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Abstract

Brain-machine interfaces (BMIs) based on extracellular recordings with microelectrodes provide means of observing the
activities of neurons that orchestrate fundamental brain function, and are therefore powerful tools for exploring the
function of the brain. Due to physical restrictions and risks for post-surgical complications, wired BMIs are not suitable for
long-term studies in freely behaving animals. Wireless BMIs ideally solve these problems, but they call for low-complexity
techniques for data compression that ensure maximum utilization of the wireless link and energy resources, as well as
minimum heat dissipation in the surrounding tissues. In this paper, we analyze the performances of various system
architectures that involve spike detection, spike alignment and spike compression. Performance is analyzed in terms of
spike reconstruction and spike sorting performance after wireless transmission of the compressed spike waveforms.
Compression is performed with transform coding, using five different compression bases, one of which we pay special
attention to. That basis is a fixed basis derived, by singular value decomposition, from a large assembly of experimentally
obtained spike waveforms, and therefore represents a generic basis specially suitable for compressing spike waveforms. Our
results show that a compression factor of 99.8%, compared to transmitting the raw acquired data, can be achieved using
the fixed generic compression basis without compromising performance in spike reconstruction and spike sorting. Besides
illustrating the relative performances of various system architectures and compression bases, our findings show that
compression of spikes with a fixed generic compression basis derived from spike data provides better performance than
compression with downsampling or the Haar basis, given that no optimization procedures are implemented for
compression coefficients, and the performance is similar to that obtained when the optimal SVD based basis is used.
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Introduction

Brain-machine interfaces (BMIs) are systems that provide a

signal pathway between the central nervous system (CNS) and the

outside world and thereby a means of observing the neuronal

activity that underlies behavior. One class of BMIs employ

intracranially implanted microelectrodes to record the changes in

extracellular potential induced by activities of neurons surround-

ing them [1]. The extracellular recording is composed of spikes

representing action potentials in near-by neurons, noise consisting

of spikes from distant neurons, local field potentials (LFPs)

representing synaptic activity and thermal noise generated in the

recording electronics [2].

By isolating the spiking components of the individual neurons

that contribute to the extracellular recording, the firing patterns of

those neurons can be characterized and correlated with events or

learning processes in the motor or sensory domains [3] to reveal

the dynamics of neuronal circuits that govern behavior. The

fundamental steps in this procedure are (a) spike detection and

extraction, (b) spike alignment and (c) spike sorting. Spike

detection is commonly based on detecting the local increase in

signal energy or amplitude associated with the firing of a spike and

its aim is to pinpoint the temporal occurrence of spike waveforms.

Spike alignment is important for the subsequent spike sorting step

and it involves shifting the detected spike waveforms in time to

have them aligned with respect to a given waveform landmark, e.g.

the point of maximum amplitude. Spike sorting typically involves

first extracting spike features (i.e. waveform characteristics that

ideally are the same for spikes coming from the same neuron but

different for spikes coming from different neurons) and then

classifying the spikes based on the extracted features [4].

BMIs are often implemented with multiple recording channels

(multielectrode arrays), which results in the recording and

processing of vast amounts of data [5]. In [6], it was shown that

to ensure sustained performance in spike detection and spike

sorting, the extracellular signal needed to be acquired at a

sampling rate of 25 kHz and an effective sampling resolution of at

least 9 bits. Assuming a sampling resolution of 10 bits, this results

in a raw data rate of 250 kbps per channel. Thus, for a state-of-

the-art electrode array with 100 channels [7], the total data rate

becomes 25 Mbps, which typically requires a physical (wired) link

between the implanted and external parts of the BMI.

Although sufficient with regard to data transmission, wired

BMIs are associated with risks of post-surgical complications due
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to transcutaneous leads. They also strongly limit subject mobility.

These drawbacks of wired BMIs make them unpractical for

chronic applications where the behavior of the subject is observed

under unrestrained conditions. Wireless BMIs ideally solve the

problems that have to do with the physical link, but they are

limited in terms of energy resources and wireless link capacity, and

the data processing and RF transmitter operation can potentially

give rise to harmful heat dissipation in tissues surrounding the

implant. All of those are challenges whose significance increases

with an increased number of neural recording channels.

In order to overcome the challenges associated with multi-

channel wireless BMIs, low-complexity data compression is

needed. Compression removes redundant information from the

recorded signal and thereby the data rate is effectively lowered,

which leads to better utilization of the wireless link and thereby

also minimizes the energy used to transmit each bit of information.

Low computational complexity further decreases the energy

consumption and heat dissipation, and it is expected to increase

the operational stability, which is vital to the success of wireless

BMIs.

A simple form of compression involves detection and extraction

of spikes, resulting in the transmission of timestamps and spike

waveforms. At a sampling rate of 25 kHz, a sampling resolution of

10 bits and a spike duration of 2.5 ms, a data rate of 640 bits per

spike is achieved (excluding the timestamps). However, it has been

shown that there is significant redundancy involved in transmitting

the entire spike waveform. By linear transformation with a suitable

compression basis, the extracted spike can be transform coded and

described by a small set of transform (compression) coefficients

instead of the full set of waveform samples [8–10]. For instance, if

the spike is adequately approximated by the linear combination of

eight compression basis waveforms, the compression coefficients

can be taken as the transform coefficients corresponding to those

eight basis waveforms and the data rate is further decreased to 80

bits per spike. The adequacy of the approximation refers to how

well the spikes, after transmission and reconstruction, correspond

to the original uncompressed spikes and how the performance in

the subsequent analysis, i.e. spike sorting, is influenced by the

compression.

The choices of compression basis and compression coefficients

to use in transform coding are of key importance to the

performance of the wireless BMI. Ideally, the compression basis

is derived from the data that is to be compressed by means of, for

instance singular value decomposition (SVD), where an orthonor-

mal basis is found and the transform coefficients are ordered by

significance, making the selection of compression coefficients

straightforward (the first K coefficients are chosen). However,

finding and maintaining such an optimal basis is computationally

demanding and thus not feasible in a low-power wireless implant.

A more feasible solution is to employ a fixed compression basis

that does not need to be adapted to the data each time, and

therefore reduces the computational complexity significantly.

Generic bases, such as various wavelet bases and the Walsh-

Hadamard basis, have previously been used for this purpose, but

since they are generally not derived from spike data and are not

ordered according to expected transform coefficient significance,

they suffer from both suboptimal degree of compression as well as

the need for selecting which transform coefficients to transmit in

each case [11–14].

The aim of the present paper was therefore to analyze how the

choice of compression basis, in combination with a spike detector

and system architecture (a given distribution of processing tasks

among the parts of the wireless BMI), influences the accuracy in

spike reconstruction and spike sorting when compressing and

processing synthetic extracellular recordings with realistic a priori

known properties. Synthetic recordings were used in order to

facilitate quantitative analysis of performance in spike sorting.

First, all configurations are analyzed and compared in order to

provide general insight into their relative performances and

dependencies of simulation variables. Second, we focus on two

configurations in which good performance is obtained in the first

part. These cases are of special interest since they involve a

compression basis that is derived by SVD from a large set of

experimentally obtained spike waveforms in the cat cerebellum

[15,16]. Since the basis is derived from actual spike data, it is

expected to provide a high degree of compression, and since it is

derived by SVD, the transform coefficients are expected to be

ordered according to significance, making the selection of

compression coefficients straightforward. These features are

attractive from the points of view of utilizing the limited wireless

link capacity as well as minimizing energy consumption and heat

dissipation.

Methods

0.1 Synthetic Test Data
The simulator described in [17] was used here to synthesize

three nineteen-channel test recordings with varying signal-to-noise

ratios (high, medium and low SNR). The recordings were five

minutes long. In all three recordings, a linear array of nineteen

evenly spaced electrodes was placed along the z-axis (x~y~0,

{30mmƒzƒ60mm, 5mm spacing). Noise neurons were placed at

random positions (density of 9:5|106 neurons/cm3 [18]) within a

hollow cylinder concentric with the z-axis, as shown in Figure 1.

The inner and outer boundaries of the hollow cylindrical volume

were at 120 mm and 250 mm from the z-axis respectively and its

floor and ceiling were at z~+250mm respectively.

Four target neurons (one of each neuron model derived in [17])

were placed inside the hollow space of the noise neuron cylinder.

For the high SNR recording, the neurons were placed at positions

of (10,20,22)mm, (22,18,20)mm, (220 25 210)mm and (16,2

13,15)mm. For the medium and low SNR recordings, these

coordinates were multiplied by factors of 1.5 and 2 respectively,

i.e. moving each neuron along a linear path from the origin.

Moving the neurons away from the electrode array resulted in

decreasing their spike amplitudes and thus decreasing the SNR

since the noise neuron cylinder was not altered. The multiplication

factors were chosen empirically to provide clearly varying SNRs

and resulted in the neurons being at distances of approximately 20,

30 and 40 mm from the electrode array (in the x{y plane) for the

high, medium and low SNR respectively. Assuming that spikes

from neurons within a radius of 50 mm can be detected [19], these

distances are reasonable.

Figure 1 illustrates the arrangement of neurons and the

electrode site used in each case for the first part of the performance

estimation, i.e. (x,y,z)~(0,0,0) (see later section) as well as one

second long segments of the signal in each SNR case. Note that

each test recording contained eighteen electrode sites in addition

to the one shown in Figure 1. Note also that the three test

recordings were generated individually, meaning that the actual

locations of noise neurons and actual spike times of all neurons

varied between the recordings. However, the statistical properties

used to generate locations and spike times did not vary between

the recordings. The recordings were sampled at 25 kHz and

bandpass filtered between 300 Hz and 5 kHz.

All neurons were assumed to have gamma distributed inter-

spike intervals [20]. For each noise neuron, a random mean firing

rate was chosen from a uniform distribution between 1 and 50

Compression of Neural Spike Recordings
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spikes/second. For each target neuron, a random mean firing rate

was chosen from a uniform distribution between 1 and 10 spikes/

second.

Signal to noise ratio was calculated in a similar manner as

described in [21]. For a given recording and a given electrode site,

we defined the SNR for the n-th neuron as

SNRn~20 log10 (
sppn

ŝsN

) ð1Þ

where sppn is the peak-to-peak amplitude of the mean spike

waveform of the neuron measured at the electrode site and sN is

the standard deviation of background noise estimated according to

[22]

ŝsN~median(
jvj

0:6745
) ð2Þ

where v is the digitized signal. The mean SNR across the target

neurons in each case is reported.

0.2 System Architectures
Three different system architectures involving spike waveform

compression were considered in our analysis (architectures 1 to 3

in Figure 2), in addition to a reference architecture in which no

compression was performed (architecture 0). As illustrated in

Figure 2, a given system architecture constitutes a specific

combination and distribution of processing tasks among the parts

of the wireless BMI. The main processing tasks were assumed to be

Figure 1. One of nineteen electrode sites and a snapshot of the corresponding signal from each of the multi-channel test
recordings (high, medium and low). The SNR was varied by altering the placements of neurons 1 to 4 away from the linear electrode array placed
along the z axis while the hollow cylindrical volume containing noise neurons was kept fixed. The placements of the neurons were altered by
multiplying their Cartesian coordinates for the high SNR case by factors of 1.5 and 2 for medium and low SNR respectively. The left part of the figure
shows the placements of the target neurons (colored dots around origin), noise neurons (gray dots far away from origin) and the electrode site
(x,y,z)~(0,0,0) (yellow dot in origin). The sizes of the indicators do not reflect the true sizes of the neurons and the electrode, but only their
positions. Only the X-Y and X-Z views are shown. Note that each test recording contained eighteen additional electrode sites, arranged along the z-
axis. The right part of the figure shows one second of the total of five minutes of recording with the true spike identities labeled and color coded.
doi:10.1371/journal.pone.0093779.g001
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the alignment, compression and reconstruction of detected spike

waveforms. Spike detection was performed in the time domain in

order to minimize the number of transform coding operations – a

task that involves matrix multiplication and thus a significant

increase in computational complexity if operated continuously.

The processing steps are discussed in more detail in the following

sections.

In architecture 0 (the reference architecture), the extracted spike

waveforms were transmitted without compression and aligned in

the external unit prior to spike sorting. In architecture 1, the

extracted spike waveforms were compressed in the implanted unit.

Architecture 2 was similar to architecture 1, but with an additional

alignment step in the external unit prior to spike sorting. In

architecture 3, the extracted spikes were aligned in the implanted

unit prior to compression.

0.3 Spike Detection
We implemented ABSolute value (ABS) and Nonlinear Energy

Operator (NEO) spike detection, both of which have been shown to

provide a good combination of performance and computational

complexity [6,23,24]. NEO has been shown to be more robust to

background noise and provide spike detection jitter that is

beneficial for spike sorting, but its computational complexity is

significantly higher [6,13,23]. Spike detection jitter refers to the

misalignment of extracted spike waveforms that arises when

different spikes cross the detection threshold at different time

instances within the waveform [2]. ABS is attractive due to its

simplicity, but it requires an extra spike alignment step (see Section

0.4) due to the spike detection jitter it introduces (see Figure 3).

Spike duration was assumed to be 2.5 milliseconds.

In order to avoid potential errors in the estimation of spike

sorting accuracy caused by false positive spike detections, we used

true spike times provided with the synthetic recordings to extract

spike waveforms from the recordings and then introduced the

spike detection jitter afterward. Detection thresholds (see Sections

0.3.1 and 0.3.2) were used to find the detection time (time instance

of threshold crossing) for each extracted waveform that passed the

threshold. Spikes that did not pass the threshold were discarded.

We then used a discrete-time delay filter to shift each waveform in

time to have the threshold crossing occur at the most frequent

detection time across all spikes. Spikes whose threshold crossing

time deviated by more than 1.5 standard deviations from the most

frequent value were discarded as outliers. These cases usually

represented overlapping spikes. Spike waveforms were upsampled

to a sampling rate of 200 kHz before introducing the jitter and

were then downsampled to 25 kHz again afterward. ABS and

NEO spike detection are briefly described below.

0.3.1 ABSolute Value Spike Detection. In ABS detection, a

threshold of

T~4ŝsN~4:median(
jv(n)j

0:6745
) ð3Þ

where ŝsN is the estimated standard deviation of background noise

and jvj is the digitized signal’s amplitude, is applied to the absolute

value of the signal [22]. This is equivalent to simultaneously

applying a positive and a negative threshold to the raw signal.

0.3.2 Nonlinear Energy Operator Spike Detection. In

NEO detection, a threshold T is applied to the nonlinear energy

operator (NEO) Y(n) of the signal v(n). The nonlinear energy

operator is given by

Y(n)~v2(n){v(nz1):v(n{1) ð4Þ

and the threshold is taken as

T~8: ð5Þ

where Y(n) is the mean value of the NEO [23,25].

0.4 Spike Alignment
For the architectures that involved a spike alignment step

(architectures 0, 2 and 3), spikes were aligned at their point of

maximum absolute amplitude within a time interval of approx-

imately half a millisecond after the detection time. This was

assumed to correspond to aligning the spikes on the maximum

value of the detected peak or valley. We chose maximum

amplitude alignment due to its simplicity, since it only involves

finding the maximum absolute value of the signal within a short

time window. More sophisticated approaches have been described,

such as the center-of-mass alignment [2], which takes into account

the entire waveform and is thus less sensitive to noise. Employing

such a measure would have been feasible at the external unit

(architectures 0 and 2), but not at the implanted unit (architecture

3). With that in mind, we selected the approach that was feasible

with respect to the implanted unit and used it in all cases in order

to allow a direct comparison.

For architectures 0 and 2 (spike alignment on the external unit),

spikes were upsampled to a sampling rate of 200 kHz prior to

alignment and were then downsampled back to 25 kHz after

alignment. For architecture 3 (spike alignment on the implant), the

alignment was performed at the initial sampling rate of 25 kHz in

order to minimize the increase in computational complexity

introduced by placing the alignment step in the implant. The

alignment was performed using delay filters in the same way as

when applying spike detection jitter (see Section 0.3).

0.5 Spike Compression and Reconstruction
Spike compression was performed by transforming detected

spike waveforms with five different compression bases and a fixed

number of compression coefficients were assumed to be transmit-

ted and used for spike reconstruction. The transform was obtained

as

Wc~BT
c S ð6Þ

Figure 2. An illustration of the system architectures considered
in the comparison. The ’’Tx’’ and ’’Rx’’ blocks refer to the wireless
transmitter and receiver, respectively. See text for explanations.
doi:10.1371/journal.pone.0093779.g002
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where the M|N matrix Wc contains the full set of transform

coefficients, the M|M matrix Bc contains the M sample long

basis waveforms of the compression basis in its columns and the

M|N matrix S contains the M sample long spike waveforms in

its columns. The fixed set of K (KvM ) compression coefficients

was extracted from Wc by introducing the K|N dimensionality

reduction matrix Bd . The structure of the dimensionality

reduction matrix was chosen specifically for each compression

basis to remove specific coefficients and it was introduced for the

sake of generalizing the procedure for various compression bases.

The K|N matrix of compression coefficients was then obtained

as

Wd~BdWc~Bd BT
c S: ð7Þ

The compression and dimensionality reduction bases were

assumed to be known at the external unit and were used to

reconstruct the spike waveforms according to

Ŝ~BcBT
d Wd ð8Þ

where Ŝ is the reconstructed spike matrix. For compression with

the downsampling basis, the reconstruction involved an additional

lowpass filtering step for interpolation (see Section 0.5.4).

The five compression bases that were included are briefly

discussed below. Figure 4 shows the first eight basis waveforms of

each basis and the absolute values of 32 compression coefficients in

each basis for the high SNR recording at electrode site

(x,y,z)~(0,0,0). The distributions of transform coefficients show

that the bases introduced various degrees of sparsity, indicating

that they provided various degrees of compression. Apart from

providing different levels of compression, the bases also provided

different distributions of coefficients within the coefficient spectra.

As touched upon in the introduction, the bases derived by SVD

(optimal, fixed 1 and fixed 2) all have the attractive property of

providing coefficients that are concentrated at the lower end of the

Figure 3. The upper panel shows detected and reconstructed spikes using the ABS detector and compression with the fixed 2 basis
(8 compression coefficients) and architecture 3 (high SNR, (x,y,z)~(0,0,0)). Mean spike waveforms are color coded according to their
neurons of origin. The lower panel shows the projections of reconstructed spikes onto the first three principal components (marked (1,2), (1,3) and
(2,3)). In the upper and lower rows, spikes in the PCA feature space are color coded according to their true and assigned identities, respectively.
Clustering was performed with K-means. The overall spike sorting accuracy in this case was PID~0:88.
doi:10.1371/journal.pone.0093779.g003
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spectrum, making the selection of compression coefficients

straightforward (the first K coefficients can be selected). This is

in contrast to the downsampling and Haar bases, in whose coefficient

spectra the first K coefficients are not necessarily the most

significant ones. Also, the SVD based bases generally tend to

provide a greater degree of sparsification, indicating that they

allow a higher degree of compression.

0.5.1 Optimal Basis. This basis was found by performing

singular value decomposition (SVD) on the matrix S containing

the detected spike waveforms in its columns. The optimal basis was

included as a reference case since it involves basis waveforms that

are derived directly from the waveforms that are to be compressed.

The orthonormal basis waveforms were obtained as the columns

of the M|M unitary matrix U in the singular value decompo-

sition

S~USVH ð9Þ

where the diagonal elements of the M|N diagonal matrix S are

the singular values (s1ws2w � � � skw0, k~rank(S)) of S and the

columns of the N|N matrix V are the right-hand singular vectors

of S [26]. The basis vectors in the columns of U correspond to the

descending singular values in and are thus ordered in descending

order according to the relative amount of spike-shape variance in

S that they describe. Since the dimensions of the basis given by the

SVD are arranged in this way, i.e. in decreasing order of

significance, the dimensionality reduction matrix Bd was taken as

the first K rows of the M|M identity matrix (M is the number of

samples in each spike waveform, or the original dimensionality).

As mentioned previously, this is an attractive property of SVD-

based compression bases that results in most of the waveform

information being concentrated in the lower range of the

transform coefficients.

0.5.2 Fixed Basis 1. This basis was found by performing

SVD on a matrix containing 40.000 synthetic spike waveforms

obtained by calculating the measured spike waveform in 10.000

random measurement points surrounding each of the four model

neurons derived in [17]. This basis was assumed to represent the

generic basis that was well tuned to the data, since it was derived

from the same neuron models as the test data but not derived from

the test data in each case. The dimensionality reduction matrix

was the same as that for the optimal basis.

0.5.3 Fixed Basis 2. This basis was obtained by performing

SVD on the matrix of spike waveforms contained in the library of

mean spike waveforms from recordings in the cat cerebellum used

in [16]. Since this basis (obtained empirically) was entirely

unrelated to the test data (derived from mathematical models of

CA1 pyramidal neurons), it was assumed to be a truly generic fixed

basis. Since this was an SVD based basis, the transform coefficients

for spikes were expected to be mostly concentrated at the lower

end of the spectrum (see Figure 4). Thus, the dimensionality

reduction matrix was the same as that for the optimal basis. This

basis was the most interesting one within the context of this paper,

since it represents the generic compression basis where the

derivation of the basis waveforms is entirely independent of the

spike data that is to be compressed.

0.5.4 Downsampling Basis. This basis was included as the

simplest form of spike compression, namely that of discarding

samples. The compression matrix Bc was taken as the M|M

identity matrix and the dimensionality reduction matrix Bd was

obtained by removing all but every R-th row from the M|M

identity matrix where R was the downsampling factor obtained by

rounding the ratio M=K to the nearest integer. Having obtained

the reconstructed spike matrix ŜS according to Eq. 8, the

reconstructed waveforms were filtered in the frequency domain

by a lowpass interpolation filter [27]. Note that since we wanted to

examine the effects of simply discarding samples, no antialiasing

filtering was applied prior to downsampling.

0.5.5 Haar Wavelet Basis. This basis was obtained by

constructing the M|M Haar matrix, whose columns contain the

discrete time Haar basis waveforms. Although not necessarily

optimal, the dimensionality reduction matrix was taken as the first

K rows of the M|M identity matrix. This choice was made since

selecting the optimal compression coefficients would result in a

Figure 4. Eight basis waveforms from the five compression
bases that were included (optimal, fixed 1, fixed 2, downsample
and Haar) and absolute values of 32 compression coefficients
of the spikes from the high SNR recording at electrode site
(x,y,z)~(0,0,0). The coefficients are given as mean plus/minus one
standard deviation for the spikes of each of the four target units (green,
light blue, dark blue and pink). The coefficient spectra show the varying
sparsification levels provided by the different bases, the optimal basis
providing the highest sparsification and the downsampling basis the
lowest.
doi:10.1371/journal.pone.0093779.g004
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need for implementing an optimization procedure on the implant,

which would lead to a significant increase in complexity.

0.6 Spike Sorting
We performed feature extraction and clustering at the external

unit with principal component analysis (PCA) and K-means

respectively. In PCA, an ordered set of orthonormal basis

waveforms is derived from the spike waveforms and the

projections of the spikes onto the first P dimensions of this basis

are used as features in spike sorting [4]. In K-means, data points

are assigned to clusters that form gradually and ideally their means

converge to the true cluster means [28]. We provided the true

number of clusters (four neurons) as input to the K-means

algorithm.

PCA is a widely used approach for feature extraction in spike

sorting and has been shown to perform well in comparison to

other feature extraction approaches, such as the discrete wavelet

transform (DWT) and discrete derivatives (DD) [23]. For the

DWT, this applies especially when the wavelet basis is badly tuned

to the data [29] or when feature selection is not straightforward

[6]. DD has been shown to provide similar performance as PCA,

but as DWT, it requires a feature selection step [23]. We used the

first three PCA weights as spike features. Since we assumed spike

sorting to be performed at the external unit, the need for

prioritizing computationally simple spike sorting algorithms was

essentially eliminated.

0.7 Evaluation of Performance
System configurations (combination of a spike detector, system

architecture and compression basis) were compared in terms of

spike reconstruction accuracy and spike sorting accuracy. To

quantify spike reconstruction accuracy, we used a waveform

similarity measure similar to the one employed in [30]. The

reconstruction accuracy was first calculated for each reconstructed

spike as the maximum value of the cross-correlation function

between the spike and the true mean spike for the neuron in

question and the mean reconstruction accuracy across all spikes in

a given recording, cmean, was reported. Overall spike sorting

accuracy, PID, for a given case was estimated in the same way as

described in [17], i.e. in terms of the total percentage of spikes that

were identified correctly.

To be able to compare the relative overall performances of the

system configurations, we introduced a score, ranging from zero to

one, given by

score~cmean
:PID: ð10Þ

The effective minimum number of compression coefficients in

each case was then taken as the lowest number of coefficients that

provided a score that was at maximum 0.01 lower than the

maximum score in each case. Prior to calculating the score, the

spike reconstruction and sorting accuracies were interpolated with

cubic spline interpolation.

In the first part of the analysis, we selected the channel

corresponding to the electrode site (x,y,z)~(0,0,0) in each of the

test recordings (high, medium and low SNR) and quantified

performance in terms of the measures described above for all

combinations of spike detectors, architectures and compression

bases.

In the second part of the analysis, we focused on the fixed 2 basis

and estimated performance in spike sorting and reconstruction at

all electrode sites for each test recording, using the ABS detector

with architecture 3 and the NEO detector with architecture 1.

These detector-architecture combinations were chosen due to

their simplicity and their good performances according to the first

part of the analysis. We also included NEO detection with

architecture 0 (no compression) as a reference.

Figure 3 illustrates the procedure of evaluating performance

when compressing spikes recorded at electrode site

(x,y,z)~(0,0,0) in the high SNR recording for ABS detection,

the fixed 2 basis and architecture 3. The spikes were aligned at the

ABS detection threshold to simulate spike detection jitter, aligned

at the maximum absolute value of the detected peak/valley,

compressed using 8 compression coefficients of the fixed 2 basis,

reconstructed and sorted with PCA and K-means. The alignment

was set to have the detected peak aligned with the peak of the first

compression basis waveform. The upper panel shows detected and

reconstructed spike waveforms (indicates cmean and the lower panel

shows the first three PCA features plotted against each other for

reconstructed spikes, color-coded according to their true and

assigned (by K-means) identities (indicates PID).

0.8 Computational Complexity on the Implant
To evaluate the system configurations considered in the second

part of the analysis in terms of computational complexity, we used

similar complexity measures as those employed in [23], where one

operation was defined as a one-bit addition. Subtraction was

assumed to involve the same number of operations as addition and

multiplication and division were assumed to involve ten times as

many operations as addition. We assumed a wordlength of 10 bits

and a sampling rate of 25 kHz, both of which are within

reasonable limits for successful spike detection and spike sorting

[6]. Computational complexity was only considered for the cases

studied in the second part of the performance estimation (see

previous section).

Results and Discussion

0.9 First Part: All Architectures, Detectors and
Compression Bases

Figure 5 shows spike reconstruction and sorting accuracies as

functions of the number of compression coefficients for all system

configurations at high, medium and low SNR (first step of

performance estimation procedure, see Section 0.7) for the

electrode position (x,y,z)~(0,0,0).

Spike reconstruction accuracy did not vary noticeably with the

choice of architecture, but it did vary significantly with SNR and

the choice of compression basis. For a given compression basis, the

choice of spike detector did not seem to influence spike

reconstruction accuracy. The highest reconstruction accuracy

was consistently obtained with the optimal and fixed 1 bases, which

was not surprising given that those bases were directly mathemat-

ically related to the spike waveforms being compressed. The fixed 2

basis performed slightly worse at a low number of compression

coefficients, or by an accuracy of approximately 0.025 at four

coefficients. At eight coefficients, there was no visible difference

between the fixed 2 and the other two SVD based bases. This

indicates that in terms of spike reconstruction, the fixed 2

compression basis is a feasible choice of basis. The downsampling

and Haar bases consistently required a larger number of

compression coefficients (16 and 32 respectively) to achieve similar

spike reconstruction accuracy as the other three bases. This is also

in agreement with our expectation since the most significant

transform coefficients of those two bases are not necessarily

concentrated at the lower end of the coefficient spectra, as is the

case with the SVD based bases, and in order to minimize the

computational effort put on selecting compression coefficients, the
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Figure 5. Spike reconstruction (upper panel) and spike sorting (lower panel) as functions of the number of compression
coefficients at high, medium and low signal-to-noise ratio (SNR). The columns correspond to the architecture studied (architecture 0 to
architecture 3) and each diagram shows the accuracy for each combination of spike detectors and compression bases.
doi:10.1371/journal.pone.0093779.g005
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first K coefficients were selected. For the optimal, fixed 1 and fixed 2

bases, the reconstruction accuracy was in fact higher than that of

the reference case (architecture 0, no compression) and was

lowered when adding compression coefficients the decrease being

the most significant for the optimal basis. This is explained by the

fact that reconstruction accuracy was measured by the correlation

between reconstructed waveforms and the true mean (noiseless)

waveform in each case. Thus, adding compression coefficients

added noise to the reconstructed waveform, thereby decreasing the

measured reconstruction accuracy.

Spike sorting accuracy was sensitive to all variables, i.e. the

choice of architecture, spike detector, compression basis and

number of compression coefficients. The sensitivity to the choice

of architecture and spike detector is explained by how those

components differ in terms of spike alignment, which is known to

be important for the performance in spike sorting [2].

The choice of compression basis and the number of compres-

sion coefficients did not seem to have as much impact on spike

sorting accuracy as on spike reconstruction accuracy, indicating

that although distorted by the compression, spikes can still be

sorted successfully, given the appropriate choice of architecture,

spike detector and spike sorting algorithm. In general, the SVD

based bases (optimal, fixed 1 and fixed 2) required a smaller number

of compression coefficients (two to four) to achieve maximal spike

sorting accuracy. The downsampling and Haar bases required

approximately 8 compression coefficients for maximum perfor-

mance.

For architecture 1, spike sorting accuracy was mostly influenced

by the choice of spike detector, the NEO detector generally

resulting in better performance. The difference was as high as 20%

at high SNR, but insignificant at low SNR. This indicates that the

use of the NEO detector reduces the need for a separate spike

alignment step prior to spike sorting. However, the decreasing

difference with decreased SNR indicates that this attractive

property of the NEO detector only applies at high SNR

conditions.

By moving to architecture 2, and thereby introducing alignment

after externally reconstructing the spikes, the influence of the

choice of spike detector became less obvious. For instance, the

Haar basis consistently performed the worst (for both detectors)

but for all other bases, the choice of detector did not seem to

influence spike sorting accuracy. For the fixed 2 basis, the

dependence of the number of compression coefficients and spike

detector was somewhat inconsistent. At high and low SNR and

with the ABS detector, it performed similarly to the other two

SVD based bases and the downsampling basis, but at medium

SNR, it required as many as 16 compression coefficients to achieve

maximum performance.

For architecture 3, where spike alignment is introduced prior to

spike compression, the performances became more consistent and

the choices of spike detector and compression basis became less

significant. The independence of spike detector choice is explained

by the fact that after alignment, the spikes extracted by the two

detectors are essentially identical.

Note that for architecture 3, the spike reconstruction accuracy

for the downsampling basis is generally higher than that of the Haar

basis, but the opposite is true for spike sorting accuracy. Although

this may seem counterintuitive, it can be explained in terms of the

characteristic nature of the two transforms. In downsampling,

compression is obtained by discarding waveform samples and in

reconstruction, the remaining samples are interpolated and

smoothed, which effectively ’’erases’’ detailed waveform landmarks

that may prove essential for spike sorting, where minor differences

between spikes coming from different neurons are essential for

performance. However, the waveforms maintain their overall

shapes, resulting in high correlation with the true mean spike

waveforms and therefore a high measured reconstruction accura-

cy. In the wavelet transform, on the other hand, the waveform is

distorted by the compression, making it significantly different from

the mean spike waveform, but the details may be conserved in the

transform coefficients, resulting in less impact on spike sorting

accuracy.

The upper part of Figure 6 shows the maximum achievable

scores and the minimum number of compression coefficients for

all system configurations. The score obtained for uncompressed

spikes is shown by the dotted line for comparison. Each ’’cloud’’

indicates the range of performances covered by the different

combinations of system architecture and spike detector for the

different compression bases. For instance, at high SNR, the Haar

basis (violet cloud) generally required the largest number of

compression coefficients, and the selection of architecture and

spike detector was significant for the maximum achievable

performance at high SNR. Some of the configurations (those

including architecture 3) reached similar performance as when no

compression was performed, but at the cost of transmitting more

than 16 compression coefficients. The fixed 2 basis (red cloud), on

the other hand, consistently required a significantly lower number

of compression coefficients and the maximum achievable score

was less sensitive to the choice of architecture and spike detector.

The lower part of Figure 6 shows a magnified part of the upper

panels, focusing on the fixed 2 basis. The two cases of special

interest are highlighted with enlarged symbols, i.e. NEO detection

with architecture 1 and ABS detection with architecture 3. At high

SNR, both configurations performed better than the reference

case (no compression), which can be explained by the noise

reduction that is introduced with the compression. As SNR

decreases, NEO detection with architecture 1 fell below the

reference case in performance, while the performance of ABS

detection with architecture 3 was sustained. ABS detection with

architecture 3 required the same or smaller number of compres-

sion coefficients as/than NEO with architecture 1. Note that the

score axis is kept at a fixed scale for the different SNRs, but is

centered at the score of the reference case (no compression). These

observations are the reason for focusing on these cases in more

detail in the second part of the analysis.

0.10 Second Part: NEO and Fixed 2 with Architecture 1
and ABS and Fixed 2 with Architecture 3

Figure 7 shows the distributions of accuracies in spike

reconstruction and spike sorting for NEO detection with

architecture 0 (no compression, reference case), NEO detection

with architecture 1 and compression with the fixed 2 basis and ABS

detection with architecture 3 and compression with the fixed 2 basis

at high, medium and low SNR, over the recording electrode sites.

Significant difference (p~0:05) between cases is indicated with

stars and brackets. As discussed previously, these cases were

selected for further investigation due to their good performances

and requirement for few compression coefficients according to the

first part of the analysis (see previous section).

In general, a decreased SNR led to a decrease in spike

reconstruction accuracy. At a given noise level, spike reconstruc-

tion accuracy was generally enhanced by compression when the

number of compression coefficients was at least four. This is due to

the noise reduction introduced by transform coding with SVD

based compression bases. Note however, that the spike detection

performance generally decreases with decreased SNR [6,23] so

this is not an indication that low SNR is beneficial – but rather
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that given a low SNR, compression is an efficient way of reducing

noise in the detected spike waveforms.

As expected, increasing the number of compression coefficients

increased the reconstruction accuracy for both configurations.

Both configurations required at least four compression coefficients

for the spike reconstruction accuracy to be equal to or higher than

that of the reference configuration. In the few cases (medium SNR

– 4 dimensions, low SNR – 2 dimensions, low SNR – 4

dimensions) where there was a significant difference between the

spike reconstruction accuracies of the two configurations involving

compression, ABS detection with architecture 3 performed better.

Also as expected, spike sorting accuracy generally decreased

with a decreased SNR and tended to decrease with a decreased

number of compression coefficients. At two compression coeffi-

cients, both compression configurations provided spike sorting

accuracy that was significantly lower than that obtained in the

reference case. At four and eight coefficients at high and medium

SNR, all configurations performed equally, but at low SNR NEO

detection with architecture 1 provided significantly lower perfor-

mance than both the reference architecture and ABS detection

with architecture 3. Even at low SNR, ABS detection with

architecture 3 was close in performance to the reference case at

four and eight compression coefficients.

The computational complexity at the implant for NEO with

architecture 1 and ABS with architecture 3 was 5.5 MOPS/spike/

dimension and 0.51 MOPS/spike/dimension respectively. The

large (factor 10) difference between the complexities was due to the

increased complexity introduced by performing spike detection

with NEO.

Conclusions

In the present paper, we have presented our analysis of various

combinations of spike detectors, compression architectures and

compression bases with regard to performance in spike recon-

struction and spike sorting. The analysis has been carried out at

various signal to noise ratios and a reference case was included in

which no compression was performed. Due to the inherent

constraints of wireless BMIs, which require the minimization of

both computational cost and data rate, we have focused on non-

adaptive implant designs, i.e. designs where compression is

performed with fixed compression bases and a fixed set of

compression coefficients is transmitted. This relieves the implant of

the computational burden of finding and maintaining an optimal

compression basis. For the same reasons, we have not considered

methods for dealing with variations in spike shape caused by

overlapping spikes, bursting or electrode drift. For the bursting

and electrode drift cases however, we reason that the changes in

spike shape should not significantly influence performance from

the point of view of compression with a fixed generic compression

basis. This reasoning is assumed to hold as long as the variation in

spike shape caused by bursting or electrode drift is within the

Figure 6. Performance scores and minimum number of compression coefficients needed for all system configurations analyzed. The
’’clouds’’ indicate the area covered by the different compression bases and the icons within the clouds represent the different combinations of spike
detector and system architecture for each basis. The upper panels show the entire range of compression coefficients and scores and all
configurations. The lower panels focus on the area around the cases where the fixed 2 compression basis is used.
doi:10.1371/journal.pone.0093779.g006
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range of spike shapes covered by the spike library used to derive

the fixed generic compression basis.

The first part of the analysis indicates that given the appropriate

choice of spike detector and system architecture, spike waveform

compression with a fixed basis derived by singular value

decomposition (SVD) of a set of empirically obtained spike

waveforms is beneficial compared to using a generic basis such as

the Haar wavelet basis or downsampling when no measures are

taken to optimize coefficient selection. Also, the fixed 2 basis

provides close to optimal performance, given that at least four

compression coefficients are transmitted. This is due to the high

degree of sparsification (dimensionality reduction) and the

compact distribution of significant coefficients in the lower end

of the coefficient spectrum, which facilitates a high degree of

compression without the need for searching for the most

significant coefficients (the first K coefficients are transmitted). In

order to maximize performance in spike sorting, spike alignment is

needed and can be established either by waveform-shifting or by

spike detection with the nonlinear energy operator (NEO).

However, this benefit of the NEO detector is only present at high

SNR and the NEO detector is an order of magnitude more

complex than the absolute value threshold detector (ABS). From

the point of view of spike reconstruction, the choice of architecture

and spike detector are of minor importance, while the choice of a

compression basis and dimensionality are critical – the SVD based

bases being the most beneficial in the absence of optimization

procedures for compression coefficient selection for the other

bases.

The second part of this paper focuses on compression with the

fixed 2 basis. Two cases, selected based on the comparison in the

first part, and a reference case in which no compression is

performed, are included. The cases of interest are the NEO

detector with architecture 1 (spike alignment introduced by the

detector) and the ABS detector with architecture 3 (spikes aligned

on the detected peak prior to compression). The results of this part

show that at least four coefficients need to be transmitted in order

for the compression not to significantly degrade performance. Due

to the noise reduction introduced by transform coding with an

SVD based basis, spike reconstruction can be improved by

compression. At high and medium SNR, both compression

architectures perform equally well, but at low SNR, NEO

detection with architecture 1 falls behind.

Considering the results of our analysis and the challenges

involved in designing low-power multichannel wireless BMIs, we

propose a spike compression architecture that consists of absolute

value threshold detection, spike alignment at the implant and

Figure 7. Spike reconstruction accuracy (upper row) and spike sorting accuracy (lower row) for NEO detection with architecture 0
(no compression, reference case), NEO detection with architecture 1 and compression with the fixed 2 basis and ABS detection with
architecture 3 and compression with the fixed 2 basis at high, medium and low SNR. The distributions describe the performance across all
nineteen electrode sites in each case. Median comparison intervals (p~0:05) are marked with triangles and significantly different cases are marked
with a star and a bracket.
doi:10.1371/journal.pone.0093779.g007
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compression with a fixed basis that is derived by SVD from a large

assembly of empirically found spike waveforms, allowing a

straight-forward selection of compression coefficients to transmit.

Such a configuration has been shown to provide spike reconstruc-

tion and sorting accuracies that differ insignificantly from those

obtained when no compression is performed, given that at least

four compression basis coefficients are transmitted per detected

spike waveform.

Transmitting four compression coefficients per detected spike

waveform and assuming 10 bits per sample results in a data rate of

40 bits per transmitted spike waveform, or a factor of 16 times less

than when transmitting the uncompressed spike waveforms

(assuming 25 kHz sampling rate and 2.5 ms spike duration, i.e.

64 samples). In order to simplify these comparisons, we do not

consider overhead data such as timestamps and channel IDs.

Assuming a mean of four neurons per recording channel and a

mean firing rate of 10 spikes per second per neuron, this

corresponds to a mean total data rate of 1.6 kbps, or a 99.8%

reduction compared to when transmitting the raw acquired data.

Assuming a wireless link capacity of 1 Mbps, this would allow the

transmission of spike data from 625 recording channels, or a factor

of 156 times more than when transmitting the raw neural data

(four channels maximum).

Due to the variability in implementation and validation

methods employed in publications within the field, direct

comparisons of the previously reported approaches is not

straight-forward. However, based on the comparison performed

in the present study, we conclude that our proposed architecture

using a fixed generic compression basis derived from spike data is

at least competitive in terms of both compression ratio and

computational complexity. This conclusion is based on the

following: 1) Performance in spike reconstruction and sorting is

not influenced by the compression when transmitting as few as

four compression coefficients, resulting in an excellent compres-

sion ratio. 2) After reconstruction, the spike waveforms are

available at the receiver side. 3) The use of a low-complexity spike

detector in the time domain prior to transform coding lowers the

frequency of transform coding operations. 4) The use of a fixed

compression basis derived from experimentally obtained spike

waveforms eliminates the need for training the compression

architecture and computing transform coefficients that would be

discarded in a thresholding procedure carried out in the transform

domain.
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