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Populärvetenskaplig
sammanfattning

Vetskap om strömning av vätskor och gaser är viktigt i dagens samhälle, vilket
inkluderar transport i rör, förbränning, och flödesinducerade vibrationer. P̊a
grund av sin flyktiga form är möjligheten att kontrollera flöden i diverse app-
likationer begränsad. Strömning kan vara väldigt sv̊art att beskriva och kate-
gorisera, speciellt d̊a höga hastigheter är inblandade. Hastigheten i olika punkter
i flödet är oftast väldigt oförutsägbar, och detta f̊ar stora konsekvenser när man
vill blanda eller transportera olika substanser. Ett karakteristiskt inslag hos
flöden med höga hastigheter är uppkomsten av virvlar och liknande strukturer
av olika storlekar. Ett visst synsätt kan leda till att behandla olika strukturer
som individuella delar, vars summa innefattar hela flödet. Detta är allts̊a ett
försök att underlätta situationen genom att först dela upp flödet, för att sedan
analysera de individuella delarna. Tillsammans med slumpmässiga strukturer
kan det ocks̊a uppst̊a flödesmönster som upprepar sig periodiskt, eller nästan
periodiskt, varje fall inom ett visst tidsintervall. Dessa återkommande mönster
är ofta stora och energirika, och kan ha ett dominerande inflytande p̊a flödet i
stort. Till exempel kan de ge upphov till en ökad friktion och energiförlust för
rörflöde, eller till att inducera storskaliga tryckoscillationer i gasturbiner. För
att kunna definiera och utvärdera olika flödesmönster krävs robusta metoder,
vilka bör baseras p̊a vettiga fysikaliska kriterier. Detta skulle kunna innefatta
energirika strukturer, eller strukturer som oscillerar med en enda frekvens.

Denna avhandling syftar till att undersöka och karakterisera storskaliga
strukturer för flöden i olika typer av situationer. I första hand hanteras ett fall
med ett inkommande turbulent flöde till ett 90◦ krökt rör. Fallet riktar sig mot
att förklara ett fenomen, kallat ’swirl switching’, där n̊agon form av storskalig
rotation eller deformation av flödet sker nedströms om kröken. Resultat fr̊an
numeriska studier visar p̊a en koppling mellan detta fenomen och l̊anga ener-
girika flödesformationer som bildas uppströms, i det raka röret. Andra fall som
ocks̊a har behandlats involverar starkt roterande strömning, fr̊an inlopp till ut-
lopp, vilket ger flödespartiklar som rör sig i en spiralform. Dessa strömningar
har en tendens att sakta ner flödet, och t.o.m. orsaka hastigheter i riktning
mot inloppet. Detta bidrar i sin tur till starka strukturer, vilka f̊ar möjlighet
att byggas upp i stället för att transporteras nedströms. Denna typ av flöde,
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med en hög rotationsniv̊a, används flitigt för att stabilisera flammor i befintliga
gasturbiner. En annan typ av flamstabilisering, vilket härstammar fr̊an ett
nyare koncept, bygger p̊a en l̊ag rotationsniv̊a. Eftersom hastighetsändringarna
för dessa flöden är lägre, har man lyckats skapa stabila flammor med l̊ag tem-
peratur, som dessutom svävar en bra bit över brännaren. Detta kan däremot
vara en väldigt känslig uppsättning, med en flamma som lätt bl̊aser iväg. En
mekanism som hjälper till att förankra flamman har isolerats, och presenteras i
denna avhandling. Till sist har vakflöden för strömning kring olika objekt stud-
erats, där objekten har förflyttats/deformerats som svar p̊a krafter fr̊an flödet.
Fallen behandlar strömning kring en cylinder fastspänd i fjädrar, en uppsättning
av fyra cylindrar fastspända i fjädrar, och en balk som är fastspänd i ena änden.
Olika strukturer har extraherats, och fysikaliska förklaringar har lagts fram.
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Abstract

This thesis presents the utilization of two different decomposition techniques,
proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD), for enhanced understanding of flow structures and their stability. The
advantages of these techniques are shown for a range of flow situations, most
of which are turbulent. It is shown that by these methods additional insight
into complex flow situations can be gained. Such insight has been found to
be needed for the flow in straight and 90◦ curved pipes. The so-called swirl
switching phenomenon is investigated, which is a large scale oscillation of the
flow after the bend. This phenomenon is classified into a low frequency and
a high frequency switching, each with its own mechanism of formation. It is
shown that while the low frequency switching stems from very-large-scale mo-
tions created in the upstream pipe, the high frequency switching results from
the bend itself, making it an inherent property of the system.

The second set of studies consider swirling flow in combustor-related geome-
tries, using both high and low swirl levels. These investigations show highly
energetic unsteady structures in the strongly vortical regions. The spatial sym-
metry of these flow modes reflect the level of confinement. While the vortices
that are weakly confined show unsteady modes reflecting their displacement, the
strongly confined vortices show low-order multipole deformations. For the low
swirl burner, which is the only reacting flow considered, the flame is stabilized
without the presence of vortex breakdown. To be able to investigate how the
flame is anchored above the burner, an extended version of DMD (EDMD) is
introduced, which helps to couple the flow with the flame. Using this method,
a mechanism contributing to the flame stabilization is isolated.

The third and final set of studies involve flow around cylinders and beams.
These objects are flexible and respond to the forces that the flow exerts on them.
For the flow around cylinders, which are connected to a spring system, the
natural frequency of the spring-cylinder system and the frequency from the von
Karman vortex shedding are the two a priori known frequencies of the system.
Three different flow regimes are considered, one where the two frequencies are
similar, giving resonance, and two cases where one frequency is far above/below
the other. For flow around a single cylinder, an unexpected high energy low
frequency mode is found off-resonance, which is argued to contribute greatly to
the chaotic behaviour for the case with the loose spring. For a multiple cylinder
array, while the strong low frequency mode found for the single cylinder case
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has been suppressed, an unexpected synchronization is seen. Considering the
flow around a stiff and a flexible beam, a strong beat frequency is found for
the lift force. While the beating is seen to be regular for the flexible beam, it
appears intermittently for the stiff beam. The flow behaviour giving rise to this
forcing is elucidated using the POD and DMD analyses.
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Chapter 1

Introduction

The flow of water, or the movement of a flame, can hold the attention of people
for long periods of time. The irregularity in the motion, which makes it inter-
esting to look at, results from a large number of degrees of freedom interacting
in a nonlinear fashion. However, one of the important discoveries during the
20th century was that a large number of degrees of freedom is not necessary
to create complexity. Even very simple looking equations can give solutions far
beyond human comprehension. This naturally raises questions regarding the
complexity of fluid flow, and the effective number of degrees of freedom needed
to capture its essence.

The importance of structures in fluid flow compared to the importance of
statistics has long been an open question. While names have been given to
certain perceived patterns and events, such as streaks and bursts, the role that
they play is still very much unclear. Nevertheless, the need to find recurring
states is common to most dynamical systems, and statistical measures clearly
play a roll in much of this. The high dimensional systems encountered in fluid
mechanics do not alleviate the situation, where a plethora of spatial patterns
can emerge. The need to be able to reduce these high dimensional systems, by
extracting recurring spatial structures or highlighting active regions, is often of
great importance. More broadly, the field of spatio-temporal chaos is still in its
infancy, and a lot of new ideas are needed.

While slow moving fluids are known to behave nicely, there appears to be no
universal set of steps governing how fast moving fluids transition into irregular,
or turbulent, motion. The transition can be immediate, or it can follow from
a sequence of intermediate states. Likewise, the current understanding of why
turbulent flow often stay turbulent, i.e. how it is able to sustain itself, is valid
only for wall free, ideal turbulence. Generally, the energy loss to heat typically is
(much) larger than for laminar flow and hence it is not obvious why a turbulent
state is selected. Even though turbulence is such an important phenomenon,
and the equations governing its motion are believed to be known, information
regarding its behaviour, coming from first principles, is virtually nonexistent.
Therefore, most of what is known about turbulence comes from experiments,
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phenomenology, and, as of late, computer simulations. While turbulence is
found to be a positive feature in certain systems, such as when mixing of fuel
and oxidizer needs to take place quickly, it is found to be a negative feature in
others, such as when the flow resistance increases for fluid transport. Either
way, it needs to be understood.

The primary invesitgation in this thesis is that of turbulent flow through a
90◦ curved pipe. In particular, a study of the phenomenon called swirl switching,
first discovered by Tunstall & Harvey [75], is conducted. However, the thesis
will also try to shed some light on concepts and methods useful for the analysis
of flow instability and coherent structures; in particular, the methods proper
orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are
investigated. While POD extracts structures based on optimal energy content,
DMD extracts structures oscillating at a given frequency. The end goal is not
to improve the procedures used for the study of laminar or transitional flows,
but rather to explore different ways to analyse and classify large scale coherent
structures that exist in fully turbulent flows. Because of the elusive nature of
turbulence, the methods used for extracting flow structures become very impor-
tant. In fact, the very notion of a ”coherent structure” is intimately connected
to the extraction method. In evaluating these methods, the applications range
from low Reynolds number cold flows to high Reynolds number flame-flow in-
teractions. Large networks of pipes is an example where turbulence usually
works against our interests. The enhanced dissipation rate for turbulent flow
in straight pipes, compared to laminar flow, can be substantial, not to mention
the flow that results from the joints and bends that have to be included. The
increased pressure drop resulting from curved pipe sections can be very costly,
and needs to be weighed with the capital cost of the network. In addition to
pure transport, heat transfer in pipes also has important applications, such as
for e.g. heat exchangers. The heat transfer rate experiences a large growth for
turbulent flows due to the additional advective thermal flux. Also, the altered
velocity profiles for curved pipes generally imply improved heat transfer char-
acterstics. This way of using the pipe geometry to increase the heat transfer is
called a passive technique, as opposed to an active technique, such as induced
vibrations.

The heat transfer and transport of fluids in pipes alone do not drive the
economy. Combustion is estimated to account for about 90% of the world’s
energy supply [80]. With a diminishing rate of return as the easily accessible
oil gets depleted (starting from a ratio at about 50:1 [47]), together with rising
concerns about CO2 levels in the atmosphere and pollutants adversely affecting
the health of living things in the biosphere, more emphasis is being placed on
efficiency as well as pollution reduction in the energy and transport sectors. A
step in this direction, particularly concerning gas turbines, is to remove energy
draining mechanical parts from the flame region, by stabilizing the flame using
the flow itself, thereby increasing efficiency as well as reducing material cost and
maintenance. A way of realizing this is to use swirling (rotational) flows, with
different frameworks using either high or low swirl levels. Some form of swirl
stabilized combustion is used for more than 50% of all fossil fuels [77]. Another
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step, particularly concerning stationary gas turbines, is to use premixed flames
with a low equivalence ratio, resulting in the ability to reduce the temperature
and thereby suppress NOx production. However, these types of systems in
confined spaces are prone to combustion instabilities coming from a coupling
between flame and pressure fluctuations due to heat release, possibly resulting
in devastating mechanical oscillations of critical components of gas turbines.

Problems with mechanical oscillations of course also occur in many other
areas, such as for flow around bluff bodies, where the resulting fluid-structure
interaction can produce very non-trivial results. Applications include the flow
around airplane wings, buildings and tall structures, or perhaps around pipes
and cables immersed in water. It would obviously be useful to be able to pre-
dict the outcomes before constructing the (often costly) material objects, and
numerical simulations are gaining traction in this area. For example, the tallest
building in the world, the 830 meter tall Burj Khalifa in Dubai, has a tapered
structure (wide base gradually narrowing towards the top). This suggests that
the flow induced pressure oscillations along the building will have different fre-
quencies, which should result in a much smaller net force on the building, com-
pared to one with a uniform cross section along its height.

1.1 Outline of the studied cases

The main aim of the thesis is to utilize reduction methods for improving un-
derstanding of unstable flow processes under a variety of conditions. These
techniques (POD and DMD) have been applied to different cases and these are
listed and described very briefly in the following together with some of the main
results.

• Turbulent flow through 90◦ curved pipes are investigated. Besides the
well-known Dean vortices, which are two counter-rotating axial vortices
found after pipe bends for laminar flow in gradual bends, the so-called
”swirl switching” phenomenon has been seen to occur for turbulent flow
in earlier studies. The term appears to entail either a single axial vortex
after the bend, or a situation where one of the Dean vortices dominates
over the other, giving a net circulation. The net swirl, in turn, switches
between a right handed and a left handed direction along the pipe axis.
A mechanism for the swirl switching is proposed, involving large scale
structures created in the upstream pipe. These large scale structures have
a strong streamwise velocity component, and are much longer than the
pipe diameter.

• Cold-flow in a geometry similar to the Volvo VT40 swirler and combustor
is considered. While the diameter of the exhaust pipe is varied, the re-
sulting structure of the highly swirling flow is studied. Since the swirler is
annular, an outer vortex ring is developed, together with an inner vortex
core along the centre axis of the burner and in the exhaust pipe. Var-
ious displacements and deformations of these two vortex regions, whose

11



strength and shape changes with the exhaust pipe diameter, are charac-
terized.

• A swirling flow through a suddenly expanding and contracting pipe is
investigated. The swirler, consisting of a central hub together with eight
swirl vanes, is positioned far upstream of the expansion. As the swirl
level is increased, a vortex breakdown is seen at the expansion, giving a
backflow for the mean velocity field along the centre line. At the same
time, time dependent large scale coherent structures appear in the flow.
Three unsteady large scale structures are isolated. The strongest coherent
structure is the precession of the vortex core at the sudden expansion,
which oscillates at a single frequency. Inside the expanded pipe region, a
developing vortex is seen to travel upstream from the sudden contraction,
stopping downstream of the expansion. The developed vortex core inside
the expanded pipe is then displaced, giving rise to motion involving a
range of low frequencies. Finally, the flow between the swirler and the
expansion shows a narrow high frequency spectrum, with a dominant flow
structure corresponding to a deformation of the vortex in the pipe.

There are a few interesting similarities with the VT40 burner, such as the
connection between the unsteady large scale coherent structures and the
vortical regions. The practically unconfined vortices give strong modes
reflecting their displacement, while the confined vortices, which are more
influenced by the walls, show strong modes reflecting their deformation.

• An annular reacting swirling flow, with a low swirl level, is studied. This
way of stabilizing a flame, without making use of vortex breakdown and
a strong backflow, is a recent development. The equivalence ratio of the
fuel is low, resulting in a low temperature, and the flame is lifted high
above the nozzle. These features lead to a flame prone to instabilities. It
is therefore of interest to classify the different flow structures that help
anchor the flame above the nozzle. A flow structure contributing to the
flame stabilization is isolated using and extended version of DMD. This
flow structure represents a high order deformation of the vortex, and likely
stems from a Kelvin-Helmholtz instability of the inner shear layer.

• The wake of a single cylinder connected to springs is investigated. Two
characteristic frequencies are present, one connected to the spring-cylinder
system in the fluid, and the other to the von Karman vortex street appear-
ing in the wake of bluff bodies. Three different flow regimes are consid-
ered; one where the two frequencies are very similar, showing a resonant
behaviour with large cylinder displacements, and two where one of the
frequencies is above/below the other. In particular, an unexpected low
frequency motion gives a strong contribution for both cases off-resonance.
Also, for the case with a loose spring constant, a chaotic behaviour is
seen for the cylinder motion. This behaviour is addressed in terms of a
feedback between the cylinder motion and the low frequency flow mode.
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• The flow past an array of four cylinders, where each cylinder is connected
to springs, is also investigated. The highlighted case involves a square
formation, where the cylinders are positioned at the edges. Just as for the
single cylinder case, three different regimes are considered. The strong
low frequency mode, so prominent for the single cylinder case, is found
to be suppressed. An unexpected synchronization is seen, where the up-
per and lower cylinders are compelled to oscillate either in phase or in
antiphase. While the von Karman shedding appears to support oscilla-
tion in antiphase, the flow phenomenon supporting oscillation in phase is
unknown.

• The flow around a stiff and a flexible cantilever beam is analysed. The
lift force on the flexible beam shows a clear beat frequency, while the lift
force on the stiff beam shows an intermittent beating. The forces on the
beams are elucidated by extracting the responsible flow structures. While
one of these structures is the von Karman shedding, the other one is a less
known low frequency motion giving a symmetric pattern in wake.

1.2 Preliminaries

A large focus in this thesis is placed on the symmetries of different flow struc-
tures. Frequent referral will be made to the azimuthal wavenumber m, where,

φ(r, θ, z) = φ̂(r, z)eimθ

for some quantity φ in cylindrical coordinates. For swirling flows, a sign is often
given to the azimuthal wavenumber, with ±m depending on whether the helical
structure winds in the same or in the opposite direction with respect to the
mean flow. However, the sign conventions unfortunately differ in the literature.
Therefore, to avoid confusion, |m| will be used together with an explicitly stated
winding direction. Besides the winding direction, the direction of rotation will
also be stated.

An important parameter for swirling flows is the swirl number, which is a
measure comparing the azimuthal and axial momentum. The measure used in
this thesis is typically the integrated flux of azimuthal and axial momentum,

Sw =

∫
ρruθuzdA

R
∫
ρ|uz|uzdA

where uθ and uz are the azimuthal and axial velocities, respectively, and R is a
reference radius.

1.3 Outline of the thesis

The governing equations of fluid flow, together with the subjects of flow insta-
bility and turbulence, are introduced in Section (2). Methodology in stability
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analysis, including POD and DMD, is given Section (3), followed by methods
to analyse chaotic time series in Section (4). Computational methods, including
spatial filtering and temporal/ensamble averaging of the governing equations,
are outlined in Section (5), and a brief introduction to reacting flows is given in
Section (6). Numerical methods, in particular for the second-order finite volume
method, are given in Section (7). In Section (8), turbulent flow in straight and
curved pipes are introduced, and results are summerized. Further summaries
are provided in Sections (9) and (10), for the studies of the swirl burners and
the interacting cylinders/beams, respectively. Finally, a summery of the papers
together with contributions are given Section (11), ending with an outline of
future work in Section (12).
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Chapter 2

Flow instability and
turbulence

2.1 Governing equations

The field of fluid dynamics is commonly handled by continuum models that
describe the conservation of momentum, mass, and energy. A fluid flow is typi-
cally considered in the so-called Eulerian setting, where observations are made
in a ”fixed” frame, as opposed to the Lagrangian framework where individual
fluid parcels are followed through space and time. A temporal change of one
of the above quantities in a volume element must be accompanied by a net
inflow/outflow, or flux, through the boundary of the element, or some other
external influence. The additional influences, not already accounted for by the
flux terms, end up in a source term.

2.1.1 Momentum conservation

Considering the conservation of momentum per unit volume ρui, using Newton’s
second law, and Cartesian coordinates, gives

∂ρui
∂t

+
∂ρuiuj
∂xj

=
∂σij
∂xj

+ ρfi, (2.1)

where ui is the velocity field, ρ is the density, σij is the total stress tensor, and
ρfi represents body forces (for example, gravity). Summation over repeated
indices (j = 1, 2, 3) is implied. The first term on the left hand side represents
the temporal change of the momentum, while the second term is the so-called
convective (or advective) term, showing how the flow ”transports itself”. The
first term on the right hand side represents the normal and shear forces on a
given fluid element, which needs to vary in space in order to give a net force
(therefore the derivative). The second term on the RHS, ρfi, represents various
types of body forces, where ”body” should be put in contrast to the surface
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forces given by σij . While eq. (2.1) may be considered to be exact, it is not
very useful, since, in particular, σij is unknown.

The total stress tensor, which is symmetric, σij = σji, is usually decomposed
into

σij = −pδij + τij , (2.2)

for the pressure p and the traceless symmetric shear stress tensor τij . While p
seeks to stretch/compress the fluid element, τij seeks to shear the fluid element.
For a Newtonian fluid τij is written as

τij = 2µsij −
2

3
µ
∂uk
∂xk

δij , (2.3)

where sij is the strain rate

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.4)

and µ is the dynamic viscosity, which is a material property that generally
depends on the temperature. For many fluids, such as air and water (under
a large range of conditions), the Newtonian fluid model appears to be a good
approximation.

2.1.2 Mass conservation

Moving on to the mass conservation,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.5)

which simply says that any change in time of the mass in a given volume must
be balenced by a net inflow/outflow through the bounding surface. If several
different components or species are considered, such as hydrocarbons and oxygen
for combustion, the conservation equation becomes

∂ρi
∂t

+
∂ρi(~ui)j
∂xj

= ṁi (2.6)

for each species i with velocity ~ui, allowing for a source term ṁi representing
chemical reactions. By introducing ~ji = ρi(~ui − ~u), using an average flow ~u for
all the species, eq. (2.6) may be rewritten as

∂ρi
∂t

+
∂ρiuj
∂xj

= −∂(~ji)j
∂xj

+ ṁi,

where ~ji needs to be modelled using, for example, Fick’s law. This way of
handling multiple species, using an average flow and treating the deviation as
some form of diffusive transport, thereby avoiding the need to have to account
for the velocity field of each species separately, is common.

16



2.1.3 Energy conservation

The energy per unit mass E = e + 1
2uiui may be introduced, including the

internal (or heat) energy per unit mass e and the kinetic energy per unit mass
1
2uiui. The governing equation for the energy per unit volume ρE is given by

∂ρE

∂t
+
∂ρEuj
∂xj

= − ∂qj
∂xj

+
∂uiσij
∂xj

+ ρuifi + S (2.7)

where qj represents heat conduction and/or energy transport by particle diffu-
sion, which are both flux terms, whereas S represents heat release from chemical
reactions and/or electromagnetic radiation. The conduction part of the term
qj might be modelled using, for example, Fourier’s law. Note that eq. (2.7) is
used to solve for the internal energy (per unit volume) ρe. Using the governing
equation for the kinetic energy per unit mass, obtained by multiplying eq. (2.1)
with ui and summing over i, given by

∂ρ1
2uiui

∂t
+
∂ρ1

2uiuiuj

∂xj
= ui

∂σij
∂xj

+ ρuifi, (2.8)

and subtracting it from eq. (2.7) gives

∂ρe

∂t
+
∂ρeuj
∂xj

= − ∂qj
∂xj

+ σijsij + S.

However, often the internal energy is not directly considered, but instead the
enthalpy or temperature.

2.1.4 Constant density and viscosity

For a general case, the equations for ρui, ρ, ρi, and E, together with an equation
of state, all need to be used, at least in some approximate form. However, for
the special case of having a constant density ρ and a constant dynamic viscosity
µ ≡ ρν, as well as neglecting any body forces, eq. (2.1) may be written as

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

, (2.9)

where ν is called the kinematic viscosity, together with eq. (2.5) which becomes

∂uj
∂xj

= 0. (2.10)

The four equations in (2.9) and (2.10) may solve for the four unknowns ui
(i = 1, 2, 3) and p. The momentum equations for a Newtonian fluid are called the
Navier-Stokes equations, and in particular showing existence and smoothness of
solutions to eqs. (2.9) and (2.10), given some smooth initial conditions, is one
of the Clay Mathematics Institute Millennium Problems [24].
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Thus, by assuming constant density and viscosity, which in particular implies
a temperature independence, the momentum and mass equations have been de-
coupled from the energy equation. The central object has become the velocity
field ui, while the pressure(-like) field p should adjust in order to satisfy the
kinematic (as opposed to dynamic, i.e. there is no explicit force involved) con-
straint in eq. (2.10). Applying the divergence operator on eq. (2.9), utilizing
eq. (2.10), an equation of elliptic character is aquired for the pressure, implying
an immediate global influence (stemming from the constant density approxima-
tion). Note that adding a conservative force fi = ∇iφ (such as gravity) to eq.
(2.9) leads to the same equation with the change of variable p → p̃ = p − ρφ.
Eqs. (2.9) and (2.10) are often scaled using a typical length d and time d/U ,
giving

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −∂p
∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗2j

(2.11)

and
∂u∗j
∂x∗j

= 0, (2.12)

where

u∗i =
ui
U
, p∗ =

p

ρU2
, x∗i =

xi
d
, t∗ =

Ut

d
,

and Re = Ud/ν is a similarity parameter called the Reynolds number. There-
fore, as can be seen in eq. (2.11), similar systems over a large range of scales
should be expected to give dynamically similar flow fields, given that their
Reynolds numbers are the same. The size of the Reynolds number also signals
whether the flow is likely to be laminar (Re ∼ 1) or turbulent (Re � 1). It
should be appreciated how a vast range of different flow physics, involving both
gases and liquids, appear to be captured by such a ”simple” set of equations as
the ones given above.

2.1.5 Initial and boundary conditions

A well-posed problem also requires appropriate initial, ψ(x, 0) = ψo(x), and/or
boundary conditions for the different fields. Typically, boundary conditions are
either of Dirichlet type, ψ(x, t) = h(x) for x on the boundary, or of Neumann
type, n̂ · ∇ψ(x, t) = h(x) for x on the boundary, where n̂ · ∇ is the derivative
in the normal direction n̂ to the boundary. If a wall is impermeable, a Dirichlet
condition for the velocity component in the normal direction is necessary, u ·n̂ =
0. A Dirichlet condition for the tangential velocity at a solid wall, where the
flow velocity takes on the velocity of the wall, is typically used, and is called a
no-slip condition.

2.1.6 Velocity derivatives

Integrating eq. (2.8) over some region Ω, assuming a constant density and
viscosity, an external force fi = 0, and a velocity field vanishing on the boundary
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∂Ω, gives the expression

d

dt

∫
Ω

1

2
ρuiuidV = −

∫
Ω

εdV

for the dissipation rate per unit volume ε = 2νsijsij of kinetic energy. Thus, be-
cause of energy conservation (in the full equations) and entropy considerations,
there is no positive source term. However, a significant part of fluid dynamics
involves the creation/destruction of vorticity. The matrix ∂ui/∂xj = sij − 1

2ωij
contains 9 terms, which may be divided into a symmetric part sij containing
6 unique terms, and an anti-symmetric part ωij containing the remaining 3
terms. The symmetric part is recognized as the strain rate tensor, given in eq.
(2.4), while the anti-symmetric part is represented by the vorticity vector ωi,
ωij → ωk,

ωi = εijk
∂uk
∂xj

,

where εijk is the Levi-Civita symbol. While sij represents a shearing deforma-
tion of the fluid element, the vorticity represents a rotation the fluid element.
The governing equation for the vorticity, again assuming constant density and
viscosity, is

∂ωi
∂t

+ uj
∂ωi
∂xj

= ωjsij + ν
∂2ωi
∂x2

j

+ εijk
∂fk
∂xj

. (2.13)

In particular, the term ωjsij is responsible for the vortex stretching/compression
and tilting. The analogy of kinetic energy 1

2uiui for the vorticity is called the
enstrophy, 1

2ω
2 ≡ 1

2ωiωi. By multiplying eq. (2.13) with ωi, and summing over
i, gives the governing equation for the enstrophy,

∂ 1
2ω

2

∂t
+ uj

∂ 1
2ω

2

∂xj
= ωiωjsij + νωi

∂2ωi
∂x2

j

+ εijkωi
∂fk
∂xj

.

The enstrophy production, assuming no external forces are present, is given by
ωiωjsij . It may be noted that both vorticity and strain need to be present
at the same spatiotemporal location for the production to be non-zero. The
corresponding equation for the strain rate is

∂sij
∂t

+ uj
∂sij
∂xj

= −sikskj −
1

4
(ωiωj − ω2δij)−

∂2p

∂xi∂xj
+ ν

∂2sij
∂x2

j

+ fij

where fij ≡ ∂fi/∂xj + ∂fj/∂xi, and for the contraction s2 ≡ sijsij ,

∂ 1
2s

2

∂t
+ uj

∂ 1
2s

2

∂xj
= −sijsikskj −

1

4
ωiωjsij − sij

∂2p

∂xi∂xj
+ νsij

∂2sij
∂x2

j

+ sijfij .

2.1.7 Fluctuations from a base flow

It is sometimes of interest to study fluctuations (u′i, p
′) from a known base flow

(Ui, P ), which classically is a steady state solution of the NS equations. Putting
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the decomposition (ui, p) = (Ui + u′i, P + p′) into eqs. (2.9) and (2.10) gives

∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ u′j
∂u′i
∂xj

= −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂x2

j

, (2.14)

and
∂u′j
∂xj

= 0. (2.15)

Note that no assumption has been made regarding the size of the fluctuations
(u′i, p

′) in eqs. (2.14) and (2.15). Eq. (2.14) becomes linearized by removing
the term u′j∂u

′
i/∂xj , which is described in more detail in Section (3.1).

2.2 Flow instability

Even if a steady state solution to the governing equations is found, with appro-
priate boundary conditions, does not necessarily mean that the corresponding
flow will be seen in nature. The solution also has to be stable. Stability the-
ory studies how disturbances/fluctuations u′, from a given base flow U , evolve
in space and time, (c.f. eqs. (2.14) and (2.15)). However, being able to de-
fine whether or not a base flow is stable is not a trivial task, since, beside the
computational requirements, the fluctuation field may display very complicated,
nonlinear behaviour.

To begin with, a norm || · || needs to be selected in order to determine the
size/strength of the fluctuation field. A common example is the energy (L2)
norm

||u′||2 =

(∫
Ω

|u′(x, t)|2dV
)1/2

,

considering the spatial domain Ω, assuming that u′ ∈ L2(Ω). Note that for
extended regions Ω, the disturbances may move around in the domain without
affecting the norm. The moving disturbances may at the same time display very
intricate temporal behaviour. For example, a disturbance might grow initially,
but decay asymptotically in time, displaying so-called transient growth. To
be able to make sense of such complexity, simplifications and accompanying
classifications need to be made.

The most appropriate framework in which to study disturbances may also
vary; linear/nonlinear analysis, modal/nonmodal, local/global, etc. Note that
the above discussion, considering the stability of the base flow U , could be
extended by considering the stability of the resulting, generally time dependent,
field u = U + u′, and so on. The increasing complexity should be clear, and the
tools necessary to handle these situations are very limited. Nevertheless, this
type of scenario is seen as a possible route to turbulence, which is discussed at
the end of the chapter.

More general information regarding stability and transition of flows can be
found in Schmid and Henningson [62].
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2.2.1 Local and global stability analysis

Stability analysis may be divided into the two categories local and global, re-
garded in the sense of Theofilis [71]. In a local stability analysis there are
assumptions made regarding the homogeneity of the base flow. In particular,
base flows with parallel streamlines are considered, ~U = (U(y), 0, 0), where y is
the wall normal coordinate. A local linear stability analysis in this case, with a
homogenous base flow in the x and z directions, would prompt the ansatz

u′i(x, y, z, t) = ũi(y) exp(i(kxx+ kzz − ωt))

for the fluctuations u′i. Insertion into the linearized form of eq. (2.14) leads to
an eigenvalue problem for ũi. In fact, the equation for the normal component
ũ2 is the famous Orr-Sommerfeld equation. Generally, the parameters kx, kz,
and ω, can all be complex. In the temporal stability problem kx, kz ∈ R and
ω ∈ C, implying spatial periodicity and temporal oscillations together with
growth/decay, while in the spatial stability problem the situation is reversed.
In practice, for the temporal stability problem, the wavenumbers are specified
while ω is treated as an eigenvalue. Note that the division into temporal and
spatial analyses is ”artificial”, in the sense that it is done for mathematical
convenience, and that there are no widely accepted a priori means to determine
whether a temporal or a spatial approach should be taken for a given case.

Within the local linear stability framework, the spatial extent is infinite. The
consequence when considering a local linear stability analysis, in its application
to real flows, is the need to assume a variation of the base flow on length scales
much larger than those of the disturbances, which clearly provides significant
limitations in its use. A global stability analysis instead considers disturbances
evolving on a base flow with at most one homogeneous direction. The general
belief appears to be that the local (when applicable) and global instability stud-
ies will show similar results, at least qualitatively, when the local instability is
present within a large enough region. However, any precise connection between
local and global stability analyses does not exist at present time.

The terms BiGlobal and TriGlobal analysis were coined by Theofilis [70,
71], referring to global linear stability analysis with respectively two and three
inhomogeneous directions of the base flow. With additional inhomogeneities,
the stability analysis inevitably becomes less general, and specific flow situations
instead become the focus. Note that while these methods of analysis consider
small perturbations, the patterns of the unstable modes are still often reflected
in the resulting large amplitude patterns of the flow.
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Figure 2.1: Left: absolute instability. Right: convective instability

Also within the local stability framework, regarding spatio-temporal instabil-
ity, a division into absolute and convective instability may be considered based
on the impulse response of the system (the input is a ”kick” giving all frequen-
cies) [22]. An absolute instability is when the disturbance grows in place, both
upstream and downstream, while a convective instability is when the distur-
bance grows while being convected downstream. A schematic of the two types
of instability can be seen in Fig. (2.1). Note that convective instabilities, which
are periodically triggered, such as perhaps the flow at a trailing edge, may be
treated as spatial modes in the long-time limit.

2.2.2 Local inviscid instabilities

In the days of Kelvin and Rayleigh, during the 19th century, numerous discus-
sions took place regarding the role of viscosity. The prevalent idea was that
viscosity only acts to damp instabilities, so the simplification to inviscid con-
ditions was justified. A well known example is the inviscid Kelvin-Helmholtz
(KH) instability, which considers the simple discontinuous profile seen in Fig.
(2.2) and is unstable for all wavelengths. Turning to a more realistic velocity
profile, Rayleigh’s inflection point theorem states that a necessary, but not suf-
ficient, condition for inviscid instability is the presence of an inflection point in
the interior of the domain, see Fig. (2.2). A consequence of the introduction of
a length scale is the stability of short wavelengths. Flows which could be invis-
cidly unstable, containing an inflection point in the interior of the flow, include
jets, wakes, and boundary layers with a strong adverse pressure gradient.

Figure 2.2: Left: base flow for an inviscid Kelvin-Helmholtz instability. Right:
more realistic base flow involving a non-zero length scale and an inflection point.
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The inviscid centrifugal stability criterion by Rayleigh should also be men-
tioned. A swirling flow with a uniform axial velocity, where the azimuthal ve-
locity Uθ = Uθ(r) depends only on the radial location, is stable to axisymmetric
(m = 0) perturbations if

d

dr
(rUθ)

2 > 0.

This criterion has been shown to be necessary and sufficient (Synge, 1933) [13].
Besides swirling flows, a centrifugal instability gives rise to the secondary flow

seen after a pipe bend, with two counter-rotating axial vortices. Streamlines of
such vortices, called Dean vortices, are shown in Fig. (2.3).

Figure 2.3: Dean vortices. In-plane streamlines showing the secondary flow after
a pipe bend. The fluid in the centre is flowing from right to left.

2.2.3 Small and large disturbances

Wall-bounded flows often do not have an inflection point in the interior, and
so are not inviscidly unstable. This was handled with some unease in the com-
munity, since wall-bounded flows of course are known to become unstable, and
it was attributed to the non-parallel nature of real flows and/or nonlinear ef-
fects. A paradigm shift came with the realization that viscosity, in certain
circumstances, can lead to instability. These instabilities found in boundary
layer flows, as predicted by the Orr-Sommerfeld equation (which includes vis-
cosity), are called Tollmien-Schlichting (TS) waves. Using the Orr-Sommerfeld
equation, a critical Reynolds number can be obtained for channel flow (plane
Poiseuille flow) at Recr = 5772.

The instabilites referred to above, which can be obtained as eigensolutions of
the linearized versions of the governing equations, are considered to come from
”small” (infinitesimal) disturbances which grow exponentially. However, exper-
imental studies have shown instability for channel flow at much lower Reynolds
numbers than the critical value given above. Furthermore, cylindrical pipe flow
(or Poiseuille/Hagen-Poiseuille flow) and plane Couette flow are found to be un-
conditionally stable to small disturbances. As a consequence, one has been able
to keep pipe flow laminar for high Reynolds numbers by reducing the disturbance
level in the flow, which includes having a very low noise level in the incoming
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flow. The failure to predict the transitions in these flows have prompted other
alternative instability mechanisms, based on ”large” (finite) disturbances. A
characteristic of these systems is that, while being stable to small disturbances,
they become sensitivity to large disturbances above a certain Reynolds number.
In addition, the sensitivity generally also increases with increasing Reynolds
number. This implies that, for a sufficiently high Reynolds number, the flow
will transition because of the inevitability of a certain disturbance level.

A candidate for the (main) transition mechanism in many of these flows
is nonlinear growth. Analysis of mechanisms based on the nonlinear nature of
the equations could include, borrowing notions from dynamical systems theory,
basins of attraction and attractor dimension [27, 19]. An attractor, a possible
feature of nonlinear dissipative systems, represents a typical behaviour of a
system based on the initial conditions. The initial conditions in turn need
to be within the basin of attraction of the attractor. Another candidate is
linear transient growth, also called algebraic growth. This method of growth
hinges on the highly non-normal nature of the linearized equations, meaning
that the eigenvectors can be far from orthogonal, for high Reynolds number
flows. The implication is that some disturbances may grow temporarily before
they decay, even though the linearized equations predict monotonic decay for all
eigenvectors. The growth factor may be significant, and has been found up to
order 105 [72]. As such, the disturbances may grow large enough for nonlinear
effects to become important. Examples of linear transient growth in cylindrical
pipe flow, of disturbances entering an axisymmetric sudden 1:2 expansion, were
given by Cantwell et al. [8], shown schematically in Fig. (2.4). The fluctuation
energy came from an inflectional instability mechanism of the separated shear
layer, with the optimal structure reaching a maximum just upstream of the
reattachment point, after which it decayed in the downstream pipe. Note that
this flow has been found to be unstable to small disturbances, with a critical
Reynolds number Recr = 3273 [59], while the practical transition regime has
been found in the range Re = 1000 − 3000. Therefore, similarly to channel
flow, it has been argued that linear transient growth is more important in this
flow than the instability of small disturbances. However, if the disturbance
level is kept very low, the critical Reynolds number given above again becomes
important. Also note the need for a global analysis in this flow, since a local
analysis can give very different results depending on where in the flow it is
performed.

Figure 2.4: Schematic showing the linear transient growth of a disturbance
passing through a circular pipe with a sudden expansion [8].
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It should be emphasised that linear instabilities can be important in the fully
nonlinear regime, and at higher Reynolds numbers, far beyond the transition
region. In particular, in the same way that free shear layers show coherent
structure which reflect a KH instability of the mean flow, wall shear layers may
show coherent structures which reflect the linear transient growth.

2.2.4 Instability and flow patterns in swirling flow

Helical modes are often encountered in swirling flows. As stated in Leibovich &
Kribus [34], ”As a rule, vortex flows tend to [be] less stable to non-axisymmetric
perturbation[s] than to axially symmetric ones”. For example, the radial com-
ponent of a flow mode representing a precessing vortex core (PVC), for a high
swirl case at a sudden pipe expansion, is shown in Fig. (2.5). The symmetry of
this mode, which has an azimuthal wavenumber |m| = 1, implies a displacement
of the vortex core, as sketched to the left in Fig. (2.6). The displacement is
not static, but rotates, giving the vortex precession. Furthermore, an |m| = 2
mode, sketched in the middle of Fig. (2.6), represents a ”squeezing” of the
vortex core, and so on for higher |m|-values. The higher |m|-values give rise to
more complex shapes, and might therefore be believed to be connected to more
specialized mechanisms.

Figure 2.5: Positive/negative isocontours of the radial component of a flow mode
representing a PVC at a sudden pipe expansion (bulk flow from left to right).
The left and right images represent two different times, showing the precession.

+ ++

++

+

Figure 2.6: Effect of different radial velocity modes on a vortex core. Left: |m| =
1, dipole, middle: |m| = 2, quadrupole, right: |m| = 3, hexapole. The solid
and dashed lines represent the base and disturbed configurations, respectively,
and the signs represent the transport of some positive quantity (e.g. the axial
velocity).
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Two helical flow structures above a burner, for a flow with a low swirl level,
are shown in Fig. (2.7). The mean flow rotates in the negative direction (right
hand rule). The mode on the left has been seen to rotate counter to the mean
azimuthal flow direction, while the mode on the right is co-rotating. The mode
on the right also winds, or the ”arms” of the structure turn, in a direction
perpendicular to the mean flow. This observation makes it tempting to connect
the structure to a KH roll-up (of the inner shear layer). This is in contrast to
centrifugal instabilities, which give rise to vortices that are parallel to the base
flow, as exemplified by Taylor and Görtler vortices. The mode on the left, on
the other hand, appears a bit more elusive. However, since it is close to the wall
(where the azimuthal velocity drops to zero due to the no-slip condition), and
winding in the same general direction as the base flow, it could very well come
from a centrifugal instability.

Figure 2.7: Azimuthal vorticity of two flow modes of an LES simulation of a
low swirl burner, given at two different angles. Left: |m| = 2, right: |m| = 3.

Predicting the fixed point frequencies of these type of helical structures is not
a trivial task. However, some intuition may be developed by considering them
to be ”solid objects”. In particular, if the structure is spinning with frequency
f , it would give the fixed point frequency |m|f . On the other hand, if it is
being transported with velocity U in the axial direction, it would give the fixed
point frequency U/L, where L is the axial wavelength of the mode. Fig. (2.8)
illustrates this simple mechanism of rotation.
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Figure 2.8: Illustration of the (apparent) rotation of helical structures by con-
vection in the axial direction.

2.2.5 Bifurcation analysis and weak nonlinearity

Bifurcation analysis is typically considered in the field of ordinary differential
equations (ODEs), where the number of degrees of freedom is a fixed finite num-
ber. For partial differential equations (PDEs), on the other hand, the number
of degrees of freedom may vary, or be infinte, and much less is known in general.
However, in many situations it should be possible to effectively reduce a PDE to
a finite dimensional ODE. In particular, this assumption is implicit in the very
act of spatially discretizing the equations of motion which, for a fluid, is moti-
vated by the smearing effect of viscosity. Alternatively, the spatial dependence
of a flow may be assumed to be approximately known, considering truncated
series of Fourier modes or POD modes. Sometimes even a phenomenological
model may be sufficient, where some particular feature is captured by an ODE
or a system of ODEs.

General theory

Consider a dynamical system depending on a parameter γ ∈ R,

du

dt
= A(u, γ), (2.16)

where A : Rn × R → Rn is continuously differentiable. A qualitative change
in the structure of the solution u ∈ Rn, or in the number of solutions, as the
control parameter γ (e.g. the Reynolds number or swirl number) is continuously
altered is called a bifurcation. Since the parameter in this case is a single num-
ber, only so-called codimension-one bifurcations are considered (varying several
parameters can of course give more complicated behaviour).

A local bifurcation analysis is based on the stability properties of a steady
state (u0, γ0), A(u0, γ0) = 0. Consider the eigenvalues {λk}nk=1 of the Jacobian
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Au evaluated at (u0, γ0). A fixed point where all the eigenvalues have non-zero
real parts, <(λk) 6= 0, ∀k, is called a hyperbolic fixed point. Since the Jacobian
is invertible at a hyperbolic fixed point, there must also be a unique solution
u = u(γ) in a neighbourhood of the fixed point, by the Implicit function theorem.
By the Hartman-Grobman theorem, the full nonlinear system is equivalent to
its linearization in a neighbourhood of a hyperbolic fixed point. Thus, the
eigenvalues {λk}nk=1 determine the local stability properties at a hyperbolic fixed
point. In particular, if all the eigenvalues have a negative real part, <(λk) < 0,
∀k, the fixed point is stable to small disturbances.

Thus, moving along a branch of stable solutions, while varying γ, interesting
new dynamics only appears when a fixed point becomes non-hyperbolic. Assum-
ing that only the real part of one eigenvalue becomes zero such that <(λm) = 0
while <(λk) 6= 0 for k 6= m. This is the most common situation, but the imagi-
nary part =(λm) may either be zero or come as a complex conjugate pair (which
in a sense only represents one eigenvalue). If =(λm) = 0, the bifurcation is called
stationary, while if =(λm) 6= 0, it is called a Hopf bifurcation. For a stationary
bifurcation, it is possible to locally reduce the high order system to (basically)
a one-dimensional system, by invoking Centre manifold theory. The interest-
ing dynamics takes place on the so-called centre manifold, which in this case is
one-dimensional, while the rest of the space belongs to the stable manifold.

γγcr

γ
γcr

γγcr

Figure 2.9: Examples of bifurcation diagrams. The vertical axis shows a quan-
tity, on the centre manifold, reflecting a characteristic feature of the system,
while the horizontal axis shows the bifurcation parameter γ, including the crit-
ical value γcr. Left: turning point, middle: transcritical, right: supercritical
pitchfork. The solid lines represent stable states while the dashed lines repre-
sent unstable states.

The simplest stationary bifurcation type, where the fewest assumptions are
made, is the turning point bifurcation. For the turning point bifurcation, as the
control parameter γ is increased/decreased, two states disappear. With some
further restrictions, in particular regarding the symmetry, the transcritical and
pitchfork bifurcations can be obtained. For the transcritical bifurcation, as
the control parameter is varied, two states cross paths, while for the pitchfork
bifurcation, one state is followed by three states. The above three stationary
bifurcations are the basic types that are usually encountered, and examples are
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shown in Fig. (2.9). The notions of bifurcation and stability are also intimately
related, as is shown in Fig. (2.9) where the dashed lines are used to indicate
unstable states. For the Hopf bifurcation, the reduced order system is no longer
one-dimensional, but instead two-dimensional. The Hopf bifurcation typically
marks a transition from a steady state to an unsteady periodic state, or more
precisely a limit cycle, where the imaginary part gives the frequency for the
linearized system, =(λm) = 2πf , where f is the frequency.

For more details regarding bifurcation analysis one may refer to e.g. Seydel
[63].

Examples for fluid flow

The canonical example when considering bifurcation analysis is the flow past
a circular cylinder. The flow becomes globally unstable at a critical Reynolds
number 45 ≤ Recr ≤ 47 (γ = Re), after which the global mode starts to
grow exponentially, with an amplitude that finally saturates through nonlinear
effects giving the well-known von Karman vortex street. A representation of a
von Karman street, for Re = 400, can be seen in Fig. (2.10). The figure shows
the time evolution of the flow structure, where at least two images are needed
to capture the downstream transport. However, the single frequency nature
(St ≈ 0.24) of the mode should serve as an indication that the full von Karman
street is not captured. Note that three dimensional flow effects, for the flow
around a cylinder, start to play a role at Re ∼ 200 and above.
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Figure 2.10: Axial component of a flow mode representing the von Karman
street behind a stationary cylinder. The time coefficients (t. c.) represent the
time variation of the strength of the mode. The incoming base flow, from left
to right, is of top hat character with (normalized) axial velocity U∗ = 1.

For the flow past a cylinder, a separation may be made between structures
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arising from the wake and possible boundary layer instabilities, where the von
Karman vortex street is a consequence of the wake profile. The von Karman
shedding comes from a supercritical Hopf bifurcation, and the amplitude of
oscillation follows a Landau equation. The Landau equation gives a saturated
oscillation amplitude which, for Re & Recr, scales as

Asat ∝
√
Re−Recr,

as well as a nonlinear correction to the oscillation frequency seen during the
linear growth. The saturation amplitude Asat could be, e.g., the axial velocity
fluctuation at some point in the wake. Thus, the amplitude (not regarding
the phase factor) looks like it traces a supercritical pitchfork bifurcation, the
(positive upper branch of the) scenario shown to the right in Fig. (2.9). A
saturation amplitude following this trend (as the control parameter is varied)
constitutes strong evidence for the existence of a supercritical Hopf bifurcation.
However, an even more ambitious study would include the transient behaviour,
from linear growth to nonlinear saturation. When checking whether or not a
given oscillation is a self-sustained process, like for the flow past a cylinder,
the amplitude for every point in the flow (experimental or numerical) needs to
follow the same Landau equation (same coefficients) [22].

The PVC, in an experimental setup of a swirling flow experiencing a sudden
expansion, has been seen to be a supercritical Hopf bifurcation [46]. The am-
plitude of oscillation, at the same Reynolds number (based on the axial flow),
was seen to scale as

Asat ∝
√
Sw − Swcr

for the swirl number Sw (γ = Sw). This implies that the structure seen in
Fig. (2.5) is a self-sustained oscillating structure, in a way analogous to the von
Karman shedding.

Examples of transcritical bifurcations can be found in inviscid studies of vor-
tex breakdown, while turning point bifurcations can be found in corresponding
viscous studies [34, 79, 35, 33, 78]. The bifurcation parameter in these cases is
the swirl level (at a given Reynolds number), while the vertical axis may repre-
sent the minimum axial velocity along the centre axis of the flow domain (which
should be negative for bubble-like vortex breakdown, by definition). From the
sketch of the turning point bifurcation to the left in Fig. (2.9), as the swirl level
is increased beyond the critical value, the solution will abruptly ”fall down” to
a solution with a reversed flow on (parts of) the centre axis.

However, for low Reynolds number swirling pipe flows, both with and with-
out a sudden expansion, the transition to vortex ”breakdown” as the swirl level
is increased is gradual, and no turning point bifurcation is present. The crit-
ical swirl level is furthermore seen to get larger for larger Reynolds numbers
for swirling flows in straight pipes, while the critical swirl level is seen to get
smaller for larger Reynolds numbers for pipes with a sudden expansion [54].
The physical reason behind this behaviour is believed to be the diminishing
swirl strength in the shear layers of the sudden expansion, which is more pro-
nounced for smaller axial bulk velocities (with the Reynolds number defined in
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terms of the axial bulk flow). Keep in mind that these are only rough trends,
and that the evolution of these flows cannot be determined by knowing just two
numbers (the Reynolds number and the swirl number) [36].

2.2.6 Transition and strong nonlinearity

The transition from laminar to turbulent flow in general appears to be more
rapid in flows which may be inviscidly unstable, such as jets and wakes, than in
wall-bounded flows without an adverse pressure gradient (no inflection point).
Even for channel flow with a Reynolds number above the critical, the growth
rates are modest. The transition to turbulence in these cases, with a Reynolds
number above the critical, begin with TS waves and are said to take the ”natural
path”. Other routes to turbulence in zero-pressure gradient (ZPG) wall-bounded
flows are called bypass transitions, which is a term that not always includes linear
transient growth. These are transition scenarios which rely on the specific nature
of the incoming disturbances.

Landau’s idea for transition was that the type of primary instability follow-
ing his equation, introducing a frequency into the flow, would be followed by a
secondary instability (analysed using Floquet theory) introducing a second fre-
quency. These bifurcations would continue and eventually enough frequencies
would have been introduced for the flow to be considered turbulent. However,
this idea was superseded by the advent of chaos, where it was discovered that
only very few bifurcations were needed before the flow became turbulent. This
was a lesson which came about by studying closed flows, in particular Taylor-
Couette flow [17].

Investigations of strongly nonlinear instabilities include simulations of the
full Navier-Stokes equations, perhaps together with POD and/or DMD for post-
processing. Another approach is to look at the fluctuation energy KΩ,

KΩ =

∫
Ω

1

2
u′iu
′
idV,

where the fluctuating velocity components are integrated over the domain Ω.
Multiplying eq. (2.14) by u′i, summing over i and integrating over Ω, one obtains

dKΩ

dt
=

∫
Ω

u′i
∂u′i
∂t

dV = −
∫

Ω

u′iu
′
j

∂Ui
∂xj

dV − ν
∫

Ω

∂u′i
∂xj

∂u′i
∂xj

dV, (2.17)

given that the domain is static, and that the fluctuations either vanish at the
boundaries (∂Ω) or the boundary conditions are periodic [13]. Equation (2.17)
(in its dimensionless form) is called the Reynolds-Orr equation. Note that no
assumptions have been made regarding the size of the fluctuations, and that,
since the third order terms vanish (because they only redistribute energy), the
equation is in fact independent of the scale of the fluctuations. As was pointed
out by Tsinober [73], the same is not true for the velocity derivatives, i.e. the
corresponding equations for the fluctuations of the vorticity and the strain rate
both include third order terms. Also note that the first term on the right hand
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side of eq. (2.17) represents a transfer of energy between the base flow and the
fluctuations, and that the second term, the viscous term, is always non-negative
i.e. dissipative. Considering a strict monotonic decrease in the fluctuation
energy, dKΩ/dt < 0, KΩ may be regarded as a Lyapunov functional. Such a
way of determining stability properties is called an energy method, and eq. (2.17)
may be seen as setting a restriction on the Reynolds number. The restriction to
monotonic decrease when determining stability, however, is typically too strong
to be useful, which should be even further emphasised when the continuity
equation for the fluctuations, eq. (2.15), is not fulfilled.

2.3 Turbulence

The archetypal turbulent flows basically make up three groups, grid-like flows,
free-shear flows (mixing layers, jets, wakes), and wall-bounded flows [50]. How-
ever, the different types are of course often seen, typically interacting, in a single
system (not least in industry). What separates so-called ”grid turbulence”, with
a vanishing or spatially nonvarying base (mean) flow, from the rest is that it
is not self-sustaining, and eventually disappears if left to its own devices. This
can be seen in eq. (2.17), where the first term on the right hand side (the pro-
duction term) vanishes. Due to the elusive nature of turbulence in fluid flow,
no consensus regarding its definition has emerged. In fact, the level of theo-
retical progress made from first principles (i.e. the Navier-Stokes equations)
is extremely limited. Even the very question(s) to be answered appears to be
difficult to pin down. However, some qualitative features exist, around which
there is little dispute, that should be fulfilled for all turbulent flows.

• Long-term unpredicatability and apparent spatio-temporal randomness,
both intrinsic to the system

• Three-dimensional flows with a high degree of strain/dissipation and vor-
ticity

• Strongly diffusive, with enhanced transport of momentum, energy, etc.

• Wide range of length and time scales, with many interacting degrees of
freedom

Because of the inherent difficulties in treating turbulent flows, a lot of focus has
been placed on phenomenological aspects, such as categorizations of length and
time scales. The notion of a smallest length scale, through ideas put forward by
Kolmogorov, is a length scale below which dissipative effects completely dom-
inate, thereby effectively removing any variation on scales below it. However,
the very term ’scale’ is unfortunately not well defined, rather being an appeal to
ones intuition, but is often considered in terms of Fourier modes. The smallest
scale was proposed to depend only on the kinematic visocity ν and the dissi-
pation rate per unit of mass ε. Through a dimensional analysis the so-called
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Kolmogorov length scale lη is obtained,

lη =

(
ν3

ε

)1/4

.

Thus, the claim is that the (mathematically) infinite dimensional velocity field
ui actually has a smallest length scale lη. Comparing lη to the integral length
scale lo, roughly on the order of the geometrical constrictions, assuming an
energy transfer rate ε ∼ u3

η/lη ∼ u3
o/lo, gives

lo
lη
∼ lo

(ν3lo/u3
o)

1/4
=

(
uolo
ν

)3/4

= Re
3/4
lo
. (2.18)

Therefore, as the Reynolds number increases, a substantial increase in the num-
ber of degrees of freedom should be expected. However, it should be noted that
ε may vary substantially, not just in space, but also in time.

Kolmogorov furthermore brought forward the idea that, for large Reynolds
number (lo � lη), there should be a range of scales independent of both the
geometry/large scale (lo) features of the flow and the viscosity ν. The flow
evolution over this range of scales was expected to be a transfer of energy, with
a very low level of dissipation, from the large scales (lo) to the small scales (lη).
The distribution of fluctuation energy K over this range of scales, called the
internal subrange, was therefore argued to only depend on the dissipation rate
ε and wave number κ, giving

K ∝ ε2/3κ−5/3,

again based on dimensional considerations. The inertial subrange together with
the dissipative scales are often referred to as the universal equilibrium range
because of their (supposed) independence from the large scales. The universal
equilibrium subrange ties in to the notion of a turbulence cascade, with a uni-
directional transfer of energy from large scales to small scales, and finally to
heat. A schematic of the different regions are shown in Fig. (2.11), where P
(production) represents the first term on the right hand side in eq. (2.17). The
figure tries to represent a generic situation where energy is being fed into the
system through the largest scales.
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Figure 2.11: Turbulence energy distribution over wavenumbers κ.

It is important to keep in mind that the above separation into different
wavenumber regions is only based on phenomenology. For example, the exis-
tence of any universality in turbulence is far from clear. Note also that, since
turbulence is such a complex phenomenon, it cannot, by any means, be ex-
hausted by such a thing as e.g. an energy spectrum. However, from an en-
gineering point of view, leaving aside the fundamental aspects, many of these
problems can often be avoided with rather good results in terms of statistical
flow data.

More general information regarding turbulent flow can be found in e.g. Pope
[52], with more conceptual issues treated in Tsinober [73, 74].
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Chapter 3

Stability analysis -
methodology

Linear stability analysis has long served as a tool to study the stability properties
of nonlinear systems. This has typically meant the evolution of infinitesimal
disturbances on given steady, often simple, base flow. In a step further, stability
analysis also lends itself quite readily to periodically varying base flow, where
one may follow changes in a stroboscopic manner at a time interval equal to the
period. The desire to extend the methods of stability analysis beyond that of
steady and periodic base flow of course exists, and is driven by the real world,
where a turbulent flow is the rule rather than the exception. For example, the
idea of looking at linear stability properties of mean flow has been found to yield
good results in some cases, while not in others [65], and still lacks a rigorous
foundation.

Rising use of experimental methods such as high-speed particle image ve-
locimetry (PIV), giving velocity fields along planes, sparks interest in post-
processing methods for snapshot sequences, since boosting the sampling rate
for the laser/camera systems typically is of no use if the goal is to obtain sta-
tistical quantities. In fact, it may even have negative effects because of the
possibility of an increased correlation between the samples. For experimen-
tal studies, where no governing equations are known, data-based as opposed to
model-based procedures for extracting dynamic information become necessary.

Among the primary interests in this thesis is global nonlinear stability anal-
ysis, where the full Navier-Stokes equations are used, whereafter the results are
processed using one or both of the data-based decomposition methods proper or-
thogonal decomposition (POD) [37, 66] or dynamic mode decomposition (DMD)
[55, 61]. While POD is a statistical method, DMD is a stability analysis tool
with connections to linear global modes. The need for such methods is often
crucial, especially for numerical simulations where the amount of data to process
can be immense. Methods for extracting linear global modes are discussed in
Section (3.1), after which a certain approach to the complimentary linear tran-
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sient growth analysis is introduced in Section (3.2). A review of POD analysis
is given in Section (3.3), and the more recent DMD analysis makes up Section
(3.4.1).

3.1 Global linear instability

This section focuses on TriGlobal mode analysis, where no assumptions regard-
ing the homogeneity of the base flow is made. After linearization, eq. (2.14)
turns into

−u′j
∂Ui
∂xj
− Uj

∂u′i
∂xj
− ∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

=
∂u′i
∂t

(3.1)

with
∂u′j
∂xj

= 0 (3.2)

where Ui = Ui(x, y, z) represents the base flow while u′i and p′ are the fluctu-
ations being solved for. Solving for eqs. (3.1) and (3.2) directly, given some
initial fluctuation field and appropriate boundary conditions, may be called
linear global nonmodal analysis. Letting u′i and p′ have an exponential time de-
pendence, u′i(x, y, z, t) = ũ′i(x, y, z)e

λt and p′(x, y, z, t) = p̃′(x, y, z)eλt, eq. (3.1)
turns into

−ũ′j
∂Ui
∂xj
− Uj

∂ũ′i
∂xj
− ∂p̃′

∂xi
+ ν

∂2ũ′i
∂xj∂xj

= λũ′i. (3.3)

The eigenvectors ũ′i and p̃′ to eqs. (3.2) and (3.3), together with appropriate
boundary conditions, are called linear global modes [71]. The mode with the
largest real part <(λ), given that the (initial) fluctuation field has a nonzero
projection on the corresponding eigenvector, will dominate after a sufficiently
long time. Especially, if <(λ) > 0, the mode(s) will grow exponentially. Of
course, if the fluctuations grow large, nonlinear effects will start to become
important. However, for a non-normal Jacobian, a superposition of the different
global modes, or perhaps rather solutions to eqs. (3.1) and (3.2) given some
initial fluctuation field, can lead to substantial fluctuation growth even if all
global modes decay, <(λ) < 0 [60]. More on this in Section (3.2).

A possible method to solve for the corresponding, typically very large, dis-
cretized eigenvalue problem is to use the Arnoldi method, Section (3.1.1), or
perhaps the improved implicitly restarted Arnoldi method, Section (3.1.2).

3.1.1 Arnoldi method

The N × N matrix governing the evolution will be denoted by A. Since N
is generally very large, ordinary methods for calculating eigenvalues, such as
the QR method, are not readily applicable. Therefore, some more appropriate
procedures are needed. For example, in the power iteration procedure, A is
repeatedly applied to an initial vector x in order to obtain the eigenvalue with
the largest magnitude [57]. More generally, a function f of A can be consid-
ered, where the power iteration procedure gives the eigenvalue of f(A) with the
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largest magnitude. However, using power iteration, a lot of information is dis-
carded. Instead, one can make use of the intermediate vectors by constructing
the subspace

Km(A, x) = span
{
x0 = x, x1 = Ax, ..., xm−1 = Am−1x

}
which is called a Krylov subspace. Note that no matrix-matrix multiplications
are needed. For the Arnoldi method an orthonormal basis is created for the
Krylov subspace, by making use of the Gram-Schmidt procedure. With 〈·, ·〉
denoting an inner product, the algorithm looks as follows:
Make an initial guess v1 = x, then for j = 1 to m

1. Form
R[j] = Avj

2. Compute Gram-Schmidt coefficients

hij = 〈vi, R[j]〉, i = 1, 2, ..., j

3. Remove previously spanned directions

qj = R[j] −
j∑
i

hijvi

4. Compute the norm
hj+1,j = 〈qj , qj〉1/2

5. Normalize
vj+1 =

qj
hj+1,j

The elements hij are collected in the matrix

(Hm)ij =

{
hij for i = 1, 2, ..,m+ 1, j = 1, 2, ...,m
0 filling the rest of the (m+ 1)×m matrix

This leads to
AVm = VmHm

or
AVm = VmHm + hm+1,mvm+1e

T
m (3.4)

where the upper Hessenberg matrix Hm are the first m rows of Hm, the matrix
Vm = [v1 v2 ... vm], and the column vector (em)i = δim. Applying V Tm from the
left on eq. (3.4) gives

V TmAVm = V TmVmHm + V Tmhm+1,mvm+1e
T
m = Hm

since {vi}m+1
i=1 are all orthonormal by construction. Thus, Hm is the projection

of A onto the m-dimensional Krylov subspace Km(A, x). If the residual, the
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second term on the right hand side in eq. (3.4), becomes ”small”, the eigenpairs
of Hm, Hmy = σy, are approximate eigenpairs of A,

A(Vmy) = (AVm)y ≈ (VmHm)y = Vm(Hmy) = Vm(σy) = σ(Vmy).

Thus, if it is possible to neglect the residual, Hm and A share eigenvalues,
called the Ritz (eigen)values, while the eigenvectors, the Ritz (eigen)vectors,
are related through the product Vmy. The problem of solving an eigenvalue
problem of an N ×N matrix is thereby reduced to that of an m×m Hessenberg
matrix, which can be a huge win since typically N � m. If the residuals are
deemed too large the subspace is expanded, Vm+1, Vm+2, and so on, until a
satisfactory level is reached. Especially note that the residual for eigenpair
(σi, yi),

hm+1,mvm+1e
T
myi

is small for all i if hm+1,m is small. Unfortunately, not very much is known in
general about the convergence properties of the Arnoldi method.

3.1.2 Implicitly restarted Arnoldi method

For large m the eigenvalue problem for the Hessenberg matrix Hm, typically
solved using the QR method, may become prohibitively expensive. Addition-
ally, having to keep a lot of the vectors {vi} orthogonal, and retaining a lot of
vectors in memory, are unfortunate features of the standard Arnoldi algorithm.
A way to avoid these features is by introducing the notion of restarting the
process by creating a more appropriate starting vector v1. The basic idea be-
hind the implicitly restarted Arnoldi (IRA) algorithm is to filter out unwanted
”eigendirections” from the original starting vector (v1) by using the most recent
spectral information together with a clever filtering technique.
Let m be the number of eigenvalues that are desired. Use the Arnoldi algorithm
to find M (M > m) approximate eigenvalues of A, {σi}Mi=1, from

AVM = VMHM + hM+1,MvM+1e
T
M , (3.5)

where the eigenvalue estimates are ordered such that the leading ones have some
specific property, e.g. <(σi) ≥ <(σj) for j > i. The goal is to filter out the
directions of the eigenvectors {yi}Mi=m+1 from the starting vector. For example,
trying to filter out ym+1, subtract σm+1VM from eq. (3.5),

(A− σm+1I)VM = VM (HM − σm+1I) + hM+1,MvM+1e
T
M

and construct the QR decomposition

Q(1)R(1) = HM − σm+1I.

Multiplying with Q(1) from the right to get

(A− σm+1I)VMQ
(1) = (VMQ

(1))(R(1)Q(1)) + hM+1,MvM+1e
T
MQ

(1)
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leads one to finally write

AV
(1)
M = V

(1)
M H

(1)
M + hM+1,MvM+1e

T
MQ

(1)

where V
(1)
M ≡ VMQ(1) and H

(1)
M ≡ R(1)Q(1) +σm+1I. Thus, the method is based

on a shifted QR algorithm, which preserves the Hessenberg form, giving a new
Arnoldi decomposition which is equivalent to the decomposition that would have
been obtained if the Arnoldi process was initiated with the filtered vector. The
algorithm looks as follows:

1. Compute the M eigenvalues of HM (m < M � N)

2. Apply the shifted QR algorithm M −m times, with shifts σm+1, σm+2,
..., σM , to compute a new Arnoldi decomposition with a filtered starting
vector

3. Go back to 1 if the (m) wanted eigenpairs have not converged

Matrix transformations are often needed to select eigenpairs when the wanted
eigenvalues are not the ones with the largest magnitude. Another reason for
needing matrix transformations is that eigenvalues that are not well separated
may lead to slow convergence of the algorithm, or even convergence to the wrong
eigenvalues.

3.2 Optimal linear transient growth

Consider the time evolution of the fluctuation field u′, governed by eqs. (3.1)
and (3.2),

u′(t) = A(t)u′(0).

Here the interest is in the maximum energy growth of any initial fluctuation
field, u′0 ≡ u′(0), after some time t. Again, note that even if all the eigenmodes
of a system are decaying, as given in Section (3.1), a superposition of some
of the modes may still give rise to large fluctuations u′(t) in the short term
[60]. Consider ||u′0||2 ≡ 〈u′(0), u′(0)〉 = 1, using an inner product 〈·, ·〉, and the
relative energy at time t becomes

K(t) = 〈u′(t), u′(t)〉 = 〈A(t)u′0,A(t)u′0〉 = 〈u′0,A∗(t)A(t)u′0〉

after introducing the adjoint operator A∗ (which is usually calculated using par-
tial integration in the infinite dimensional case). The Euclidian inner product,
considering the finite dimensional discrete (matrix) problem, gives

K(t) = (u′0)TAT (t)A(t)u′0.

Thus, the interest is in the eigenvalue decomposition of AT (t)A(t), and partic-
ularly the eigenvalue λi with the largest magnitude together with its accom-
panying normalized eigenvector wi. This would then give the largest possible
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increase in energy any disturbance could have gained after a time t. It may also
be recognized that the (full) singular value decomposition (SVD) of A(t) could
be considered instead,

A(t)wi = (λi)
1/2vi.

Here not only the energy increase is seen, but also how the spatial structure of
the initial fluctuation field wi has evolved into vi after time t.

3.3 Proper orthogonal decomposition

Proper orthogonal decomposition may be seen as an optimal way of compress-
ing a sequence of data. For a flow field, this implies the extraction of the
most energetic flow structures. Consider the set of time dependent quantities
{ui(t)}Ni=1, which in this thesis will be (three-component) velocities, possibly
with the mean values subtracted, at N/3 spatial sample points. The method is
based on a correlation matrix M

Mij = 〈uiuj〉 (3.6)

where 〈·〉 will refer to time averaging. Eigenvectors corresponding to the largest
eigenvalues of the matrix (3.6) reflect the most energetic ”directions” and the
regions with the strongest correlations. This eigenvector decomposition has a
whole plethora of different names, one of them being proper orthogonal decom-
position (POD). The matrix M is seen to contain a set of two-point correlations,
which may be obtained using two hot-wire probes collecting data simultaneously
at two different spatial locations. However, today data is often sampled simul-
taneously over a range of space, such as over a 2-D plane for PIV (or possibly
3-D for tomographic PIV) or over a 3-D domain for DNS/LES/(U)RANS. An
alternative method, less computationally expensive than calculating eigenpairs
for the N×N matrix M , called the method of snapshots [66], is presented below.

Consider the set of vectors {u(tk)}mk=1, u(tk) ∈ RN . Placing the vectors in
a matrix U ,

U ≡ [u(t1)u(t2) . . . u(tm)] ∈ RN×m,

an N ×N correlation matrix (neglecting the scaling factor m−1) can be formed,

(UUT )ij =

m∑
k=1

ui(tk)uj(tk), (3.7)

where (UUT )ij = mMij ifm is large enough. The (thin) SVD may be considered
for calculating the eigenpairs of (3.7),

U = V ΣWT (3.8)

where V ∈ RN×m and W ∈ Rm×m are orthonormal matrices and Σ ∈ Rm×m
is a diagonal matrix with nonnegative entries. Thus, instead of solving the
(generally large) eigenvalue problem for UUT = V Σ2V T , the (generally small)
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eigenvalue problem for UTU = WΣ2WT may be solved, and V = UWΣ−1.
The existence of an invertible Σ requires that the columns of U ({u(tk)}mk=1)
are linearly independent. The eigenvectors of (3.7), the POD modes, are the
columns vi of V with the corresponding eigenvalues σ2

i ≡ Σ2
ii. Thus, the matrix

(3.7) (which is symmetric positive semidefinite) gives orthogonal eigenvectors
with real nonnegative eigenvalues, which are sorted so that σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

m.
The (normalized) POD basis {vi}mi=1, vi ∈ RN , is optimal (or ”proper”) in

the sense that, given any trunction limit q ∈ N (q ≤ m), the expression

m∑
k=1

||u(tk)−
q∑
i=1

ãi(tk)ṽi||22

is minimized (for the l2-norm) when ṽi = vi and ãi(tk) = ai(tk), where the
coefficients ai(tk) are simple projections,

ai(tk) ≡ vTi u(tk). (3.9)

The values ai(tk) ∈ R are referred to as the time coefficients. Considering the
trace of (3.7) it is seen that, with 〈u2

i 〉 = 1
m

∑m
k=1 u

2
i (tk),

m

N∑
i=1

〈u2
i 〉 =

m∑
i=1

σ2
i ,

which follows since the rest of the N−m eigenvalues of matrix (3.7) are zero val-
ued. Thus, the eigenvalues are related to the mean ”energy” of the field, which
becomes actual (kinetic) energy when u represents a velocity field. In cases
where fluctuations (u → u′) are considered, it of course instead corresponds to
the mean fluctuation energy.

Decisions about how many modes to consider may be based on the fraction
of the total energy to be captured. As for any successful modal decomposition,
the number of relevant modes should be small. The typical expectation is that
the most energetic modes should represent large scale structures (which is not
necessarily true) and that modes of lower energy should represent smaller scale
structures, or ”noise”, which are typically ignored. A partial reconstruction of
a field using POD modes may then act as a low pass filter.

Given that the fields u(tk) were sampled at a fixed time interval, which
is otherwise not necessary, the time coefficients can easily be used to extract
the frequency content of the modes. A better frequency analysis may even be
obtained for the time coefficients compared to using point data in the flow field,
since the decomposition can work as a filter. The POD modes, in contrast to
DMD modes, may contain multiple frequencies. Note that the sampling interval
has to be taylored for the specific flow frequencies that are of interest. It may
especially be mentioned that for modes of a traveling wave character, often two
close lying (in terms of eigenvalues/energy content) modes are found, which
are phase shifted 90◦ from one another in time, seen in the time coefficients.
A traveling wave is on the other hand captured in only one mode for a DMD
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analysis (a DMD mode gives two fields, one ”real” and one ”imaginary”). Note
that for a standing wave only one field is necessary, for both POD (one mode)
and DMD (real or imaginary part gives large values).

Also considering the columns of W in eq. (3.8), which are orthonormal as
well, results in what is called a bi-orthogonal decomposition (BOD) of U . The
columns of W are known to correspond to the eigenvectors of

(UTU)ij =

N∑
k=1

uk(ti)uk(tj). (3.10)

Thus, for eq. (3.7), spatial correlations are considered (where time is averaged
out), whereas for eq. (3.10), temporal correlations are considered (where space is
averaged out). The columns of V (the POD modes) are in this context called the
topos and the columns of W the chronos. The chronos modes are furthermore
proportional to the time coefficients, implying that the time coefficients for
different modes are orthogonal (aTi aj = 0, i 6= j). In the next section DMD
analysis is considered, which may be viewed as a complement to POD analysis.

3.4 Koopman analysis

Koopman modes, for nonlinear dynamics, may be thought of as the analogue of
normal modes for linear dynamics [40]. The Koopman operator for nonlinear
systems is a linear operator, which does not involve linearization. However, the
price to pay is that the Koopman operator is infinite dimensional. Consider the
dynamical system

ż = f(z)

on the state space M (z ∈ M), where f in general is nonlinear. For a state
z, denote the solution at a time t later by Stz. Introduce the observable g :
M → Rp, which may give e.g. a section of the flow field as its codomain. The
Koopman operator Kt is then defined by

Ktg(z) = g(Stz).

The spectral properties of Kt are of particular interest. In the context of a se-
quence of fields {u(ti)}∞i=1, with ti+1 = ti+∆t, the Koopman operator K ≡ K∆t

is given by Ku(ti) = u(ti+1). Considering the sequence U ≡ [u(t1)u(t2) . . .],
this can in turn be written as

KU = US

for the infinite dimensional shift operator S,

S =


0 0 0 . . .
1 0 0 . . .
0 1 0
...

. . .
. . .

 .
Since the spectral properties of S are not attainable, an approximation to

the Koopman operator is given by Dynamic mode decomposition.
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3.4.1 Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a recently developed (Rowley et al.
[55], Schmid [61]) data-based method for extracting dynamic information from
a data set sampled at a fixed temporal(/spatial) interval. While POD modes
are separated out based on their energy content, DMD modes are separated out
based on their frequency and rate of growth/decay.

Consider a set of (column) vectors {uk}mk=1, uk ≡ u(tk) ∈ RN , sampled at a
fixed time interval ∆t, with all but the last one placed in the matrix Um−1

1 ,

Um−1
1 ≡ [u1 u2 . . . um−1] ∈ RN×m−1.

Proceed by writing the last vector as a linear combination of the previous m−1
vectors, assuming that they are linearly independent, plus some residual term,

um =

m−1∑
k=1

ckuk + r.

The weights ck are obtained through a least square calculation so as to minimize
the residual r. The hope is that m is sufficiently large so that the residual can
be neglected. Letting A denote the matrix that leads from one state to the next,
uk+1 = Auk, gives

AUm−1
1 = Um−1

1 C + reTm−1 (3.11)

for the so-called companion matrix C,

C =


0 0 . . . 0 c1
1 0 0 c2
0 1 0 c3
...

. . .
...

0 0 . . . 1 cm−1

 (3.12)

and (em−1)i = δi,m−1. Note that A is a finite dimensional approximation to K.
The Arnoldi procedure and eq. (3.4), which is an orthonormal decomposition
with its accompanying Hessenberg matrix, may be compared with that of eq.
(3.11), where some of the columns of Um−1

1 can be almost parallel. The problem
now becomes one of finding eigenpairs (σi ∈ C, xi ∈ Cm−1) for the matrix
C ∈ Rm−1×m−1,

Cxi = σixi. (3.13)

The (approximate) eigenvectors of A, Um−1
1 xi, are called dynamic/DMD modes.

The associated eigenvalues can in turn be written as σi ≡ eλi∆t. Here one may
consider the imaginary part =(λi) = 2πfi, for the frequency fi, while the real
part <(λi) determines the growth/decay rate. A concern about this method
of extracting dynamic modes is that the companion matrix (3.12), because of
its (sparse) structure, may be very sensitive to noise. Another method was
proposed (Schmid [61]) which is based on the (thin) SVD

Um−1
1 = V ΣWT ,
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where the columns of V ∈ RN×m−1 are the POD modes of Um−1
1 . The equation

AUm−1
1 = Um2 gives

AV ΣWT = Um2 ⇒ V TAV = V TUm2 WΣ−1 ≡ C̃

given that Σ is invertible (all the singular values are positive), which is the case
if the columns of Um−1

1 are linearly independent. Since V T (AV ) represents a
projection of A onto the column space of V (and therefore onto the column
space of Um−1

1 ) there is no residual involved in the expression. In this case the
eigenvalue problem to solve is

C̃yi = σiyi.

In contrast to the companion matrix C, the matrix C̃ is in general full. The
dynamic modes from the companion matrix approach are proportional to V yi.
In the software that was used for this thesis, both the methods could be applied,
and the modes were ranked according to their magnitudes ||Um−1

1 xi||2, with the
normalization

||xi||22 =

m−1∑
j=1

|(xi)j |2 = <(xi)
T<(xi) + =(xi)

T=(xi) = 1

(of the eigenvectors in (3.13)). The same normalization (||xi||2 = 1) was used for
the SVD approach. The magnitudes only have meaning relative to each other,
and the mode with the largest magnitude often comes to reflect the mean flow.
Thus, the choice of important modes can be based on the relative magnitudes
of the modes, the frequencies, and the rates of growth/decay.

If A is a linear operator DMD analysis reduces to a linear stability analysis,
while for periodic flow, with um = u1, DMD reduce to a discrete Fourier trans-
form (λk = 2πik/(m− 1)). Perhaps more surprisingly, if the mean is removed,
ui → ui −m−1

∑m
k=1 uk, i = 1, 2, ...,m, DMD also reduces to a discrete Fourier

transform [9]. The real parts <(λi) = 0, ∀i, and the frequencies =(λi)/2π
come in steps of ∆f = 1/(m∆t). The lowest frequency to be captured becomes
1/(m∆t), where there is otherwise no theoretical lower bound. Furthermore,
the mode energies might drop of slowly for non-periodic data, along with other
(well-known) restrictions for the DFT.

Decompositions for more general cases, not considering a linear operator or
a periodic flow, are up for interpretation. DMD analysis lends itself particularly
well to cases where only a few dominant frequencies are present in the flow.
Note that while POD modes may largely separate different frequencies in certain
circumstances, it does not do so by design. Difficulties arise when there are no
dominating frequencies in the flow. This can especially be the case for very
turbulent flows where there is a large variability in the frequency content, and
where structures, for example, appear in bursts at irregular intervals. Since the
growth/decay rates (<(λi)) can be very sensitive to this type of ”noise”, only
relative values are usually considered.
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The SVD approach was used for all of the cases in this thesis, except for
the VT40 burner. The main reason for this was based on the code, where the
SVD approach did not require all of the data to be read into memory at once.
However, for all of the cases and tests where the SVD and companion matrix
approaches for calculating the DMD were compared, they gave nearly identical
results.

The way a DMD and/or POD analysis was typically performed, was to first
obtain time sequences of the quantity of interest at some different points in
the flow. Based on the frequencies that were extracted, a decision was made
regarding how often to sample, and for how long. Note that both DMD and
POD are subject to the Nyquist criterion. As already mentioned, DMD is a
fairly new method, and more guidelines are needed.

3.4.2 Extended DMD

To be able to couple different fields, such as a flame to a flow, an extended
version of DMD (EDMD) has been suggested. Consider a set of fields {φk}mk=1,
φk ∈ Rp, sampled simultaneously with the set {uk}mk=1. Put into matrix form
Φm−1

1 ≡ [φ1 φ2 . . . φm−1], mode i can be obtained from

Φm−1
1 xi (3.14)

where xi is a result of the DMD analysis of {uk}mk=1, see eq. (3.13). Note that
the dimension of φ (p) does not need to be the same as the dimension of u (N).
The method is analogous to Extended POD (EPOD) [38, 4]. In [4], the flow
field inside a model engine cylinder was sampled during the intake stroke using
PIV. The method was used to calculate flow modes in the entire sample region,
based on a POD analysis in a subdomain. Using this approach, focus could be
placed on the relatively weak events in the subdomain. A different application,
a flame-flow coupling, considering simultaneously sampled PIV and OH-PLIF
data, was carried out in [14]. An annular burner with an unsteady laminar
flame was studied, both with and without acoustic excitation.
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Chapter 4

Chaotic time series analysis

Dynamical systems, even low-dimensional ones, can give rise to very compli-
cated phase space trajectories. For dissipative systems, these trajectories gen-
erally end up on subsets of the phase space, on so-called attractors. Attrac-
tors determine the typical behaviour of the systems, where simple attractors
include stable (zero-dimensional) fixed points and (one-dimensional) limit cy-
cles. In particular, seemingly high-dimensional fluid systems may turn out to
result from low-dimensional attractors. A trajectory which starts within an at-
tractors basin of attraction will inevitably tend towards the attractor. For a
given system, there may be multiple attractors, and therefore multiple basins
of attraction. Analysing these systems, particularly chaotic systems, can be
difficult. The perceived complexity, in part, comes from tools originally built
for linear systems. Notably, spectral analysis has a problem with separating
(low-dimensional) dynamics from (high-dimensional) noise. The difficulty be-
comes even more palpable when the underlying dynamical system is unknown,
and only a scalar time series is available, which is frequently the case for exper-
imental data. A popular approach, for sample data u(k) ∈ R, k = 1, 2, ..., N ,
is to consider a time delay embedding. This involves creating a dE-dimensional
space containing points y ∈ RdE , built using time delays,

y(k) = [u(k) u(k + T ) u(k + 2T ) ... u(k + (dE − 1)T )], (4.1)

where T is the time delay (which in this context is an integer) and dE is the em-
bedding dimension. Thus, a trajectory in the embedding space is given by the
evolution y(k) → y(k + 1). The goal is to use the trajectory in the embedding
space to capture the dynamics of the original multi-dimensional system. The
formal requirements for this type of embedding are given by Takens’ theorem
[69]. After the attractor has been unfolded, in the dE-dimensional embedding
space, invariant properties may be evaluated, in particular the attractor di-
mension and the global Lyapunov spectrum. These invariants help characterize
the system, and give useful information regarding the dynamics. While the at-
tractor dimension says something about the amount of information needed to
describe the system, the Lyapunov spectrum provides information about e.g.
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predictability. It may be noted that when the attractor dimension is not an
integer, which is generally the case for chaotic systems (using any reasonable
definition of dimension), the attractor is called strange. A review of the analysis
of chaotic time series is given by Abarbanel et al. [1].

In Section (4.1), a method to evaluate the appropriate time delay T is given,
followed in Section (4.2) by a procedure used to calculate the smallest possible
embedding dimension dE . Different definitions of the attractor dimension are
discussed in Section (4.3), while the global Lyapunov spectrum is considered in
Section (4.4).

4.1 Time delay

Any time delay T , referring to eq. (4.1), should work if an infinite amount
of infinitely precise data is available. However, in practice, some appropriate
value needs to be chosen. The value should preferably be sufficiently large
so that the new step is clearly separated from the previous step, and yet not
so large that the correlation with the previous step has vanished. A possible
choice in determining T is to use the first zero of the autocorrelation function
〈u(k+ T )u(k)〉k. However, a better nonlinear alternative is typically to use the
average mutual information. The mutual information, considering two systems
A and B, is

IAB(a, b) = log2

(
PAB(a, b)

PA(a)PB(b)

)
,

where a ∈ A, b ∈ B, and P represents the corresponding probability distribu-
tions (single PA, PB , and joint PAB). In particular, PAB(a, b) = PA(a)PB(b)
gives IAB(a, b) = 0, i.e. the events say nothing about one another. Taking the
average of the mutual information gives

IAB =
∑
a,b

PAB(a, b)IAB(a, b).

In this case, considering the above time series, u(k) ∈ A and u(k + T ) ∈ B,
leading to

I(T ) =
∑
k

P (u(k), u(k + T )) log2

(
P (u(k), u(k + T ))

P (u(k))P (u(k + T ))

)
. (4.2)

Practically, the first local minimum is used, T = Tm, (dI/dT )(Tm) = 0 (and a
positive second derivative). However, when there is no such minimum, a value
T where I(T ) ≈ I(0)/5 may be used instead [1].

4.2 Embedding dimension

There exists several methods attempting to calculate the minimum embedding
dimension dE , for example using singular value decomposition. If the attractor
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dimension dA is known, which is generally not an integer, Takens’ theorem says
that dE > 2dA is sufficient. However, this estimate is often too conservative, and
smaller embedding dimensions may be possible to obtain. Note that when the
embedding dimension is larger than necessary, not only do the computational
requirements increase, but the additional dimensions are also filled with noise
for contaminated signals. The most popular method to extract the embedding
dimension appears to be the false nearest neighbour approach [31]. The steps
proceed as follows:

1. Consider the points y(k) (from eq. (4.1)) for dE = 1, y(k) = [u(k)], for all
k.

2. Find the nearest neighbour to y(k), yNN (k), considering the metric Rd(k),

R2
1(k) = (u(k)− uNN (k))2.

3. Add a new dimension so that dE = 2, y(k) = [u(k) u(k + T )].

4. Check if y(k) and yNN (k) are still ”neighbours”. If the criterion

|u(k + T )− uNN (k + T )|
R1(k)

> RT

is true, for some threshold value RT , the points y(k) and yNN (k) are
considered to be false neighbours. If the expression is not true, calculate

R2
2(k) = R2

1(k) + (u(k + T )− uNN (k + T ))2

and check if
R2(k)

RA
> 2 (4.3)

where RA is the ”size” (”radius”) of the attractor, often taken to be the
standard deviation of the data (std(u)). If expression (4.3) is true, y(k)
and yNN (k) are false neighbours. This second criterion is especially im-
portant for noisy environments.

5. Find new nearest neighbours for dE = 2, for all k, and evaluate how many
of them are false by continuing the recipe given above.

Continue adding dimensions (dE = 3, 4, ...) until there are no false neigh-
bours left, or a negligable amount. The general criteria look like

|u(k + dT )− uNN (k + dT )|
Rd(k)

> RT

and
Rd+1(k)

RA
> 2.
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A value for the threshold RT needs to be chosen, where RT = 10− 20 appears
to be in use. The above algorithm not only gives a value of the minimum
embedding dimension, but it also provides an estimate of the error one makes
in using a dimension that is too small, since the number of false neighbours is
checked for each dimension.

4.3 Attractor dimension

Inside an embedding space, where the attractor has been completely unfolded,
the attractor dimension dA may be evaluated. There exists many different
definitions of the attractor dimension, several of which should give very similar
values, at least for simple fractals. With the embedding space partitioned into
elements, a common feature in evaluating a dimension is to analyse how a bulk
property of the elements change with the element size (or ”radius”). Consider
an attractor covered by ”boxes” with side length r. The number of boxes N
needed to cover the attractor, in the limit r → 0, leads to the box-counting
dimension D0, D0 = limr→0 logN/ log r−1. Further generalization gives the
information dimension D1 and the correlation dimension D2. The information
dimension is defined as

D1 = lim
r→0

−
∑
i pi log pi

log r−1
,

where the probability pi = ni/
∑
k nk for the number of points ni inside element

i of the embedding space. r is again the size of an element. Note that while
the box-counting dimension only checks if the elements (boxes) are nonempty,
pi for the information dimension is proportional to the number of points inside
the element. The correlation dimension is defined as

D2 = lim
r→0

log
∑
i p

2
i

log r−1
,

involving the probability of finding pairs of points inside the elements. The
correlation dimension is typically estimated using the Grassberger-Procaccia
correlation function C2(r),

C2(r) =
2

N(N − 1)

N∑
i 6=j

H(r − ||y(j)− y(i)||), (4.4)

where H is a step function (H(x) = 1 for x > 0, H(x) = 0 for x < 0). The
correlation dimension is then estimated by plotting logC2(r) against log r, for
small r, where the dimension is given by the slope.

A different way of extracting a useful quantity is based on the Lyapunov
exponents {λi}, introduced in the next section, ordered such that λi ≥ λj if
i < j. The Kaplan-Yorke dimension DKY is defined as

DKY = m+

∑m
i=1 λi
|λm+1|

,
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where m is the maximum value under the condition that λ1 +λ2 + ...+λm > 0.
As was strongly suggested in [5], this implies that the first m + 1 exponents
are in some sense of fundamental importance to the character of the attractor.
Note that when the sum of all exponents is negative, the system is dissipative.
While the first m directions have a space-filling character, with its positive sum
of exponents, the addition of the (m + 1)st direction gives a negative sum and
a collapse onto a fractal. Displacements in the additional directions, with more
negative exponents, decay rapidly onto the attractor and are of less interest.
The Kaplan-Yorke conjecture states that DKY = D1 for ”typical” systems.

4.4 Global Lyapunov spectrum

Lyapunov exponents provide information about the evolution of nearby trajec-
tories, where a positive exponent implies exponential divergence in its corre-
sponding direction. The Lyapunov spectrum is the set of all (important) Lya-
punov exponents. While evaluating the eigenvalues of the linearized dynamics
locally leads to the local Lyapunov spectrum, taking into account the entire at-
tractor gives the global Lyapunov spectrum. To calculate the global Lyapunov
spectrum, which is an invariant characterizing and classifying the attractor, in-
formation is needed about how neighbouring points evolve along the attractor.
The evolution of small disturbances can be obtained from

small disturbance at step k+1 =
Jacobian(k)*Jacobian(k-1)...Jacobian(1)*small disturbance at step 1

if the Jacobian matrices at the different steps are known (”*” is matrix mul-
tiplication). Note that the disturbances need to stay small for the linearized
dynamics to be valid. The goal is to extract the full set of exponents, or at least
those which are ”strongly involved” in the dynamics of the attractor, and not
just the largest exponent. This section is based on the work in [5, 7].

Consider the small displacement vector zr(k; 0) ≡ yr(k; 0) − y(k) around
y(k), for the rth nearest neighbour, after time T2, zr(k;T2). The components
are

zrα(k; 0) = u(kr + (α− 1)T )− u(k + (α− 1)T )

and
zrα(n;T2) = u(kr + T2 + (α− 1)T )− u(k + T2 + (α− 1)T )

for α = 1, 2, ..., d and r = 1, 2, ..., Nb. kr is the index for the rth nearest
neighbour. If the dynamics is written as

y(k + T2) = F (y(k)),

the displacements evolve according to

zr(k;T2) = yr(k;T2)− y(k + T2) = F (y(k) + zr(k; 0))− F (y(k)).
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A Taylor expansion leads to

zrα(k;T2) =
∂Fα
∂yβ

zrβ(k; 0) +
1

2!

∂2Fα
∂yβyγ

zrβ(k; 0)zrγ(k; 0)

+
1

3!

∂3Fα
∂yβ∂yγ∂yδ

zrβ(k; 0)zrγ(k; 0)zrδ (k; 0) +H.O.T.

where the derivatives are evaluated at y(k). Neglecting the third and higher
order terms for a moment, the problem takes the form V α = XBα, where

V α =


z1
α(k;T2)
z2
α(k;T2)

...
zNbα (k;T2)

 ,

Bα =



D1Fα(k)
...

DdFα(k)
D2

11Fα(k)
D2

12Fα(k)
...

D2
ddFα(k)


,

and

X =
z1

1(k; 0) · · · z1
d(k; 0) z1

1(k; 0)z1
1(k; 0) z1

1(k; 0)z1
2(k; 0) · · · z1

d(k; 0)z1
d(k; 0)

z2
1(k; 0) · · · z2

d(k; 0) z2
1(k; 0)z2

1(k; 0) z2
1(k; 0)z2

2(k; 0) · · · z2
d(k; 0)z2

d(k; 0)
...

...

zNb1 (k; 0) · · · zNbd (k; 0) zNb1 (k; 0)zNb1 (k; 0) zNb1 (k; 0)zNb2 (k; 0) · · · zNbd (k; 0)zNbd (k; 0)

 .

The notation DβFα = ∂Fα/∂yβ and D2
βγFα = 1

2!∂
2Fα/∂yβyγ has been

used. The interest lies in extracting the Jacobian DF , which may be obtained
by (pseudo) inverting the matrix X. Adding the cubic term implies the addition
of terms zrβ(k; 0)zrγ(k; 0)zrδ (k; 0) to X. The total number of neighbours to follow
(in order to avoid an underdetermined system), Nb, needs to be at least NP ,

NP =

(
Nτ∏
n=1

d+ n

n

)
− 1,

where Nτ is the order of the expansion, which, including the cubic term, is
Nτ = 3. It is recommended that Nb ≥ 2NP , and in this thesis Nb = 2NP .

Multiplying these Jacobians is not a stable procedure. Therefore, at every
step k, a QR decomposition is made

DF (y(k))Q(k − 1) = Q(k)R(k),
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where Q(0) = I (the identity matrix), implying that

DF (y(k))DF (y(k − 1))...DF (y(1)) = Q(k)

k∏
n=1

R(n).

The Lyapunov exponents λm are calculated from (the real part of)

T2λm = lim
K→∞

1

K

K∑
k=1

ln(Rmm(k)),

where T2 in this case is the actual time (not the dimensionless integer).
It is not obvious what d value should be used in the above equations. The

notion of a global dimension dG and a local dimension dL may be introduced,
where the global dimension is simply the embedding dimension, dG = dE . If
DF is a dE × dE matrix, and dE is larger than the ”true/natural” dimension of
the system, it will contain spurious Lyapunov exponents. As stated by Brown
et al. [5], ”Under one approach the evolution vectors y(n) are of dimension
d = dL < dG. The reconstruction is thus not globally diffeomorphic to the
attractor that represents the true dynamics. However, we believe that the y’s
do capture the true local dynamics of the attractor.” Using a value of dL as low
as possible is probably beneficial for all (true) Lyapunov exponents in a noisy
environment. For the local dimension, use

dA ≤ dL < dA + 1,

where the rest of the (dG − dL) Lyapunov exponents should be of less interest
for understanding the attractor. Thus, while dG is used to calculate the Nb
nearest neighbours, dL is used for the rest of the procedures (in particular, zr

becomes a dL-dimensional vector).
The global Lyapunov spectrum carries a lot of information about the dy-

namics on the attractor. In particular, the existence of at least one positive
exponent is the hallmark of a chaotic system. The inverse of the maximum
Lyapunov exponent furthermore reflects the time scale on which the system
becomes unpredictable.
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Chapter 5

Computational models

The governing equations for fluid flow have already been specified in Section
(2.1). In order to solve these equations, with given initial and/or boundary
conditions, all the active flow scales need to be accounted for. While this may
not be a problem for laminar flows or flows at moderate Reynolds numbers,
for high Reynolds numbers it becomes a huge problem. Following the discus-
sion in Section (2.3), eq. (2.18) would imply a cell/node number (in a spatial
discretization) scaling with (

l0
lη

)3

∼ Re9/4
l0
,

and a total scaling (including time integration) with Re3
l0

. Resolving every
(flow) scale in a computational realization is called a direct numerical simula-
tion (DNS). For most engineering applications this is not feasible with todays
computers, and reasonable approximations need to be made.

One approach is to solve for an averaged velocity field 〈ui〉, where the large
variations (derivatives) have been filtered out, implying that the resolution can
be significantly reduced. The time/ensamble averaged (assuming an ergodic
system) equations (2.9) and (2.10), for a statistically stationary flow, are called
the Reynolds averaged Navier-Stokes (RANS) equations. The ensamble aver-
aged equations, keeping the temporal derivatives, are called the unsteady-RANS
(URANS), or perhaps the transient-RANS (TRANS), equations.

A proposal put forward by Kolmogorov, as already discussed in Section (2.3),
is that the smaller spatial scales (away from any solid boundary) are independent
of the geometry, a universality that could be exploited for modelling. Resolving
only the larger spatial scales, while modelling the effect that the smaller scales
would have had on the resolved scales, is called large eddy simulation (LES).
Using LES, beyond the conjectured improvement in modelling prospects, one is
able to capture structures that are not necessarily present on average, or that at
least would become heavily smeared. However, computational requirements can
increase substantially for (”good”) LES compared to RANS/URANS. For ideal
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turbulent flow the resolution is often well within the inertial subrange, which
in 3-D implies a spatial resolution of the order of O(Re1.5), and with adequate
time resolution the total amount of computational work would be of the order
O(Re2). Some fundamental questions concerning LES are raised in Pope [51].

5.1 Reynolds averaged Navier-Stokes equations

Averaging eqs. (2.9) and (2.10), and introducing the separation ui = 〈ui〉+ u′i,
gives

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

(
ν
∂〈ui〉
∂xj

− 〈u′iu′j〉
)
.

and
∂〈uj〉
∂xj

= 0.

The extra term−〈u′iu′j〉 has been moved to the right hand side, and is interpreted
as a stress term, the so-called Reynolds stress. Note that the density, since it is
just a constant value, will not be of concern (it may be put in at any time to
get the correct dimensions).

The term 〈u′iu′j〉 is not available, and in trying to solve for this term, terms
of the form 〈u′iu′ju′k〉 are needed, and so on. This is called the closure problem,
and it necessitates the introduction of models. The modelling is thus intended
to incorporate how the fluctuations would affect the average flow 〈u〉, which is
not an easy thing to do.

5.1.1 k − ε model

The most common closure model is the k − ε model. This is a two-equation
model based on the eddy viscosity approach,

−〈u′iu′j〉+
2

3
kδij = 2νT 〈sij〉,

where νT = νT (x, t) is the eddy viscosity field. The k-term on the left is added
since the right hand side is traceless. The modelled Reynolds stresses are seen to
respond immediately to changes in the mean field. The two equations are aimed
at capturing the turbulence kinetic energy k = 1

2Tr(〈u
′
iu
′
j〉), and the dissipation

rate ε, which are then used to calculate νT ,

νT = Cµ
k2

ε
.

The model equations are

∂k

∂t
+ 〈uj〉

∂k

∂xj
=

∂

∂xj

(
νT
σk

∂k

∂xj

)
+ P − ε
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and
∂ε

∂t
+ 〈uj〉

∂ε

∂xj
=

∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ Cε1

Pε

k
− Cε2

ε2

k

where P = −〈u′iu′j〉〈sij〉 = 2νT 〈sij〉〈sij〉 is the production term, σk and σε
are the ’turbulent Prandtl numbers’, usually σk = 1.0 and σε = 1.3, and the
standard C-coefficients, taken from [52], are

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92.

In particular, due to the resulting production term P , there is likely to be a large
overproduction of turbulence kinetic energy in regions where the streamlines are
strongly curved.

5.2 Large eddy simulation

The object under consideration for LES is the spatially filtered field φ,

φ(x, t) = (G ∗ φ)(x, t) =

∫
G(x− x′)φ(x′, t)dx′,

for the filter kernel G(x− x′). Common filters, using filter width ∆, is the box
filter

G(x) =
1

∆3
H

(
1

2
∆− |xi|

)
,

where H is the Heaviside function, and the Gaussian filter

G(x) =
1√

2πσ2
exp

(
−1

2

(x
σ

)2
)
,

where σ ∼ ∆. Most codes use implicit filtering, meaning that the discretization
of the governing equations on the given grid provides the filtering operation. The
filter width then essentially becomes the grid spacing h, ∆ = h. The alternative
would be to explicitly filter the field at every grid point. The gain would be
to suppress numerical errors introduced at the smallest scales (by averaging
them out), at the expense of a reduced resolution (∆ > h) and an increased
overhead. Whether explicit filtering should be preferred, or if the additional
computational resources instead should be put towards an increased resolution
may be problem dependent. In general, explicit filtering needs somewhat less
fine spatial resolution as compared with the implicit one. In general 3-D cases
the gain in resolution is less as compared to the additional computational work.
Thus, it is rather common using the implicit LES, provided that the resolution
is fine enough to resolve at least some of the inertial subrange.

Filtering eqs. (2.9) and (2.10), assuming that the filtering operation and the
spatial derivatives commute, gives

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

+ τsgsij

)
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where
τsgsij ≡ −(uiuj − uiuj)

and
∂uj
∂xj

= 0.

The difference compared to the original problem, eqs. (2.9) and (2.10), is the
additional term τsgsij , called the subgrid scale (SGS) stress tensor. Similar to
RANS/URANS, LES also suffers from a closure problem. Thus, some assump-
tions/approximations are needed to solve for the filtered fields.

5.2.1 Smagorinsky model

The Smagorinsky model is analougus to the eddy viscosity concept,

τsgsij −
1

3
τsgskk δij = νsgs

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2νsgsSij ,

where the small scale turbulence is assumed to have a similar effect on the
resolved scales as molecular viscosity. For the Smagorinsky model, the eddy
viscosity is usually written as

νsgs = (CS∆)2|S|,

where |S| = (SijSij)
1/2 and the parameter CS should be tuned for the particular

case consided. Typically CS ∼ 0.05−0.2, with isotropic turbulence towards the
higher end and shear flows towards the lower end, with even further decreasing
values when approaching solid walls.

5.2.2 Germano procedure

For the Smagorinsky model, Section (5.2.1), the parameter CS cannot be a
constant and it should be considered as flow dependent. The Germano proce-
dure provides a way to estimate this parameter, although the process is more
general than that. The underlying assumption is that there is a certain sim-
ilar (asymptotic) behaviour of the filtered variables when different filters are
applied. Following the notation in [39],

Φ(q) = Φ(q) + Φmod(q,∆, C1, C2, ...), (5.1)

where Φmod represents the model, with a set of parameters Ci. Especially,
Φ(q = u) = uiuj should be considered. Introducing an additional filter of width
α∆, α > 1, and assuming that the same model, using the same parameter values,
is valid on the coarser scale,

Φ̃(q) = Φ(q̃) + Φmod(q̃, α∆, C1, C2, ...). (5.2)
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Applying the second filter on eq. (5.1), and equating it with the right hand side
of eq. (5.2), leads to

Φ̃(q) + Φ̃mod(q,∆, C1, C2, ...) = Φ(q̃) + Φmod(q̃, α∆, C1, C2, ...), (5.3)

called the (generalized) Germano identity. Since both q and q̃ should be avail-
able (without much effort), eq. (5.3) can be considered a restriction on the
parameters Ci. One should note that the computed parameter may have both
positive and negative sign and it may vary from one point to another. When
one uses as a model a Smagorinsky like expression, a positive parameter value
implies dissipation of kinetic energy into heat, whereas negative values mean
generation of energy (and indirectly so-called backscatter). However, large neg-
ative values imply also that high frequency fluctuation are amplified which may
lead to numerical instability. Therefore, it is common to put restrictions on
the size of the negative value of the parameter. Olsson & Fuchs [48] for ex-
ample proposed that the numerical and the dynamic model together should be
dissipative.

5.2.3 Scale-similarity model

In this model it is assumed that the primary interactions take place between
scales that are a little larger and a little smaller than the filter width ∆, along
with the assumption of self-similarity, i.e., the idea that interactions at different
scales show similar characteristics. This line of reasoning leads to

τsgsij = −(ũiuj − ũiũj),

using a second filter of width α∆, α > 1. Since this model has been seen to
dissipate very little energy, it is often used in conjunction with another model.
It allows for energy transfer from the smallest resolved scales to the larger scales
(backscatter), which can be useful.

5.2.4 Implicit LES (ILES)

Using this approach the numerics itself should handle the turbulence modelling.
Arguably the most important function for a subgrid scale model is to dissipate
energy (mainly at the small scales), and a way to accomplish this can be through
the addition of numerical diffusion. For a second order code, this may be done by
including a (first order) upwind (UW) scheme. The principle can be illustrated
by considering a positive convective flow, ui ≡ u(xi) > 0, which, assuming a
constant mesh spacing, ∆x = xi − xi−1, gives the upwind scheme(
du

dx

)
i

≈
(
du

dx

)
i,UW

=
ui − ui−1

∆x
=
ui+1 − ui−1

2∆x
− ∆x

2

ui+1 − 2ui + ui−1

∆x2

≈
(
du

dx

)
i,CD

− ∆x

2

(
d2u

dx2

)
i
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introducing the second order central difference (CD) scheme. The one-dimensional
convective term may now be written as

ui

(
du

dx

)
i

≈ ui
(
du

dx

)
i,CD

− νi
(
d2u

dx2

)
i

(5.4)

where νi = ui∆x/2 > 0 can be considered to be a numerical viscosity. Eq.
(5.4) becomes valid also for ui < 0 given that νi = |ui|∆x/2. If the grid is
fine enough to resolve scales far into the inertial subrange (see Fig. (2.11)),
this approach should be sufficient. This follows since the other terms in the
momentum equation should be much larger than the SGS term.
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Chapter 6

Reacting flows

In the chapters above we have been considering the flow of an incompressible
fluid (i.e. with constant density). Such flows are also characterized by the
fact the information propagates at infinite speed (that is why the equation for
the pressure is the Poisson equation) and the flow is isothermal (i.e. satisfying
the energy equation identically with a given constant temperature). Chemical
reactions with heat-release change the simplified picture of incompressible flows
in several ways. The density and temperature vary in space and time. Equally,
the turbulence of the flow affect the local concentration of the fuel and oxidizer,
whereby the heat-release becomes non-uniform or constant. Therefore, one has
to extend the system of equations to include not only the energy equation (and
the equation of state relating the density, temperature and pressure to each
other), but also the transport and consumption of the different species that are
involved in the chemical process. In the following we give only the highlights
and most relevant items of combustion modelling as this is not the main topic
of the thesis.

Considering the simplest possible chemistry, the combustion of hydrocarbons
may be highlighted, exemplified by the complete oxidation of methane,

CH4 + 2O2 → CO2 + 2H2O

releasing about 0.8MJ heat per mole of methane. The reaction given above
is global, and does not happen in a single step. Instead, many intermediate
species and interactions take place, and for an exact calculation typically a very
large number of elementary reaction, with widely different time-scales, has to
be accounted for. However, as a major simplification one may reduce the stiff
system of chemical reaction to a single or few major chemical reactions. Each
of the species involved has to be followed (by satisfying the convection by the
fluid, diffusion and production/destruction through chemical reactions). One
may distinguish between different combustion types and regimes. A common
classification is to diffusion (non-premixed) flames, premixed flames, and more
recently the partially premixed flame became popular. In this thesis we have
been considering only the latter types of flames.

59



Since diffusion flames may be less efficient and burn at nearly stochiometric
conditions, where the energy released per mole of fuel may lead to high temper-
atures and therefore a higher NOx production, premixed flames are preferred in
modern gas turbine and internal combustion engine applications. However, not
only are there general safety concerns associated with a fuel and oxidizer mixed
in advance, but there are also additional difficulties regarding flame stabiliza-
tion.

Note that for premixed flames, the laminar flame speed of a typical hy-
drocarbon/air mixture is usually low. Thus, in order to enhance mixing and
combustion one can utilize turbulence. Hence, turbulent mixing is required to
increase the burning rate and the heat release rate.

6.1 Turbulent premixed combustion

A premixed flame, going normal to the flame front, can be divided into three
regions. These are termed as the preheat zone, the inner layer or reaction zone,
and the oxidation zone. In the preheat zone few reactions take place, and the
increased temperature is primarily due to thermal diffusion from the reaction
zone. The reaction zone is a thin layer where most of the reactions take place,
and the only region where some short lived radicals will be found. Lastly, the
oxidation zone is where the more long lived radicals oxidize (such as OH and
CO), increasing further the temperature.

Consider a chemical time scale τc, estimated by τc ∼ δ2
L/α where δL is

the laminar flame thickness and α is the thermal diffusion coefficient. The
nondimensional Karlovitz number is introduced

Ka ≡ τc
τη
∼
(
δL
lη

)2

,

where τη ∼ l2η/ν is the Kolmogorov time scale and a unity Prandtl number Pr ≡
ν/α ∼ 1 has been assumed. For Ka� 1, the flame burns in the flamelet regime,
where the effect of turbulence on the flame is only to wrinkle it. For values Ka ∼
1 − 100, the flame burns in the thin reaction zone regime, where the smallest
turbulence scales can start to disturb and broaden the preheat zone. When
the Karlovitz number goes above Ka ∼ 100, the flame goes into the distributed
reaction zone regime, where eddies at the Kolmogorov scale start to penetrate
into the reaction zone, since this layer is typically about an order of magnitude
thinner than the flame thickness, and flame quenching can become a problem.
Further, comparing the large scale turbulence with the flame properties, one
may consider the Reynolds number

Re =
u′0l0
SLδL

,

using the laminar flame speed SL, where Re < 1 is taken to be a laminar flame
regime. The flame-flow regions specified above are summarized in Fig. (6.1), the

60



Peters-Borghi diagram. In practical applications, the flame in the combustion
chamber is unsteady and it may exhibit different character in space in time (i.e.
be located in different parts of the diagram).
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Figure 6.1: Peters-Borghi diagram for turbulent premixed combustion.

The flame thickness of non-wrinkled and wrinkled flames is often small for
most hydrocarbons. With turbulent wrinkling the thickness of the flame may
vary and it may become thicker of the order of the small Kolmogorov scales or
even larger. In these cases the interaction between turbulence and the chem-
istry is strong and requires a Direct Numerical Simulations (DNS) resolution
in space. Additionally, for consistency it would need also a complete tempo-
ral resolution for the different chemical reactions. Such computations are not
practical even for simple cases. Most current simulation (often termed as DNS)
use the required spatial resolution together with simple reduced chemistry with
time-scales that are resolved. Faster reactions are handled by assuming steady-
state or equilibrium. When the flame is thin one may use simplifications also to
the chemistry by introducing the flamelet concept. This concept leads to 1-D
handling of the chemistry and allows the handling of the flame motion through a
flame tracking. In the combustion case considered in this thesis, the G-equation
is used for tracking the flame.

6.1.1 Flame tracking: G-equation

Assume that the flame can be considered as a thin interface separating the
unburnt and burned regions. We define a scalar valued G-field such that it
attains the value one in the burned and minus one in the unburnt region with
the value of zero at the flame front itself. With an appropriate scaling one may
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make the scalar to represent the distance from the flame front. Thereby, one
may use a 1-D model describing the reaction in the flame as one crosses the
from the unburnt to the burnt zone. Consider next a signed function, such that
the isosurface

G(x, t) = 0

marking the flame front. The governing equation for the motion of the interface
takes the form

∂G

∂t
+ uj

∂G

∂xj
= SL|∇G|, (6.1)

where uj is the convective flow field that convects the front. The velocity SL
is the speed of the front relative to itself in the normal direction. This front
velocity has to be provided in form of a model. The same applies also for
turbulent flames where the flame front varies in space and time. Typically, one
may assume that the flame speed is proportional to the velocity fluctuations
when the laminar flame speed it small.

Typically, for LES uj → uj , G → G might be considered, and then taking
the flame speed to be related to the subgrid scale fluctuations.

SL → SLES = SL ·H ·
(

1 + C
u′sgs
SL + β

)
, (6.2)

where usually C ≈ 1, β takes some small value, and H is a Heaviside step
function accounting for the lean flammability limit [43]. The model in equation
(6.2) is supposed to account for the enhanced mixing and combustion by the
subgrid scale turbulence. The subgrid scale fluctuations of the velocity field are
handled through the Smagorinsky model.
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Chapter 7

Numerical methods

The work presented in this thesis is very collaborative, and several different
codes have been used. Focus is placed on the open source library OpenFOAM
[81, 29], which is used in many of the cases, including the main study regarding
bent pipe flow. OpenFOAM is a finite volume based code, where the com-
putational domain is separated into an arbitrary number of non-overlapping
polyhedral control volumes, or cells, allowing for complex geometries. Because
of this large freedom in the structure of the cells, together with concerns regard-
ing computational requirements, the method is limited to at most second order
accuracy. As will be discussed, even this second order accuracy typically has to
be relaxed in certain parts of the flow. An attractive feature of the finite volume
approach is that conservation of momentum, mass, energy, and passive scalars,
is upheld at the discrete level. Some of the numerical procedures implemented
in OpenFOAM are covered in [29], on which much of this chapter is based, using
similar notation. In particular, boundary conditions will not be treated below
and may be found in [29].

In Section (7.1) the tools used for grid generation are introduced, followed by
a general description of the second-order finite volume method in Section (7.2).
A few of the temporal discretization schemes and spatial interpolation schemes
available in OpenFOAM are then given in Section (7.3) and (7.4), respectively.
Finally, in Section (7.5), the pressure-velocity coupling is addressed.

7.1 Grid generation

Grids were generated using the OpenFOAM tools blockMesh and snappyHex-
Mesh. By combining these tools, rectangular cuboids can be obtained in the bulk
of the domain also for complex geometries. For complex geometries, surface files
of stereolithographic (STL) format were created using the open source software
Art of Illusion [23].
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7.2 Second-order finite volume method

The standard transport equation (for mass, momentum and energy), allowing
for diffusive transport, for the quantity per unit mass φ can be considered to be

∂ρφ

∂t
+∇ · (ρuφ) +∇ · (−ρΓφ∇φ) = Sφ(φ)

where ρuφ is the convective flux, −ρΓφ∇φ is the modelled diffusion flux, and
Sφ is a source term. Integrating over a control volume VP , containing the point
xP , and a time interval t to t+ ∆t, gives∫ t+∆t

t

[
∂

∂t

∫
VP

ρφ dV +

∫
VP

∇ · (ρuφ) dV +

∫
VP

∇ · (−ρΓφ∇φ) dV

]
dt

=

∫ t+∆t

t

[∫
VP

Sφ(φ)dV

]
dt. (7.1)

It will be assumed, or approximated, that only linear variations of the various
fields inside the volume VP take place,

ψ(x) = ψP + (x− xP ) · (∇ψ)P ,

giving the volume integration∫
VP

ψ dV = ψPVP +

[∫
VP

(x− xP ) dV

]
· (∇ψ)P .

At this stage, the point xP may be defined to be the point inside the cell where∫
VP

(x− xP ) dV = 0. The spatial integration of the first term on the LHS of eq.

(7.1) can then, given the above approximation, be written as∫
VP

ρφ dV = (ρφ)PVP .

In the context of the finite volume approach, the (generalized) Gauss theorem
is the major player, with ∫

V

∇ · ψ dV =

∫
∂V

dS · ψ, (7.2)

and ∫
V

∇ψ dV =

∫
∂V

dS ψ, (7.3)

where ∂V denotes the boundary of the volume V . It should be noted that eq.
(7.3) holds for both scalar and vector valued ψ. Again, assuming only a linear
variation of the fields over every flat face f ,

ψ(x) = ψf + (x− xf ) · (∇ψ)f ,
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gives ∫
f

dS · ψ = Sf · ψf +

[∫
f

dS(x− xf )

]
: (∇ψ)f ,

after which the point xf on the face can be defined as the place where
∫
f
dS(x−

xf ) = 0. The vector Sf has a magnitude equal to the surface area, and is
considered to be pointing in the normal direction outwards from the cell. Each
face is shared with only one neighbouring cell. For the spatial integration of the
convective term in eq. (7.1) one may write∫

VP

∇ · (ρuφ) dV =

∫
∂VP

dS · (ρuφ) =
∑
f

(∫
f

dS · (ρuφ)

)
=
∑
f

Sf · (ρuφ)f .

For a colocated arrangement ρuφ needs to be interpolated onto the faces f . The
term is approximated by making the split (ρuφ)f = (ρu)fφf , and the mass flow
rate through the face is introduced as Ff ≡ Sf · (ρu)f . For the diffusion term
in eq. (7.1) the spatial integration similarly becomes∫

VP

∇ · (−ρΓφ∇φ) =

∫
∂VP

dS · (−ρΓφ∇φ) =
∑
f

(∫
f

dS · (−ρΓφ∇φ)

)
=

∑
f

Sf · (−ρΓφ∇φ)f ,

which requires the gradient of φ on the face f . Also here a split (ρΓφ∇φ)f =
(ρΓφ)f (∇φ)f is considered. The term on the RHS in eq. (7.1), the source term,
needs to be linearized if a linear solver is to be used,

Sφ(φ) = Su+ Spφ,

and the spatial integration becomes∫
VP

Sφ(φ)dV = SuVP + SpVPφP .

Considering the special case of the incompressible Navier-Stokes equations, eq.
(2.9), φ = u and Su = −∇p, using eq. (7.3),∫ t+∆t

t

 ∂
∂t
uPVP +

∑
f

Ffuf − ν
∑
f

Sf · (∇u)f

 dt
=

∫ t+∆t

t

−1

ρ

∑
f

pfSf

 dt, (7.4)

where instead the volume flow rate Ff = Sf · uf is considered. For the mass
conservation, eq. (2.10),

0 =

∫
VP

∇ · udV =

∫
∂VP

dS · u =
∑
f

(∫
f

dS · u
)

=
∑
f

Sf · uf =
∑
f

Ff . (7.5)
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For eqs. (7.4) and (7.5), besides a way to handle the time integration, ways
of handling the face interpolations for the different terms are needed. Below, a
few different approaches are presented for handling the time integration, Section
(7.3), and the spatial interpolation, Section (7.4).

7.3 Temporal discretization schemes

In this section the time integration in eq. (7.4) is addressed. Special treatment
may be given to the non-orthogonal part of (∇u)f .
Let

ψn ≡ ψ(t+ ∆t), ψo ≡ ψ(t), ψoo ≡ ψ(t−∆t).

7.3.1 1st order explicit scheme

unP = uoP +
∆t

VP

−∑
f

Ffu
o
f + ν

∑
f

Sf · (∇u)of −
1

ρ

∑
f

pfSf


For this scheme, the truncation error for the time derivative scales linearly with
∆t in the asymptotic limit ∆t→ 0, i.e., it is a first order accurate scheme. Since
no coupled linear system needs to be solved, it is computationally inexpensive.
However, it is subject to a restriction on the Courant number, Co, where, for
the scheme to be stable,

Co =
uf∆t

||df ||
≤ 1,

needs to be satisfied, with df = PN being the vector from the point xP to the
neighbouring point xN , such that the length of the vector is the grid size.

7.3.2 1st order implicit scheme

unP − uoP
∆t

VP +
∑
f

Ffu
n
f − ν

∑
f

Sf · (∇u)nf = −1

ρ

∑
f

pfSf

Like the explicit scheme, this is also first order accurate, but the system is stable
even if the Courant number limit is violated. Of course, for a time resolved
problem, the Courant number should not be too large.

7.3.3 2nd order implicit/backward scheme

3
2u

n
P − 2uoP + 1

2u
oo
P

∆t
VP +

∑
f

Ffu
n
f − ν

∑
f

Sf · (∇u)nf = −1

ρ

∑
f

pfSf
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This scheme is second order accurate, unlike the two schemes above, and is used
for the studies in this thesis. Note the extra storage required with this scheme.
Further details of the numerical methods used in the different flows are given in
the individual papers related to each of the cases.

7.4 Spatial interpolation schemes

7.4.1 Convection term

linear For a face f between two cells P and N , a linear interpolation gives

φf = fxφP + (1− fx)φN

using the weighting factor fx = ||fN ||/||PN ||, where ij is the vector from the
point xi to the point xj . This scheme gives (the optimal) second order accuracy,
but unfortunately causes unphysical oscillations for convection dominated flows,
and often becomes unstable.

upwind For the upwind scheme, which is only first order accurate, the inter-
polation depends on the flow direction,

φf =

{
φP if Ff ≥ 0,
φN if Ff < 0.

This scheme, while stable, is usually considered too diffusive to have practical
application (although, is sometimes used with RANS).

blended This scheme tries to remedy the problems of the two schemes above
by mixing them together,

φf = (φf )upwind + γ((φf )linear − (φf )upwind),

using a constant blending factor γ. This factor determines how much numerical
diffusion will be introduced.

The most popular schemes used at present in OpenFOAM are based on a com-
bination of linear and upwind, where the ”blending factor” depends on the local
flow conditions. These include so-called flux-limited schemes, using a limiter
function Ψ,

φf = (φf )upwind + Ψ [(φf )linear − (φf )upwind] .

Some of these schemes satisfy the total variation diminishing (TVD) criterion,
where the total variation is a way of quantifying the term ’oscillation’.
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filteredLinear The FilteredLinear scheme uses the limiter function

Ψ = max(min(α, 1), 0.8),

where α is the function

α = 2− 1

2

min (|φN − φP − df · (∇φ)P |, |φN − φP − df · (∇φ)N |)
max (|df · (∇φ)P |, |df · (∇φ)N |)

,

comparing the face gradient with the neighbouring cell gradients, and df = PN
is the vector from the centre point xP to the centre point xN . This scheme gives
a limit of at most 20% upwind.

limitedLinear LimitedLinear is a TVD scheme which uses the limiter func-
tion

Ψ = max(min(βr, 1), 0),

where r is the function

r = 2
df · (∇φ)i
φN − φP

− 1,

with i = P for Ff > 0 and N for Ff ≤ 0, β = 2/k and 0 < k ≤ 1 is a
user specified variable. k = 1 corresponds to full TVD compliance while small
k-values give an approximately linear interpolation.

limitedLinearV If φ is a vector field, a different version of LimitedLinear,
LimitedLinearV, may be considered. This scheme takes into account the di-
rection of the field, instead of treating the components individually, using a
different function r,

r = 2
(φN − φP ) · (df · (∇φ)i)

(φN − φP )2
− 1.

7.4.2 Diffusion term

For general polyhedral meshes, the vector from the point xP to the neighbouring
point xN (sharing the face f), df = PN , need not be parallel to the surface
direction Sf . Considering the decomposition

Sf = ∆f + kf (7.6)

where ∆f is parallel to df , one can write

Sf · (∇φ)f = ∆f · (∇φ)f + kf · (∇φ)f = ||∆f ||
φN − φP
||df ||

+ kf · (∇φ)f .

For the term kf ·(∇φ)f , the non-orthogonal correction (vanishing for rectangular
cuboids), the face gradient is calculated from

(∇φ)f = fx(∇φ)P + (1− fx)(∇φ)N (7.7)
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with the weighting factor fx = ||fN ||/||PN ||. Both of the above methods for
handling the face gradient, the orthogonal contribution and the non-orthogonal
correction, are second order accurate. However, eq. (7.7), in addition to having
a larger computational molecule, leads to a larger truncation error than for the
orthogonal scheme. The decomposition in eq. (7.6) may be chosen in many
different ways, such as using

∆f =
df · Sf
df · df

df ,

keeping ∆f and kf orthogonal, and therefore ||kf || to a minimum, called the
minimum correction approach, or

∆f =
df
||df ||

||Sf ||,

keeping the orthogonal contribution the same as for an orthogonal mesh, called
the orthogonal correction approach. For all these methods, kf is in turn calcu-
lated from eq. (7.6).

7.4.3 Pressure gradient

Linear interpolation is typically used for the pressure gradient, and so also here.

7.5 Pressure-velocity coupling

Solving for the divergence free criterion simultaneously with the Navier-Stokes
equation becomes a very expensive procedure for large systems, and so a seg-
regated approach is usually taken. This means that the parts are solved for
separately, using some form of coupling procedure. In OpenFOAM, the PISO
(Pressure Implicit with Splitting of Operators) algorithm has been used. Also,
wanting to avoid the use of a nonlinear system solver, the flux term Ff for the
convection is lagged. Finally note that even though there may be conservation
at the discrete level for the finite volume method, it may be undone at the solver
level.

7.5.1 PISO-algorithm

Consider the semi-discretized form of the Navier-Stokes equation,

aPuP = H(u)−∇p, (7.8)

where

H(u) = −
∑
N

aNuN +
1

∆t
uoP . (7.9)
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Interpolating the velocity onto the cell faces, using eq. (7.8), gives

uf =

(
H(u)

aP

)
f

−
(

1

aP

)
f

(∇p)f ,

and therefore for the flux

Ff = Sf · uf = Sf ·

[(
H(u)

aP

)
f

−
(

1

aP

)
f

(∇p)f

]
. (7.10)

It then follows from the continuity equation, eq. (7.5), that

∑
f

Sf ·

[(
1

aP

)
f

(∇p)f

]
=
∑
f

Sf ·
(
H(u)

aP

)
f

. (7.11)

The steps followed in the PISO algorithm:

1. Predictor step: solve eq. (7.8) for an estimate of the velocity field, using
the pressure field from the previous time step.

2. Recalculate H(u) from eq. (7.9) using the new velocity field.

3. Solve for the pressure field using eq. (7.11).

4. Corrector step: update the fluxes in eq. (7.10) (using the new pressure
field), and update uP using eq. (7.8) treating the terms on the RHS
explicitly.

5. Possibly go to step 2.

Two corrector steps, following the work by Issa [28], should be sufficient for
most cases. Note that the coefficients aN in H(u), containing the fluxes, are
only updated before each new predictor step, and not after the corrector steps.
This is in line with the belief that the nonlinear coupling is less important than
the pressure-velocity coupling.
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Chapter 8

Turbulent flow through
straight and curved pipes

Transport of fluids in pipes is very common in many applications, such as in
water distribution systems, oil pipelines, heat exchangers, flow through blood
vessels, etc. Large pipe networks include joints and bends, along with pipes with
varying diameters and surface roughness. An important measure of efficiency
for these systems is the resulting pressure drop, or head loss, since it translates
into the energy input needed to sustain a specific mass flow rate. The pressure
drop generally increases, compared to fully developed pipe flow, for e.g. pipe
bends and entry regions when the flow is still developing. Also, since the velocity
profile changes, the wall shear stress is not homogeneous along the pipe. Another
important measure, connected to the momentum transfer, is the heat transfer
characteristics, where entry regions and bends may cause significant increases in
the heat transfer rate [82, 53, 64]. Therefore, a good understanding of the flow
is needed for efficient heating and cooling. A very different type of phenomenon,
which nevertheless may be significant, is the potential of flow induced vibrations.
In particular, oscillations in piping systems may cause fatigue. This section will
especially focus on the so-called swirl switching phenomenon, which is a large
scale oscillation of the flow after a bend. It will also involve the cause of these
oscillations, which is believed to be large scale structures created in the upstream
turbulent pipe flow. Finally, note that pipes with circular cross section often
are considered in practice, since they can withstand large pressure differences
between the inside and outside.

8.1 Pipe flow

8.1.1 Laminar pipe flow

Laminar cylindrical pipe flow, or Poiseuille/Hagen-Poiseuille flow, is one of the
few exceptions where an analytic solution to the Navier-Stokes equations exist.
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For a fully developed flow, the velocity field takes the form ~u = (0, 0, uz), where

uz = 2Ubulk

(
1− r2

r2
o

)
, (8.1)

in cylindrical coordinates. Here, ro is the pipe radius and Ubulk is the bulk
speed. Note that while the fully developed flow is parallel, the flow in the
entrance region is not parallel, which can be seen from the continuity equation
since ∂uz/∂z < 0 in the boundary layer. The profile in eq. (8.1) gives rise to a
shear stress τzr in the axial (z) direction,

τzr = µ

(
∂ur
∂z

+
∂uz
∂r

)
= −4µ

Ubulk
ro

r

ro
.

In particular, the wall shear stress becomes τw = 4µUbulk/ro. Furthermore, the
pressure drop ∆p, over a length L, is often written as

∆p = f
L

D

ρU2
bulk

2
, (8.2)

where D = 2ro, and f , called the Darcy friction factor, is given by

f =
8τw
ρU2

bulk

.

The friction factor for the fully developed laminar pipe flow, inserting the ex-
pression for the wall shear stress, takes the form f = 64/Re. It should be
noted the friction factor in this case only depends on the Reynolds number,
and makes no reference to the surface roughness. For more general situations,
including turbulent flow and non-cylindrical pipes, eq. (8.2) is still typically
used. However, the friction factor most likely has to be determined empirically.

8.1.2 Transitional pipe flow

While the profile given by eq. (8.1) is a solution for all Reynolds numbers, it
starts to become sensitive to disturbances for Reynolds numbers larger than
Re ≈ 2000. As already mentioned in Section (2.2.3), cylindrical pipe flow is un-
conditionally stable to small disturbances for all Reynolds numbers. Therefore,
in theory, the laminar profile should be able to be sustained up to any Reynolds
number, given that the disturbance level is kept sufficiently low. However, the
flow has been seen to become more sensitive to disturbances for higher Reynolds
numbers, lowering the threshold for a potential transition [15]. As a practical
consequence, the flow will eventually transition to a turbulent state, since dis-
turbances are unavoidable in real situations.

Compared to flows showing linear instability to small disturbances, such as
Taylor-Couette flow, where a typically small succession of states can be found
when going from a steady laminar to a turbulent state, no ”simple” intermediate
states have been found for pipe flow. Also, transitional states in pipe flow
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may show intermittent behaviour, where the ”transient turbulence” eventually
decays. However, for large Reynolds numbers, the decay time may be very large.
Besides the size of the disturbance, the shape of the disturbance is of course also
important. The edge between relaminarization and sustained turbulence, even
for a given disturbance profile, may be rather complicated [15].

8.1.3 Turbulent pipe flow

Turbulence in wall-bounded flow is quite different from the situation outlined
in Section (2.3). As stated by Jiménez & Kawahara [11], ”the main emphasis in
wall turbulence is not on the local inertial energy cascade, but on the interplay
between different scales at different distances from the wall”. Because of the
presence of the wall, the viscosity dominates over the inertial effects, also at the
large scales, at distances sufficiently close to the wall at any Reynolds number.
Of course, it should be noted that the size of the ”large” scales change with the
wall distance. Close to the wall, the energy containing and dissipative range are
at similar scales. In contrast, for free shear flows the inertial effects dominate at
the large scales in the entire flow. Furthermore, compared to the laminar flow
of eq. (8.1), there is no closed form solution for the mean velocity field of high
Reynolds number pipe flow. To simplify the analysis of wall-bounded flows, the
boundary layer is divided into different regions.

In order to make the separation into different layers/regions, some form of
scaling should be performed. There are two sets of scaling parameters in use.
The first set is based on the viscous scale, with length ν/uτ and time ν/u2

τ ,
where uτ is the so-called friction velocity,

uτ ≡

√
ν
d〈uz〉
dy

∣∣∣∣
y=0

,

using the mean streamwise velocity 〈uz〉, and the wall normal distance y (y =
ro− r), uz(y = 0) = 0. Quantities normalized using ν and uτ , called wall units,
are referenced by a superscript ’+’. In particular, the normalized wall distance
y+ is typically utilized,

y+ ≡ uτy

ν
.

y+ may be viewed as a Reynolds number, since the size of the flow structures
are constrained by the presence of the wall (cf. eq. (2.18)). The second set
of scaling parameters is based on the pipe radius/channel half-height/boundary
layer thickness, denoted by δ, where a time may be obtained using e.g. Ubulk.
A rough classification of the flow by wall distance is given by Pope [52]:

• Viscous sublayer: y+ < 5

• Buffer layer: 5 < y+ < 30

• Log-law region: y+ > 30, y < 0.3δ

• Viscous wall region: y+ < 50
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• Inner layer: y < 0.1δ

• Outer layer: y+ > 50

In the viscous sublayer, the flow is completely dominated by viscosity. Thus,
while the mean flow may change rapidly in the wall normal direction, the level
of fluctuations is low. The axial velocity in this region is given by u+

z = y+

to a very good approximation. The thickness of the viscous sublayer reduces
with higher bulk speed and increases with higher viscosity. In the buffer layer,
both viscosity and Reynolds stresses are important. The region is significant
since it involves a peak in production of turbulence kinetic energy. However, at
sufficiently high Reynolds numbers, the majority of the production has moved
into the logarithmic region [67]. This feature, moving the bulk of the production
to larger scales away from the wall, should be encouraging for LES. No widely
accepted (phenomenological) expression for 〈uz〉 exists for the buffer layer. In
the logarithmic, or log-law, region, the mean flow is argued to scale as

u+
z = κ−1 log(y+) +B

where κ is called the von Karman constant. Note that for high Reynolds num-
bers, almost the entire velocity drop towards the wall takes place within, or
below, the logarithmic layer.

While the above classification into layers is useful, it is only an approxi-
mation, and the layers are not independent. In particular, the large log and
outer layer structures have been seen to modulate the near-wall motion. The
flow structures of wall-bounded turbulence may be divided into four princi-
pal elements, near-wall streaks, hairpin/horseshoe vortices, Large-Scale Mo-
tions (LSM), and Very-Large-Scale Motions (VLSM) or superstructures [67].
The hairpin/horseshoe elements, however, perhaps should be replaced by quasi-
streamwise vortices. While the notion of structures in turbulence is by no means
uncontroversial, the above classification will be considered in this thesis. The
”clarity” of the structures very much depends on where, that is at what distance
from the wall, they are found. In particular, structures in the viscous sublayer
and buffer layer should look ”nice”, while in the log and outer layer the flow is
highly turbulent, and the associated structures become more fractured.

Streamwise streaks and quasi-streamwise vortices have been found to dom-
inate in the region below y+ ≈ 100 [11]. The streamwise streaks may be very
long, on the order of 103− 104 wall units, and the quasi-streamwise vortices are
slightly tilting away from the wall. These streaks and vortices, especially in the
viscous sublayer and the buffer layer, are believed to be part of a regenerating
(self-sustained) process. The quasi-streamwise vortices move (lift) low stream-
wise velocity regions close to the wall into higher streamwise velocity regions
further away from the wall, and vice versa, creating low and high streamwise ve-
locity streaks, respectively. At some point, the low velocity streaks get (rapidly)
ejected further into the high velocity region, where they eventually become un-
stable and wavy, creating streamwise vorticity (and finer-scale motions) in the
process. Accompanying the ejection process is the sweeping of high velocity
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fluid into the near-wall layer. A strong quasi-periodic bursting results from this
cycle. The corresponding situation also occurs for the high streamwise veloc-
ity streaks, which move further towards the wall. The high speed streaks are
however shorter on average, which is thought to be connected to the higher
streamwise velocity gradient in the wall-normal direction, which increases the
dissipation. The symmetry between the high and low speed streaks is restored in
the outer layer. While quasi-streamwise vortices are considered in the above re-
generation cycle, similar sets of events have instead been proposed for hairpins,
as well as other types of vortical structures. Compared to the quasi-streamwise
vortices, the hairpins are typically not considered to be elongated in the stream-
wise direction. The common thread, for these ideas of streak generation, is that
the patterns of the streaks are determined by the patterns of the vortices [10].
Note that the streaks are easier to observe, in experiments and DNS, than the
patterns of wall normal motion giving rise to the streaks.

The near-wall structures are believed to give Reynolds number independent
statistics, where the actual Reynolds number dependence comes from the in-
fluence of the log and outer layer structures on the near-wall motion. In the
log layer and outer layer, the focus shifts to the LSM and VLSM. The LSM,
also called turbulent bulges, have sizes comparable to the pipe radius, while the
VLSM are usually much longer. Since the VLSM are believed to be especially
important for the flow in curved pipes, these motions are the primary focus in
the section below, with the LSM being of secondary importance.

Very-large-scale motion

VLSM are long regions of mainly streamwise velocity fluctuations, universally
present in pipe, channel, and zero pressure gradient (ZPG) boundary layer flows.
The definition in Guala et al. [18] divides structures with streamwise extent from
0.1πδ to πδ into LSM, and those with streamwise extent above πδ into VLSM.

The first emphasis on VLSM came from experimental pipe flow studies by
Kim & Adrian [32]. The length of the structures, estimated using spectra from
point data, obtained by hot-film anemometry, was 12-14 radii. Monty et al.
[41], using a hot-wire rake to study pipe and channel flow, found streamwise
meandering structures with lengths up to 25δ. Large radial and azimuthal
extent of the VLSM were seen in pipe flow experiments by Bailey & Smits
[2]. In particular, using two hot-wire probes with varying relative positions,
energetic flow modes with a narrow range of azimuthal wavenumbers, peaking
at m = 3, were seen. In pipe flow experiments with Re ≈ 2 · 105 − 4 · 105,
Guala et al. [18] found that roughly half of the fluctuation energy, based on the
streamwise velocity, were contained in the VLSM.

In attempting to explain the mechanism behind the formation of VLSM,
Kim & Adrian [32] proposed that ”the VLSMs are not a new type of eddy, but
merely the consequence of coherence in the pattern of hairpin packets”. This
mechanism however runs counter to the findings of Hwang & Cossu [25], who
found similar types of structures using LES. By using increasingly larger values
of the Smagorinsky coefficient (CS , see Section (5.2.1)), the small scales could
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be quenched, while the VLSM were retained in the flow. This showed how these
types of motions can appear without the agglomeration of small scale structures.
These results, together with additional results in Hwang & Cossu [26], led them
to infer a large range of autonomous self-sustained processes, with scales ranging
from the buffer layer to the outer layer.

The self-sustained processes at the different scales were believed to be the
type of ”coherent lift-up effect” shown by del Álamo and Jiménez [12]. In the
turbulent channel flow study, where the mean is used as the base flow, the
global modes all decay while the structures with the largest transient growth
are reminiscent of the near-wall streaks (in the viscous wall region) and the
VLSM (in the outer layer). The independence of the structures in the outer
region to the details of the wall is also supported by Flores et al. [45], where
DNS using smooth and rough walls is considered. In this case, it is thought
that the structures in the outer region are either created away from the wall, or
they are formed at the wall but quickly forget their origin.

8.2 Flow through curved pipes

8.2.1 Laminar flow through curved pipes

A new layer of complexity can be added to pipe flow by bending the pipe.
Generally, this leads to additional pressure losses, and an uneven distribution
of wall shear stresses. An important dimensionless geometrical parameter for
these flows is the curvature ratio γ ≡ ro/Rb, where ro is the pipe radius and Rb
is the curvature radius of the bend. Additionally, the Reynolds number, Re, is
equally important as for all viscous flow. However, for a fully developed flow
in a very gradual bend, γ � 1, the two numbers can be combined into a single
similarity parameter

De =
√
γRe,

called the Dean number. Note that there exists other definitions of the Dean
number, possibly including the axial pressure gradient. Expanding the solutions
in powers of the Dean number, the Poiseuille flow naturally appears to leading
order. The higher order terms act as perturbations from the Poiseuille flow,
inducing a secondary flow. The secondary flow result from a centrifugal insta-
bility caused by the slower moving fluid at the outer wall. This leads to two
counter rotating vortices, called the Dean vortices, which create a secondary
boundary layer with the flow moving along the wall from the outer side to the
inner side of the bend. The Dean vortices also move the high speed core towards
the wall, creating larger velocity gradients on the outer side of the bend, along
with smaller ones on the inner side. The higher gradients of the axial velocity
can result in a significant increase in the flow resistance and dissipation rate.
For larger Dean numbers, the secondary flow becomes stronger, and, in par-
ticular, the high axial velocity region becomes spread out along the outer side
of the bend. Note that the instability also can appear in inviscid flow, given
that the incoming velocity distribution is non-uniform. While a separate section
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concerning transitional flow will not be given here, transition has been seen to
be delayed compared to straight pipes. Further information regarding primarily
laminar flow in curved pipes can be found in the review article by Berger et al.
[3].

8.2.2 Swirl switching for 90◦ curved pipes

The first to carefully study the unsteady behaviour of turbulent flow through
sharp 90◦ bends were Tunstall & Harvey [75]. While looking at flow through
pipe bends in the limit γ → ∞, with Reynolds numbers of at most Re =
2.17 · 105, they found a phenomenon that had not been observed earlier for
laminar flow in gradual bends. The phenomenon, called swirl switching, involves
a net swirl (circulation) downstream of the bend, where the swirl direction
changes with time. The swirling motion involved a helical flow along the wall,
appearing at small distances downstream of the bend, where no trace of the Dean
vortices could be seen. The swirl switching was characterized as abrupt, with
the flow jumping between two bi-stable states, and was claimed to be caused by
a switching of the asymmetrical separation bubble on the inner side after the
bend. The dimensionless frequency of the switching, which was considered to
be random, peaked around St ≈ 0.001 to 0.004 in the Reynolds number range
Re = 1 · 105 to 2 · 105. The trend of smaller dimensionless frequencies (i.e.
Strouhal numbers) for lower bulk speed continued down to Re ≈ 5 ·104, beyond
which no spectral data was provided. It should be noted how the frequencies
are clearly much lower than would be expected for ordinary vortex shedding
or large scale shear-layer fluctuations. Lowering the velocity was not only seen
to reduce the frequency, but was also seen to significantly reduce the strength
of the switching. The flow pattern, however, did not fundamentally change
as the bulk velocity was reduced, until it was low enough for the flow to be
laminar, after which the switching stopped. To make sure that the results did
not depend on the sharp corners of the miter bend, they also tried using smooth
corners, both inner (at most with an effective γ = 0.5) and outer, and still
saw the same phenomenon. The proposed mechanism for the switching was the
occasional existence of a sufficiently strong net axial circulation in the turbulent
flow upstream of the bend, which would change the separation bubble from one
state to the other. Two conditions were believed to be necessary for the swirl
switching to occur. First, the bend should be acute enough to cause separation,
and second, the flow entering the bend should be of at least moderate Reynolds
number, and probably turbulent.

Another experimental study was performed by Brücker [6], where γ = 0.5
and the lower Reynolds numbers Re = 2000 and 5000 were considered. In
this case PIV was used, with measurements at 0D, 1D, and 1.5D downstream
of the bend. While no helical flow was seen as for Tunstall & Harvey [75], a
switching in the strength of the Dean cells was clearly seen for Re = 5000,
where the upper/lower cell became dominant. Associated with the switching in
strength was roughly a rotation of the plane of symmetry of the vortices about
the geometric plane of symmetry of the bend. Two dominant frequencies were
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found in the tangential flow, St = 0.03 and 0.12. Most of the results were given
at 1.5D, where these effects were the strongest. The mechanism proposed for
the switching involved a self-induced motion of the (Dean) vortex pair.

For a sharp bend with γ = 1.0, and Re = 1.8 · 104, PIV at a distance
5.3D downstream of the bend was considered by Hellström et al. [21]. A swirl
switching phenomenon, involving a single vortex along the lines of Tunstall &
Harvey [75], was observed. However, the switching frequency was St ≈ 0.6,
which is clearly much higher than the frequency given by Tunstall & Harvey
[75]. While an intermittent appearance of the Dean motions was highlighted,
there was no discussion regarding the discrepancy in the frequencies.

In the LES investigation by Rütten et al. [56], two different curvature ratios,
γ = 0.17 and γ = 0.5, along with three different Reynolds numbers, Re = 5000,
10000, and 27000, were studied. Looking at the forces on the pipe walls, a peak
in the range St ≈ 0.1− 0.3 was seen for all cases. However, at γ = 0.5 the flow
separated at every considered Reynolds number, which led to a broadening of
the peak compared to the cases with γ = 0.17, where there was no separation
for any of the Reynolds numbers. Furthermore, for the cases with the highest
Reynolds number, Re = 27000, a low frequency contribution was also seen.
Looking at the position of the outer stagnation point, the low frequency was
found to represent the alternating strength of the upper/lower Dean cell, giving
a net swirl, which is more in line with the experimental results of Brücker [6].
The transition between the two extremes of the stagnation point, at roughly
±40◦, was gradual. Also, in contrast to the proposition put forward by Tunstall
& Harvey [75], no flow separation was needed for this type of swirl switching to
take place.

In a recent PIV study by Hellström et al. [20], structures at 5D, 12D, and
18D after the bend were extracted using POD. The curvature ratio was γ = 0.5
and the Reynolds number Re = 2.5 · 104. The first POD mode showed a single
vortex at all downstream locations, and the spectrum of the time coefficients
at 5D showed a peak at St = 0.33. The second and third POD modes showed
”tilted” Dean motions, in particular at the first downstream location (5D), with
the two modes being roughly mirror images in the symmetry plane. In addition
to being rotated about the symmetry plane, one of the cells was suppressed.
The time coefficients of POD mode 2 at 5D showed a peak at St = 0.16. The
(tilted) Dean motion was believed to be a transitional state between the single
vortex states, with one of the Dean cells getting suppressed, suggested to be
triggered by an instability at the inner bend.

Another recent experimental study, for a Reynolds number Re = 3.4·104 and
a bend with γ = 0.32, was performed by Kalpakli & Örlü [30]. A POD analysis
of PIV data was considered, and a similar sort of ”weak” swirl switching was
seen as by Brücker [6] and Rütten et al. [56]. Also in this case, the switching was
gradual, and not abrupt. The switching frequency was found to be at St ≈ 0.04,
but other strong frequencies were also present in the flow, St ≈ 0.12, 0.18. As
stated by Kalpakli & Örlü [30], regarding the swirl switching phenomenon, ”the
mechanism which triggers such a motion is not fully understood yet and studies
investigating its origin are still ongoing”.
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In summary, the nature of the switching, and the time scales involved, varies
substantially in the literature. In particular, the role of unsteady Dean motion
in contrast to a dominant single cell (giving helical flow) is unclear, or as stated
in [76], the role of ”rocking” and ”rolling” is unclear, as well as the role of the
inner separation bubble after sharp bends. The (dimensionless) frequency of
the switching ranges from St ≈ 0.01 in Rütten et al. [56], and even less for
Tunstall & Harvey [75], to St ≈ 0.6 in Hellström et al. [21]. The baseline
case in this study follows the experimental work of Kalpakli & Örlü [30], who
found a gradual switching at St ≈ 0.04. With this background, particularly
highlighting the confusion surrounding the large span of time scales involved,
the main question to answer may be stated:

• What is the origin of the swirl switching phenomenon?

8.3 Results

To be able to answer the above question, fully developed turbulent flow through
90◦ curved pipes were investigated using LES, considering four different curva-
ture ratios. The upstream flow was generated in a straight pipe with cyclic
boundary conditions, described in Section (8.3.1), and then used as an inlet
condition for the curved pipes, Section (8.3.2).

8.3.1 Results - Turbulent pipe flow

The inlet flow to the curved pipes was generated using a straight pipe with cyclic
boundary conditions. The pipe was seven diameters long, and the Reynolds
number, based on the pipe diameter and the axial bulk velocity Ubulk, was
Re = 34000. A spectrum using the axial velocity is shown in Fig. (8.1), where
the Strouhal number is based on the pipe diameter and the axial bulk velocity.
The energetic low frequency motion at St . 0.01 and St ≈ 0.13 are observed,
which would imply the presence of VLSM. Structures giving frequencies below
St = 0.5, considering the whole cross section of the flow, were shown to contain
40% of the axial fluctuation energy.

A POD analysis was carried out, for all three velocity components, on a
cross section of the pipe. The dominant fluctuating POD mode, representing a
VLSM, is given in Fig. (8.2). The figure implies a lift-up process [72], where the
high-speed streaks move outward towards the low-speed fluid at the wall, while
the low-speed streaks move inward, towards the high-speed fluid in the centre.
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Figure 8.1: Power spectral density of the axial velocity, at a point 0.25ro from
the wall, in the straight pipe used to generate the inlet library.

Figure 8.2: POD mode 1, representing a VLSM, using the velocity field on a
cross sectional plane. The colour shows the axial component, where red implies
an increased flow speed while the blue/black regions imply a decrease.

In order to further investigate the low frequency motions, a POD analysis
was conducted on the full pipe flow. The energetic low frequency structures at
St . 0.01 and St ≈ 0.13 are shown at the top (with m = 2) and bottom (with
m = 3), respectively, in Fig. (8.3).
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Figure 8.3: Positive/negative isocontours of the axial component of POD mode
1 (top) and 2 (bottom) in the straight pipe with cyclic boundary conditions.

A chaotic time series analysis was performed for the signal giving the spec-
trum in Fig. (8.1). The data was sampled over Ubulkt/D = 1130, in steps of
Ubulk∆t/D = 3.5 · 10−3, giving a total of 3.2 · 105 samples. To determine the
optimal time delay T , the average mutual information, eq. (4.2), is shown as a
function of T in Fig. (8.4), using the sample interval 1-50000. The graph gives
the value T = 12, which is also obtained for the intervals 100001-150000 and
200001-250000.
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Figure 8.4: The average mutual information for the sample interval 1-50000.
The red line shows where I(T ) = I(0)/5.
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A false nearest neighbour analysis (see Section (4.2)), using the first 50000
samples with the delay T = 12, gives the result shown in Fig. (8.5). The
threshold value was set to RT = 15, and the ratio of false nearest neighbours
dropped below 1% at dE = 5.
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Figure 8.5: False nearest neighbours vs. the embedding dimension for RT = 15.

In calculating the global Lyapunov spectrum the local dimension was in
this case set to dL = dG = 5. The variables (time and velocity) were made
dimensionless using Ubulk and D. Results for three different intervals are shown
in Table (8.1). The similarity of the spectra in the three intervals is encouranging
for the validity of the analysis. In addition to the five Lyapunov exponents, the
Kaplan-Yorke dimension DKY is also shown, giving a value DKY = 4.4.

1-50k 100k-150k 200k-250k
λ1 44.6 48.4 47.9
λ2 12.4 13.0 12.7
λ3 -0.8 -0.7 -0.5
λ4 -17.9 -17.5 -18.0
λ5 -90.3 -96.9 -93.5
DKY 4.42 4.45 4.45

Table 8.1: Lyapunov exponents λi for three different intervals, together with
the Kaplan-Yorke dimension DKY .

8.3.2 Results - Swirl switching for 90◦ curved pipes

Fully developed turbulent flow through curved pipes were investigated while
varying the curvature ratio γ ≡ ro/Rb, where ro is the pipe radius and Rb is
the radius of curvature of the bend (measured from the centre of the pipe).
Four different curvature ratios were considered; γ = 0.32, 0.5, 0.7, and 1.0. The
curved pipe section of the computational domain can be seen in Fig. (8.6). At

82



the pipe exit, the flow enters into a box with dimensions 16D × 13D × 16D,
where a Neumann boundary condition is used for the velocity field.

  

inlet

Rb

r = D/2o

2D

0.67Dpipe
exit

x

y

Figure 8.6: Curved pipe section of the computational domain.

A POD analysis was performed using the in-plane (x and z) velocity com-
ponents at the pipe exit. The first two fluctuating POD modes for γ = 0.32,
which is the most gradual bend, are shown at the top in Fig. (8.7). The modes
compare favourably with the experimental results by Kalpakli & Örlü [30]. The
spectrum of the time coefficients for POD mode 1 is given in Fig. (8.8), where
the low frequencies are seen to contribute greatly. The corresponding modes for
γ = 0.5 and 0.7 are similar in structure, but with an increase in the relative
energy content of mode 1 for increasing γ.

To get a better sense of the switching, and to provide a further comparison
with the results of Kalpakli & Örlü [30], a reconstruction using POD modes
0 and 1 was performed. Since POD modes generally do not vary in a purely
sinusoidal fashion, the expression

〈ao〉vo +
√

2〈a2
1〉 sin(ωt)v1 (8.3)

was considered, where 〈a1〉 ≈ 0. The resulting time sequence, showing the
behaviour at ωt = −π/2, 0, and π/2, is given in Fig. 8.9. Again, the results
compare well with the experimental study.

Using a high-pass filtered inlet flow for γ = 0.32, removing frequencies below
St = 0.5, no swirl switching could be found. This provides further evidence of
the necessity of structures coming from the upstream pipe.

As the bend became sharper, a high frequency (St ≈ 0.5) swirl switching
started to grow strong. Similarly to γ = 0.32, carrying out a POD analysis on
the in-plane velocity components at the pipe exit for γ = 1.0 gave the modes
shown at the bottom in Fig. (8.7). The strong high frequency content for POD
mode 1, seen in Fig. (8.8), should be clear. The qualitative difference between
POD mode 1 for γ = 0.32 and γ = 1.0 should be noted, where the mode for the
sharp bend is basically a single vortex.
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Figure 8.7: POD analysis based on in-plane velocity components at the pipe
exit, for γ = 0.32 (top) and γ = 1.0 (bottom). POD mode 1 (left) and 2
(middle) are shown, along with the energy distribution amongst the first twenty
modes (right). POD mode 0 is not included.
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Figure 8.8: Power spectral density of the time coefficients for POD mode 1,
obtained using in-plane velocities at the pipe exit. ’1.0r’ represents a refined
grid for γ = 1.0. Note that the bounds for the upper and lower vertical axes are
different.
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Figure 8.9: Reconstruction for γ = 0.32 using POD modes 0 and 1, as specified
by expression (8.3).

A POD analysis was also carried out using a large three-dimensional region.
The most energetic fluctuating POD modes, for γ = 0.32 and γ = 1.0, can
be seen in Fig. (8.10). Note how the low frequency structure (for γ = 0.32)
comes from the upstream pipe, and is therefore dependent on the upstream flow
conditions, while the high frequency structure (for γ = 1.0) comes from the
bend itself, and is therefore considered an inherent property of the system.

Figure 8.10: Positive/negative (yellow/blue) isosurfaces of POD mode 1 for γ =
0.32 (left) and γ = 1.0 (right). Top: x-component (x: normal direction to the
inlet plane; positive direction pointing into the geometry), bottom: z-component
(z: normal direction to the symmetry plane; positive direction ”upward”).

8.3.3 Results - Summary

A proposition is made to categorize the swirl switching into two phenomena with
two distinct physical origins; one high frequency and one low frequency switch-
ing. While the high frequency switching (St ∼ 0.5), which becomes stronger
for sharper bends, originates from structures formed in the bend, and is there-
fore an inherent feature of the curvature, the low frequency switching seems
to originate from large scale structures formed in the upstream turbulent pipe
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flow. These low frequency structures are believed to be an instance of VLSM. A
connection between VLSM and swirl switching is also supported experimentally
by Sakakibara & Machida [58].
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Chapter 9

Summary of results - Swirl
burners

Today’s gas turbines typically utilize swirling flows to stabilize the flame. The
swirl, together with sudden expansions of the geometries, give rise to divergent
flows with a range of velocities to match the flame velocity. The azimuthal shear
and centrifugal instabilities associated with swirling flow also result in enhanced
mixing and entrainment of the ambient fluid [16], leading to an improved effi-
ciency and a compact flame. The use of swirling flows may be divided into the
two categories high swirl, which can be regarded as an established technology,
and low swirl, which is a more recent development. It can be noted that the use
of high swirl levels originated with diffusion flames, and was later adopted for
premixed combustion.

A high swirl level may induce a recirculation zone [36], usually called a vortex
breakdown (VB), that sends hot combustion products back into contact with the
unburned mixture, raising its temperature and thereby further contributing to
the stabilization. Such additional reinforcements to the stabilization could be
vital for robust operation, especially when a wide range of fuels are to be used.
However, the lift-off height is often quite low, requiring a cooling system for the
burner, and the large swirl levels may cause flash back. Furthermore, the high
swirl can induce strong oscillatory behaviour in the flow, such as a precessing
vortex core (PVC), that may couple with acoustic modes in the combustor or
trigger some other resonance of the system, potentially causing great harm.

A more recent complimentary technology is the low swirl burner, which gen-
erally avoids issues such as PVC and flash back, ideally giving a premixed flame
lifted far from any solid surface. Another important goal for most burners is to
reduce NOx production, which follows from decreased combustion temperatures
which in turn can be accomplished by using lean mixtures. Very lean mixtures
however imply significantly weakened flames, generally resulting in incomplete
combustion, high CO and/or unburnt hydrocarbon emissions, and, especially, a
system very prone to instabilities.
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Results from systems involving high swirl levels are given in Section (9.1),
while low swirl configurations are addressed in Section (9.2).

9.1 High swirl - two cold flow studies

Two cases have been studied where high swirl levels were involved. The baseline
geometry in the first case, seen in Fig. (9.1), was basically that of a Volvo VT40
gas turbine combustor. The interest for this annular burner rig was the effect
of the downstream outlet contraction on the flow inside the main chamber.
Therefore, the radius of the outlet pipe, R0, was used as a control parameter,
when the resulting flow was characterized. Note that while all cases considered
cold flow, a reacting case has been studied earlier, using the baseline geometry
[49]. Here we focus on the following question to be answered:

• Is there any qualitative change in the flow behaviour as the radius of the
outlet pipe is varied? And if so what is the mechanism behind.
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Figure 9.1: Combustor geometry with inlet swirler, for the first high swirl case.

The second case, which may be regarded as a more fundamental study of
VB and PVC, used the geometry in Fig. (9.2). Whereas the combustor in
Fig. (9.1) used a tangential inlet flow to generate the swirl, this setup uses a
swirler with guide vanes. Five cases with different swirl levels and mass flow
rates were considered, including three cases with high enough swirl to generate
VB at the expansion. In fact, the swirl level was so high in these three cases
that it generated a backflow along the centre line in the entire upstream pipe,
up to the end of the swirler. Although such backflows in general makes the
cases uninteresting for combustion applications, they are still of interest in the
general study of swirling flows. The main question to be answered has been:
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• What qualitative changes occur as the swirl number increases?

Figure 9.2: Geometry for the second high swirl case. Left: pipe with an ex-
panded section. The flow is from left to right and ’SC’ marks the position of
the swirler. Right: the three swirlers used, where the blunt side of the swirler
faces the inlet.

9.1.1 Results - VT40 burner

Qualitative changes in the mean flow behaviour were seen for the VT40-type
burner, when the radius of the outlet pipe was changed. Nine different radii
were considered, and the flow along the centre line of the main chamber changed
from positive axial velocities for small outlet radii (small R0), to mostly negative
axial velocities for the large outlet radii (large R0). In other words, the VB went
from a torus for small R0 to more of a bubble-type for large R0, see Fig. (9.3).
Additionally, the recirculation bubble inside the outlet pipes for the larger radii
is seen to be quenched for the smaller radii.

Figure 9.3: Streamlines of the mean flow, using cross sections of half of the
combustors, for the nine VT40-type geometries.

Time resolved velocity fields were analysed using the fast Fourier transform
(FFT) on point data, as well as POD/DMD of full 3D fields. Spectra at points
on the centre axis, for the cases with the smallest and largest outlets, are given
in Fig. (9.4). The flow frequencies in general were seen to get higher as the
outlet pipe became narrower, along with a larger activity in the pilot chamber.

89



Figure 9.4: Power spectra of radial velocity data on the centre axis. Left: the
case with the extended combustor (no outlet pipe), right: the case with the
smallest outlet pipe.

The POD and DMD analyses of the velocity fields, obtained in each case
using 200 snapshots, implied the existence of two categories of important modes;
one with azimuthal wavenumber |m| = 1, modes with dipole character, and the
other with |m| = 2, modes with quadrupole character. The |m| = 1 modes
were connected to low frequencies, in part due to the low |m| value, and had
a large influence along the centre of the combustor, while the high frequency
|m| = 2 modes started to play a larger role away from the centre line. Numerous
energetic POD/DMD modes with |m| = 1 were seen for the smallest outlet pipe,
covering a range of frequencies. This is also reflected in Fig. (9.4).

Isosurfaces of the radial component of the different types of modes, using the
real part of DMD modes, are given in Fig. (9.5). The corresponding imaginary
parts are basically just versions of the real parts that are rotated around the
centre axis, reflecting the situation of modes spinning around the centre line.
For the straight outlet case, the modes are counter-winding and co-rotating,
with respect to the mean flow. The larger extent of the |m| = 1 mode for
the straight outlet case compared to the smallest outlet case, following the
discussion regarding the different modes in Fig. (2.6), depends on the larger
vortex core. The associated frequencies of the modes for the straight outlet case
are 41Hz, St = 0.14 and 96Hz, St = 0.32 for the |m| = 1 and |m| = 2 mode,
respectively, while for the smallest outlet pipe it is instead 86Hz, St = 0.29 and
167Hz, St = 0.56. The |m| = 1 modes correspond well with the frequencies
that stand out in the point spectra.

The two types of modes, the dipole and the quadrupole, result from the two
vortical regions dictated by the geometry, following the discussion around Fig.
(2.6). The combustor inlet is annular, creating an outer vortex ring, while the
flow in the centre gives an inner vortex core. The outer vortex ring, which is
more confined by the combustor walls, leads to a |m| = 2 deformation, while
the inner vortex core, which is less constrained in the combustor and more free
to move around, leads to an |m| = 1 mode.
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Figure 9.5: Radial parts of DMD modes. Left: the case with the extended
combustor (no outlet pipe), right: the case with the smallest outlet pipe. For
each geometry the real part of the strongest dipole (left) and quadrupole (right)
modes are shown.

The POD in this case gave structures that look similar to the DMD modes.
The radial component of the first four POD modes, where the POD was based
on velocity fluctuations u′ (instead of the velocity u), for the cases with the
straight outlet and the smallest outlet pipe are shown in Figs. (9.6) and (9.7),
respectively. Comparing the two cases, the fluctuations of the inner vortex core
are seen to dominate for the smaller outlet. Since the movement of the vortex
core is more constrained inside the outlet pipe, focusing on Fig. (9.7), a strong
contribution comes from |m| = 2 deformations, as opposed to the strong |m| = 1
influence inside the chamber, where the vortex core has a greater freedom to
move around. Note that the winding inside the small outlet pipe is in the same
direction as the mean flow. The corresponding mode energies are given in Fig.
(9.8).

Figure 9.6: Isocontours of the radial component of the first four POD modes
for the straight outlet.
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Figure 9.7: Isocontours of the radial component of the first four POD modes
for the smallest outlet pipe.
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Figure 9.8: POD mode energy of some of the largest modes. The POD analysis
was based on velocity fluctuations u′. Left: straight outlet, right: smallest
outlet pipe.

9.1.2 Results - Expanding/Contracting pipe

For the swirling pipe flow with the extended section, Fig. (9.2), the qualitative
change in the mean flow behaviour with increasing swirl was primarily the ap-
pearance of VB at the expansion, together with a reversed flow in a large part
of the upstream pipe. The axial velocity along the centre-line is shown in Fig.
(9.9), where five different cases are considered. The focus below will be only on
one of the cases in Paper II, that is the case with swirl number Sw = 0.76.
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Figure 9.9: Mean axial velocity, normalized using the axial bulk velocity U0,
along the centre line of the pipe in Fig. (9.2), for different swirl levels.

The strongest unsteady flow structure was the PVC at the expansion, whose
corresponding DMD mode can be seen in Fig. (9.10). The real and imaginary
parts of the DMD mode are given, which represents the structure at two different
times, showing the spinning of the mode. The frequency of the spinning is
St = 0.63 (f = 33Hz), with a Strouhal number based on the small pipe diameter
D = 5.06cm and the uniform inlet velocity U0 = 2.63m/s. As was already
pointed out in Section(2.2.5), in a similar swirling flow experiment, this type of
PVC has been seen to result from a supercritical Hopf bifurcation [46].

Figure 9.10: Positive/negative isocontours of the radial component of the real
(left) and imaginary (right) part of the DMD mode representing the PVC at
the expansion, for Sw = 0.76.
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The DMD mode representing the strongest unsteady flow structure in the
upstream pipe is shown in Fig. (9.11). It is a co-rotating and counter-winding
|m| = 2 mode with the high frequency St = 2.2 (f = 113Hz). In a simplistic ap-
proach, using the axial bulk velocity, a wavelength λ ∼ U0/f ∼ (2.63/113)m ≈
2.3cm is obtained, which is about half the wavelength in the axial direction,
given by Fig. (9.11). A cross section of the mode at x = 0.4m is shown in Fig.
(9.12). The mode is seen to span a large part of the cross section, and therefore
a large range of axial velocities of the base flow. Recall that there is backflow
along the centre axis (see Fig. (9.9)).

Figure 9.11: Positive/negative isocontours of the radial component of a DMD
mode with St = 2.2. Real (top) and imaginary (bottom) parts are given.

Figure 9.12: Cross section of the real part of the DMD mode in Fig. (9.11) at
x = 0.4m. Left: axial, middle: radial, right: azimuthal. Note that the values
are not physical, and should only be compared amongst each other.

Downstream of the sudden expansion, beyond the structure referred to as the
PVC, shown in Fig. (9.10), there is a large influence from low frequency motion.
A corresponding low frequency DMD mode, with St = 0.1 (f = 5Hz), is shown
in Fig. (9.13). The mode is seen to have an |m| = 1 symmetry in a large part
of the extended pipe, and |m| = 2 elsewhere. The region a bit upstream and
downstream of the contraction is very reminiscent of the VT40 case with the
small outlet pipe, given in Fig. (9.7). A strong centre vortex core is seen for the
three higher swirl number cases. The behaviour of the mode in the upstream
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pipe, however, is more curious. Comparing the |m| = 2 structure to that seen
for the high frequency mode in Fig. (9.11), the axial wavelength appears to
be similar. This indicates a sensitivity for this type of mode, spanning over a
large range of frequencies. Finally, the Strouhal numbers of the different modes,
for the three high swirl cases, are shown in Fig. (9.14). Note that the Strouhal
numbers, using the bulk velocity, are defined independently of the swirl number,
which may be a factor to be considered for correct scaling of swirling flows. The
simplification implies that the frequencies scale with the axial flow, and not the
swirl.

Figure 9.13: Positive/negative isocontours of the radial component of a DMD
mode with St = 0.1. Real (top) and imaginary (bottom) parts are given.
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Figure 9.14: Strouhal number as a function of swirl number for the different
flow structures found in the pipe with a sudden expansion and contraction.
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9.2 Low swirl - stratified premixed combustion

A schematic of the burner geometry used in this study can be seen in Fig.
(9.15). The swirling flow is generated in the outer regions of the flow, using eight
annular vanes. While the diverging flow at the sudden geometric expansion is
the main component to the flame stabilization, an understanding of additional
contributions to the (de)stabilization is important to ensure robust operation.
The role of the large scale coherent structures that may be formed inside and
above the burner on the flame dynamics is of particular concern. In this study,
the main question to be answered is:

• How do the large scale coherent structures formed inside the burner affect
the flame?

Figure 9.15: Schematic of the low swirl burner setup. v1 ∼ 10m/s represents
the flow coming from the eight annular swirl vanes, v2 ∼ 3m/s the flow in the
inner region of the burner, and v3 ∼ 0.35m/s the co-flow. The large arrow
shows the rotation direction of the flow while the loops represent large coherent
structures. The dashed lines mark the inner and outer shear layers.
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Simultaneous high-speed PIV and OH PLIF measurements, as well as LES
with G-equation simulations for flame-tracking, were performed in an attempt
to investigate flow-flame interaction of a turbulent low swirl stratified premixed
flame. The flow coming from the burner (v1 and v2 in Fig. (9.15)) was a
methane/air blend of equivalence ratio φ = 0.62 (lean flammability limit φ ≈
0.4), entering into ambient air (v3). The Reynolds number, based on burner
diameter D and bulk velocity, was Re=20000. The swirl number at the burner
outlet, based on integrated flux, was Sw ∼ 0.5 and did not result in vortex
breakdown.

9.2.1 Results

The flame was stabilized, on average, at about 0.64D above the burner rim.
The flame regime, referring to Fig. (6.1), ranged from the corrugated flamelet
regime in the centre above the burner, to the thin reaction zone regime in the
outer high-speed regions. With a DMD analysis of the velocity field, the spatial
structures giving two strong peaks in the point spectra (no shown), also obtained
in an earlier study of the same system [44], could be isolated. The modes, using
azimuthal vorticity, are shown in Fig. (9.16). The idea, sketched in Fig. (9.17),
is that the structures, particularly the |m| = 3 mode as will be argued below,
pull the flame downwards in the outer regions. This contributes to the flame
stabilization and in giving the flame its wider shape.

Figure 9.16: Azimuthal vorticity of the real part of two DMD modes from an
LES simulation of the low swirl burner, given at two different angles. Left: mode
with |m| = 2 and dimensionless frequency of 2.9 , right: mode with |m| = 3 and
dimensionless frequency of 5.3.
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Figure 9.17: Schematic of the structures above the burner anchoring the flame
(represented by the dashed line).

For comparison, the first two POD modes are given in Fig. (9.18). No large
scale coherent pattern can be seen for mode 1, or any of the higher order modes
that were investigated. While POD in this case is not able to separate the
frequencies into distinct structures, DMD does so by design.

Figure 9.18: Azimuthal vorticity of the two most energetic POD modes. Left:
mode 0, right: mode 1.

In order to provide a closer link between the flame and the flow behaviour, an
extended DMD (EDMD) analysis was performed, introduced in Section (3.4.2).
The DMD analysis is based on the velocity field, while the G-field, which rep-
resents the flame (see Section (6.1.1)), is coupled through eq. (3.14). The
investigation can be interpreted as giving the effect of the flow field on the
flame. This method (as opposed to performing the DMD analysis on the two
fields separately) provides a direct coupling between the flame and the flow,
including direct phase information. The eigenvalues of the DMD analysis can
be seen in Fig. (9.19).
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Figure 9.19: Eigenvalues λ, σ = exp(λ∆t), of the DMD analysis. The imaginary
part λi represents the angular frequency while the real part λr determines the
modal rate of growth/decay. The color scale shows the relative mode energies,
and the vertical solid and dashed lines give what is deemed acceptable high
and low frequency limits, respectively, for well captured modes. The square
and the triangle correspond to the upper and lower flow modes in Fig. (9.20),
respectively.

Figure 9.20: Real (left) and imaginary (right) parts of the two DMD modes seen
as a square (upper) and triangle (lower) in Fig. (9.19). The orange and white
iso-surfaces corresponds to positive and negative radial velocity, respectively,
whereas the red and blue iso-surfaces show respectively positive and negative
values of the G-field.
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The modes corresponding to the square and the triangle in Fig. (9.19), whose
flow modes were already given in Fig. (9.16), are shown in Fig. (9.20) for the
flow-flame coupling. The |m| = 3 mode, the lower mode in Fig. (9.20) which
rotates in the same direction as the mean flow while winding in the opposite
direction, is seen to correlate well with the flame. The |m| = 2 mode on the other
hand, the upper mode in Fig. (9.20), which rotates in the opposite direction to
the flow while winding in same (general) direction, does not seem to correlate
with the flame. This is seen more clearly in the horizontal cross sections shown
in Fig. (9.21). Thus, the |m| = 3 mode is shown to be the important structure
regarding the shape and improved stability of the flame.

Figure 9.21: Horizontal cross sections of the |m| = 2 mode (top) and |m| = 3
mode (bottom) taken at heights 0.3D for the radial velocity, and 0.7D for the
G-field, above the burner rim.

For the considered case, one should particularly note the difficulty in catch-
ing the correlation found between flow and flame using only point data. This
observation, together with the inherent limitations of POD, shows the strength
of a method such as the DMD. The procedure used to connect the flow and the
flame appears promising.
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Chapter 10

Summary of results - Flow
around interacting cylinders
and beams

Flow around solid objects, which in turn respond to the flow, is important
for many practical applications. The flow exerts forces on objects and these
may alter the geometry itself, whereby a nonlinear interaction between the fluid
and the structures occurs. By their nonlinear nature, the stability of such
interaction is essential for maintaining the structural integrity of the objects.
Applications include airplane wings, bridges, tall buildings, chimneys, and legs
of oil rigs, to name a few. In particular, the notion of resonance between the
fluid and the solid structure can be very essential and has to be avoided in
many applications. Similarly to the previous investigations in this thesis, the
formation and stability of large scale structures around bluff bodies are in focus.
The geometries considered are of a general type, placing the nature of the studies
more towards the fundamental side.

The two investigations in this chapter differ from the other cases due to the
need for different mesh handling. In Section (10.1) the Immersed Boundary
Method (IBM) is used for flow around cylinders, while in Section (10.2) a mov-
ing mesh is used for flow around a cantilever beam. In both of these studies
no special treatment is given, in terms of the mode decomposition techniques.
However, the interpretation of the results becomes a bit different. For the IBM,
especially, the behaviour of the modes in the immediate vicinity of the cylin-
ders should be handled with some care. For the moving mesh, the cells close
to beam were always at (approximately) the same distance (as opposed to the
IBM where they were ”turned off”). The cell deformation is also deemed to be
small enough to not cause further difficulties.
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10.1 Single and multiple cylinders connected to
springs

The flow past a single, or an array of, rigid circular cylinder(s), suspended by
springs obeying Hooke’s law is considered. Compared to the other cases treated
in this thesis, the flow velocities in this investigation are small. Figure (10.1)
shows the single cylinder setup together with the multiple cylinder arrangements
with and without staggering of the downstream cylinders. The cylinders span
the entire 4D long channel in the spanwise (y) direction and are only allowed
to oscillate in the x-direction.
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Figure 10.1: Cross sections of the three different geometries considered. V =
V∞ represents the incoming flow. Top left: single cylinder setup, bottom left:
multiple cylinder arrangement, bottom right: multiple cylinder arrangement
with staggering. B (= β) = 20◦ is the staggering angle. The ’+’ signs represent
probe locations.

The flow may be categorized into three main regions, denoted the pre-lockin,
lockin, and post-lockin regions. The notion of ”locking in” refers to a region of
resonance where the motion of the cylinder and the vortex shedding are synchro-
nized, giving rise to large amplitude oscillations. This happens as the frequency
of the vortex shedding approaches the natural frequency of the cylinder in the
fluid. Thus, there is a qualitative difference in the system behaviour for shed-
ding frequencies close to the natural frequency of the cylinder-spring system.
The main questions to answer with this study are:

• Single cylinder: There are two characteristic frequencies in this system,
the von Karman shedding frequency of the bluff body flow and the natural
frequency of the cylinder-spring system. How are they reflected in the
wake?

• Multiple cylinders, non-staggered: How do the different cylinders interact?
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• Multiple cylinders, staggered: What are the main differences to the non-
staggered case?

The different flows around a single and an array of interacting cylinders were
investigated in terms of the flow structures for different ω∗N , the dimensionless
natural frequency of the spring-cylinder system. Three different regions were
studied; the pre-lockin region for large ω∗N , the lockin region where the natural
frequency is close to the von Karman shedding frequency, and the post-lockin
region for small ω∗N . The cylinders were only allowed to oscillate in the crossflow
direction, with an assumed linear response, giving a cylinder deviation x = x(t)
following a Newton equation for an undamped driven harmonic oscillator. The
code used dimensionless quantities, e.g. x→ x∗ = x/D, where D is the cylinder
diameter, leading to the governing equation

m∗
d2x∗

dt∗2
+ k∗x∗ = Cx(t), (10.1)

where m∗ is the dimensionless cylinder mass, k∗ is the dimensionless spring
constant, and Cx is the dimensionless force excerted by the fluid (in the x-
direction) created by the flow. The effects of added mass are included implicitly
by solving the coupled system of eq. (10.1) and the flow equations simultane-
ously in each time step. Furthermore, the added mass enters into the force that
the fluid exerts on the object and is computed (expressed by Cx) and added
to the momentum equations with opposite sign. The different flow regions, as
already stated, were computed by changing the dimensionless natural frequency
of the springs, ω∗N = DωN/V∞ =

√
k∗/m∗, where V∞ is the incoming uniform

flow speed. The Reynolds number Re = ρV∞D/µ = 400 is kept fixed. Since the
dimensionless mass is also kept fixed, m∗ = π, it is actually the dimensionless
spring constant k∗ that is varied.

10.1.1 Results - Single cylinder

Spectra of the cylinder motion, for the single cylinder cases, can be seen in
Fig. (10.2). The two frequencies in the pre-lockin region (the lower shedding
frequency and the higher natural frequency) go to a single frequency in the
lockin region, and finally to a more broadband signal in the post-lockin region.
It is the (dimensionless) natural frequency that is varied while the Strouhal
number for the shedding is St ≈ 0.2 in all regions.

Because of the presence of just a few dominating modes of different fre-
quencies, a DMD analysis seems very applicable. DMD modes 2 (von Karman
shedding) and 7 (mode oscillating at the natural frequency), in the pre-lockin
region, are shown in Fig. (10.3). The modes are shown together with normal-
ized time coefficients and spectra, obtained using projections. Recall that the
velocity is scaled with the incoming uniform flow speed V∞. DMD mode 3 (the
third largest mode in terms of global energy content) is shown in Fig. (10.4).
Note that this mode has a frequency f3 ≈ |f2− f7|/2, which is hardly visible in
the cylinder motion (Fig. (10.2)).
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Figure 10.2: Frequency spectra of the cylinder motion for the three regions, pre-
lockin (left), lockin (middle), and post-lockin (right). Note the larger amplitude
(above 0.4 diameters) in the lockin region.

Figure 10.3: The axial component (z-component) of DMD modes 2 (left) and 7
(right), with the real and imaginary parts on the top and bottom, respectively,
in the pre-lockin region. Since projections were made, the scales are physical,
measured in units of the incoming uniform flow speed V∞.

Figure 10.4: The axial component of DMD mode 3 in the pre-lockin region.
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DMD modes for the lockin region show an overwhelming dominance of just
the coupled shedding/natural frequency mode together with its first few har-
monics. In the post-lockin region, DMD mode 2 represents the von Karman
shedding, while mode 5 represents a structure oscillating at the natural fre-
quency. Again, an energetic low frequency mode with f3 ≈ |f2 − f5|/2 appears,
similar to the pre-lockin region. This mode is believed to be connected to an
interaction between the von Karman shedding and the natural frequency mode,
through a mechanism such as e.g. vortex-pairing. If this is the case, the natural
frequency, which very much dominates the cylinder motion, gives a relatively
weak direct impact in the wake, while giving a much larger contribution through
the low frequency mode 3. However, the hypothesis has not been verified.

While there are similarities between the pre- and post-lockin regions, the
post-lockin case appears chaotic, as suggested in Fig. (10.2). The reason for
this is believed to stem from the smaller spring constant (”looser spring”) giving
a cylinder-spring system which is much more susceptible to disturbances. This
leads to a larger influence of the low frequency mode on the cylinder motion,
which in turn effects the low frequency mode. This type of feedback process
causes the dynamics to be much more complicated and the frequency content
to be more broadband.

10.1.2 Results - Multiple cylinders

In the following we focus on the non-staggered configuration (the square for-
mation), although an analysis was also carried out for the staggered case. The
displacement of the two upstream cylinders in the pre-lockin region are shown
to the left in Fig. (10.5), where it is seen that the motion is in phase. Note
that the cylinders initially are completely motionless and that their transient
behaviour is very different. Nevertheless, somehow information seems to be
transferred from one cylinder to the other, leading to this synchronized motion.
W hat is the mechanism behind this occurrence? It brings to mind the notion
of phase-locking (familiar in the study of chaotic systems), where only a very
small coupling between two independent (identical) oscillators is necessary to
give this kind of synchronization. Furthermore, the downstream cylinders are
shown to have larger maximum amplitudes along with more erratic behaviour.
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Figure 10.5: Displacement x∗(t) of the two upstream cylinders (see Fig. (10.1)),
for the non-staggered configuration, in the pre-lockin region (left) and the lockin
region (right).

The left hand side in Fig. (10.6) shows the most energetic fluctuating DMD
mode in the pre-lockin region. The Strouhal number takes the value f∗ = 0.23,
which is similar to the shedding mode in the single cylinder case (see mode 2 in
Fig. (10.3)), and the mode is symmetric about the centre line. The symmetry
implies a forcing towards a cylinder motion 180◦ out of phase, which is clearly
distinct from what is seen to the left in Fig. (10.5).

As was learnt for the single cylinder case in the post-lockin region, the tem-
poral fluctuations in both the cylinder motion and in the wake are much more
erratic. DMD mode 4 (f∗ = 0.21) for the post-lockin case is given to the right
in Fig. (10.6). This mode is seen to be similar to mode 2 in the pre-lockin
region, both in terms of spatial structure and frequency, and in the same way
this suggests a forcing towards a cylinder motion roughly 180◦ out of phase.
Note that mode 2 in the post-lockin region has a lower frequency (f∗ = 0.17),
and is asymmetric, while mode 3 (f∗ = 0.20) decays quite rapidly.

Figure 10.6: Real (top) and imaginary (bottom) part of the axial component of
two DMD modes. Left: mode 2 for pre-lockin, right: mode 4 for post-lockin.

The upstream cylinder displacement in the lockin region is shown to the right
in Fig. (10.5). Here a cylinder motion almost 180◦ out of phase can be seen
(frequency-locking). Note the large amplitudes. The dominating fluctuating
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DMD mode for the lockin region is shown in Fig. (10.7). The symmetry of the
strong mode reflects what is seen in the cylinder motion, Fig. (10.5).

Figure 10.7: Real (top) and imaginary (bottom) part of the axial component of
DMD mode 2 in the lockin region.

Looking at Fig. (10.5), together with the symmetry of the shedding modes
in Figures (10.6) and (10.7), knowing that the cylinders displayed very dif-
ferent transient behaviour, suggest two opposing mechanisms influencing the
cylinder motion. One of these mechanisms is the von Karman shedding, which
favours oscillations of the upstream cylinders in anti-phase, and another, un-
known mechanism, favouring oscillations in phase. Because of the influence of
the upstream cylinders on the ones downstream, analysis of the downstream
cylinders naturally becomes more complicated.

An overall observation that can also be made is that the low frequency mode,
so prominent for the single cylinder cases in the pre- and post-lockin regions, is
suppressed for the multiple cylinder cases.

10.2 Stiff and flexible beams

In this case the wake structures of cantilever beams with square cross sections,
one stiff (stationary, rigid) and one flexible, are investigated. The beams are
otherwise identical. A cross section in the centre of the channel is shown in Fig.
(10.8), where the flow moves from left to right.

  
Z

Y

X

Figure 10.8: Cross section of the fluid mesh.
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The computational domain has dimensions 9D×9D×30D while the beam
has dimensions 1D×5D×1D, centrally located 9D from the inlet. The velocity
field on the lateral and top boundaries is restrained by a slip condition, while for
the bottom boundary and the beam there is a no-slip condition. The Reynolds
number is Re = v∞D/ν = 50000, where v∞ is the uniform axial inlet velocity.
The main goal of the study is:

• Characterize the flow structures giving rise to the forces experienced by
the beams.

10.2.1 Results

The integrated dimensionless force on the flexible beam is given in Fig. (10.9),
where Cx may be considered to be the lift while Cz is the drag force. The lift
force is seen to exhibit a beat frequency where the high amplitudes coincide
with the peaks in the drag force. The corresponding spectra are shown in Fig.
(10.10). The frequencies making up the beating have Strouhal numbers around
St ≈ 0.11, while Cy and Cz clearly peak at much lower frequencies.
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Figure 10.9: Integrated dimensionless force coefficients, as a function of dimen-
sionless time, for the flexible beam.
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Figure 10.10: Power spectra of the signals in Fig. (10.9).

The integrated dimensionless force on the stiff beam is given in Fig. (10.11),
with the corresponding spectra in Fig. (10.12). While there are clear similar-
ities, for the flexible beam, Fig. (10.9), the beat frequency in the lift is much
more consistent compared to the more intermittent behaviour seen for the stiff
beam.The fluid-structure coupling amplifies the interaction.
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Figure 10.11: Integrated dimensionless force coefficients, as a function of dimen-
sionless time, for the stiff beam.
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Figure 10.12: Power spectra of the signals in Fig. (10.11).

1 10 20
mode number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

En
er

gy
 (

%
)

POD mode energy

1 10 20
mode number

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

En
er

gy
 (

%
)

POD mode energy

Figure 10.13: POD eigenvalues, for the stiff (left) and flexible (right) beam
cases, showing results for the first 20 fluctuating modes.

POD analyses have been carried out on the flow fields. The resulting energy
distributions, considering only the fluctuating modes (ignoring the mean which
is mode 0), are shown in Fig. (10.13). Since both the stiff and the flexible beam
studies show similar overall characteristics, the focus will here (because of the
intermittent behaviour of the stiff beam) be on the flexible beam. POD modes
1 and 2, Fig. (10.14), are recognized as the von Karman shedding behind a bluff
body. From the anti-symmetry of these modes, it is seen why they only show
up (to any noticeable extent) in the lift, and not in the drag (see Figures (10.10)
and (10.12)). On the other hand, from the symmetric structure of POD modes
3 and 4, Fig. (10.15), a contribution to the drag is expected. The different
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extrema of the time coefficients can be directly correlated to extrema in the
drag. The negative peaks in the time coefficients for POD mode 3 correspond
to the positive peaks in the drag and the large amplitude of the envelope for the
beats in the lift, Fig. (10.9). Looking at the colour of the iso-contours of POD
mode 3 around the beam, where black is the negative contour, the negative
peaks in the time coefficients are seen correspond to positive contributions to
the flow velocity. A strong structure comparable to the low frequency structure
has also been documented in a similar system [42].
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Figure 10.14: Left: positive and negative isocontours of the axial (z-) com-
ponents of POD modes 1 and 2. Right: accompanying time coefficients with
spectra. Solid line: mode 1, dashed line: mode 2.
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Figure 10.15: Left: positive and negative isocontours of the axial (z-) com-
ponents of POD modes 3 and 4. Right: accompanying time coefficients with
spectra. Solid line: mode 1, dashed line: mode 2.

To really be able to separate out structures based on frequency, a DMD
analysis was performed. The results of the decomposition are shown in Figures
(10.16) and (10.17). The modes in fig. (10.16) are similar to the POD modes
in Figures (10.14) and (10.15). DMD mode 4, in Fig. (10.17), with a Strouhal
number very close to that of DMD mode 2, can be considered as part of the
von Karman shedding. DMD mode 6, on the other hand, has the frequency
St6 = 0.098 and is more concentrated towards the centre of the wake. Therefore,
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with St6 ≈ St2 − St3, DMD mode 6 (and similar modes) is believed to be the
result of an interaction between DMD modes 2 and 3. With its antisymmetric
shape it is expected to contribute to the lift, which, together with DMD mode
2, gives rise to the beat frequency Stbeat ≈ |St2 − St6| ≈ St3 shown in Fig.
(10.9).

It may be noted that the type of structure separation seen in Figures (10.16)
and (10.17) cannot be accomplished, at least not easily, by using POD alone.
Note also the difference in frequency for the von Karman shedding (see spectra
in Fig. (10.14)) compared to the low Reynolds number cylinder cases (Section
(10.1)).

Figure 10.16: DMD modes, real/imag., 2 (left) and 3 (right). Mode 2: St ≈
0.110, mode 3: St ≈ 0.010.

Figure 10.17: DMD modes, real/imag., 4 (left) and 6 (right). Mode 4: St ≈
0.109, mode 6: St ≈ 0.098.
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Chapter 11

Summary of papers and
contributions

Paper I
C. Carlsson, E. Alenius, and L. Fuchs - Swirl switching in turbulent flow through
90◦ pipe bends. To be submitted for journal publication.

The swirl switching phenomenon for flow through 90◦ pipe bends was inves-
tigated using LES. A proposition was made to divide the swirl switching into
two different phenomenon, a low frequency and a high frequency switching, each
with its own distinct physical origin. While the low frequency switching was
argued to result from incoming very-large-scale motion, coming from the up-
stream pipe, the high frequency switching was a result of the bend itself, and
was stronger for sharp bends.

C. Carlsson carried out all the simulations, and did the general post-processing
and POD (except for the 3-D POD of the straight pipe, which was carried out
by E. Alenius). C. Carlsson had the main role in the analysis of the data and
in writing the first version of the paper.

Paper II
Y. Wu, C. Carlsson, R. Szazs, L. Fuchs, and X.-S. Bai - Geometry outlet con-
traction ratio effect to the swirling flow structure and precessing vortex core.
To be submitted for journal publication.

The effect of the outlet contraction on a swirling flow for a geometry simi-
lar to the Volvo VT40 burner was studied. Two different vortical regions, an
outer vortex ring and an inner vortex core, were seen to give unsteady large scale
coherent structures. The outer vortex ring, being constrained by the combustor
walls, gave an unsteady structure reflecting its deformation, while the inner vor-
tex core inside the combustor, being much less constrained by the walls, instead
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showed an unsteady structure reflecting its translation. The effect of the outlet
contraction ratio on these structures was investigated using POD and DMD.

Y. Wu carried out the basic computations and C. Carlsson carried out the post-
processing and analysis using POD and DMD of the velocity field. C. Carlsson
made contributions for the physical interpretations of the computed results in
addition to writing the relevant parts of the paper. C. Carlsson also created the
baseline geometry.

Paper III
P. Petersson, R. Wellander, J. Olofsson, H. Carlsson, C. Carlsson, B. Beltoft
Watz, N. Boetkjaer, M. Richter, M. Aldén, L. Fuchs, and X.-S. Bai - Simul-
taneous high-speed PIV and OH PLIF measurements and modal analysis for
investigating flame-flow interaction in a low swirl flame. 16th Int. Symp. on
Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9-12
July, 2012.

Simultaneous high-speed OH planar laser-induced fluorescence (PLIF) and PIV
measurements, as well as LES, were performed for a turbulent low swirl strati-
fied premixed flame. The goal was to investigate the influence of large scale flow
structures on the flame, and in particular their impact on the flame stabilization.
To accomplish this, mode analysis was used; oscillating pattern decomposition
(OPD) for the PIV data, and POD and DMD for the LES data. The experimen-
tal part highlighted vortices giving rise to flow reversal in the outer flame region,
contributing to large scale mixing, and vortices in the inner region, which, while
not giving rise to flow reversal, were still seen to clearly bias the flame propa-
gation. As for the LES, DMD was able to extract two frequency specific helical
flow structures, offering a better understanding compared to the POD analy-
sis. The helical structures were believed to contribute to the flame stabilization
mechanism.

C. Carlsson performed the POD and DMD of the velocity field from the LES,
participated in the analysis of the computational and the experimental results,
and contributed in the writing of the numerical parts of the paper.

Paper IV
H. Carlsson, C. Carlsson, L. Fuchs, and X.-S. Bai - Large eddy simulation and
extended dynamic mode decomposition of flow-flame interaction in a lean pre-
mixed low swirl stabilized flame. Flow, Turbulence and Combustion Volume 93
Issue 3 (2014) pp. 505-519 DOI 10.1007/s10494-014-9560-6

The stabilization mechanism of a turbulent stratified premixed flame above a
low swirl burner was investigated using LES, expanding on the work in Paper III.
Introducing an extended version of DMD (EDMD), the flow and the flame were
able to be coupled, showing an anchoring of the outer regions of the flame by
one of the two frequency specific helical flow structures coming from the burner.
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C. Carlsson introduced a new variant of DMD methodology (EDMD) and used
it on the velocity and G-field, participated in the analysis of the results and con-
tributed in the writing of the relevant parts of the paper until it was accepted for
journal publication.

Paper V
A. Cesur, C. Carlsson, L. Fuchs, and J. Revstedt - Modal analysis for oscillat-
ing cylinder arrays at low Reynolds number. Under review for publication in
Journal of Fluids and Structures.

The flow around a single interacting cylinder, as well as an array of interacting
cylinders, was studied numerically. Three different flow regimes were consid-
ered; one where the frequency of the spring-cylinder system was above the flow
induced frequency (pre-lockin regime), one where it was at resonance (lockin
regime), and one where it was below the flow induced frequency (post-lockin
regime). In particular, a strong low frequency motion was found in the pre- and
post-lockin regimes, which was believed to drive the chaotic behaviour in the
post-lockin case. For the cylinder array, especially the two leading cylinders,
two different mechanisms were proposed to influence the motion. The first was
a mechanism involving the von Karman shedding, biasing the cylinders to os-
cillate in antiphase, while the second was based on an unknown phenomenon,
biasing the cylinders to oscillate in phase. Also, for the cylinder array, the low
frequency motion, so prominent in the single cylinder case, was suppressed.

A. Cesur carried out the computations. C. Carlsson carried out the DMD of
the velocity field, and participated in the analysis of the results, contributing to
the physical understanding of the flow. C. Carlsson contributed in the writing
of the relevant parts of the paper.

Paper VI
A. Cesur, C. Carlsson, A. Feymark, L. Fuchs, and J. Revstedt - Analysis of the
wake dynamics of stiff and flexible cantilever beams using POD and DMD. Com-
puters and Fluids 101 (2014) pp. 27-41 DOI 10.1016/j.compfluid.2014.05.012

The forces on a stiff and a flexible cantilever beam were investigated by perform-
ing a POD and a DMD analysis of the full high Reynolds number flow, obtained
using LES. In addition to the von Karman shedding, a low frequency symmetric
structure was seen to modulate the lift force on the beams. An explanation of
the forces on the beam were given in terms of frequency specific flow modes.

A. Cesur carried out the computations. C. Carlsson carried out the POD and
DMD of the velocity field, and participated in the analysis of the results, con-
tributing to the physical understanding of the flow. C. Carlsson contributed in
the writing of the relevant parts of the different versions of the paper until it
was accepted for publication.
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Chapter 12

Future work

Future work will include finalizing articles which have not been fully completed,
or need to be revised. The author is furthermore interested in the mode selection
process regarding (helical) instabilities for swirling flows in simple geometries,
which, however, does not assume any homogeneous directions. Such a case is
outlined in Section (12.1).

12.1 Bifurcation analysis of a swirling jet

Swirling jets are studied among other things because of the associated increase
in spreading rate and mixing (compared to non-swirling jets). The additional,
possibly destabilizing, azimuthal shear layer along with potential centrifugal in-
stabilities provide a larger number of pathways to turbulence. For this case a
round jet, with an axial velocity profile of top hat character along with swirl
of solid body type, is ejected into a rectangular box open at the side opposite
to the inlet. For some given swirl number Sw, an attempt will be made to
find the two critical Reynolds numbers connected to a steady (symmetry break-
ing) supercritical pitchfork bifurcation and a Hopf bifurcation (followed by an
oscillatory flow). Thus, the main questions may be stated:

• Find the critical Reynolds number Recr(Sw) for symmetry breaking, and
the associated flow mode

• Find the critical Reynolds number Recr(Sw) for the onset of oscillatory
flow, and the associated flow mode

To make it easier to answer the questions stated above, one should compute not
only the velocity field u, but also the first and second partial derivatives of u
with respect to ε ≡ 1

Re , uε and uεε [68]. The equation for these variables can
be derived by taking the derivatives of the velocity vector with respect ε in the
momentum equations. The solution of the linear problem would be straight-
forward and yields information about the sensitivity and possible singularity of
the solution with respect to increasing Reynolds number.
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