennas sym-
metric in both l and h-directions have the greatest Q factors. Intermediate Q factors
are obtained by antennas that are non-symmetric. The genetic algorithm can �nd
antennas which perform within 10% of the physical bound when their dimensions
are somewhat larger. When the antenna dimensions are smaller, the optimizer �nds
antennas about 30% away from the physical bound. Antennas optimized for reso-
nance have a greater Q than those optimized for Q factor, signi�cantly greater for
some electrical dimensions. This happens partly due to the compromise made dur-
ing the optimization in the disadvantage of the Q factor. This compromise modi�es
the genetic path followed by the antenna population based on the values involved
in the computation of �tness with (5.1). However, a detailed study of the genetic
path has not been carried out.

The optimized antennas show common characteristics that depend on their elec-
trical size. A few such characteristics are given as examples in the following consider-
ing Fig. 5. The structure with kl = 0.1 has: large metallic regions at the extremities
in the l-direction, little meandering that increases the longest current path, and
metallic strips parallel to the h direction which grow in length towards the extrem-
ities of the structure. The structure with kl = 0.5 is heavily meandered with many
short metallic stubs along the meander; it has less metallic h-aligned strips. Larger
structures are dominated by shorter meandering path and longer stubs. A statistic
study has not been carried out to establish the distribution of these characteristics
among the optimized antennas.

5.3 Simple Phone Model

A simpli�ed model of a mobile telephone as a radiating device is obtained by con-
sidering the device mostly metallic. In a limited region a specially devised metallic
structure is fed by the transmitter. For further simpli�cation the metal is consid-
ered lossless, i.e., PEC, and the entire structure planar, see Fig. 2. It has been
observed that an aspect ratio l/h = 2 describes many mobile devices in use to-
day. The frequencies have been chosen such that the electrical dimensions are in
the range l/λ = 0.1 . . . 0.5. These frequencies are between 300MHz and 1.5GHz
for an l = 10 cm device. The discretization was Nx = 96 and Ny = 48 for the en-
tire structure (antenna region and ground plane). Such structures but with coarser
rectangular element mesh are preliminarily investigated in [2]. The procedure pre-
sented in Sec. 3.2 has been applied to increase the speed of the optimization process.
The structures are fed by a voltage gap such that their far �eld is mainly linearly
polarized along the l dimension.

For illustration purpose the optimization procedure has been applied to two
situations. In the �rst situation di�erent dimensions of the antenna region have
been imposed. The results of antenna optimization for minimum Q are presented in
Fig. 6. The second situation illustrates the method for di�erent optimization criteria
and feeding positions, Fig. 7. Examples of optimized antenna regions obtained in
the above mentioned situations are depicted in Fig. 8.

Three cases have been considered for the results in Fig. 6 where approximately
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6%, 15% and 25% of the structure length is occupied by the antenna region. The
optimization procedure has been run �ve times for each set of electrical and antenna
region dimensions considered. The optimization target was antennas with minimum
Q (αQ = 10, αR = 1). The smallest Q obtained in the �ve runs is labeled �Predic-
tion.� The antennas having these smallest Q factors have been simulated in E�eld.
Their input impedance is di�erentiated following the procedure in [7, 26] to obtain
the Q factors labeled �Simulation.� These antennas have a main radiation direction
within 30 ◦ of the normal of the rectangular region. The physical bounds [8] cor-
responding to radiating structures with a rectangular ground plane, normal main
radiation direction and antenna regions occupying 6%, 15% and 25% of the antenna
length are included in Fig. 6. In addition the physical bound [6, 9, 10] of rectangu-
lar radiating structures with normal main radiation direction and directivity 1.5 is
depicted in solid line.

It is observed in Fig. 6 that both the predicted and the simulated Q values follow
closely the physical bounds for small electrical dimensions. The relative deviation
of these values from the corresponding physical bound is smaller than 20% in these
cases. The deviation is greater for smaller antenna regions. When the electrical
sizes of the structures increase, the values resulted from the simulation data deviate
from the predicted values. The simulation values are smaller than the predicted
values and bound. This happens due to the Q factor estimation procedure from the
input impedance. Small Q values are estimated less accurately when multiple closely
spaced resonances are present around the frequency of interest. The single resonance
model [7, 26] was used to compute the Q for the structures with l/λ = 0.1, 0.175 and
0.25. The multiple resonance Brune synthesis model [25] was used to compute the
Q for the structures with l/λ = 0.325, 0.4 and 0.475.

Four cases have been considered for the results in Fig. 7. They are de�ned by
all the combinations of two feeding positions and two optimization targets applied
to structures with the antenna region 15% of the structure length. The two feeding
positions are at the interface between the ground plane and the antenna region in
the center of the h dimension and at the side of the structure. As optimization
targets Q factor (αQ = 10, αR = 1) and resonance (αQ = 1, αR = 10) have been
considered. The optimization algorithm has been run �ve times for each case and
frequency. The relative deviations of the smallest Q factors obtained in the �ve runs
are labeled �Prediction� in the �gure. The reference for these relative deviations is
the physical bound [8] for antenna regions occupying 15% and normal main radiation
direction. The antennas with these smallest Q factors have been simulated in E�eld.
Their input impedance gives the Q factors labeled �Simulation� using a resonance
model [7, 25, 26]. These antennas have a main radiation direction within 30 ◦ of the
normal of the structure. The observations pertaining to Figs 4 and 6 are also valid
for Fig. 7.
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Figure 6: Optimized antenna Q factors compared with the physical bound. The
smallest Q factor of �ve optimization algorithm runs per frequency and antenna
region size is labeled �Prediction�. The Q factors computed using the results in [7,
25, 26] from simulation data for the smallest Q antennas are labeled �Simulation�.
The physical bounds for radiating structures with rectangular ground planes [8] and
antenna regions occupying 6, 15 and 25% of antenna length (see Fig. 2) are depicted
in dashed, dash-dot and dotted line, respectively. The physical bound for antennas
limited to rectangular regions [6, 9, 10] is depicted in solid line.
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Figure 7: Deviation of optimized antenna Q factors relative to the physical
bound [8] for 15% antenna regions (see Fig. 2). The smallest Q factor from �ve
optimization algorithm runs is labeled �Prediction�. The Q factors computed using
the results in [7, 25, 26] from simulation data for the smallest Q antennas are labeled
�Simulation�. Side and center feeding has been considered for structures optimized
for Q factor and resonance (R).
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l/¸=0.1 l/¸=0.25 l/¸=0.4l/¸=0.175 l/¸=0.325 l/¸=0.475

Figure 8: Example of antenna regions of structures simulated in E�eld. Shaded �
part of the ground plane. First three rows from top to bottom: side fed antenna
regions occupying 6%, 15%, 25% of antenna length optimized for Q factor. Row
4: side fed 15% antenna regions optimized for resonance. Rows 5 and 6: center fed
15% antenna regions optimized for Q factor and resonance, respectively. Feeding
edges are circled.

6 Conclusions

A method of computing Q factors of radiating structures from single frequency
simulation data is presented. This computation is based on the electric and mag-
netic energies stored in the �elds excited by an antenna [24] evaluated following
the procedure described in [8, 10]. Using this method it is possible to estimate an-
tenna bandwidth from the current excited on the structure at a single frequency.
This method has been applied to rectangular structures and structures with a rect-
angular ground plane describing in a simpli�ed manner some mobile devices in use
today. The resulting antennas perform close to the physical bounds in terms of their
Q factors for many electrically small dimensions. Simulation data obtained from the
commercial electromagnetic solver E�eld agree very well with the theoretical results.

The method can be integrated very easily in a standard MoM solver. The tem-
poral overhead added by such an integration is small due to the fact that most of the
quantities needed are computed in standard MoM solvers. Thus using this method
may reduce optimization time for some radiating structures. In addition it is pos-
sible to directly compare realized performance of optimized structures with their
physical bounds [8]. The results presented con�rm the validity of these physical
bounds. Sub-optimum solutions resulted from optimization have �genetic� charac-
teristics that may prove useful for the manual design of other radiating structures.

The results obtained using this method have been presented in terms of an-
tenna Q factors. Other important antenna parameters such as radiation resistance,
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matching and losses are the object of future work. More realistic structures will be
considered there.
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