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SUMMARY 

Genome-wide association studies revealed numerous risk loci associated with diverse diseases. 

However, identification and mechanistic elucidation of the disease-causing variants within association 

loci remains a major challenge. Divergence in gene expression due to cis-regulatory variation is 

central to disease risk. We show that integrative analysis of cross-species conserved transcription 

factor binding site (TFBS) patterns can identify cis-regulatory variants and elucidate the mechanisms 

mediating their role in diseases. Analysis of established type 2 diabetes risk loci revealed a striking 

clustering of distinct homeobox TFBSs. We unveiled a novel activity of the PRRX1 homeobox 

transcription factor as a repressor of PPARγ2 expression, and showed its adverse effect on lipid 

metabolism and in human adipose tissue samples from rs4684847 risk allele carriers, resulting from 

SNP-mediated increase in PRRX1 binding affinity. Thus, cross-species conservation analysis at the 

level of co-occurring TFBSs provides a valuable contribution to the translation of genetic association 

signals to disease-related molecular mechanisms. 

 

 

HIGHLIGHTS 

►Cross-species analysis of co-occurring TFBSs predicts cis-regulatory variants ►Analysis of 

diabetes-associated loci reveals clustering of distinct homeobox TFBSs ►rs4684847 at the PPARG 

diabetes-locus influences binding of the homeobox TF PRRX1 ►PRRX1 represses adipose PPARγ2 

transcript levels in rs4684847 risk allele carriers 
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INTRODUCTION 

Recent advances in genome-wide association studies (GWAS) have yielded a plethora of loci 

associated with diverse human diseases and traits (Hindorff LA). However, signals emerging 

from GWAS, which identify typically dozens of variants in linkage disequilibrium (LD), have 

rarely been traced to the disease-causing variants and even more rarely to the mechanisms by 

which they may increase disease risk. The majority of common genetic variants are located in 

non-coding regions (1000 Genomes Project Consortium, 2012), and disease-associated loci 

are enriched for eQTLs (Nica et al., 2010), DHSseq and ChIPseq peaks (Maurano et al., 2012; 

The ENCODE Project Consortium, 2012), suggesting that variants modulating gene 

regulation are major contributors to common disease risk.   

 Experimental DHS-, RNA-, and ChIPseq approaches have been used to prioritize 

candidate cis-regulatory variants (Maurano et al., 2012; The ENCODE Project Consortium, 

2012; Ward and Kellis, 2012b). However, such experimental approaches require access to 

appropriate human tissues and are hampered by the spatial, temporal, environmental and 

epigenetic complexity of gene regulation. These limitations emphasize the need for 

bioinformatics approaches that reliably assess the regulatory role of non-coding variants. So 

far, phylogenetic conservation has been a common denominator in the search for non-coding 

regulatory regions (Chinwalla et al., 2002; Pennacchio et al., 2006; The ENCODE Project 

Consortium, 2007; Visel et al., 2009b; Blow et al., 2010; Lindblad-Toh et al., 2011; The 

ENCODE Project Consortium, 2012). Unfortunately, intra- and cross-species differences in 

gene expression are often driven by changes in transcription factor binding sites (TFBSs), and 

their rapid evolutionary turnover results in lineage-specific regulatory regions that are 

functionally conserved but have low phylogenetic conservation (Ward and Kellis, 2012a), 

thus challenging the use of these algorithms. Importantly, gene regulatory regions in 

eukaryotes tend to be organized in cis-regulatory modules (CRMs), comprising complex 
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patterns of co-occurring TFBSs for the combinatorial binding of transcription factors (TFs) 

(Arnone and Davidson, 1997; Pennacchio et al., 2006; Visel et al., 2013). CRMs integrate 

upstream signals to regulate the expression of coordinated gene sets, making them a prime 

target to achieve phenotypic changes as a result of adaptive evolution (Junion et al., 2012). 

Despite the critical importance of CRMs, no algorithms have so far been developed to harness 

the potential power of conserved TFBS patterns within CRMs to predict regulatory variants in 

disease genetics. 

 Here, by phylogenetic module complexity analysis (PMCA), we show that cross-species 

conservation at the level of the CRMs – rather than at the level of the regulatory sequence that 

comprises them – identifies cis-regulatory variants within disease-associated GWAS loci. We 

applied PMCA to type 2 diabetes (T2D) risk loci, for which the specific causal cis-regulatory 

variants have rarely been pinpointed (Stitzel et al., 2010). 

 

RESULTS 

 

Cross-species analysis of TFBS modularity discovers cis-regulatory SNPs at T2D risk 

loci 

We developed a method, PMCA, which leverages conserved co-occurring TFBS patterns 

within CRMs to predict cis-regulatory variants, i.e. variants affecting gene expression (Figure 

1A, detailed description of the Procedure in Extended Experimental Procedures). To 

systematically identify the cis-regulatory variants at GWAS risk loci, we extracted the GWAS 

tagSNPs, and consequently all non-coding (nc) SNPs that are in high LD with these tagSNPs. 

PMCA individually tests each nc variant by analyzing the flanking region for cross-species 

conserved TFBS patterns, regardless of global sequence conservation. This requires first the 

extraction of the region surrounding a nc SNP (±60bp) from the human genome, and 
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consequent identification of orthologous regions in 15 vertebrate species. Within each SNP-

specific set of orthologous regions, phylogenetically conserved TFBSs, TFBS modules (a 

cross-species conserved pattern of two or more TFBSs occurring in the same order and in a 

certain distance range) and TFBSs in those TFBS modules were identified and then counted. 

SNP-surrounding regions with a significant enrichment of phylogenetically conserved TFBS 

modules are classified as complex regions, as compared to non-complex regions (example in 

Figure 1B) wherein the occurrence of TFBS modules does not exceed expectation by chance. 

To compute this enrichment we estimated background probabilities using randomizations of 

orthologous sets (details on scoring cut-offs in Extended Experimental Procedures). 

 We applied PMCA to eight GWAS T2D risk loci (MTNR1B, TCF7L2, PPARG, 

CENTD2, FTO, GCK, CAMK1D, KLF14) (Dupuis et al., 2010; Voight et al., 2010) (Figure 

1C) covering strong and weaker GWAS signals, and reflecting the different T2D features, i.e. 

insulin resistance and impaired insulin secretion (Doria et al., 2008). Using non-coding 

sequence information we defined 200 SNPs in LD with the tagSNPs (r
2 

≥ 0.7, 1000G, Figure 

S1A-H,). PMCA predicted 64 complex and 136 non-complex regions (Table S1, Figure 1C-

G). We ranked complex regions based on the count of TFBSs in conserved TFBS modules 

(Table S2), and examined the allele-dependent cis-regulatory potential of the 25% highest 

scoring SNPs using electrophoretic mobility shift assays (EMSA) and reporter assays. As 

predicted, SNPs in complex regions significantly differed in allele-dependent cis-regulatory 

activity compared to control non-complex regions (Figure 1H,I, Table S3). Indeed, the 

regulatory variants revealed effects ranging from 3.1- to 101-fold change in DNA-protein 

binding and 1.3- to 3.5-fold change in reporter activity. We further verified that the identified 

variants operate in a cell type-specific manner (Figure S1I). 

 To examine if the identified cis-regulatory variants associate with T2D in vivo, we 

performed look-ups in the population-based MAGIC and DIAGRAM cohorts (Dupuis et al., 
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2010; Voight et al., 2010). The cis-regulatory variants in complex regions revealed a similar 

or stronger association compared to the initial GWAS signal (Table S4), and a look-up in a 

recent fine-mapping study (Maller et al., 2012) reassured that our cis-regulatory SNPs belong 

to the predicted disease causal SNP set. To further assess the predictive power of PMCA more 

generally, we analyzed GWAS signals for 18 human diseases(Hindorff LA) and confirmed an 

enrichment of SNPs in complex regions relative to random SNPs matched for MAF and 

genomic localization from the 1,000G Project (P=1.9 x 10
-4

, binominal, Table S5).  

 Moreover, we applied PMCA on reported cis-regulatory SNPs associated with diverse 

disease-related traits, including cancer, myocardial infarction, thyroid hormone resistance, 

hypercholesterolemia and adiponectin levels (MYC Pomerantz et al., 2009 MDM2 Post et al., 

2010 PSMA6 Ozaki et al., 2006 THRB Alberobello et al., 2011 SORT1 Musunuru et al., 2010 

APM2 Laumen et al., 2009). Consistent with the functional proof from the original 

publications, our analysis informed on all but one of the cis-regulatory SNPs (Table S6). The 

highest scores inferred from PMCA predicted the reported myocardial infarction risk variant, 

which was shown to regulate hepatic SORT1 expression (Musunuru et al., 2010). Together, 

these results demonstrate the utility of TFBS modularity information within CRMs to 

elucidate functionality of GWAS signals in the non-coding genome.  

 

Clustering of distinct homeobox TFBSs is a specific feature of T2D-related complex 

regions 

Considering that TFBS turnover is characteristic for CRM evolution (Blow et al., 2010; Ward 

and Kellis, 2012a), the utility of sequence conservation in deciphering cis-regulatory variants 

may be limited. To assess the power of harnessing TFBS patterns, which allows sequence 

variability, beyond conventional sequence conservation, we performed PMCA on all 47 

autosomal T2D risk loci (Hindorff LA accessed June 2012; 1,465 SNPs; r
2
 > 0.7; Figure S2A-
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E,H; Table S4) and tested the resulting 487 complex and 978 non-complex regions for 

correlations with evolutionary constrained elements detected by the SiPhy-π-method 

(Lindblad-Toh et al., 2011). We observed that non-complex regions are depleted of 

constrained elements in their close proximity (Figure 2A). Conversely, complex regions were 

enriched for nearby constrained elements, consistent with a 1.37-fold enrichment of GWAS 

SNPs relative to HapMap SNPs (Lindblad-Toh et al., 2011). Strikingly, however, though we 

found a 1.88-fold enriched overlap with complex relative to non-complex regions (p=2.4 x 10
-

9
, hypergeometric distribution, right sided), the majority of complex regions lacked an overlap 

with constrained elements (Figure 2B, Table S8). This lack of overlap was true for all variants 

that we experimentally characterized as cis-regulatory (example in Figure 2C). In essence, 

considering sequence conservation helps to prioritize genomic regions that harbor potential 

causal variants, yet seems insufficient to pinpoint them. This underscores the importance of 

exploiting conservation in terms of a complexity assessment of co-occurring TFBSs, in the 

search for cis-regulatory variants involved in human diseases. 

 To further support PMCA predictions with functional genomics data we compiled 

chromatin state and TF binding data from the ENCODE consortium (2011). We found 

complex regions highly enriched for both DHS and ChIP-seq peaks (p=3.52 x 10
-10

 

p=4.68 x 10
-6

, respectively, hypergeometric distribution, right sided, Figures 2D,E, Figures 

S2F,G, Table S9). Additionally, crossing our regulatory predictions for T2D SNPs with a 

recently published analysis of multiple types of functional ENCODE data (Schaub et al., 

2012) confirmed that complex regions are significantly enriched for functionality (P=3 x 10
-

24
, hypergeometric distribution, right sided, Table S10). 

 Next we sought evidence for a discerning T2D functional feature. TFBS clustering 

relative to transcription start sites indicates biological significance (FitzGerald et al., 2004), 

and TFBS combination coupled with the TFs recruited to a CRM determines CRM function 
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(Zinzen et al., 2009). Given a SNP genomic region we used positional bias analysis, scanning 

1,000bp with the SNP at midposition for the occurrence of putative TF binding sequences 

(883 TFBS matrices grouped in 192 TFBS matrix families, Table S11). For the eight T2D risk 

loci analyzed above, we observed a significant positional bias for distinct TFBS families 

(-log10(P)>6) exactly at SNP position of complex (Figure 3A) contrary to non-complex 

regions (Figure S3A). The striking SNP-directed overrepresentation in T2D complex regions 

was restricted to specific TFBSs in the superfamily of homeobox TFs, including the matrix 

families CART (-log10(P)=6.52) and PDX1 (-log10 (P)=6.18) (Table S12A). These findings 

were reproduced in the set of 47 T2D risk loci (Table S12B) which showed clustering at SNP 

position exclusively in complex regions and again co-localization of T2D risk SNPs with 

homeobox TFBS matrices (Figure 3B,C). In this extended analysis of all T2D risk loci, we 

again found the CART (-log10(P)=13.00) and PDX1 families (-log10(P)=6.78) together with 

the homeobox matrix families NKX6, HOMF, HBOX and BCDF (-log10(P)=8.50, 8.94, 8.54 

and 7.24; respectively). No other TFBS matrices showed a significant peak in the bias profile 

at SNP position (Table 12C). Importantly, performing PMCA for risk loci of T2D non-related 

traits, Crohn’s disease (Schaub et al., 2012) and asthma (Moffatt et al., 2010) (Figures S3E-N, 

Table S13), revealed disease-specific TFBSs at SNP position (Tables S12C-D; Figure S3B,D 

for Crohn’s). The specific clustering of the Early Growth Response Factor matrix family 

(EGRF, -log10(P)=8.50, Figures 3D,3E,S3C) for asthma risk SNPs in complex regions was in 

strong contrast to T2D and Crohn (Figure 3F, -log10(P)=3.97, 2.07, respectively). Of note, the 

EGRF-binding factor EGR1 regulates asthma-related IL13-induced inflammation (Cho et al., 

2006). 

Homeobox TFs are known to be involved in embryonic and tissue developmental 

processes including β-cell development (Jonsson et al., 1994; Harrison et al., 1999; Nekrep et 

al., 2008). However, except for the mature onset of diabetes gene PDX1 (Fajans et al., 2001) 

and the common T2D-associated loci HHEX1 and ALX4 (Sladek et al., 2007), the inferred 
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homeobox factors have not been implicated in T2D pathogenesis.  T2D is marked by insulin 

resistance and impaired insulin secretion (Doria et al., 2008). To evaluate a functional role of 

the inferred T2D-specific homeobox TFBS matrix families in T2D pathogenesis, we extracted 

data for insulin resistance (HOMA-IR) and impaired insulin secretion (HOMA-B) (Dupuis et 

al., 2010), to compute the enrichment of predicted cis-regulatory T2D risk SNPs that localize 

in close proximity to an inferred homeobox TFBS (+/-20bp, (permutations on the phenotypes, 

n=1,000, 95% confidence interval, Extended Experimental Procedures). We verified a 

significant enrichment of SNPs that localize ±20bp at inferred homeobox TFBS for both 

insulin resistance (p=1.287 x 10
-7

, mean=9.45 x 10
-4

, CI: 5.37 x 10
-4

 – 1.34 x 10
-2

) and 

impaired insulin secretion (p-value=3.281 x 10
-4

, mean=1.09 x 10
-6

, CI: 9.59 x 10
-7

 – 

9.51 x 10
-3

). Furthermore, we evaluated a possible effect of the binding TFs on impaired 

insulin secretion. By assessing mRNA levels in human islets from deceased donors with and 

without T2D (8 and 51, respectively) (RNA-seq, L. Groop, unpublished data) we found a 

marked mRNA expression difference for RAX, PRRX2, BARX1, PITX1, EMX2, NKX6-3, 

BARX2, MSX2 and PDX1 in islets from T2D patients compared to controls (FDR < 1%, Table 

S14). By genome-wide co-expression analysis, we found significantly co-regulated gene sets 

(Table S15, FDR < 5%). All but one of these co-regulated gene sets included the category 

“metabolic pathways” among the top 5 significantly enriched pathways (hypergeometric test, 

FDR 5%, other top 5 enriched pathways included insulin signaling, MAPK signaling, Notch 

signaling, Calcium signaling and pancreatic secretion, Figures S3O-T). Knock down of 

candidate homeobox TFs in pancreatic INS-1 β cells further confirmed significant 

perturbation of glucose-stimulated insulin secretion (Figure S3U). Strikingly, for all PMCA-

inferred homeobox TFs except for PDX1 and MSX2 (FDR 5% corrected p-value=0.53 and 

0.076, respectively), we found a significant co-expression with the insulin gene. Although the 

result for PDX1 was borderline non-significant it is a well-known regulator of insulin 
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expression (Brissova et al., 2002). The other identified homeobox TFs may be regarded as 

novel candidates for regulation of proinsulin production. 

 

The T2D identified variant rs4684847 regulates PPARG2 gene expression  

To establish the informative value of TFBS pattern analysis we chose the PPARG locus for 

detailed study. PPARγ is crucial in adipogenesis, lipid metabolism and systemic insulin 

sensitivity (Rosen et al., 1999; Zhang et al., 2004), and exists as two isoforms: PPARγ1 

(PPARG1, PPARG3 mRNA) and PPARγ2 (PPARG2 mRNA) (Fajas et al., 1998)(Figure 4A), 

the latter being mainly expressed in adipocytes (Tontonoz et al., 1994). Several studies have 

established a robust association of PPARG with T2D (Deeb et al., 1998; Heikkinen et al., 

2009; Dupuis et al., 2010; Voight et al., 2010). Yet, results from these studies have appeared 

contradictory. The T2D GWAS association comes from an LD region mainly tagged by the 

coding missense mutation Pro12Ala. However, the minor 12Ala allele, associated with 

enhanced insulin sensitivity in humans, paradoxically blunts the transcriptional activity of the 

insulin-sensitizing PPARγ2 TF (Deeb et al., 1998). Hypothesizing that the elusive PPARG 

T2D signal arises from a regulatory variant which instead increases PPARG2 expression, we 

applied PMCA to all 23 correlated non-coding variants and found six complex regions (r
2
 ≥ 

0.7, Figure 4A). Luciferase assays showed that the cis-regulatory activity of each complex 

region significantly differed from non-complex regions (p=0.02, Figure S4A, Table S16). 

Indeed, qRT-PCR on human adipose stromal cells (hASCs) revealed a risk allele-dependent 

3.8-fold decrease of PPARG2 mRNA (p=1.00 x 10
-3

, Figure 4B), whereas PPARG1 

expression was unaffected (Figure 4C). Using allele-specific primer extension assay in 

heterozygous hASCs, we found a striking allelic imbalance with 5.4-fold lower PPARG2 

expression from the risk allele (p=6.00 x 10
-4

, Figure 4D). When we studied adipose tissue 

eQTL data we observed an up-regulation of total PPARG mRNA in risk allele carriers 



- 11 - 

(p=0.01, Figure S4B). Concurrent PPARG2 decrease and total PPARG increase might be 

explained by the co-occurrence of activating or repressing variants within the analyzed 

haplotype. Indeed, reporter assays demonstrated either activating or repressing risk allele-

dependent effects for all but one (rs35000407) predicted SNP (Figure 4E). 

 Interestingly, the risk allele-dependent suppression of PPARG2 mRNA diminished 

with progression of adipocyte differentiation (p < 0.001, Figure S4C). We therefore integrated 

genome-wide H3K27ac data of hASCs undergoing adipogenesis(Mikkelsen et al., 2010) with 

complex regions, and observed H3K27ac temporal density distributions consistent with the 

cell stage-dependent regulatory effect for the variant rs4684847 (Figure S4D). To prove that 

rs4684847 explains PPARG2 mRNA suppression we first performed reporter assays 

demonstrating a 5.2-fold decrease in transcriptional activity for the risk allele in 3T3-L1 

preadipocytes (p=1.0 x 10
-4

, Figure 4F). This effect was independent of 5´- vs. 3´-orientation 

to the reporter gene (p=0.03) and forward vs. reverse orientation (p=0.03) (Figure S4E), 

suggesting enhancer function for the non-risk allelic complex region. Consistent with the 

GWAS signal for insulin resistance rather than insulin secretion (Voight et al., 2010), we 

observed rs4684847 cell type-specific effects in 3T3-L1 adipose cells, C2C12 myocytes and 

Huh7 hepatocytes, whereas pancreatic INS-1 β-cells and 293T cells lacked allelic activity 

(Figure S2F). Last, using EMSA we found rs4684847 risk allele-specific DNA-protein 

binding (Figure 4H). 

To remind, exploiting cross-species TFBS patterns at T2D loci unveiled distinct 

homeobox TFBS families including the CART matrix family (-log10(P)=13.0, Figure 3B). 

For the PPARG locus, we relate this specific TFBS matrix clustering to a binding sequence in 

the CART matrix family, which harbors the rs4684847 cis-regulatory variant and which is 

predicted to bind the paired-related homeobox protein-1 (PRRX1) (Figure 4G). By affinity 

chromatography and LC-MS/MS we demonstrate a 2.3-fold increased binding of PRRX1 to 
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the rs4684847 risk relative to non-risk allele (Extended Experimental Procedures). 

Competition EMSA and supershift experiments confirmed that the identified TF PRRX1 was 

responsible for allele-specific DNA-protein binding (Figure 4I). Perturbing the PRRX1 

consensus sequence without affecting SNP position itself fully abrogated the risk allelic 

repression of reporter gene activity (Figure 4F), whereas overexpressing PRRX1 enhanced it 

(p=2 x 10
-4

, Figure 4J). Because the rs4684847 is in near-perfect LD with 23 non-coding 

variants, we tested if the rs4684847 risk allele – independent of correlated sequence variants – 

causes the suppression of endogenous PPARG2 expression (Figure 4B-D). We used an 

adopted CRISPR/Cas homology-directed repair genome editing approach (Wang et al., 2013) 

to introduce the rs4684847 non-risk allele in human SGBS preadipocytes, replacing the 

endogenous risk allele. Notably, the rs4684847 non-risk allele was sufficient to increase 

PPARG2 transcript levels by 5.4-fold (p=0.005, Figure 4K), whereas PPARG1 mRNA was 

unaffected (Figure S4G). In parallel we performed PRRX1 knockdown and confirmed that 1) 

risk allele-driven suppression of PPARG2 expression was reversed by PRRX1 silencing 

(p=0.005) and 2) PRRX1 silencing did not affect PPARG2 expression in non-risk allele cells 

(Figure 4K). 

 

rs4684847 via PRRX1 binding affects FFA homeostasis and insulin sensitivity  

Finally, we sought to elucidate the in vivo mechanism by which rs4684847 might confer T2D 

risk. Analyzing hASCs isolated from BMI-matched subjects revealed a strong inverse 

correlation of PRRX1 and PPARG2 mRNA levels in homozygous but not in heterozygous risk 

allele carriers (β=-0.815, p=1.4 x 10
-8

). PRRX1 knockdown was sufficient to restore the risk 

allelic PPARG2 mRNA suppression (p=3.3 x 10
-15

, Figure 5A), with no effect on PPARG1 

(Table 1). These data implicate PRRX1 as the mediator of the rs4684847 risk allele effect. To 

inform on the cellular processes by which PRRX1 may contribute to the T2D association, we 
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studied the impact of PRRX1 on PPARγ-regulated genes in hASCs from homozygous 

rs4684847 risk allele carriers by microarray analysis. We found 2,258 transcripts regulated by 

PRRX1 knockdown (q < 0.2), 336 of which were reversely regulated by concomitant PPARG 

knock-down (Figure 5B). Gene Set Enrichment Analysis (GSEA) highlighted an enrichment 

of those anti-regulated genes among the most differentially expressed genes after PRRX1 

knockdown (Figure 5C), revealing that PPARγ2 mediated the primary PRRX1 effect on 

global gene expression. Ingenuity Pathway Analysis (IPA) showed the strongest enrichment 

for lipid metabolism (p=2.81 x 10
-14

) followed by adipose tissue function, glucose 

homeostasis, nutritional disease and insulin resistance (Figure 5D). Accordingly, an inverse 

relationship between PRRX1 and adipocyte triglyceride (TG) accumulation was observed in 

PRRX1-overexpressing SGBS adipocytes (Figure 5F). 

 Next, by qPCR we confirmed rs4684847 allele-dependent dysregulation of genes in those 

biological pathways. Notably, the gene with the strongest risk allele-dependent decrease in 

mRNA levels was PEPCKC (2.76-fold, p=1.62 x 10
-10

, Table 1). The top scoring IPA 

interaction network reinforced a central role for PEPCKC (Figure 5E). PEPCK-C is the 

enzyme controlling the first committed step of glyceroneogenesis (GNG), a crucial metabolic 

process in adipocytes regulating the re-esterification of free fatty acids (FFA) to TG (Ballard 

et al., 1967). GNG limits FFA release from adipocytes in the fasting state thereby controlling 

systemic FFA homeostasis and insulin sensitivity (Millward et al., 2010). In a cohort of 67 

BMI- and body fat-matched obese subjects we confirmed rs4684847 risk allele association 

with increased serum FFAs levels (p=0.049) and a risk allele-dependent association of PRRX1 

mRNA with FFA levels (p=0.015, Table 2). To prove that rs4684847, by determining PRRX1 

binding, affects GNG and subsequent FFA release, we monitored pyruvate incorporation in 

TG (Ballard et al., 1967). We confirmed a PRRX1-dependent suppression of GNG in 

homozygous risk allele carriers, marked by a robust correlation with PRRX1 mRNA levels 

(Figure 5G) and a risk allele-dependent increase of FFA release (Figure 5H). In the same 
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samples we show risk allele-dependent resistance to insulin-stimulated 2-deoxyglucose (2DG) 

uptake, with PRRX1 knockdown being sufficient to prevent cellular insulin resistance (Figure 

5I). Importantly, Rosiglitazone (Rosi), a synthetic ligand of PPARγ2 (Lehmann et al., 1995), 

pharmacologically promotes insulin sensitivity largely via control of FFA homeostasis 

through GNG (Cadoudal et al., 2007), and (Kang et al., 2005) reported an impaired 

therapeutic Rosi-response in PPARG risk haplotype carriers. In our analysis of GNG in 

hASCs we observed an impaired response to Rosi-mediated suppression of FFA release in 

homozygous relative to heterozygous risk allele carriers (Figure 5J). Strikingly, PRRX1 

silencing in homozygous risk-allele patient samples was sufficient to abolish the reduced Rosi 

responsiveness, making PRRX1 a potential target for pharmacological genotype-specific T2D 

intervention. 

 In GWAS the PPARG risk genotype associates with increased BMI, increased fasting 

insulin, and decreased insulin sensitivity (Deeb et al., 1998; Voight et al., 2010). Further 

supporting the dependency on PRRX1 in vivo, we found significant associations of PRRX1 

mRNA levels with BMI and insulin resistance, assessed by TG/HDL ratio and HOMA-IR 

(Table 2). Importantly, the BMI-adjusted significant association with HOMA-IR strongly 

depended on the rs4684847 risk allele. We confirmed this genotype-dependent link by highly 

sensitive euglycemic hyperinsulinemic clamp studies measuring the glucose infusion rate 

(GIR) in the cohort of 67 BMI- and body fat-matched patients (Table 2, Figure S4I). 

 In summary, the specific homeobox TFBS clustering at T2D risk SNPs inferred at the 

genetic level unveiled a novel role of PRRX1 as a repressor of PPARG2. We establish the cis-

regulatory SNP rs4684847 as a determinant of PPARG2 mRNA expression by changing 

PRRX1 binding to its complex regulatory region, thereby provoking dysregulation of FFA 

turnover and insulin sensitivity (Figure 5K). 
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DISCUSSION 

We have developed a bioinformatics approach, PMCA, which enables the extraction of cis-

regulatory variants that may mechanistically contribute to human disease, by dysregulation of 

gene expression. In line with our approach to exploit conservation in terms of co-occurring 

TFBS patterns, (Visel et al., 2013) has recently shown that combination of TFBSs, rather than 

single TFBS, via combinatorial TF binding governs spatial enhancer activity in the 

developing telencaephalon. Further, tissue-specific enhancers were recently accurately 

detected by in vivo mapping of the enhancer-associated proteins p300, in addition to 

comparative genomics approaches (Visel et al., 2009a; Blow et al., 2010). 

 Using T2D as a showcase we demonstrate PMCA’s utility in the generic prediction of 

specific homeobox TFBSs at T2D risk SNPs, which is important for understanding disease 

regulatory circuits when we consider that interactions in a regulatory network involve 

numerous genes and a rather small set of TFs (Califano et al., 2012). Pursuing the results 

emerging from our comprehensive T2D analysis, we show that identification of the cis-

regulatory variant rs4684847 at the PPARG locus enabled linking the molecular upstream 

factor PRRX1 to aberrant downstream mechanisms of impaired lipid handling and insulin 

sensitivity, explaining the GWAS association with T2D. Notably, PRRX1 was recently 

implicated in adipogenesis (Du et al., 2013), yet the regulated genes remain elusive.  

Here, we restricted the analysis to SNPs in LD with GWAS tagSNPs. However, the 

approach could be applied to any other kind of variability, such as somatic mutations in 

cancer, without loss of generality. Certain issues will require consideration, e.g. analyzing 

genomes of closely related species to refine scoring criteria and extending our analysis to 

whole genome sequencing studies including rare variant information, should further inform 

on the genetic underpinnings of phenotypic diversity in humans. Our in silico scoring results 

predict varying numbers of regulatory SNPs per LD block. Studies have now found evidence 
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for allelic heterogeneity (Maller et al., 2012; Schaub et al., 2012), yet the number of causal 

variants within a disease locus is elusive. We propose an integrative framework where 

computational TFBS modularity analysis may be synergistically combined with functional 

genomics and population genetics data. 

 In sum, our results demonstrate that the extension of sequence analysis to functional 

conservation integrates biological information with statistical signals, and our novel 

methodology should help clarify the role of inherited and somatic variability in altering gene 

regulatory networks, in both Mendelian and common human diseases. 

 

Definition of LD blocks 

SNPs in close LD (r
2 

≥ 0.7) to GWAS tagSNPs (references in Tables S1,5,7,8) from 1000G 

Pilot 1 CEU data. For details see Extended Experimental Procedures. 

Phylogenetic Module Complexity Analysis 

Our bioinformatics method analyzes the presence of complex patterns of evolutionarily 

conserved TFBSs in a CRM, within genomic regions surrounding a SNP to predict its cis-

regulatory functionality. The method is presented in results and Figure 1, a detailed 

description in the Extended Experimental Procedures. 

Positional Bias Analysis 

Genomic regions (SNP±500bp) were scanned for presence of TFBS family matches at SNP 

position, and positional bias of TFBS families was calculated using overlapping 50bp sliding 

windows in steps of 10bp. Positional bias (P) was calculated as binominal P value for each 

TFBS family and each window. For details see Extended Experimental Procedures. 

Correlation with evolutionary constraint, DHSseq and ChIPseq regions 

Genomic regions (SNP±500bp) were correlated to constrained regions or DHSseq and 

ChIPseq peaks. From midpoint of constrained regions (±500bp) as anchor, the overlapping 
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positions (correlation) with complex/non-complex regions were counted, and plotted vs. 

position relative to anchor. From complex and non-complex regions with SNP (±500bp) as 

anchor, the overlapping positions of DHSseq and ChIPseq regions (correlation) with 

complex/non-complex regions were counted and plotted vs. position relative to anchor. For 

details see Extended Experimental Procedures. 

Primary human tissue and hASC 

Human islets and adipose tissue were obtained with informed consent from each subject. The 

studies were approved by the local ethics committees. Primary hASCs (adipose-derived stem 

cells) were isolated from subcutaneous adipose tissue and differentiated in vitro. Genotyping 

was done by MassARRAY (Sequenom), Omni express (Illumina) or Sanger Sequencing. For 

details see Extended Experimental Procedures. 

RNA Preparation and Expression Analysis 

Total RNA was prepared by TRIzol (Invitrogen) or RNeasy Lipid Tissue Mini Kit (Qiagen), 

and gene expression was measured by qRT-PCR or microarrays (Affymetrix, Illumina).  

Allele-specific primer extension was performed with SNaPshotKit (ABI Prism). For details 

see Extended Experimental Procedures. 

Cell Culture and Reporter Assays 

Huh7, INS-1, 293T, C2C12, 3T3-L1 and SGBS cells were cultured using standard protocols. 

Genomic sequences surrounding SNPs were synthesized (MWG), cloned into pGL4.22 

(Promega) with TK-promoter and transfected into cells (with renilla-luciferase for 

normalization) by Lipofectamine 2000 (Invitrogen), and luciferase activity was measured by 

LuminoscanAscent (Thermo). For details see Extended Experimental Procedures. 

Gene knockdown by siRNA 
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All knockdowns were performed with ON-TARGETplus SMARTpool siRNA (Dharmacon) 

and HiPerFect (Qiagen). For details see Extended Experimental Procedures. 

CRISPR/Cas genome editing 

HDR genome editing in human SGBS preadipocytes by transfection of CRISPR/Cas9- and 

sgRNA (single-guide RNA targeting a NGG PAM sequence 5’ of rs4684847) expression 

vectors (R. Kühn, München) and rs4684847 DNA donor vectors (T-allele to replace 

endogenous allele, C-allele control). Cell enrichment by MACS selected transfected cell 

selection kit (Miltenyi). rs4684847 sequence confirmed by sanger sequencing. For details see 

Extended Experimental Procedures. 

EMSA 

42bp allelic Cy5-labeled-DNAs (MWG) and nuclear protein were used for EMSA. Supershift 

experiments with αPRRX1 (M. Kern) or IgG control, competition with excess unlabeled 

probe, protein from pCMV-PRRX1-flag transfected 293T. For details and primers see the 

Extended Experimental Procedures. 

DNA-Protein affinity chromatography, LC-MS/MS  

DNA-protein affinity chromatography with streptavidin magnetic beads (Invitrogen) and 

allelic biotinylated DNA-probes (MWG) and Ultimate3000nano HPLC (Dionex) LC-MS/MS 

coupled to LTQ OrbitrapXL (Thermo Fisher Scientific). Data analysis with Progenesis 

software v2.5. For details see Extended Experimental Procedures. 

Statistical Analysis 

Statistical analyses were done using Graph Pad Prism v5.02, Pearl or R Software v2.14.2. For 

details see figure legends and Extended Experimental Procedures. 

 

SUPPLEMENTAL INFORMATION 
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Supplemental Information includes Extended Experimental Procedures, 15 tables, 5 figures 

and can be found with this article online. 
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FIGURE LEGENDS 

 

Figure 1. Discovery of cis-regulatory diabetes SNPs. 

(A) Workflow of the PMCA methodology: (1) The flanking region of the nc SNP was 

extracted from the human reference genome; (2) orthologous regions were searched in the 

genomes of 15 vertebrate species; (3) TFBSs were identified in each orthologous sequence; 

(4) TFBS modules were identified in the set of orthologous sequences (TFBS modules 

defined as all, two or more TFBSs occurring in the same order and in certain distance range in 

all or a subset of the orthologous sequences); (5) phylogenetically conserved TFBS ΩTFBS, 

TFBS modules Ωmodules, and occurrences of TFBSs in TFBS modules ΩTFBS_in_module were 

counted; (6) repeated counting for different numbers of input-sequences weighs the degree of 

cross species conservation and the number of TFBS in modules. Computation of conserved 

TFBS with more restricted parameters Ωrestr_TFBS accounts for genomic regions with low 

numbers of orthologs; (7) steps 3-6 were repeated using randomized input sequences 

(randomization of sequences is done using local shuffling in order to conserve local 

nucleotide frequency distributions) to estimate; (8) the probability p-est of observing a given 

ΩTFBS, Ωrestr_TFBS, Ωmodules, and ΩTFBS_in_modules and to calculate the overall scoring criterion 
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and finally; (9) input sequences were categorized as complex and non-complex regions. 

Details see Extended Experimental Procedures. 

(B) Representative complex region (rs4684847) and non-complex region (rs17036342). 

Conserved TFBS modules occurring in more than 2 vertebrate species are shown to illustrate 

conserved TFBS modularity. 

(C-G) Classification of candidate SNP regions at eight T2D risk loci (r
2
≥0.7) in complex and 

non-complex regions. Box-Whisker plots (IQR 50%) show distributions for ΩTFBS (C), 

Ωmodules (D) and ΩTFBS_in_modules (E). (Note, at 47 T2D loci we find a Median/median of 

354.5/470.46 and 310/382.35 for ΩTFBS_in_modules in complex or non-complex regions, 

respectively, Table S4). 

(F,G) PMCA scoring illustrated for p-estTFBS (F) and overall score Sall (G). Histograms show 

distribution of measures to randomly observe an equal or higher measure based on 

calculations from the random set. Blue curve empirical density function of the histogram data. 

Red dashed line cut-off scores separating complex from non-complex regions (-log10 p-

estTFBS=1.12, Sall=6.5), regions left of this line are non-complex. Isolated peak at the right 

data points at limit of p-est calculations. 

(H,I) Experimental validation of cis-regulatory prediction at complex regions. Non-complex 

regions (controls) include regions matched for TFBS density of complex regions (median=88 

TFBS). The allele-dependent change in DNA-binding activity from EMSAs (n=4) (H) and 

reporter activity (n=10) (I) is shown for each SNP. Mean±SD, p-value from linear mixed-

effects model. 

See also Figure S1 and Tables S1-3 
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Figure 2. Correlations of cis-regulatory predictions with evolutionary constraint 

elements and functionally annotated genomic regions. 

(A) The occurrences of 487 complex and 978 non-complex T2D-associated regions within 

constrained regions from SiPhy-π algorithm (Lindblad-Toh et al., 2011). Localization of 

SNPs relative to transcription start site in Figure S2I,J, Table S9. 

(B) The Venn diagram illustrates number of complex and non-complex regions that directly 

map to a constrained element (overlap). 

(C) Experimentally validated cis-regulatory complex regions at the PPARG locus (Figure 4E) 

lack an overlap with constrained regions. Zoom-in: the rs4684847 cis-regulatory region does 

not map to a constrained region (393bp upstream of nearest constrained element). A 

representative TFBS module (ΩTFBS_in_module=3) is shown and its TFBS module conservation 

for a given quorum of five species is visualized by a sequence logo. The TFBS module 

harbors the PRRX1 homeobox TFBS matrix, member the of T2D-distinct CART family 

(Figure 3A,B) and involved in regulation of endogenous PPARG2 expression (Figures 4,5). 

(D,E) The occurrences of 487 complex and 978 non-complex T2D-associated SNP regions in 

vicinity to DHSseq (D) and ChIPseq (E) peaks is shown. T2D complex regions were 

significantly enriched for overlaps to DHSseq and ChIPseq regions (correlations with 

Crohn’s-associated regions in Figure S5, Table S10). 

See also Figure S2 and Tables S9,10 

 

Figure 3. Positional bias of distinct homeobox TFBS families at T2D risk SNPs  

(A-F) Distribution of TFBS matrices relative to SNP position (SNP±500bp) at eight T2D 

(A,F), 47 T2D (B,C) and eight asthma (D,E) risk loci, calculated from TFBS match 

occurrence for 192 TFBS families (sliding 50bp windows, binomial distribution model). 
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(A-C) Distribution of TFBS matrices relative to SNP position within complex and non-

complex regions in a set of eight (A) and the set of 47 T2D loci (B,C). Positional bias profiles 

for TFBS family distribution matching the criteria of central SNP position (±20bp, grey 

dashed lines) and –log10(P)>6 reveals clustering of distinct homeobox TFBS matrix families 

within T2D complex regions at SNP position (including CART and PDX1). All TFBS 

families displayed equal distributions within T2D non-complex regions, represented by a 

subset of TFBS families (C).E) Distribution of TFBS matrices relative to SNP position within 

complex regions for asthma loci identifies specific clustering of the EGRF matrix family (E) 

as opposed to T2D loci (F). No positional bias of identified distinct T2D and Crohn´s disease 

TFBS families (Figure S3) was found in complex asthma regions (D). 

See also Figures S3 and Tables 11-15 

 

Figure 4. Genotype-dependent down-regulation of PPARG2 mRNA by the homeobox TF 

PRRX1, inferred from the predicted cis-regulatory variant rs4684847 

(A) LD plot of the PPARG locus. Diamonds show the tagSNP Pro12Ala and pair-wise 

correlation of SNPs in LD (MAF ≥ 1%) against genomic position. Red lines predicted cis-

regulatory SNPs; blue PPARG gene and exons, zoom-in human PPARG gene, PPARG1-3 

mRNA isoforms (coding exons boxes; untranslated exons dashed boxes; introns lines; 

promoters: arrows). 

(B-D) Genotype-dependent mRNA expression in undifferentiated hASCs genotyped for 

Pro12Ala and rs4684847 (r
2
=1.0). qRT-PCR of PPARG1 and PPARG2 mRNA isoforms 

(standardized to HPRT, Hypoxanthin-Guanin-Phosphoribosyltransferase) in homozygous 

(n=9) and heterozygous risk allele carriers (n=5) normalized to mean in homozygotes (B,C). 

Allele-specific primer extension analysis in heterozygous subjects (n=6) normalized to mean 

risk allele levels (D). Mean±SD, p-values from Man Whitney U test. 
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(E) Validation of cis-regulatory predictions for complex regions (red) at the PPARG locus 

(black non-complex regions as control). Quantified change in reporter activity (comparing 

risk vs. non-risk allele) in 3T3-L1 adipocytes with constructs matching the respective alleles 

is shown for each SNP (log2 scale), representing an activating or repressing effect of the risk-

allele on transcriptional activity. Mean±SD, n=3-14, p-values from paired t-tests. 

(F) Reporter assays with constructs harboring rs4684847 risk and non-risk allele in 3T3-L1 

preadipocytes. Truncation of the PRRX matrix without affecting rs4684847 reveals abrogated 

allelic cis-regulatory activity. Mean±SD, n=9, p-values from paired t-tests. 

(G) The CART matrix family member PRRX1 matches the rs4684847 (C/T) variant. TFBS 

modularity at the complex region surrounding rs4684847 exemplary illustrated by one 

conserved TFBS module comprising putative TEF, LHXF (grey) and PRRX1 binding 

sequences (in consistent orientation and distance range across several species). 

(H,I) Increased PRRX1 binding at the risk allele in EMSAs with rs4684847 allelic probes and 

3T3-L1 preadipocyte nuclear extracts (H), confirmed by competition with cold PRRX1 probe 

(I, left panel) and PRRX1 antibody shift of protein–DNA complex in 293T with ectopically 

expressed PRRX1 (I, right panel). 

(J) Inhibition of reporter activity (normalized to pCMV control) at the rs4684847 risk allele 

by ectopic expression of PRRX1 in 3T3-L1 preadipocytes. Mean±SD; n=9, p-values from 

paired t-tests. 

(K) Regulation of PPARG2 mRNA expression in SGBS adipocytes with homozygous risk or 

non-risk allele introduced by CRISPR/Cas9 genome-editing approach. siPRRX1 and siNT 

transfected concurrent with induction of differentiation, PPARG2 mRNA assessed by qRT-

PCR, standardized to IPO8 mRNA. Mean±SD, n=12, p-values from t-test. 

See also Figures S4 and Table S16 
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Figure 5. Altered binding of the homeobox TF PRRX1 at the rs468487 variant in human 

adipose cells regulates lipid metabolism and insulin sensitivity 

(A,G-J) PRRX1 silencing in hASC from BMI-matched heterozygous (n=16) and homozygous 

(n=32) rs4684847 risk allele carriers. siPRRX1 and siNT transfected concurrent with 

induction of adipogenic differentiation. 

(A) rs4684847-dependent PPARG2 and PRRX1 mRNA levels measured by qRT-PCR 

(standardized to HPRT mRNA) 72 hours after induction of adipogenic differentiation. Left 

panel: Pearson’s correlation in the siNT set. Right panel: Box-Whisker plot comparing 

PPARG2 mRNA in siNT vs. siPRRX1 treated cells, p-values from t-test.  

(B,C) Global gene expression profiling by Illumina microarrays (q <0.2) in hASCs from 

homozygous rs4684847 risk allele carriers transfected with siPRRX1 (n=9, grey dots) and co-

transfected with siPRRX1 and siPPARG (n=4, red dots) 72 hours after induction of 

adipogenic differentiation (B). Distribution of siPRRX1/siPPARG anti-regulated genes in all 

regulated genes (C). FC=fold change. 

(D,E) Biological pathways associated with siPRRX1/siPPARG anti-regulated genes (D) and 

top scoring ranked interaction network (E) from Ingenuity Pathway Analysis Knowledge 

Base. 

(F) Oil Red O lipid staining of human SGBS cells with lentiviral-transduced overexpression 

of flag-tagged PRRX1 (or control vector) 12 days after induction of adipocyte differentiation. 

Protein expression with αflag (PRRX1) and αACTB antibodies. 

(G,H) rs4684847-dependent GNG rate measured by [1-
14

C]-pyruvate incorporation (G) and 

FFA-release (H) in hASCs. Left panel (G): Pearson’s correlation in the siNT set: Right panel 

Box-Whisker plot comparing siNT vs. siPRRX1 treated cells, p-values from t-test.  
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(I) rs4684847-dependent increase of 2-deoxyglucose (2DG) uptake following insulin 

stimulation in hASCs. Box-Whisker plot comparing siNT vs. siPRRX1 treated cells. p-values 

from t-test. 

(J) rs4684847-dependent rosiglitazone-mediated suppression of FFA-release during GNG. 

Pearson’s correlation comparing siNT vs. siPRRX1. Mean±SD, p-values from t-test. 

See also Figure S4G,H and Table 1,2. 
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Table 1. Genotype-PRRX1-dependent regulation of PRXX1/PPARG anti-regulated genes in 

hASCs. 

 siNT siPRRX1 siPRRX1 / siNT 

 hetero homo hetero/homo hetero homo hetero/homo hetero homo 

 

Mean 

±SD 

Mean 

±SD 

FC p 

Mean 

±SD 

Mean 

±SD 

FC p FC p FC p 

PRRX1 

0.52 

±0.18 

0.51 

±0.19 

1.01 0.92 

0.11 

±0.05 

0.12 

±0.06 

0.90 0.56 0.25 
2.83 x 10-

7 

0.22 4.02 x 10-8 

PPARG2 

4.32 

±1.07 

0.79 

±0.08 

0.18 
2.46 x 10-

11 

4.34 

±1.47 

3.37 

±1.04 

0.77 0.08 1.00 0.96 4.29 
7.24 x 10-

11 

PPARG1 

1.07 

±0.26 

1.04 

±0.33 

1.03 0.79 

1.18 

±0.35 

1.20 

±0.49 

0.98 0.90 1.15 0.35 1.10 0.41 

PEPCKC 

2.83 

±0.58 

1.03 

±0.20 

2.76 
1.62 x 10-

10 

2.66 

±0.50 

2.98 

±0.42 

0.89 0.09 0.94 0.43 2.90 8.77 x 10-4 

PDK4 

2.01 

±0.88 

0.74 

±0.18 

2.73 3.19 x 10-5 

2.00 

±0.60 

1.73 

±0.61 

1.15 0.27 0.99 0.97 2.35 8.01 x 10-6 

LIPE 

1.37 

±0.64 

0.68 

±0.32 

2.01 2.00 x 10-3 

1.30 

±0.32 

1.21 

±0.45 

1.08 0.56 0.95 0.74 1.77 2.03 x 10-3 

ADIPOQ 

1.89 

±0.32 

0.95 

±0.31 

1.98 7.92 x 10-8 

1.85 

±0.44 

1.75 

±0.61 

1.05 0.66 0.98 0.81 1.84 2.84 x 10-4 

OPG 

0.78 

±0.36 

1.67 

±0.53 

0.47 3.91 x 10-5 

0.84 

±0.28 

1.09 

±0.38 

0.77 0.07 1.08 0.61 0.65 4.10 x 10-3 

TIMP3 

0.61 

±0.21 

1.50 

±0.52 

0.41 6.45 x 10-6 

0.83 

±0.33 

1.00 

±0.39 

0.83 0.23 1.36 0.06 0.67 0.01 

BBOX1 

2.16 

±0.48 

0.96 

±0.30 

2.26 8.04 x 10-8 

1.84 

±0.37 

2.14 

±0.44 

0.86 0.07 0.85 0.07 2.23 3.09 x 10-8 

GLUT4 

1.57 

±0.35 

0.99 

±0.24 

1.58 6.15 x 10-5 

1.62 

± 

1.50 

±0.31 

1.09 0.26 1.03 0.67 1.50 1.08 x 10-4 

THRSP 

0.99 

±0.28 

1.61 

±0.39 

0.61 8.18 x 10-5 

1.53 

±0.33 

1.60 

±0.32 

0.95 0.57 1.55 
1.38 x 10-

4 

0.99 0.93 

PRRX1/PPARG anti-regulated genes were identified by Illumina microarray analysis in samples with PRRX1 knockdown and simultaneous 

PRRX1 and PPARG knockdown during adipogenic differentiation (Figure 5E). Confirmatory qRT-PCR was performed for these 
representative top regulated genes in hASC from BMI-matched heterozygous (hetero, n = 16) and homozygous (homo, n = 32) risk-allele 

carriers (genotyped for the PPARG locus cis-regulatory variant rs4684847 and the tagSNP rs1801282 Pro12Ala). PRRX1, Paired-related 

homeobox 1; PPARG, peroxisome proliferator-activated receptor gamma; PEPCKC, Phosphoenolpyruvate carboxylase cytosolic; PDK4, 
pyruvate dehydrogenase kinase, isozyme 4; LIPE, lipase, hormone-sensitive; ADIPOQ, adiponectin, C1Q and collagen domain containing; 

OPG, Osteoprotegerin; TIMP3, TIMP metallopeptidase inhibitor 3; BBOX1, butyrobetaine (gamma), 2-oxoglutarate dioxygenase (gamma-

butyrobetaine hydroxylase); GLUT4, Glucose Transporter Type 4; THRSP, thyroid hormone responsive Spot 14 Protein; FC, fold change; p, 
p-value from unpaired t-test. 
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Table 2. PRRX1 mRNA expression levels in adipose tissue correlates with FFA, 

BMI, TG/HDL ratio and insulin resistance measures HOMA-IR and GIR. 

 PRRX1  mRNA PRRX1  mRNA PRRX1  mRNA 

rs4684847 genotypes All CC CT and TT 

 

β-estimate p-value β-estimate p-value β-estimate p-value 

lo
g

(F
F

A
)a  

age/ 

BMI 

0.25 0.014 0.27 0.015 -0.009 0.99 

lo
g

(B
M

I)
b
 

- 1.32 0.05 1.23 0.19 1.43 0.23 

age 1.45 0.03 1.23 0.19 1.96 0.09 

lo
g

(T
G

/H
D

L
)b

 

- 6.92 7.54 x 10
-4

 6.40 0.02 6.35 0.07 

age 6.97 7.36 x 10
-4

 6.14 0.02 6.81 0.07 

age/ 

BMI 
4.86 8.3 x 10

-3
 5.00 0.07 2.64 0.33 

lo
g

(H
O

M
A

IR
)b

 

- 2.77 3.52 x 10
-3

 3.13 8.3 x 10
-3

 1.80 0.29 

age 2.77 3.77 x 10
-3

 3.12 8.6 x 10
-3

 1.70 0.34 

age/ 

BMI 
1.41 0.028 2.1 4.6 x 10

-3
 -0.55 0.63 

lo
g

(G
IR

)a  

age/ 

BMI 

-0.51 1.83 x 10
-7

 -0.78 3.30 x 10
-8

 -0.38 0.28 

rs4684847-dependent PRRX1 adipose tissue mRNA expression data from a) patients undergoing a hyperinsulinemic 
euglycemic clamp measured by qRT-PCR analysis (BMI-matched study sample, risk allele n = 54, non-risk allele n = 13) and 

b) a cohort with PRRX1 expression data from microarrays (risk allele n = 20, non-risk allele n= 18). rs4684847 risk-allele 

and non-risk allele genotypes were determined by Sequenom-assay. FFA, free fatty acids; GIR, glucose infusion rate of 
hyperinsulinemic euglycemic clamp; BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance; 

TG, triglyceride; HDL, high density lipoprotein. p-values and β-estimates from linear regression analysis of PRRX1 mRNA 

expression levels with phenotype residuals are shown. 
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