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In this paper, we study a regular rooted coloured tree with random labels assigned to its edges, where the
distribution of the label assigned to an edge depends on the colours of its endpoints. We obtain some new
results relevant to this model and also show how our model generalizes many other probabilistic models,
including random walk in random environment on trees, recursive distributional equations and multi-type
branching random walk on R.

Keywords: branching random walks; first-passage percolation; random environment on trees; random walk
in random environment; recursive distributional equations

1. Introduction

Random walks in random environment have been studied for a long time (see Solomon [13]
for such a random walk on Z). One of the most natural extensions of this model is to consider
a random walk in random environment on a tree (see, e.g., Lyons and Pemantle [9]). It turns
out that the question of recurrence vs. transience of the walk is equivalent to the question of
infiniteness vs. finiteness of certain sums of random variables assigned to the edges of the tree.
In [9], it is assumed that all these random variables are i.i.d., which may be a fairly restrictive
condition. Indeed, in the classical setup, the probability of jump from a given vertex v through
a certain edge is set to be equal to the ratio between the value assigned to this edge and the
sum of the values assigned to all the edges adjacent to v. The assumption that these values are
independent results in substantial restrictions on the possible random jump distributions assigned
to vertices, in particular, the symmetry of such a distribution.

Our initial motivation in writing this paper was to overcome this difficulty. Additionally, we
have managed to study the situations where the distribution of values assigned to an edge depends
on its direction and even on the direction of the immediately preceding edge. This has resulted
in the establishment of two phase transitions in the model, which, in turn, is useful for a variety
of applications (not only random walks in random environment, as outlined in Section 5).

Formally, let b ≥ 2 and consider a b-ary regular rooted tree T = Tb with root v0 and vertex
set V (i.e., a tree in which all vertices have degree b + 1, with the exception of the root, which
has degree b). For any two vertices v,u ∈ V, let d(u, v) denote the distance between these two
vertices, that is, the number of edges on the shortest path connecting v and u. Let Vn denote the
set of bn vertices at graph-theoretical distance n from the root and write |v| = d(v, v0) = n when
v ∈ Vn. If two vertices v and w are connected by an edge, we write v ∼ w and let �(v) denote
the sequence of vertices of the unique self-avoiding path connecting v to the root.
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With the exception of the root, colour each vertex in one of b distinct colours, from left to
right, such that for every fixed vertex, each of its children has a different colour. For definiteness,
colour the root in any of the b colours. Denote the colour of vertex v by c(v) ∈ {1,2, . . . , b}.

We are given b2 positive-valued random variables of known joint distribution, which we denote
ξ̄ij , i, j = 1,2, . . . , b. Now, to each unoriented edge (u, v) ≡ (v,u) assign a random variable ξuv ,
such that

• for any edge (u, v), where u is the parent of vertex v, we have ξuv
D= ξ̄c(u) c(v);

• for any collection of edges (u1, v1), (u2, v2), . . . , (um, vm) such that ui is the parent of vi

for all i and ui �= uj for all i �= j , the random variables {ξuivi
}mi=1 are independent.

Here and throughout the paper, X
D=Y means that random variables X and Y have the same

distribution. Note that we allow dependence between sibling edges.
For any v ∈ V and any w ∈ �(v), let ξ [w,v] equal the product of the random variables assigned

to the edges of the subpath connecting w to v. By convention, set ξ [v, v] = 1 and also denote
ξ [v] = ξ [v0, v].

In this paper, we will answer the following two questions.

Question 1. When is Y := ∑
v∈V

ξ [v] finite a.s.?

Question 2. Let a > 0. When is Z = Z(a) := card{v ∈ V : ξ [v] > a} finite a.s.?

The answers, of course, depend on the distribution of ξ̄ij ’s and they are presented in Section 2,
with the proofs given in Section 4, while Section 3 contains some auxiliary statements.

The study of the sum Y was a very important ingredient in the analysis carried out in [9]
and it is essential for the investigation of random walks in random environment on trees, edge-
reinforced random walks on trees and some other problems. At the same time, the quantity Z is
relevant to first-passage percolation and branching random walks. Some other relevant models
are also mentioned in [11].

In our paper, we also consider various applications and they are presented in Section 5.

2. Main results

We will first introduce an alternative colouring procedure, which is equivalent to the one de-
scribed above in terms of the questions we ask, yet which has some advantages. Suppose that the
colouring of the tree is done in a different manner than that described above. Namely, it is done
recursively for V1,V2, . . . , as follows. Suppose that the vertices up to level n − 1 are already
coloured. Next, colour the vertices of Vn randomly in such a way that whenever two vertices
v ∈ Vn and u ∈ Vn share a common parent, they must have different colours. The distribution of
the colouring is independent of the previous levels and is uniform, that is, we assign each of the
allowed (b!)bn−1

colourings with equal probability. This process can be extended to infinity, thus
producing the colouring of all vertices v ∈ V.

Again, assign to each edge (u, v) a random variable ζuv such that conditioned on the colouring
of the tree, ζuv satisfies the two conditions on ξuv’s mentioned in the previous section. Similarly,
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compute ζ [w,v]’s and ζ [v]’s. Then, by construction, it is clear (e.g., by using coupling argu-
ments) that for each n, the distribution of the unordered set {ζ [v], v ∈ Vn} is the same as the
distribution of {ξ [v], v ∈ Vn}. Therefore, the answers to the questions above will be the same as
in the original model. At the same time, the new model, which uses randomized colouring, has a
significant advantage, namely that

for any two v,w ∈ Vn, ζ [v] D= ζ [w], (2.1)

though ζ [v] and ζ [w] are, of course, dependent. Thus, we will hereafter only work with the new,
randomly coloured model. The probability P and the expectation E below will be with respect
to the measure generated by a random colouring c = {c(v), v ∈ V} and a random environment
ζ = {ζvw, v,w ∈ V, v ∼ w}.

For s ∈ [0,∞), let

m(s) =

E(ξ̄11)

s . . . E(ξ̄1b)
s

...
. . .

...

E(ξ̄b1)
s . . . E(ξ̄bb)

s




and let ρ(s) be the largest eigenvalue of m(s), which is positive by the Perron–Frobenius theo-
rem, since all elements of the matrix are strictly positive and it is hence irreducible.

We will need the following regularity conditions. Let

D = {
s ∈ R : Eξ̄ s

ij < ∞ ∀i, j ∈ {1,2, . . . , b}}
and suppose that

[0,1] ⊆ D,

0 ∈ Int(D),
(2.2)

E| log ξ̄ij | < ∞ ∀i, j ∈ {1,2, . . . , b},
E|ξ̄ij log ξ̄ij | < ∞ ∀i, j ∈ {1,2, . . . , b}.

We are now ready to present our main results.

Theorem 1. Let Y = ∑
v∈V

ζ [v] and λ1 = infs∈[0,1] ρ(s).

(a) If λ1 < 1, then Y < ∞ a.s.
(b) If λ1 > 1 and the conditions (2.2) in the next section are fulfilled, then Y = ∞ a.s.

Theorem 2. Let x > 0, Z(x) = card{v ∈ V : ζ [v] > x} and λ = infs∈[0,∞) ρ(s). Additionally,
suppose that conditions (2.2) are fulfilled.

(a) If λ < 1, then Z(x) < ∞ a.s.
(b) If λ > 1, then Z(x) = ∞ a.s.



Random environment on coloured trees 969

Note that we do not attempt to analyze here the situation in the critical case λ = 1 (resp.
λ1 = 1) The reason is that unlike the one-dimensional situation, the analysis becomes much
more difficult here and we could not find any reasonable and interesting conditions which would
ensure infiniteness of Z(x) or Y.

3. Large deviations results

Let v ∈ Vn and suppose that �(v) = {v0, v1, . . . , vn−1, vn = v}. The random variables c(vi), i =
1,2, . . . , n, are then i.i.d. random variables with uniform distribution on the set {1,2, . . . , b}.

Lemma 1. Let Sn = ∑n
i=1 log(ζvi−1vi

) and

kn(s) = (E(esSn))1/n =
(

E

n∏
i=1

ζ s
vi−1vi

)1/n

.

Suppose that conditions (2.2) are fulfilled. Then,

(a) k(s) = lim kn(s) ∈ [0,∞] exists for all s;
(b) �(s) = logρ(s) − logb = log k(s) ∈ (−∞,+∞] is convex;
(c) the rate function �∗(z) = sups∈D(sz − �(s)), z ∈ R, is convex, lower semicontinuous

and differentiable in Int(D). Moreover,

�∗(z) =
{

s0(z)z − �(s0(z)), if z ≥ �′(0),
0, if z ≤ �′(0),

where s0(z) is the solution of the equation z − �′(s) = 0;
(d) for all a > 0,

lim
n→∞

1

n
log P

(
Sn

n
≥ loga

)
= −�∗(loga).

Remark 1. The statement of Lemma 1 holds simultaneously for all possible colourings of the
root.

Proof of Lemma 1. First, for any s1, s2 ∈ D with s1 < s2, the segment [s1, s2] belongs to D,
hence for any α ∈ (0,1), we have kn

n(αs1 + (1 − α)s2) = E(exp(αs1SN)) exp((1 − α)s2SN)) ≤
[E(exp(s1SN))]α[E(exp(s2SN))]1−α from which logarithmic convexity of kn follows.
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Suppose c(v0) = α. Then, kn(s) = 1
b
(eT

α m(s)ne)1/n, where

eα =




0
...

0
1
0
...

0




← αth position, e =




1
1
...

1


 . (3.3)

Now, m(s) = ρ1(s)P1 + ρ2(s)P2 + . . . , where (ρi) are the eigenvalues of m(s), ordered so that
ρ1 > |ρ2| ≥ |ρ3| ≥ . . . , and Pi denotes the projection on the ith eigenspace corresponding to
the ith eigenvalue ρi . Notice that ρ ≡ ρ1 > 0, the image space of P1 is 1-dimensional and since
m(s)ij > 0 for all i, j , we have

(P1e)i > 0 for all i and |ρ2| < ρ1.

Hence, k(s) = 1
b
ρ(s) ∈ (0,∞] for all s and is log-convex, as the limit of a log-convex function

is log-convex.
Finally, (d) follows from the Gärtner–Ellis theorem (see, e.g., Lemma V.4, page 53 in den

Hollander [6]) under conditions (2.2). �

Note that we can rewrite �∗ as

�∗(z) = sup
s≥0

[sz − log(ρ(s)/b)]

= − log inf
s≥0

ρ(s)e−sz

b
. (3.4)

Recall that

λ = inf
s≥0

ρ(s),

λ1 = inf
s∈[0,1]ρ(s) ≥ λ.

Corollary 1. For any λ̃ < λ1 and α ∈ {1, . . . , b}, there exists a y ∈ (0,1] and a positive integer
n such that for any v,u ∈ V such that u ∈ �(v), c(u) = α and d(u, v) = n, where

P(ζ [u,v] > yn) ≥ λ̃

(by)n
.
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Proof. Lemma 1 yields that for any small ε > 0 and all y > 0, there exists an n0 = n0(ε, y) such
that, for every n ≥ n0,

enε
P(Sn/n ≥ logy) ≥ exp{−n�∗(logy)}

= exp

{
n inf

s≥0
[log(ρ(s)/b) − s logy]

}

=
(

inf
s≥0

ρ(s)y−s

b

)n

= 1

(yb)n

(
inf
s≥0

ρ(s)y1−s

)n

,

whence, for any v,u ∈ V such that u ∈ �(v) and |v| = |u| + n,

P(ζ [u,v] ≥ yn) ≥
[

e−ε

yb
× inf

s≥0
ρ(s)y1−s

]n

.

Now, since logρ(s) is convex, it follows from the proof of the lemma on page 129 in Lyons and
Pemantle [9] that

max
0<y≤1

inf
s≥0

ρ(s)y1−s = min
0≤s≤1

ρ(s) = λ1.

Consequently, by choosing y ∈ (0,1] at the point where this maximum is achieved, and ε > 0
very small, we ensure that for all large n,

P(ζ [u,v] ≥ yn) ≥ λ̃

(yb)n
. (3.5)

�

4. Proofs of the main theorems

Proof of Theorem 1. (a) Suppose that λ1 < 1. We can then fix an s ∈ (0,1) such that ρ(s) < 1.
Suppose that the root has colour α. Then,

∑
v∈Vn

ζ s[v] =
∑

�(v)=(v0,...,vn): v=vn∈Vn

ζ s
v0v1

ζ s
v1v2

. . . ζ s
vn−1vn

and hence, by construction of the colouring of the tree, we have

E

( ∑
v∈Vn

ζ s[v]
)

=
∑

�(v)=(v0,...,vn): v=vn∈Vn

mαc(v1)(s)mc(v1)c(v2)(s) · · ·mc(vn−1)c(vn)(s),

= eT
α mn(s)e,
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where eα and e are defined in (3.3). Now, since ρ(s) < 1,
∑∞

n=1 mn(s) < ∞, therefore, by Fu-
bini’s theorem, E(

∑
v ζ s[v]) < ∞ and hence,

∑
v ζ s[v] is finite a.s. This implies that ζ [v] ≥ 1

for only finitely many v’s and therefore, there exists an N such that whenever v /∈ V1 ∪ · · · ∪ VN ,
it follows that ζ [v] < 1, hence ζ s[v] > ζ [v]. Consequently,

Y =
N∑

i=1

(∑
v∈Vi

ζ [v]
)

+
∞∑

i=N+1

(∑
v∈Vi

ζ [v]
)

<

N∑
i=1

(∑
v∈Vi

ζ [v]
)

+
∞∑

i=N+1

(∑
v∈Vi

ζ s[v]
)

< ∞,

where the last inequality follows from the fact that
∑

v ζ s[v] is finite a.s.
(b) Since λ1 > 1, by Corollary 1, there exist an ε > 0, 0 < y ≤ 1 and an n such that for any

v,u ∈ V satisfying u ∈ �(v) and |v| = |u| + n,

P(L[u,v]) ≥ 1 + ε

(by)n
=: q,

where

L[u,v] := {ζ [u,v] ≥ yn}.
Let us construct an embedded branching process, with members of generation j denoted Mj ,

as follows. The root of the tree v0 is the sole member of generation 0, that is, M0 = {v0}. For
j ≥ 1, let

Mj = {
u ∈ Vjn :∃w ∈ Mj−1 such that V(j−1)n ∩ �(u) = {w}

(4.6)
and L[w,u] occurs

}
.

The process |Mj | can be minorized by an independent branching process with uniformly
bounded number of descendants whose average is equal to

µ := bn × q = (1 + ε)y−n > 1,

which is a supercritical process surviving with a positive probability, say, pS > 0. Moreover,{
lim

j→∞
|Mj |
µj

> 0

}
= {the process survives} a.s.

by the Kesten–Stigum theorem (see, e.g., [1], page 192). This, in turn, implies that there is a
positive δ > 0 such that, with probability at least pS/2 > 0 for all j sufficiently large, we have
|Mj | ≥ δµj . Consequently, since for each v ∈ Mj , we have ζ [v] ≥ (yn)j , it follows that

Y ≥
∑

v∈Mj

ζ [v] ≥ δµj (yn)j = δ(1 + ε)j → ∞ as j → ∞,
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with positive probability. Now, the set {Y = ∞} is a tail event and the random variables at dif-
ferent generations are independent, hence its probability satisfies the 0–1 law and we obtain the
required result. �

Proof of Theorem 2. (a) Recall that for any v ∈ Vn, the quantity pn = P(ζ [v] > x) does not
depend on v and observe that

EZ(x) =
∞∑

n=1

bnpn.

Since λ < 1, from (3.4), we have that for a small z < 0 and a very small ε > 0,

−�∗(z) < log
1 − 2ε

b
.

Set y = ez < 1 and apply Lemma 1(d) to obtain that for all large n,

1

n
log P(ζ [v] ≥ yn) ≤ log

1 − ε

b
.

This yields

bn
P(ζ [v] ≥ yn) ≤ (1 − ε)n

and since x > 0 and y < 1 implies that pn = P(ξ [v] > x) ≤ P(ξ [v] ≥ yn) for large n, we have
EZ(x) < ∞, so Z(x) < ∞ a.s.

(b) Now, since λ > 1, from (3.4), we have that for a small z > 0 and a very small ε > 0,

−�∗(z) > log
1 + 2ε

b
.

As before, we set y = ez > 1 and apply Lemma 1(d) to obtain that there exists an n, which we
shall now fix, such that

1

n
log P(ζ [v] ≥ yn) ≥ log

1 + ε

b
�⇒ bn

P(ζ [v] ≥ yn) ≥ (1 + ε)n. (4.7)

Next, we construct a branching process that is almost identical to the one constructed in the proof
of Theorem 1. Again, provided that u ∈ �(v) and |v| − |u| = n, we introduce the event

L[u,v] := {ζ [u,v] ≥ yn}, (4.8)

whose probability is at least (1 + ε)n/bn, according to (4.7). Let the root of the tree v0 be the
unique member of generation 0, that is, M0 = {v0}. Similarly to the previous proof, for j ≥ 1,
let Mj be defined by (4.6). Then, the process |Mj | can again be minorized by a supercritical
independent branching process, with average number of descendants equal to µ := (1 + ε)n > 1,
which survives with positive probability pS > 0. On the event

∑∞
j=1 |Mj | = ∞ of survival,
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for any x > 0, there exists j0 = j0(x) such that for all j ≥ j0, we have v ∈ Mj , implying that
ζ [v] ≥ ynj > x. Consequently,

P
(
Z(x) = ∞ for all x > 0

) ≥ pS > 0.

Taking into account the fact that the event {Z(x) = ∞ for all x > 0} is a tail event and variables
at different generations are independent, we conclude that for any x > 0,

P
(
Z(x) = ∞) = 1.

�

5. Applications

Here, we show how Theorems 1 and 2 can be applied to obtain some of the already known facts,
as well as to establish new results in various applications of probability theory. Throughout this
section, we will assume that the regularity conditions (2.2) are satisfied.

5.1. Random walk in random environment

Let u be a vertex of the coloured tree T . For every v ∼ u, define puv ∈ (0,1) such that∑
v: v∼u puv = 1. For definiteness, denote the parent of u by u∗ and the children of u by

u1, u2, . . . , ub (also, when u is the root v0 of the tree, set u∗ ≡ u). Now, suppose that for each u,

p(u) = (puu∗ ,puu1,puu2, . . . , puub) ∈ (0,1)b+1

is a (b+1)-dimensional random variable. Obviously, the set of components of p(u) is dependent,
since they must sum to 1.

Suppose that the distribution of p(u) depends only on the colour c(u) of the vertex u. Addi-
tionally, suppose that the random variables {p(u),u ∈ V} are independent.

Now, define a random walk X(k) in a random environment on the coloured tree T by letting
X(0) = v0 and

P
(
X(k + 1) = v | X(k) = u

) =
{

puv, if u ∼ v,
0, otherwise,

where we set v0 ∼ v∗
0 = v0. This model is similar to that of Lyons and Pemantle [9]; however, we

do not require as much independence or symmetry for the distribution of the jumps to children as
is required in [9]. Additionally, we allow jump distributions to depend on the type of the vertex.
On the other hand, in [9], more general trees are considered, while we restrict ourselves to regular
trees.

We want to establish when the walk in the random environment is transient (resp. recurrent).
For i = 1,2, . . . , b, let

(ξ̄i1, ξ̄i2, . . . , ξ̄ib)
D=

(
puu1

puu∗
,
puu2

puu∗
, . . . ,

puub

puu∗

)
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whenever c(u) = i. Also, let m(s), ρ(s) and λ1 be the same as defined in Section 2.

Proposition 1. The random walk in random environment described above is a.s. positive recur-
rent when λ1 < 1 and a.s. transient when λ1 > 1.

Proof. We will use the standard electric network representation of the random walk by replacing
each edge of the coloured tree T with a resistor, such that their conductances satisfy the formula

Cuu∗

Cuui

= puu∗

puui

,

where, again, u1, . . . , ub are the children of vertex u and u∗ is its parent (see [7]). These equations
are satisfied when, for any u ∈ Vn, n ≥ 1, with �(u) = {u0 ≡ v0, u1, u2, . . . , un−1, un ≡ u}, we
have

Cun−1un =
n−1∏
i=0

puiui+1

puiui−1

.

Note that when ui = v0, we need to set puiui−1 = pv0v0 .
Now, to each edge (u∗, u) where u∗ is the parent of u, assign a random variable with dis-

tribution ξ̄c(u∗)c(u). Then, Cun−1un is equal to the product of the random variables assigned
to edges of the path connecting v0 to un = u. Theorem 1 implies that whenever λ1 < 1,
Y = C := ∑

x,y Cx,y < ∞ a.s. and then there exists a stationary probability measure π such
that πx = Cx/C, where

Cx =
∑

y: y∼x

Cxy.

Therefore, the random walk is positive recurrent.
The reverse statement (concerning transience for λ1 > 1) follows from a slight modification

of the proof of part (i) of Theorem 1 of [9], effectively using the estimate (3.5), since transience
is equivalent to establishing finiteness of the effective resistance Reff. �

Example. Consider a random walk in a random environment on a coloured binary tree (b = 2).
Suppose that from a vertex of type 1, the walk always goes down with probability 1

2 and up with
probabilities 1

4 to either of its children. From a vertex of type 2, the walk goes up and right with
probability 1

4 , down with probability 3
4ηv and up and left with probability 3

4 (1 − ηv), where ηv

are i.i.d. random variables distributed uniformly on [h,1], h ∈ (0,1). Then,

m(s) =
( 2−s 2−s

E

(
1 − η

η

)s

E

(
1

3η

)s

)
.

It is easy to verify that if ρ(s) is the largest eigenvalue of m(s), then λ1 = infs∈[0,1] ρ(s) is
smaller than 1 whenever h > hcr = 0.417 . . . , thus the walk is positive recurrent for almost
every environment when h > hcr and transient for almost every environment when h < hcr .
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5.2. Recursive distributional equations

It turns out that our construction on randomly coloured trees may be used to answer the question
about the existence of solutions of certain functional equations, which will be described below.

Let � be the b × b matrix of random variables ξ̄ij , i, j = 1,2, . . . , b. We want to find a
b-dimensional random vector Y = (Y1, . . . , Yb)

T , independent of �, such that

1 +
b∑

j=1

ξ̄ij Yj
D=Yi for i = 1,2, . . . , b, (5.9)

which can be expressed in vector form as

e + �Y
D=Y,

where e has been defined by (3.3). Equation (5.9) is a special case of a more general recursive
distributional equation which have been widely studied; for example, see [10], where one can
find sufficient conditions for the existence of its solution (Theorem 4.1). At the same time, for
equation (5.9), we essentially obtain a criterion for this existence.

Note that it will be essential that the tree is coloured; otherwise, we would have been able to
solve (5.9) only in the one-dimensional case b = 1.

Proposition 2. Let Y be the quantity defined in Question 1 of Section 1. Then, equation (5.9) has
a solution if and only if Y < ∞ a.s.

Proof. First, suppose that Y < ∞ a.s. For each i = 1, . . . , b, let Yi = ∑
v∈V

ζ [v] when c(v0) = i

and suppose that different Yi ’s are constructed using independent random variables. By assump-
tion, each Yi < ∞ a.s. It is now easy to see that 1 +∑b

i=1 ξ̄ij Yj indeed has the distribution of Yi ,
hence Y = (Y1, . . . , Yb)

T is a solution of (5.9).
Second, suppose that Y = ∞ a.s. and suppose that there exists a solution Ŷ = (Y1, Y2, . . . , Yn)

T

of equation (5.9). Construct a b-ary tree with c(v0) = 1 and assigned random variables ξ̄ ’s, as
described in the Introduction. Also, for each n and each v ∈ Vn, let Q(v) be an independent
random variable with the distribution of Yc(v) and denote

Y(<n)
1 =

∑
v∈V0∪···∪Vn−1

ζ [v],

Ỹ(<n)
1 =

∑
v∈V0∪···∪Vn−1

ζ [v] +
∑
v∈Vn

ζ [v]Q(v),

for n = 1,2, . . . . Since Ŷ is a solution to the problem, it follows by induction on n that Ỹ(<n)
1

must have the distribution of Y1 and this is true for all n. Now, observe that Y(<n)
1 ≤ Ỹ(<n)

1 . At

the same time, limn→∞ Y(<n)
1 = Y = ∞ a.s., by assumption. Hence, Ỹ(<n)

1 , which equals to Y1 in
distribution, is larger than a random variable equal to ∞ a.s., which is impossible. �
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Let λ1 be as defined in Section 2. Then, Theorem 1 yields the following.

Corollary 2. If λ1 < 1, then there exists a solution to equation (5.9). In contrast, if λ1 > 1, then
equation (5.9) has no solution.

5.3. First-passage percolation

Here, we show how our techniques can extend the results of the first-passage percolation theory
to the situation where one allows negative passage times. For each edge (u, v) of the coloured
tree T , where u is the parent of v, let τuv denote the passage time from vertex u to vertex v. Allow
these times to be also negative, for example, indicating a “speeding up” of a walker. Suppose, for
simplicity, that the τuv’s are all independent, while their distribution depends on the colour of the
endpoints, thus being one of the b2 possible types. Let

R(t) =
{

u ∈ V :
∑

(v,w)∈�(u)

τvw ≤ t

}

be the set of vertices of the tree which are reachable in time t . The primary question is whether
R(t) is finite, since it can easily be infinite, due to the negative passage times.

To answer this, for all u and v such that u ∼ v and u is the parent of v, set ξ̄c(u)c(v)
D= e−τuv .

The following statement is straightforward.

Proposition 3. R(t) is finite a.s. if and only if the quantity Z(e−t ) defined in Question 2 of
Section 1 is finite a.s.

5.4. Multi-type branching random walks on R
1

The literature on branching random walks is fairly extensive and a similar model to the one
which follows was considered, for example, in [4], although somewhat different questions were
investigated in that paper. A very similar model was also considered in Biggins [2,3].

Suppose that we are given b2 positive-valued random variables ηij , i, j = 1,2, . . . , b, with
known joint distribution. Consider a process on R which starts with a single particle of type
i ∈ {1,2, . . . , b} located at point X(0) = 0 ∈ R. The particle splits into b new particles, one
of each type 1,2, . . . , b. If the positions of the new particles of types 1,2, . . . , b are denoted
X

(1)
1 ,X

(1)
2 , . . . ,X

(1)
b , respectively, then the distributions of jumps X

(1)
j − X(0) are independent

for different j ’s and have the distribution of ηij . After this, each of the new particles behaves in
the same way as the original particle, so by time t ∈ {1,2, . . .}, we will have exactly bt particles
X

(t)
1 , . . . ,X

(t)

bt located somewhere on R.
Set ξ̄ij = exp(−ηij ), i, j = 1, . . . , b. The following statement is then obvious.
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Proposition 4. Suppose that Z(1), as defined in Question 2 of Section 1, is finite a.s. All particles
will then eventually be on the positive semi-axis a.s., that is,

P

(
∃N : ∀t ≥ N min

i∈{1,2,...,bt }
X

(t)
i ≥ 0

)
= 1.

In fact, we can strengthen this result. Let

µt = min
i=1,...,bt

X
(t)
i

be the minimum displacement of our multi-type branching random walk (see, e.g., [5] and refer-
ences therein). As before, set ξ̄ij = exp(−ηij ), i, j = 1, . . . , b, and let ρ(s) be the largest eigen-
value of

m(s) =

Ee−sη11 . . . Ee−sη1b

...
. . .

...

Ee−sηb1 . . . Ee−sηbb


 .

For x ∈ R, let

λ(x) = inf
s≥0

esxρ(s) (5.10)

and observe that λ(x) is non-decreasing in x. Note that if the joint distribution of ηij ’s is not
degenerate, then ρ(s) is strictly log-convex in s and therefore, there exists a unique x0 such that
λ(x0) = 1.

Proposition 5. Under the non-degeneracy condition above,

lim
t→∞

µt

t
= x0 a.s.,

where x0 is the unique solution of the equation λ(x0) = 1.

Proof. For each x ∈ R, we can define a new multi-type branching random walk with step sizes
equal to η

(x)
ij = ηij − x for every i and j . We can then naturally couple the new walk X

(t; x)
k with

the original one by setting X
(t; x)
k = X

(t)
k − tx. Observe that the largest eigenvalue ρ(x)(s) of

the matrix m(x)(s) for this modified walk, whose entries are (Ee−s(ηij −x))bi,j=1, equals esxρ(s),
hence the value of λ needed for Theorem 2 is given by (5.10).

Suppose x < x0. Then, λ(x) < 1, whence, by Theorem 2, Z(1) < ∞ a.s. and, by Proposition 4,

P(µt − tx ≥ 0 for all sufficiently large t) = 1. (5.11)

To prove the complementary statement, we need to improve slightly the proof of part (b) of
Theorem 2. First, choose x > x0 yielding λ(x) > 1 and replace the event (4.8) by

L̃[u,v] := {ζ [u,v] ≥ yn, and ζ [u,w] > ν for all w ∈ �(v) with |w| > |u|}.
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One can choose the constants ν > 0 and ε > 0 sufficiently small that P(L̃[u,v]) > (1 + ε)n/bn

still holds. We can then construct sets Mj defined by (4.6) with L[u,v] replaced by L̃[u,v].
Let j0 be sufficiently large that ν ynj0 > 1 (recall that y > 1). On the event of survival of the

process |Mj |, for each j , we have Mj �= ∅ and Mj+1 �= ∅, hence there exist a u ∈ Mj ⊆ Vnj and
a v ∈ Mj+1 ⊆ Vn(j+1) such that u ∈ �(v) and L̃[u,v] occurs. Consequently, for every t ≥ nj0
such that nj ≤ t < n(j +1), there is a w ∈ Vt such that w ∈ �(v), whence ζ [w] = ζ [u,w] ζ [u] ≥
νynj > 1. On the other hand, ζ [w] > 1 implies that µt − tx < 0. Therefore, we have proved that
the event

{µt − tx < 0 for all sufficiently large t} (5.12)

has positive probability, since the branching process minorizing |Mj | is supercritical. However,
the event (5.12) is a tail event, so it must have probability 1. Together with (5.11), this completes
the proof of Proposition 5. �

5.5. Number theory: 5x + 1 Collatz-type problem

Fix an odd positive integer q and define the following map:

Tq :x →
{

x/2, if x is even,
qx + 1, if x is odd.

The famous, yet unresolved, Collatz problem (see, e.g., [8] for hundreds of references to pa-
pers and short descriptions of their content) states that if one sequentially applies mapping
T3 to any positive integer, then it will eventually arrive at the cycle 1 → 4 → 2 → 1. On the
other hand, a similar mapping T5 is conjectured to “explode”, that is, for most positive integers
limn→∞ T

(n)
5 (x) = ∞ [12].

Another conjecture made in [14] states that the density of those numbers x ∈ Z+ for which
limn→∞ T

(n)
5 (x) < ∞ has a “Hausdorff dimension” of approximately 0.68. This conjecture was

made based on a construction of a probabilistic “equivalent” of mapping T5, leading to a special
case of the model studied in connection to Question 2. For more details, see [14].
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