Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Small ester combustion chemistry : Computational kinetics and experimental study of methyl acetate and ethyl acetate

Ahmed, Ahfaz ; Pitz, William J. ; Cavallotti, Carlo ; Mehl, Marco ; Lokachari, Nitin ; Nilsson, Elna J.K. LU orcid ; Wang, Jui Yang ; Konnov, Alexander A. LU ; Wagnon, Scott W. and Chen, Bingjie , et al. (2019) In Proceedings of the Combustion Institute 37(1). p.419-428
Abstract

Small esters represent an important class of high octane biofuels for advanced spark ignition engines. They qualify for stringent fuel screening standards and could be synthesized through various pathways. In this work, we performed a detailed investigation of the combustion of two small esters, MA (methyl acetate) and EA (ethyl acetate), including quantum chemistry calculations, experimental studies of combustion characteristics and kinetic model development. The quantum chemistry calculations were performed to obtain rates for H-atom abstraction reactions involved in the oxidation chemistry of these fuels. The series of experiments include: a shock tube study to measure ignition delays at 15 and 30 bar, 1000-1450 K and equivalence... (More)

Small esters represent an important class of high octane biofuels for advanced spark ignition engines. They qualify for stringent fuel screening standards and could be synthesized through various pathways. In this work, we performed a detailed investigation of the combustion of two small esters, MA (methyl acetate) and EA (ethyl acetate), including quantum chemistry calculations, experimental studies of combustion characteristics and kinetic model development. The quantum chemistry calculations were performed to obtain rates for H-atom abstraction reactions involved in the oxidation chemistry of these fuels. The series of experiments include: a shock tube study to measure ignition delays at 15 and 30 bar, 1000-1450 K and equivalence ratios of 0.5, 1.0 and 2.0; laminar burning velocity measurements in a heat flux burner over a range of equivalence ratios [0.7-1.4] at atmospheric pressure and temperatures of 298 and 338 K; and speciation measurements during oxidation in a jet-stirred reactor at 800-1100 K for MA and 650-1000 K for EA at equivalence ratios of 0.5, 1.0 and at atmospheric pressure. The developed chemical kinetic mechanism for MA and EA incorporates reaction rates and pathways from recent studies along with rates calculated in this work. The new mechanism shows generally good agreement in predicting experimental data across the broad range of experimental conditions. The experimental data, along with the developed kinetic model, provides a solid groundwork towards improving the understanding the combustion chemistry of smaller esters.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Esters, Ignition, Jet Stirred Reactor, Kinetic mechanism, Laminar burning velocity
in
Proceedings of the Combustion Institute
volume
37
issue
1
pages
419 - 428
publisher
Elsevier
external identifiers
  • scopus:85049776703
ISSN
1540-7489
DOI
10.1016/j.proci.2018.06.178
language
English
LU publication?
yes
id
48378f42-c9b6-4d7c-9e2c-800a43fed47c
date added to LUP
2018-10-01 12:56:59
date last changed
2022-04-25 17:11:21
@article{48378f42-c9b6-4d7c-9e2c-800a43fed47c,
  abstract     = {{<p>Small esters represent an important class of high octane biofuels for advanced spark ignition engines. They qualify for stringent fuel screening standards and could be synthesized through various pathways. In this work, we performed a detailed investigation of the combustion of two small esters, MA (methyl acetate) and EA (ethyl acetate), including quantum chemistry calculations, experimental studies of combustion characteristics and kinetic model development. The quantum chemistry calculations were performed to obtain rates for H-atom abstraction reactions involved in the oxidation chemistry of these fuels. The series of experiments include: a shock tube study to measure ignition delays at 15 and 30 bar, 1000-1450 K and equivalence ratios of 0.5, 1.0 and 2.0; laminar burning velocity measurements in a heat flux burner over a range of equivalence ratios [0.7-1.4] at atmospheric pressure and temperatures of 298 and 338 K; and speciation measurements during oxidation in a jet-stirred reactor at 800-1100 K for MA and 650-1000 K for EA at equivalence ratios of 0.5, 1.0 and at atmospheric pressure. The developed chemical kinetic mechanism for MA and EA incorporates reaction rates and pathways from recent studies along with rates calculated in this work. The new mechanism shows generally good agreement in predicting experimental data across the broad range of experimental conditions. The experimental data, along with the developed kinetic model, provides a solid groundwork towards improving the understanding the combustion chemistry of smaller esters.</p>}},
  author       = {{Ahmed, Ahfaz and Pitz, William J. and Cavallotti, Carlo and Mehl, Marco and Lokachari, Nitin and Nilsson, Elna J.K. and Wang, Jui Yang and Konnov, Alexander A. and Wagnon, Scott W. and Chen, Bingjie and Wang, Zhandong and Kim, Seonah and Curran, Henry J. and Klippenstein, Stephen J. and Roberts, William L. and Sarathy, S. Mani}},
  issn         = {{1540-7489}},
  keywords     = {{Esters; Ignition; Jet Stirred Reactor; Kinetic mechanism; Laminar burning velocity}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{419--428}},
  publisher    = {{Elsevier}},
  series       = {{Proceedings of the Combustion Institute}},
  title        = {{Small ester combustion chemistry : Computational kinetics and experimental study of methyl acetate and ethyl acetate}},
  url          = {{http://dx.doi.org/10.1016/j.proci.2018.06.178}},
  doi          = {{10.1016/j.proci.2018.06.178}},
  volume       = {{37}},
  year         = {{2019}},
}