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Shadow Fading Model for Vehicle-to-Vehicle
Network Simulations

Taimoor Abbas, Student Member, IEEE, Fredrik Tufvesson, Senior Member, IEEE, Katrin Sjöberg, Student
Member, IEEE, and Johan Karedal

Abstract—The Vehicle-to-Vehicle (V2V) propagation channel
has significant implications on the design and performance of
novel communication protocols for Vehicular Ad Hoc Networks
(VANETs). Extensive research efforts have been made to develop
V2V channel models to be implemented in advanced VANET
system simulators for performance evaluation. The impact of
shadowing caused by other vehicles has, however, largely been
neglected in most of the models, as well as in the system simu-
lations. In this paper we present a simple shadow fading model
targeting system simulations based on real world measurements
performed in urban and highway scenarios. The measurement
data is separated for the situations like line-of-sight (LOS), the
obstructed line-of-sight (OLOS) by vehicles, and non line-of-
sight (NLOS) by buildings with the help of video information
available during measurements. It is observed that the vehicles
obstructing LOS induce an additional attenuation of about 10dB
in the received signal power. We use a Markov chain based state
transition diagram to model transitions from LOS to obstructed
LOS and present an example of state transition intensities for
a real traffic mobility model. We also provide a simple recipe,
how to incorporate our shadow fading model in VANET network
simulators.

I. INTRODUCTION

Vehicle-to-Vehicle (V2V) communication allows vehicles to
communicate directly and detect the positions of other vehicles
with minimal latency. The primary objective is to improve
active on-road safety and situation awareness, i.e., collision
avoidance, traffic re-routing, navigation, etc. The propagation
channel in V2V networks is significantly different from that in
cellular networks because V2V networks are based on peer-
to-peer communication where the communicating nodes are
highly dynamic. Both the transmit (TX) and receive (RX)
antennas are at the same height and close to ground level.
Moreover, even if the propagation environment stays the same,
the traffic density changes the channel parameters significantly.
Thus, to develop an efficient and reliable system a deep
understanding of V2V channel characteristics is required [1].

A number of V2V measurement campaigns have been per-
formed to study the statistical properties of V2V propagation
channels [2]–[6]. Signal propagation over the wireless channel
is often divided by three statistically independent phenomena
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named deterministic path loss, small scale fading, and large-
scale or shadow fading [7]. Path loss is the expected (mean)
loss at a certain distance compared to the received power at
a reference distance. The signal from TX can reach RX via
several propagation paths and these multi-path components
(MPC) can have different amplitudes and phase. A change
in the signal amplitude due to constructive or destructive
interference of the different MPCs is called small-scale fading.
Finally, obstacles in the propagation paths of one or more
MPCs cause great attenuation and the effect is called shadow-
ing. Shadowing give rise to large-scale fading and it occurs
not only for the line-of-sight (LOS) component but also for
any other major MPC. Understanding of all these phenomena
is equally important to characterize V2V propagation channel.

In real scenarios there can be light to heavy traffic, involving
vehicles with variable speeds and heights, and there are some-
times buildings around the roadside. Hence, it might be the
case that the LOS is obstructed by another vehicle or a house.
The received power depends very much on the propagation
environment, and the availability of LOS. Moreover, in [8] it
is reported that, in the absence of LOS, most of the power
is received by single bounce reflections from physical objects.
Therefore for a realistic simulation and performance evaluation
it is important that the channel parameters are separately
characterized for LOS and NLOS conditions.

A number of different V2V measurements campaigns with
their extracted channel parameters are comprehended in [9].
For most of the investigations mentioned above it is as-
sumed that the LOS is available for the majority of recorded
snapshots. Thus the samples from both the LOS and NLOS
cases are lumped together for the modeling purpose due to
dominance of LOS, which is somewhat unrealistic, especially
for larger distances. The LOS path being blocked by buildings
(NLOS) greatly impacts the reception quality in situations
when vehicles are approaching the street intersection or road
crossings. The buildings at the corners influence the received
signal not only by blocking the LOS but also act as scattering
point which helps to capture more power in the absence of
LOS. A few measurement results for a NLOS environment are
available [10]–[14] in which the path loss model is presented
for different type of street crossings.

In addition to NLOS situation, the impact of neighboring ve-
hicles can not be ignored. In [5] it is reported that the received
signal strength gets worse on the same patch of an open road
in heavy traffic hours as compared to no traffic hours. These
observed differences can only be related to other vehicles
obstructing LOS since the system parameters remained same
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Fig. 1. Snapshot taken from the RX car, when the LOS was obstructed by
a truck on a highway.

during the measurement campaign. Similarly, Zhang et. al. in
[15] presents an abstract error model in which the LOS and
NLOS cases are separated using the thresholding distance. It
is stated that the signals will experience more serious fading
in crowded traffic scenario when the distance is larger than
the thresholding distance. In [16] and [17] it is shown that
the vehicles as obstacle have a significant impact on LOS
obstruction in both the dense and sparse vehicular networks,
therefore, shadow fading effects due to other vehicles are
very important to be included in channel models. To date,
in majority of the findings for V2V communications except
[16] and [17], the shadowing impact of vehicles has largely
been neglected when modeling the path loss. It is important
to model vehicles as obstacles, ignoring this can lead to an
unrealistic assumptions about the performance of the physical
layer, which in turn can effect the behavior of higher layers of
V2V systems. The channel properties for all three cases; LOS,
the shadowing caused by other vehicles (OLOS), and, the LOS
path being blocked by buildings (NLOS), are distinct and their
individual analysis is required. No path loss model is available
today dealing all three cases together in a comprehensive way.

The main contribution of this paper is a simple shadow
fading model based on real world measurements in high-
way and urban environments. The model targets Vehicular
Ad Hoc Network (VANET) system simulations therefore we
also provide simple recipe to distinguish LOS, OLOS and
NLOS conditions in the simulator.We model state transitions
from LOS to OLOS and NLOS by a Markov chain based
state transition diagram and provide sample state transition
intensities for a real traffic mobility model based on our
measurements. We model temporal correlation of shadow
fading as simple auto-regressive process. Finally, simulation
results are presented where we compare the results obtained
from our shadow fading model against the commonly used
Nakagami-m pathloss model.

The rest of paper is organized as follows. Section II
briefly reviews the measurement campaign for vehicle-to-
vehicle communications and explains method to separate LOS,
OLOS and NLOS data samples which serves as first step
to model the effects of shadow fading. Section III covers
methods for data analysis, as it includes derivation of path

TX

Fig. 2. Snapshot taken from the RX car, when the LOS became available
on a highway.

loss and modeling of LOS and OLOS data as log-normal
distribution. The channel model is provided in section IV. First
the extension in traffic mobility models is suggested to include
the effect of large-scale fading and then path loss model
is presented and parameterized based on the measurements.
VANET simulation results are discussed in Section V. Finally,
section VI concludes the paper.

II. METHODOLOGY

A. Measurement Setup

Channel measurement data was collected using the RUSK-
LUND channel sounder, which performs multiple-input
multiple-output (MIMO) measurements based on the switched
array principle. The measurement bandwidth was 200 MHz
centered around carrier frequency of 5.6 GHz and a total Nf =
641 frequency points. For the analysis the complex time-
varying channel transfer function H(f, t) was measured,for
two different time durations short term (ST), 25 s, and long
term (LT), 460 s. The short-term and long-term channel trans-
fer functions were composed of total Nt = 49152 and
Nt = 4915 time samples, sampled with a time spacing of
∆t = 0.51 ms and ∆t = 94.6 ms, respectively. The test signal
length was set to 3.2µ s.

Two standard 1.47 m high station wagons, Volvo V70 cars,
were used during the measurement campaign. Four wide
band omni-directional antennas, mounted at four different
positions on each TX and RX, were used. Here we include
results only for a roof mounted antennas. The roof antennas
were taped on a Styrofoam block that, in turn, was taped
to the shark fin on the center of the roof, side wise, and
360 mm from the back edge of the roof. Videos were taken
through the windscreen of each TX/RX car and GPS data was
also logged during each measurement. Video recordings and
GPS data together with the measurement data were used in
the post processing to identify LOS/OLOS/NLOS conditions,
important scatterers and to keep track of distance between the
two cars. The videos and the measurements were synchronized
during measurements.
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Fig. 3. Cumulative Distribution Function (CDF) of LOS and OLOS time
intervals for all measurements; (a) highway scenario, (b) urban scenarios.

B. Measurement routes

Eight routes in two propagation environments were chosen
with differences in their traffic densities, road-side environ-
ments, number of scatterers, pedestrians, and houses along the
road side. All measurements were conducted in and in between
the cities of Lund and Malmö, in the south of Sweden.

Highway; Measurements were performed, when both the
TX and RX cars were moving in a convoy at a speed of
22 − 25 m/s (80 − 90 km/h), on a 4 lane highway, 2 lanes
in each direction. There were few to many vehicles moving
in the opposite direction and also in the same direction as the
TX and RX. Along the road side there were trees, vegetation,
road signs, street lights and few buildings situated at random
distances. The direction of travel was separated by a (≈ 0.5 m
tall) concrete wall whereas the outer boundary of road was
guarded by a metallic rail.

Urban; Measurements were performed, when both the TX
and RX cars were moving in a convoy as well as in opposite
directions, in densely populated areas in Lund and Malmö.
TX and RX cars were moving with different speeds 0−14 m/s
(0−50 km/h), depending on the traffic situation. The 12−20 m
wide streets were either single or double lane including side
walks on both sides, lined with 2−4 storied buildings or trees
on either side. Moreover, there were road signs, street lights,
some trees, bicycles and many parked cars, mostly, on both
sides and sometimes, only on a single side of the street. The
streets were occupied with number of moving vehicles as well
as few pedestrians walking on the sidewalks.

In total 3 short term (ST) and 2 long term (LT) measure-
ments for highway, and, 7 short term (ST) and 4 long term
(LT) measurements for urban-convoy were performed. During
each measurement, often the LOS was obstructed by other
cars, taller vans, trucks, buses, or, houses at the street corner.
For the subsequent analysis we separate the LOS, OLOS and
NLOS cases for all the measurements and perform the analysis
based on extracted information.

C. LOS, OLOS and NLOS separation

To separate the LOS from OLOS and NLOS cases we make
use of geometric information available from the videos, taken
during the measurements. LOS condition is defined as when
it is possible for one of the cameras to see the middle of the
roof of the other vehicle. Otherwise we say that the LOS is
blocked. The blocked LOS situation is further categorized in
two groups; when one or more vehicles obstruct the LOS path,
OLOS, and, when the buildings block the LOS path, NLOS.
When blocked by buildings, and cars are not aligned with each
other, NLOS is defined using a map as if it is not possible to
make a straight line between the two vehicle positions without
being obstructed by a building.

From electromagnetic wave propagation point of view,
impact of an obstacle can be assessed qualitatively, by the
concept of the Fresnel ellipsoids. It is required to have Fresnel
zone free of obstacles in order to have LOS and only the
visual sight does not promise the availability of LOS [7]. If
the obstacle does not obstruct the visual sight but the Fresnel
ellipsoid, partially or completely, it may have some impact
on the strength of the received signal. The availability of
LOS based on Fresnel ellipsoids depends very much on the
information about height of obstacle, its distance from TX and
RX, the direct distance between TX and RX as well as the
wavelength λ. Since, the videos and the measurement data
do not include detailed information about obstacles, such as,
their height and their relative distance from TX and RX at each
instant, it is very hard to take Fresnel zone into account while
separating the LOS samples from OLOS and NLOS. With this
limitation the visual sight seem to be the best solution for a
straightforward separation process.

TABLE I
AVERAGE DISTANCE TRAVELED IN LOS AND OLOS CONDITIONS.

Scenario min max mean median

LOS Intervals (m)
Highway 24.4 2157 299 125

Urban 0.95 519 84.6 35.3

OLOS Intervals (m)
Highway 18.6 2298 467 150

Urban 2.4 656 39.8 20.5

III. ANALYSIS

In our measurement campaign, we drove in total 8256 m in
Urban and 17343 m in Highway environment. In the presence
of LOS; we drove 5477 m in Urban and 6622 m in Highway
environment, in OLOS by cars; we drove 2429 m in Urban and
10752 m in Highway environment, and, in NLOS by building;
we drove 415 m in Urban and 0 m in Highway environment.
During the whole measurement run the TX-RX link transited
from LOS to OLOS/NLOS and back, a number of times,
i.e., LOS-OLOS; 61 times in urban and 23 times in highway
scenario, similarly, LOS-NLOS; 4 times in urban and 0 times
in highway scenario. No transition took place from OLOS
to NLOS. Each time the TX-RX pair is in one of the LOS,
OLOS or NLOS state, it remains in that state for some time
interval. The Cumulative Distribution Function (CDF) of these
time intervals are shown in Fig. 3(a), and 3(b). The distance
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traveled by RX corresponding to each LOS and OLOS time
intervals is parameterized in Table I. The NLOS do not usually
occur on highways, moreover, the data samples for NLOS data
in our urban measurements are not enough therefore it is not
shown as histogram.

A. Pathloss Derivation

The time varying power-delay-profile (PDP) is derived for
each time sample in order to determine the path loss. The
effect of small scale fading is eliminated by averaging the
time varying PDP over Navg number of time samples and let
the averaged-PDP (APDP) be given by [18] as,

Ph(tk, τ) =
1

Navg

Navg−1∑
n=0

|h(tk + n∆t, τ)|2, (1)

for tk = 0, Navg∆t, ..., bNt/Navg − 1cNavg∆t, where
h(tk + n∆t, τ) is the complex time varying channel impulse
response derived by an inverse Fourier Transform of a Channel
Transfer function H(f, t) for single-input single-output (SISO)
antenna configuration. The Navg is calculated by Navg = s

v∆t ,
where ∆t is the time spacing between snap shots, s corre-
sponds to the movement of TX and RX by 15 wavelengths
and v is the velocity of TX and RX given in each scenario
description.

The zeroth order moment of the noise thresholded, small-
scale averaged APDPs gives the averaged channel gain for
each link as,

Gh(tk) =
1

Nτ

∑
τ

Ph(tk, τ), (2)

where τ is the propagation delay. The cable attenuation and
the effect of low-noise-amplifier (LNA) were removed from
the measured gains. Hence, the channel gains presented in
the paper are the gains experienced from the TX antenna
connector to the RX antenna connector. Moreover, noise
thresholding of each APDP is performed by allowing all
signals with power below the noise floor, i.e., noise power
plus a 3 dB additional margin, to zero. The noise power is
determined from the part of PDP, at larger delays, where no
contribution from the transmitted signal is present.

The path loss PL(d) is equal to the negative of the distance
dependent channel gain Gh(d), which is obtained by matching
the time dependent channel gain Gh(tk) to its corresponding
distance d between TX and RX at time instant tk. We used
GPS data, recorded during the measurements, to find the
distance between TX and RX which corresponds to the propa-
gation distance of first arriving path for each time sample in the
presence of line-of-sight. Since the time resolution of the GPS
data was limited (one GPS position/second). Thus, to make
GPS data sampling rate equal to the time snapshots, we applied
interpolation of the GPS data with cubic splines method. The
distance obtained from the GPS data was validated, later, by
tracking the first arrived MPC, in the presence of LOS, with
a high resolution tracking algorithm [19].
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B. Large-scale fading

As explained earlier the effect of small scale fading is
removed by averaging the received signal power over a
distance of a few wavelengths. The averaged envelope is a
random variable due to the large-scale variations caused by the
shadowing from large objects such as building, and vehicles.
The most widely accepted approach is to model the large-scale
variations with a log-normal distribution function [7], [20].
For the analysis we divide the distance dependent channel
gain, Gh(d), data with respect to log-spaced distance bins
and independently study the distribution of data associated
to each bin. When we tried to model our measurement data
for each distance bin, before separating the LOS, OLOS
and NLOS data samples, it was observed that a log-normal
distribution does not provide a good match with the observed
data (see, e.g., Fig. 4). Moreover, apparently an additional
attenuation was observed which makes the spread in the
channel gain large and the spread was different for different
distance bins. As a first guess, the attenuation could possibly
be associated to the obstruction of LOS. Therefore, to find
the data distribution the LOS, the OLOS, and the NLOS data
was analyzed separately. Interestingly it is observed that the
large-scale variations for both the LOS and the OLOS data
sets can be modeled to be log-normally distributed (see, e.g.,
Fig. 5, 6) with an offset of almost 10 dB in their mean. This
observation go well in line with the independent observations
presented in [17]. The channel gain in the OLOS condition,
at instants, falls below the noise floor of the channel sounder
and power levels of samples below the noise threshold can
not be detected correctly. It is observed that the OLOS data
in each bin for shorter distances, with no missing samples,
fits well to the log-normal distribution and we assume that
the data continues to follow log-normal distribution for larger
distance bins where the observed data is incomplete. Moreover,
the exact count of missing samples is also available which
can be used to estimate the overall data distribution. To get
the higher order statistics of normally distributed LOS and
OLOS data we compute the maximum likelihood estimates
(MLE) of scale and position parameters from incomplete data
by [21] where Dempster et. al. presents a broadly applicable
algorithm which iteratively computes MLE from incomplete
data via expectation maximization (EM).

IV. CHANNEL MODEL

In this section a very simple large-scale fading model
for VANET simulations is provided. This model is targeting
network simulations, where there is a need for a realistic but
simple model taking shadowing effects into account. Further,
a Markov model is used as a basis for the mobility model.
State transition intensities for vehicles are extracted from
measurements, which can be used for modeling the time
duration in LOS, OLOS, and NLOS state, respectively. The
Markov model approach has the advantage that it introduces
correlated path loss levels (through the states), a property that
we think is important for more realistic network simulations.
However, for this type of analysis the measurement data set
is constrained therefore, these intensities can only be treated

as an example. The existing traffic mobility models already
provide instantaneous position of vehicles and by simple
geometric manipulation it is easy to identify whether the
TX and RX vehicles are in LOS, OLOS or NLOS state,
which makes this model easy to implement in many VANET
simulators.

A. Extension in the Traffic Mobility Models

Today’s traffic mobility models implemented in VANET
simulators are very advanced, e.g., SUMO (Simulation of
Urban Motility) [22] is one example of such an open source
mobility model. These advanced models are capable to take
into account the vehicle position, exact speed, inter vehicle
spacing, acceleration, overtaking attitude, lane-change behav-
iors, etc. However, the possibility of treating the vehicles as
obstacles and modeling the intensities by which they obstruct
the LOS for other vehicles are still missing in the simulators.
Therefore, a simple extension for including shadowing effects
in network simulators is provided herein. Since the vehicular
mobility models implemented in the simulators give instanta-
neous information about each vehicle, shadow fading can be
implemented by simple geometric manipulation as follows.
• Model each vehicle or building as a rectangle in the

simulator.
• Draw a straight line starting from the antenna position

of each TX vehicle to the antenna position of each RX
vehicle.

• If the line does not touch any other rectangle, TX/RX has
LOS.

• If the line passes through another rectangle, LOS is
obstructed by a vehicle or by a building, the two cases
can easily be distinguished by using the geographical
information available in simulator.

• Once the propagation condition is identified, the simulator
can simply use the relevant model to calculate the power
loss.

TABLE II
STATE TRANSITION INTENSITIES IN OUR MEASUREMENTS.

Trans. Intensities(m−1) P p Q q R r

Highway 0.0035 0.0020 0 0 0 0
Urban 0.0111 0.0245 0.00073 0.0095 - -

To further simplify the implementation, the vehicles can also
be modeled as circles with antenna position as a center and
the width of a standard car as a diameter of the circle. If a
mobility model is not available, state transition intensities can
be used directly. The measurement data contains geometric in-
formation about when the LOS, OLOS, and NLOS conditions
occur and their respective durations. Therefore, state transition
intensities are easily calculated. However, these intensities are
specific to the environment, the driver attitude and the traffic
density during the measurement campaign. For the large-scale
fading model we use a Markov chain with three states and
its working principle is the same as the Gilbert-Elliot model
[23]. The state transition diagram for the traffic mobility model
is shown in Fig. 7 and the state transition intensities are
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Fig. 7. State transition diagram for the Traffic Mobility Model (TMM).

provided in Table II. A similar approach was used in [24]
where a lightweight model to evaluate the impact of vehicle’s
mobility and their incorporation was modeled as a Markov
chain process.

Transitions between the different states in Fig. 7 take no
time. The state transition intensities, P, p,Q, q,R, r are calcu-
lated from the measurements, simply, by dividing the number
of transitions from one state to another with the total distance
traveled in initial state. For example, the intensity P =
NLOS→OLOS/SLOS = 0.0111m−1, when SLOS = 5412 m is
the distance traveled in LOS state and NLOS→OLOS = 61 is
the number of transitions from LOS to OLOS. Other intensities
are calculated in a similar way. Again, if geometrical data is
available from a mobility model, the states can be derived
directly from there, and no transition intensities are needed
for the simulations.

TABLE III
PARAMETERS FOR THE DUAL-SLOPE PATH LOSS MODEL

Scenario n1 n2 PL0 σ dc

LOS
Highway -1.66 -2.88 -58.7 3.95 23.25

Urban -1.81 -2.85 -56.5 4.15 4.25

OLOS
Highway - -3.18 -68.7 6.12 32.5

Urban -1.93 -2.74 -66.5 6.67 4.5

B. Pathloss Model

The measurement data is split into three data sets; LOS,
OLOS and NLOS. The parameters of the path loss model are
extracted only for the LOS and the OLOS data sets, whereas,
not enough data is available to model the path loss for the
third, NLOS, data set.

The measured channel gain for LOS and OLOS data for
the highway and the urban scenario is shown as a function of
distance in Fig. 8 and 9, respectively. A simple log-distance
power law [7] is often used to model the path loss to predict
the reliable communication range between the transmitter and
the receiver. The generic form of this log-distance power law
path loss model is given by,

PL(d) = PL0 + 10n log10

(
d

d0

)
+Xσ, (3)

where d is the direct distance between TX and RX, n is the
path loss exponent estimated by linear regression and Xσ is
zero-mean normal distributed random variable with standard
deviation σ and possibly with some time correlation. PL0 is
the free-space path loss plus the accumulative antenna gain
(PL0 = PLf + Ga) at a reference distance d0 in dB. The
antenna gain was not measured when mounted on the roof of
the car, therefore a subtraction of the antenna gain from the
measured data is not possible.

In practice it is observed that the dual-slope model, as stated
in [25], can represent measurement data more accurately. We
thus characterize dual-slope model as piecewise-linear model
with the assumption that the power decays with path loss
exponent n1 and standard deviation σ1 until the a breakpoint
distance (db) and from there it decays with path loss exponent
n2 and standard deviation σ2. The dual-slope model be given
by,

PL(d) =


PL0 + 10n1 log10

(
d
d0

)
+Xσ, if d0 ≤ d ≤ db

PL0 + 10n1 log10

(
db
d0

)
+ if d > db

10n2 log10

(
d
db

)
+Xσ,

(4)
The distance between TX and RX is extracted from the GPS

data which can be unreliable when TX-RX are very close to
each other. Moreover, there are only a few samples available
for d < 10, thus the validity range of the model is set to
d > 10 and let d0 = 10. The typical flat earth model consider
db as the distance at which the first Fresnel zone touches the
ground or the first ground reflection has traveled db + λ/4
to reach RX. For the measurement setup the height of the
TX/RX antennas was hTX = hRX = 1.47 m, so, db can be
calculated as, db = 4hTXhRX−λ2/4

λ = 161 m for λ = 0.0536 m
at 5.6 GHz carrier frequency. A db of 104 m was selected to
match the values with the path loss model presented in [25],
it also implies a somewhat better fit to the measurement data.

The path loss exponents before and after db in (4) are
adjusted to fit the median values of the LOS and OLOS data
sets in least square sense and are shown in Figs. 8 and 9. The
extracted parameters are listed in Table III. For the highway
measurements OLOS occurred only when the TX/RX vehicles
were widely separated, i.e., when d > 80 m, which means that
there are too few samples to model the path loss exponent in
OLOS for shorter distances. Whereas in practice, this is not
always the case, the OLOS can occur at shorter distances if
there is traffic congestion on a highway with multiple lanes.
Thus, the path loss exponent for OLOS for shorter distances
is the same as in LOS.

It is interesting to notice that the slopes are not that different
but there is an offset in the channel gain for LOS and OLOS
data sets which is of the order of 9−10 dB and is very similar
to the results previously been reported. In [16] an additional
attenuation of 9.6 dB is attributed to the impact of vehicle as
an obstacle. Meireles et. al. in [17] states OLOS can cause
10− 20 dB of attenuation depending upon traffic conditions.

It is highly important to model the path loss in the NLOS
situation because power level drops quickly when the LOS
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Fig. 8. Measured channel gain for the highway environment and the least
square best fit to the deterministic part of (3).
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Fig. 9. Measured channel gain for the urban environment and the least square
best fit to the deterministic part of (3).

is blocked by buildings. As mentioned above, the available
measured data in NLOS is not sufficient to model the path
loss therefore it is derived from available models specifically
targeting similar scenarios, such as, [11], [12], [26] and COST
231-Welfish-Ikegami model (Appendix 7.B in [7]). Among
these, Mangel et. al. in [12] presents a realistic and a well
validated NLOS path loss model which is of low complexity,
thus, enabling large-scale packet level simulations in intersec-
tion scenarios. The basis for the path loss equation in [12] is
a cellular model proposed in [26], which is slightly modified
to correspond well to V2V measurements. For completeness
the Mangel’s model [12] is used for the NLOS situation and
it is given as follows,

PL(dr, dt, wr, xt, is) = 3.75 + is2.94

+

10 log10

((
d0.957t

(xtwr)0.81
4πdr
λ

)nNLOS
)
, if d0 ≤ dr ≤ db

10 log10

((
d0.957t

(xtwr)0.81
4πd2r
λdb

)nNLOS
)
, if dr > db

(5)
where dr/dt are distance of TX/RX to intersection center,
wr is width of RX street, xt is distance of TX to the wall,

and is specifies suburban and urban with is = 1 and is =
0, respectively. In the network simulator the road topology
and TX/RX positions are known, so, these parameters can be
obtained easily. The path loss exponent in NLOS is provided
in the model as nNLOS = 2.69 and normal distributed fading
with σ = 4.1 dB.

For larger distance (dr > db) the model introduces in-
creased loss due to diffraction, around the street corners, being
dominant. The model is developed for TX/RX in adjacent
streets. If the TX/RX are not in adjacent streets but in parallel
streets with building blocking the LOS then this NLOS model
is not sufficient. The direct communication in such setting
might not be possible or not required but these cars can
introduce interference for each other due to diffraction over
roof tops. This propagation over the roof top can be well
approximated by diffraction by multiple screens as it is done
in the COST 231 model. However, in [27] simulation results
are shown which state that the path loss in non-adjacent street
is always very high, > 120 dB. The value is similar to the
one obtained with theoretical calculations for diffraction by
multiple screens. As the losses for the vehicles in parallel
streets are high, interference from such vehicles can simply
be ignored.

C. Spatial Correlation of Shadow Fading

V2V networks use cooperative awareness messages (CAM)
for road safety, traffic efficiency and other applications. Appli-
cations in each of these category have different requirements
w.r.t. latency and geografical coverage. CAM use a broadcast
mode to state vehicles existence to the neighboring nodes.
When a link goes into a shadow region, it remains there for
some time. If the vehicle is in a shadow region its existence
may not be noticed for some time. Hence, it is important to
study the spatial correlation of shadow fading as part of the
analysis.

The large-scale variation of shadow fading can be well
described as a Gaussian random variable (discussed in section
III). By subtracting the distance dependent mean from the
overall channel gain the shadow fading can be assumed a
stationary process. Then the spatial auto-correlation of the
shadow fading can be written as,

rx(∆d) = E{XσXσ(d+ ∆d)}. (6)

The auto-correlation of the Gaussian process can then
be modeled by a well-known analytical model proposed by
Gudmundson [28], which is a simple negative exponential
function,

rx(∆d) = e−|∆d|/dc , (7)

where ∆d is as equally spaced distance vector and dc is a
decorrelation distance which is scenario-dependent real valued
constant. In Gudmundson model, dc is defined as the value of
∆d at which the value of the auto-correlation function rx(∆d)
is equal to 1/e. The value of the decorrelation distance dc is
determined from both the LOS and OLOS measured auto-
correlation functions and are given in Table III, for both
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Fig. 10. Measured auto-correlation function and model according to (7) for LOS and OLOS data; (a) highway scenario, (b) urban scenarios.

the highway and urban scenarios, respectively. The estimated
correlation distance is thus used to model the measured auto-
correlation functions using (7), and is shown in Fig. 10(a) and
10(b).

Looking at decorrelation distances dc, the implementation
of shadow fading in the simulator can be simplified by treating
it as a block shadow fading, where dc can be assumed as a
block length in which the signal power will remain, more or
less, constant.

V. NETWORK SIMULATIONS

Finally, we include V2V network simulations to support
our claim that the LOS obstruction by vehicles degrades the
performance of vehicular networks. The simulation scenario
is a 10 km long highway with 12 lanes (six lanes in each
direction). The vehicles appear with a Poisson distribution with
two different inter-arrival rates, depending on investigated ve-
hicle density. Every vehicle broadcasts 400 byte long position
messages (i.e. CAMs) 10 times/sec (10 Hz) using a transfer
rate of 6 Mbps and an output power of 20 dBm (100 mW).
The channel access procedure is self-organizing time division
multiple access (STDMA) [29] that has been proposed as
medium access control (MAC) method for VANETs [30] [31].
The vehicle speeds are independently Gaussian distributed
with a standard deviation of 1 m/s, with different mean values
(23 m/s, 30 m/s, 37 m/s) depending on lane. The vehicles
maintain the same speed as long as they are on the highway.
The shadowing based channel model presented herein has
been compared against a traditional Nakagami-m model [25]
in the network simulations, where the latter is not capable
of distinguishing between LOS and OLOS. The Nakagami-
m model is also based on an outdoor channel sounding
measurement campaign, performed at 5.9 GHz. The small-
scale fading and the shadowing are both represented by the
Nakagami-m model [25]. The fading intensities, represented
by the m parameter of the Nakagami distribution, are different
depending on the distance between TX and RX, and the
m values are taken from data set 2 in [25]. The averaged
received power for the Nakagami model is computed using
the following formula:

PRX(d) = PTX − PL(d)− PIL +Ga (8)

Fig. 11. The probabilities of being in LOS and OLOS, respectively,
depending on distance between TX and RX.

where PL(d) is calculated as equation 4 with theoretical
path loss exponents n1 = 1.9 and n2 = 3.8. In the model the
antenna gain is included in the channel gain, therefore the total
difference in power PL0 at d0 is 9.1 dB between the Lund-
LOS and Nakagami model [25]. The difference is assumed
as antenna gain, with 4.5 dB antenna gain for each TX/RX.
Compensating for this antenna gain, the reference levels are
the same in LOS for the proposed model and for the Nakagami
model. In addition to that the compensation for implementation
losses must be done, i.e., cable losses. If a 2 m long cable
is used on each side (TX and RX), assuming a cable loss
of 1.7 dB/m, then a total loss of 6.8 dB is received. If this
implementation loss PIL is removed the PL0 will be close to
65.5 dB, which resembles the free space path loss.

The averaged received power for the LOS part, the OLOS
part and the Nakagami m model, is depicted in Fig. 12. At
shorter distances there is little chance that another vehicle is
between any two communicating vehicles but as the distance
increases the chances of being under OLOS either by vehicle,
object, or due to the curvature of the earth, increases. The
probabilities of being in LOS and being in OLOS have
been calculated from the network simulator for the highway
scenario and are depicted in Fig. 11. To receive the averaged
power similar to the Nakagami model these probabilities can
be multiplied with the averaged received power for LOS and
OLOS at different distances using the following equation:

PRX(d) = Prob(LOS|d)PRX−LOS(d)

+Prob(OLOS|d)PRX−OLOS(d) (9)

By using Eq. 9 the averaged received power for the LOS
and OLOS conditions coincides with the Nakagami averaged
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Fig. 12. The averaged received power for the LOS/OLOS model and the
Nakagami model, respectively.

received power, see Fig. 12, which is very interesting to notice.
In Fig. 13 the packet reception probability averaged over

all RXs within a certain distance from a TX is depicted
for the two different channel models. The two upper bound
curves show the packet reception probability for a system
with no interference, i.e., no other transmission is ongoing
at any place in the network. This is the best performance
that can be achieved with the two different channel models
and therefore, this is called an upper bound. Two different
inter-arrival rates of vehicles have been used; two seconds
and three seconds. Two seconds yield a vehicle density of 12-
13 vehicles/km/lane and three seconds yield a vehicle density
of 9-10 vehicles/km/lane. Between 300-400 meters the upper
bound curves for both channel models more or less coincide.
The upper bound curve for the LOS/OLOS model is slightly
better for longer distances due to the averaged received power
for this model is higher for longer distances, see Figure 13(b).

Both channel models experience similar performance degra-
dation when increasing the vehicle density. In Fig. 14 the
difference between the upper bound and the simulations results
for each channel model, respectively, is depicted. The solid
lines are showing the higher vehicle density case and there
is performance degradation of up to 8% when considering
LOS/OLOS receptions compared to the Nakagami model,
which is a considerable loss.

Further, simulations will be conducted using the MAC
method carrier sense multiple access (CSMA), which has been
selected as the channel access procedure for the first generation
of vehicle-to-vehicle communications systems. In STDMA, a
node is always granted access to the medium regardless of the
number of nodes within radio range and when the system is
overloaded nodes transmit at the same time as someone else
in the system situated furthest away from itself. Therefore,
STDMA needs position information which is present in the
position messages transmitted (i.e., CAMs). The scheduling
of transmission in space implies that STDMA can maintain a
high packet reception probability for the nodes situated closest
to the transmitter.

VI. SUMMARY AND CONCLUSIONS

In this paper a simple shadow fading model based on
measurements performed in urban and highway scenarios is

Fig. 13. Packet reception probability for the LOS/OLOS model and the
Nakagami model compared against the upper bound for each channel model.

Fig. 14. The difference between the upper bound and the simulation for the
two different channel models is depicted.

presented, where a separation between LOS, obstructed LOS
by vehicle (OLOS) and obstructed LOS by building (NLOS),
is performed. In the past, despite extensive research efforts to
develop more realistic channel models for vehicle-to-vehicle
(V2V) communication, the impact of vehicles obstructing LOS
has largely been ignored. We have observed that the LOS
obstruction by vehicles (OLOS) induce an additional loss, of
about 10 dB, in the received power. Network simulations have
been conducted showing the difference between a traditional
Nakagami based channel model (often used in VANET sim-
ulations) and the LOS/OLOS model presented herein. There
is considerable performance degradation for the LOS/OLOS
model compared to the Nakagami model. We thus conclude
that the obstruction of LOS cannot be ignored when evaluating
the performance of V2V communications and there is a need
for a LOS/OLOS model in VANET simulators. Further, if it
does not exist a mobility model in the VANET simulator the
state transition intensities principle presented herein can be
used for modeling the LOS and OLOS states. Probabilities
for state transition intensities have been provided based on the
measurements. . The LOS/OLOS model is easy to implement
in VANET simulators due to the usage of a dual-piece wise
path loss model and the shadowing effect is modeled using a
zero-mean Gaussian distribution.
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