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Functional and genetic characterization of the
non-lysosomal glucosylceramidase 2 as a modifier
for Gaucher disease
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Mia Horwitz'®, Stefan Karlsson'', Mirella Filocamo'?, Deborah Elstein'?, Michael Beck'*, Konrad Sandhoff®,
Fugen Mengel', Maria C Gonzalez', Markus M Néthen®*, Ellen Sidransky ', Ari Zimran'? and

Manuel Mattheisen®'®'”"

Abstract

Background: Gaucher disease (GD) is the most common inherited lysosomal storage disorder in humans, caused
by mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBAT). GD is clinically
heterogeneous and although the type of GBAT mutation plays a role in determining the type of GD, it does not
explain the clinical variability seen among patients. Cumulative evidence from recent studies suggests that GBA2
could play a role in the pathogenesis of GD and potentially interacts with GBAT.

Methods: We used a framework of functional and genetic approaches in order to further characterize a potential
role of GBA2 in GD. Glucosylceramide (GlcCer) levels in spleen, liver and brain of GBA2-deficient mice and mRNA
and protein expression of GBA2 in GBA1-deficient murine fibroblasts were analyzed. Furthermore we crossed
GBA2-deficient mice with conditional Gbal knockout mice in order to quantify the interaction between GBA1 and
GBAZ2. Finally, a genetic approach was used to test whether genetic variation in GBA2 is associated with GD and/ or
acts as a modifier in Gaucher patients. We tested 22 SNPs in the GBA2 and GBAT genes in 98 type 1 and 60 type
2/3 Gaucher patients for single- and multi-marker association with GD.

Results: We found a significant accumulation of GlcCer compared to wild-type controls in all three organs studied.
In addition, a significant increase of Gba2-protein and Gba2-mRNA levels in GBA1-deficient murine fibroblasts was
observed. GlcCer levels in the spleen from Gbal/Gba2 knockout mice were much higher than the sum of the single
knockouts, indicating a cross-talk between the two glucosylceramidases and suggesting a partially compensation of
the loss of one enzyme by the other. In the genetic approach, no significant association with severity of GD was
found for SNPs at the GBA2 locus. However, in the multi-marker analyses a significant result was detected for
p.L444P (GBAT) and rs4878628 (GBA2), using a model that does not take marginal effects into account.

Conclusions: All together our observations make GBA2 a likely candidate to be involved in GD etiology.
Furthermore, they point to GBA2 as a plausible modifier for GBA1 in patients with GD.
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Background

Gaucher disease (GD) is the most common lysosomal
storage disease and arises from mutations in the gene
encoding the lysosomal glucocerebrosidase (GBA1; EC
3.2.145, MIM# 606463). When GBA1 is absent or im-
paired, glucosylceramide (GlcCer) accumulates within
macrophage lysosomes, leading to liver and spleen en-
largement, bone lesions, and in the most severe cases,
impairment of central nervous system function [1,2].

Three types of Gaucher disease have been described.
Type 1 GD is marked by absence of neurological in-
volvement (non-neuronopathic type) and is the most
common form of the disease. It affects approximately 1
in 50,000 individuals [3,4], but is significantly more com-
mon among the Ashkenazi Jewish heritage (prevalence
up to 1/500 [5]). There is tremendous heterogeneity in
the severity of the clinical manifestations of type 1 GD,
ranging from patients who are mildly affected to patients
who experience life-long debilitating disease. Types 2
and 3 GD are relatively rare and marked by involvement
of the central nervous system [6]. While type 2, the
acute neuronopathic form of the disease, is characterized
by the appearance of several neurologic features, in
addition to the severe hepatosplenomegaly, type 3, the
subacute neuronopathic form of the disease, is marked
by more variable and a less aggressive acceleration of the
neurologic manifestations.

More than 330 mutations in the GBAI gene have been
described to date, by far the most associated with GD [7].
In patients of Ashkenazi Jewish ancestry only six of them
account for 90% of disease alleles (c.1226A4G, ¢.1448T4C,
¢.84dupG, c.11511G4A, ¢.1504C4T and c.1604G4A) [8].
The same six mutations account for approx. 50% of
disease alleles in non-Jewish patients. Although the type
of GBAI mutation plays a role in determining the type of
Gaucher disease, it does not fully explain the clinical
variability seen among patients [9-12]. Therefore, it was
hypothesized, that genetic modifiers play a role in the
etiology of GD [8].

We and others have previously shown that the enzyme
GBA2, besides its known function as hydrolyzing bile
acid 3-O-glucosides in the liver as endogenous com-
pounds [13,14], also hydrolyzes glucosylceramide [15].
In accordance with this, GBA2-deficient mice show an
accumulation of GlcCer in different tissues [15]. More-
over, a crosstalk of GBA1 and GBA2 in the metabolism
of glycosphingolipids has recently been hypothesized
[16] and a subsequent study suggested a particular meta-
bolic role of GBA2 in the brain [17].

In the present study, we explored whether the non-
lysosomal glucocerebrosidase (GBA2) could play a role
as modifier for Gaucher disease. We examined the po-
tential role of GBA2 as a modifier of Gaucher disease
and the crosstalk between GBA1 and GBA2 using three

Page 2 of 8

subsequent steps. In a first step, we aimed to further
explore the biochemical characteristics of GBA2-
deficient mice. Therefore, we analyzed GlcCer levels in
spleen, liver and brain of GBA2-deficient mice, since
these are the predominantly affected organs in GD. In a
second step we aimed to further characterize the poten-
tial interaction between GBA1 and GBA2. We investi-
gated whether GBA2 expression is altered in fibroblasts
of GBA1-deficient mice to obtain further evidence for
an interaction between lysosomal and non-lysosomal
glycosylases. Finally, we crossed our GBA2-deficient
mice with conditional GBA1-knockout mice [18] in
order to quantify the interaction between GBA1l and
GBA2. Since the results in the functional steps highly
supported such an interaction we used, in a third step,
a genetic approach to directly test whether genetic
variation in GBA2 acts as a modifier in Gaucher patients.

Methods

Lipid analysis

Spleen, liver and brain was homogenized, lyophilised
and extracted as describe previously [19]. Protein and
cell debris were separated by filtration. The phospho-
lipids were degraded by mild alkaline hydrolysis with
50 mM sodium hydroxide in chloroform/methanol
(1:1 (v/v)). After neutralization with glacial acetic acid,
sphingolipids were desalted by reversed-phase chro-
matography, separated into acidic and neutral glyco-
sphingolipids by anion exchange chromatography with
DEAE-cellulose [20].

For separation of polar neutral lipids by thin layer chro-
matography (TLC), samples were applied to prewashed
(chloroform/methanol 1:1 (v/v)) thin layer Silica Gel 60
plates (Merck, Darmstadt, Germany) and the chromato-
grams were developed with chloroform/methanol/water
(70/30/5, v/v/v). Hexosylceramide (HexCer) were sepa-
rated into GlcCer and galactosylceramide on borate-
impregnated TLC plates [21] developed in chloroform/
methanol/water (65/25/4, v/v/v). After development,
plates were air-dried, sprayed with 8% (w/v) H3PO,
containing 10% (w/v) copper (II) sulfate pentahydrate, and
charred for 10 min at 180°C, and lipids were quantitated
by photo densitometry (Camac, Muttenz, Switzerland) at
A =595 nm.

For mass spectrometric analysis, aliquots of the neu-
tral lipid extracts were mixed with an appropriate
amount of internal standards containing the GlcCer-
species: GlcCer(d18:1;14:0), GlcCer(d18:1;19:0), GlcCer
(d18:1;25:0), and GlcCer(d18:1;31:0). Tandem Mass spec-
trometric analysis was performed using a triple quadru-
pole instrument (VG Micromass, Cheshire, UK) equipped
with a nano-electrospray source and gold-sputtered capil-
laries. Parameters for cone voltage and the collision energy
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of the different scan modes used, and sphingolipid quanti-
fication was performed as previously described [22,23].

GBA2 expression in fibroblasts of GBA1-deficient mice
Preparation of cultured fibroblasts and western blot
analyses

Embryonic murine primary fibroblasts were generated
from the GBA1-deficient mice [24] and cultured to early
confluency and harvested as described earlier [25]. Total
fibroblasts extracts were prepared as described previously
[25]. Equal amounts of protein (20—40 pg/lane) were sepa-
rated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE), transferred to nitrocellulose and
incubated with anti-GBA2 [15], followed by anti-rabbit
secondary antibody (Calbiochem, La Jolla, CA, USA). To
confirm equal loading, blots were re-probed with anti-
[-actin primary antibody (Sigma-Aldrich Chemie GmbH,
Taufkirchen, DE). Immunoreactive proteins were detected
using the ECL system (Amersham Biosciences, Piscataway,
NJ, USA).

Reverse transcriptase-PCR (RT-PCR)

RNA isolation, reverse transcription, and RT-PCR were
performed as previously described [15]. RNA isolated from
fresh or shock-frozen fibroblasts with Trizol (Invitrogen,
Karlsruhe, DE) according to the manufacturer's guidelines.
For each sample, 1 pg total RNA was used. Before reverse
transcription, samples were DNA-digested by incubation
with RQ1 RNase-free DNAse (Promega, Madison, W1,
USA). Reverse transcription was performed using reverse
transcriptase (Invitrogen, Karlsruhe, DE) and random
primers (Microsynth, Balgach, CH). Primers and probes
(mMO00554547_m1GBA2, mMO00484700_m1GBA1l,) for
detection of targets and house-keeping gene (18SrRNA)
were provided by Applied Biosystems (Foster City,
USA) as ready-to-use mixes and used according to the
manufacturer's guidelines. RT-PCR was performed using
the ABI 7700 sequence detector (Applied Biosystems, Life
Technologies Corporation, Carlsbad, CA, USA).

Glycolipids accumulation in GBA1- and GBA2- deficient
mice

Generation of mice and characterization of glycolipids
accumulation

The conditional Gba- knockout mice were kindly provided
by Stefan Karlsson, University of Lund, Sweden [18]. We
crossed those mice to our GBA2-deficient mice and
deleted Gbal specifically in the liver and spleen by Cre-
dependent recombination. All mice received a series of five
polyinosinic—polycytidylic acid injections starting within
the first week of life to induce excision of “floxed” exons.
The pups tolerated the treatment well. Complete excision
of GBAI exons 9-11 in liver, and spleen was confirmed by
different PCR analysis as described previously [18].
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Statistical analyses

In order to assess the significance of accumulation of
GlcCer in the different mutant and control mice we used
a paired Student’s t tests for pair-wise comparisons, data
are expressed as mean + standard deviation. Significance
was tested at the level of P < 0.05.

Genetic variation in GBA2 as a modifier in Gaucher
patients

DNA extraction, SNP selection, and genotyping

Informed consent was provided under an Institute Re-
view Board approved clinical protocol to analyse the
GBA1 and GBA2 gene locus in Gaucher patients.
Ethylenediaminetetraacetic acid anti-coagulated venous
blood samples were collected from all participating individ-
uals. Lymphocyte DNA was isolated by salting- out [8]
with saturated sodium chloride solution or by a Chemagic
Magnetic Separation Module I (Chemagen, Baesweiler, DE)
used according to the manufacturer’s recommendations.

GBA2 is located on chromosomes 9p13.3 and spans
around 13.1 kb. For our finemapping approach we used
Haploview V4.1 [26] to select all SNPs with a maximum
r* value of 0.8 (pairwise tagging approach) and a minor
allele frequency (MAF) of at least 10% in CEU HapMap
individuals [24]. In addition, p.N370S and p.L444P, the
first ever described and still predominant mutations in
GBAI around the globe were genotyped. While homozy-
gosity for p.N370S is usually associated with the non-
neuronopathic type (type 1 GD), the same is true for p.
L444P and a neuropathic phenotype (types 2 and 3 GD).
Hence, these two mutations are perfectly suitable to
test if variants at the GBA2 (selected by a haplotype
tagging approach, see above) locus have a modifying
effect on the association of mutations in GBAI with
severity of GD.

Sequences were retrieved from CHIP Bioinformatics
Tools (http://snpper.chip.org/). We genotyped 98 DNA
samples from type 1 and 60 DNA samples from type 2/3
Gaucher patients, all of European ancestry, and provide by
different clinical centres throughout Europe, specialized in
treatment and research of Gaucher disease. The selection
of the aforementioned patient groups with type 1 and type
2/3 GD follows the assumption that type 1 in general
depicts a milder form and type 2/3 a more severe form of
GD. In addition, a more important role for GBA2 in the
brain has been described previously [17], making an in-
volvement of GBA2 in the etiology of type 2/3 GD more
likely. Hence, the results of subsequent testing for allele
frequency differences in these groups can be interpreted
to be related to severity in GD. A total of 26 SNPs (24 for
GBA2 and 2 for GBAI) were included in the assay. Geno-
typing was performed on genomic DNA using the
Sequenom MALDI-TOF mass-spectrometer (Sequenom
iPlex assay) and were analyzed using the Spectrodesigner
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Software package (Sequenom, San Diego, CA, USA).
Primers were synthesized at Metabion, Germany. All pri-
mer sequences are available upon request. Only SNPs
forming three distinct clusters in the Sequenom Typer
Analysis software were included in the analysis.

Statistical analysis

In the association analysis for genetic variation in GBAI
and GBA2 all quality control (QC) steps and single-
marker analyses were performed using PLINK [27]. The
subsequent multi-marker analyses were performed using
INTERSNP [28]. As a first step we analyzed p.N370S and
p.L444P (GBAI), as well as the variants at the GBA2 gene
locus with respect to their association with the severity
of Gaucher disease (as defined above). In order to test if
variants at the GBA2 locus have a modifying effect on the
association of p.N370S and/ or p.L444P with severity of
GD, we also conducted multi-marker analyses aiming to
identify epistatic effects. We therefore performed in a
subsequent step an interaction analyses using a logistic
regression framework and testing for an additional allelic
(2 degrees of freedom (d.f.)) or genotypic effect (6 d.f.) of
SNPs at the GBA2 locus on the aforementioned associ-
ation of p.N370S or p.L444P. In addition, we used a log-
linear model (4 d.f.) in order to test for an epistatic effect
of SNPs at the GBA2 locus and p.N370S or p.L444P. This
analysis was performed without taking marginal effects at
both gene loci into account.

Results

Increased GlcCer level in GBA2-deficient mice liver, spleen
and brain

Although GBA2-deficient mice do not show any hepa-
tosplenomegaly, the quantitative analysis of HexCer
amount in liver, spleen and brain shows a significant ac-
cumulation of HexCer by mass spectrometry in liver and
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spleen and a significant increase of those HexCer species
being likely of neuronal origin in brain. As liver and
spleen do not contain substantial amounts of (GalCer),
the measured HexCer basically represents GlcCer. The
brain however is full of galactosylceramide. Therefore,
GlcCer and GalCer (in sum HexCer) of brain samples
were separated on TLC demonstrating the increase of
GlcCer (Figure 1). These results underline the important
role of GBA2 in the homeostasis of GlcCer in these
organs.

Increased mRNA and protein expression of GBA2 in
GBA1-deficient mice fibroblasts

As shown in Figure 2, we observed a clear decrease of
GBAL1 protein level and mRNA expression in GBAI-
deficient fibroblasts. Furthermore, we observed a strong
increase of GBA2 protein and mRNA expression, indicat-
ing that GBA2 is up regulated, following a compensatory
mechanism, that is aimed to adjust for the lack of GBAI.

Glycolipids accumulation in GBA1 and GBA2 deficient
mice

We analysed GlcCer levels in the spleen from mice that
were deficient for either GBA1 or GBA2 or both. GlcCer
accumulated in the spleen from all three knockout mice.
However, GlcCer levels in the spleen from Gbal/Gba2
knockout mice were much higher than the sum of the sin-
gle knockouts (Figure 3). Our results indicate that there is
a cross-talk between the two glucosylceramidases and sug-
gest that one enzyme can partially compensate the loss of
the other.

Single- and multi-marker analysis for GBA2 and GBAT in
Gaucher patients

From the initially selected 24 SNPs for GBA2 and 2 muta-
tions in GBA1 (p.N370S and p.L444P), a total of 19 (17 for

>

*

|

1

30001
100

2000

*

¥

Liver

10004

pmol HexCer/mg
tissue wet weight
pmol HexCer(d18:1;18:0)/ 0
mg tissue wet weight

0-

Splleen brellin

Il KO
100+
— GlcCer
504 ' ' GalCer
N s | start
bréin wr brain ko

Figure 1 Quantitative mass spectrometric analysis of HexCer (sum of GlcCer and GalCer). (A) Total HexCer amount in liver, spleen, and
brain of 6 -month-old GBA2-deficient (KO) and wild-type (WT) mice. (B) Amount of the HexCer species carrying the typical neuronal ceramide
anchor with a stearic acyl residue. *: P < 0.05, n =4 animals per group. (C) TLC of a representative brain lipid sample in which GlcCer and GalCer
are separated. Note the increased GlcCer in the KO. The double band reflects heterogeneity of its ceramide anchor composition.
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mRNA expression of GBA1-deficient mice fibroblasts
RT-PCR in GBA1-deficient fibroblasts
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Figure 2 mRNA expression of GBA2 and GBAT1 in GBA1-deficient embryonic mice fibroblasts [24] expressed as fold change GBA2
versus GBA1. 185-RNA was used as internal control. Western blot analysis for GBA2 in GBA1-deficient embryonic mice fibroblasts, beta-actin was

B-actin

GBA2 and 2 for GBAI) variants performed well during
genotyping and passed standard quality control (QC) pro-
cedures. Out of seven SNPs that were not put forward to
statistical analysis, 1 SNP was dropped due to low call rate
and an additional 6 SNPs failed tests for differences in
missingness patterns between patients with type 1 and
type 2/3 GD, deviation from Hardy Weinberg Equilib-
rium (< 0.001) or a minimum minor allele frequency of
at least 1% in cases and controls. Samples were ex-
cluded from the analysis in case they were not success-
fully genotyped for>3 SNPs in the post-SNP-QC
datasets. A total of 86 patients with type 1 and 48 pa-
tients with type 2/3 GD could be incorporated into the
analyses. In the single-marker analyses we observed (as
expected) an association of p.N370S and p.L444P with
the severity of Gaucher disease in the single-marker
analysis (N370S: OR = 0.0047, CI [0.001/0.023], Py;,g =
8.22 x 10'"; L444P: OR =4.54, CI [2.41/8.54], Pyingre =
2.69 x 10°). In contrast, we did not observe a signifi-
cant association with severity of GD in single-marker
analyses for SNPs at the GBA2 locus (the best result
was obtained for rs10972579: OR=2.192, CI [0.82/
5.86], Psinge=0.118). In the multi-marker analysis, no
additional effect (2 and 6 d.f. model) was observed for
SNPs at the GBA2 locus on the association of p.N370S /
p.L444P with severity of GD (Table 1). In addition, no epi-
static effect (4 d.f. model) was observed when p.N370S
was one of the two SNPs in the analysis (Table 2). In

contrast, a significant result was observed in case p.L444P
was paired with SNPs at the GBA2 locus. The significant
combination included rs4878628 at the GBA2 locus and
reached a P,,,, = 0.027. It is of note, that rs4878628 itself,
other than p.L444P, has no marginal effect on its own
(OR =0.999, CI [0.54/1.85], Pgg. = 0.998, Table 2).

Discussion

In patients with Gaucher disease, hepatosplenomegaly
due to accumulation of GlcCer particularly in cells of
the macrophage lineage in liver and spleen is one

A
- GlcCer
LacCer
= Fa— e — — s (SM
P—— o R— — | — - start
GBA1 GBA2 GBA1/GBA2
WT KO WT KO WT KO

Figure 3 GlcCer levels in GBA-deficient mice. Thin layer
chromatography (TLC) analysing glycosphingolipids from spleen of 12-
month-old GBA1-deficient, GBA2-deficient, and GBA1/GBA2-deficient
mice. Representative TLC analysis shown neutral sphingolipids of 5 mg
(wet weight). WT: wild-type, KO: knockout mice, GlcCer:
glucosylceramide, LacCer: lactosylceramide, SM: sphingomyelin.
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Table 1 Tests for additional allelic or genotypic effect on association of p.L444P and p.N370S with severity of Gaucher

disease
ALLELIC GENOTYPIC
GBA2 SNP POShg1s MA MAF, MAF, Psingle Praasp Pn370s Praasp Pns370s
rs10814274 35724942 T 0494 0479 0811 0.3971 0.1444 0.0585 03160
1s34312177 35730649 T 0.067 0.057 0.769 0.0213 03679 0.0650 05723
rs3833700 35738696 T 0302 0292 0.847 0.3050 04095 0.0197 0.7977
rs1570246 35738843 A 0494 0479 0811 0.3971 0.1444 0.0585 03160
rs3750434 35738985 T 0.500 0479 0.739 04098 0.1445 0.0620 03213
rs1570247 35739264 T 0.500 0.500 1.000 04339 0.3288 0.0735 0.4953
152236288 35739837 G 0.186 0219 0518 0.0895 0.9200 0.1329 0.7770
11570249 35741250 T 0.494 0479 0.811 0.3971 0.1444 0.0585 03160
rs2145923 35742243 C 0.157 0.125 0480 0.6267 0.2096 0.3936 0.3599
rs1322045 35742487 C 0.300 0292 0.880 03138 04113 0.0205 0.7973
rs1570250 35742683 T 0.302 0.292 0.847 0.3050 04095 0.0197 0.7977
1534478611 35743925 T 0.204 0229 0.622 0.8899 0.6611 0.1400 04579
rs4878628 35744491 T 0234 0234 0.998 02716 0.6676 0.0058 0.7601
rs10814275 35748564 G 0.155 0.117 0408 0.1883 04275 0.3808 0.7907
11570248 35756549 G 0.302 0292 0.847 0.3050 04095 0.0197 0.7977
rs10972579 35766001 T 0.055 0.106 0.118 0.1054 0.6855 0.0344 0.8601
rs10972581 35769559 0471 0479 0.900 09124 0.2853 0.2255 0.3993

MA Minor Allele, MAF, frequency of MA in patients with type 1 GD, MAF, frequency of MA in patients with type 2/3 GD, Pg;,g. p-value for logistic regression
single-marker analysis, P, 444p and Pps370s P-values (uncorrected) for additional allelic and genotypic effect of GBA2 SNP on p.L444P and p.N370S association,
respectively. P-values are in bold in case they reach the level of nominal significance (P < 0.05).

characteristic symptom. For all three organs (spleen,
liver, and brain) we were able to show that their GlcCer
levels were significantly elevated in GBA2-deficient mice.
Hence, a pattern of GlcCer accumulation was observed,
that is potentially relevant to GD. It is of note, that to
date it is not clear how GlcCer itself or the consequent
imbalances of ceramide, sphingosine, and sphingosine
1-phosphate affects Gaucher disease. Furthermore, it is
unknown how GlcCer accumulation in lysosomes leads
to cellular pathology, and whether GlcCer can escape
the lysosomes and interact with different cellular and
biochemical pathways in other organelles [29]. Different
studies implicate profound systematic pathophysiological
changes rather than simple lipid accumulation as the basis
of GD. Previous studies on biochemical and pathological
analyses demonstrated a relationship between the amount
of tissue glucosylceramides and different gene expression
profile alterations [30]. Further it was shown that in-
creases and decreases in glucosylceramide levels can dra-
matically alter the endocytic targeting of lactosylceramide
and suggested a role for glucosylceramide in regulation of
membrane transport [31].

Encouraged by our observation of significantly ele-
vated GlcCer levels in GBA2-deficient mice we aimed to
further characterized a potential interaction of GBA1
and GBA2 and shed light on the GlcCer pathophysiology

in GD. Our observation that the GBA2 mRNA and pro-
tein expression is clearly increased in fibroblasts of
GBA1-deficient mice indicates that GBA2, as a compen-
satory mechanism aimed to adjust for the lack of GBAIL,
is up-regulated. In addition, simultaneous absence of
GBA1 and GBA2 function seems to have a higher im-
pact on accumulation of GlcCer in GD relevant organs
than loss of function respectively in GBA1 and GBA2
alone.

Using a high-resolution strategy we disappointingly
found none of the common variants at the GBA2 locus
to be associated with severity. We detected, however, an
epistatic effect on the severity of Gaucher disease for p.
L444P and rs4878628 (P, =0.027). It is of note, that
this result is purely based on the interaction term and
does not take into account the marginal effects (namely
for p.L444P) at the two gene loci. No epistatic effect was
detected for p.N370S and common variants at the GBA2
gene locus. This observation comes in accordance with
the fact that homozygosity for p.L444P (and not p.
N370S) is usually associated with a neuropathic pheno-
type and that GBA2 has recently been identified to
mainly play a role in the brain [17]. Although the de-
tection of an epistatic effect of variants at the GBAI
(p.L444P) and GBA2 (rs4878628) loci is an encour-
aging result in terms of our initial hypothesis, it is
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Table 2 Tests for epistatic effect of p.L444P or p.N370S
and markers at GBA2 locus on severity of Gaucher
disease

p.L444p p.N370S
GBA2 SNP  POSpg1s MA Pgngle  Pnom  Peoor  Pnom  Peorr
1510814274 35724942 T 0811 0.0224 03195 04648 1.0000
134312177 35730649 T 0769 00672 06933 04809 1.0000
153833700 35738696 T 0847 0.0045 00735 09861 1.0000
151570246 35738843 A 0811 0.0223 03195 04648 1.0000
13750434 35738985 T 0739 0.0235 03328 04673 10000
151570247 35739264 T 1000 0.0253 03528 08580 1.0000
152236288 35739837 G 0518 01145 08734 09957 1.0000
151570249 35741250 T 0811 0.0224 03195 04648 1.0000
12145923 35742243 C 0480 04546 10000 08296 1.0000
151322045 35742487 C 0880 0.0048 00787 09844 10000
151570250 35742683 T 0847 0.0045 00735 09861 1.0000
134478611 35743925 T 0622 0.0428 05245 09975 10000
14878628 35744491 T 0998 0.0016 0.0272 09886 1.0000
1510814275 35748564 G 0408 06472 10000 06777 10000
151570248 35756549 G 0847 0.0045 00735 09861 1.0000
110972579 35766001 T 0118 00548 06163 07097 1.0000
110972581 35769559 T 0900 00995 08316 02835 09965

MA Minor Allele, Pg;,g p-value for logistic regression single-marker analysis,
Phom and P, p-Values for genotypic interaction without taking marginal
effects into account (nominal and corrected for number of markers at GBA2
locus). P-values are in bold in case they reach the level of nominal significance
(P<0.05).

reasonable to assume that our study did not have
enough power to detect some of the possible modifier
variants at the GBA2 locus, both, at the single- as well
as on the multi-marker level. It is of note, that due to
an already limited sample size, we did not build separ-
ate samples of patients with type 2 and type 3 GD to
allow for an I depth characterization of our association
finding or to find any other association signal at the
GBA2 gene locus. In addition, using a haplotype tag-
ging approach for SNPs at the GBA2 gene locus (with
a MAF >10%) might have led to an oversight for
signals from rare (and potentially functional relevant)
variants in the region. However, the size of our sample
did make such an observation a priori unlikely and
thus we focus our study on identification of common
variants.

Conclusion

Our functional results all together provide further evi-
dence for the involvement of GBA2 as a likely candidate
in the etiology of Gaucher disease. Furthermore, they
point to GBA2 as a plausible modifier for GBA1 in pa-
tients with GD. Beyond that, our results in the genetic
approach, i.e. the identification of an epistatic effect
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involving p.L444P and a marker at the GBA2 locus,
point to a potential role of GBA2 as a modifier mainly
for type 2 and 3 Gaucher disease. Limitations due the
overall size of our genetic study, however, make it diffi-
cult to rule out a potential role also for type 1 Gaucher
disease. Independent studies are warranted to follow up
on our interaction finding and to further investigate the
role of GBA2 in the clinical expression of Gaucher dis-
ease. Furthermore, more detailed studies of GBA2 and
the Gba2 knockout mice are warranted to provide add-
itional information about maintaining the homeostasis
of glucosylceramide, ceramide, and other sphingolipids
concentrations in different cell types.
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