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Extracting depth information of 3-dimensional 
structures from a single-view X-ray Fourier-

transform hologram 
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Abstract: We demonstrate how information about the three-dimensional 
structure of an object can be extracted from a single Fourier-transform X-
ray hologram. In contrast to lens-based 3D imaging approaches that provide 
depth information of a specimen utilizing several images from different 
angles or via adjusting the focus to different depths, our method capitalizes 
on the use of the holographically encoded phase and amplitude information 
of the object’s wavefield. It enables single-shot measurements of 3D objects 
at coherent X-ray sources. As the ratio of longitudinal resolution over 
transverse resolution scales proportional to the diameter of the reference 
beam aperture over the X-ray wavelength, we expect the approach to be 
particularly useful in the extreme ultraviolet and soft-X-ray regime. 
©2014 Optical Society of America 
OCIS codes: (090.1995) Digital holography; (070.7345) Wave propagation; (340.7440) X-ray 
imaging. 
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1. Introduction 

In microscopy in general and nanoscience in particular, the extraction of depth information 
from three-dimensional (3D) objects of interest is often important. In optical microscopy, 
where numerical apertures are large, the depth-of-field can be of the same order as the lateral 
resolution limit and 3D objects are predominantly investigated by combining images from 
different focal depths [1,2]. On the other hand, when using an X-ray probe, the depth of field 
is typically orders of magnitude larger than the lateral resolution limit, allowing to obtain in 
good approximation a projection image of a sample. A 3D reconstruction of the object can 
then be retrieved in a tomographic approach by utilizing a set of projection images from 
different angular perspectives. These 2-dimensional (2D) projection images can be obtained 
by different imaging methods such as X-ray full-field microscopy [3], coherent diffraction 
imaging (CDI) [4,5], ptychography [6] or holography [7]. CDI alternatively allows 
reconstructing a 3D model of the specimen from a 3D reciprocal-space data set that again was 
composed out of many 2D diffraction patterns taken from different sample orientations [8,9]. 

Even though tomographic methods are powerful in that they can achieve a depth 
resolution as high as the lateral resolution, the requirement of several exposures can be a 
limitation. This can for example be the case in the study of non-triggerable or non-
deterministic dynamical phenomena [10] such as fluctuations in thermal equilibrium or in 
general in situations when single-shot experiments are indicated, e.g. in order to follow a 
“diffract before destroy” approach for delicate samples via intense and ultrashort X-ray pulses 
[11,12]. 
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Two techniques that have proven to be compatible with femtosecond snapshot imaging at 
the nanometer scale are X-ray holography [10,13–15] and CDI [11,12]. Both imaging 
methods record the specimen’s diffraction pattern in the far-field without any optical elements 
between sample and detector. When using holographic methods, the specimen’s exit wave is 
reconstructed using the phase information encoded in the diffraction pattern by the 
interference of object and reference wave [16–18]. In the case of CDI, a solution of the phase 
problem is iteratively retrieved from the sample’s diffraction pattern alone. In order to 
minimize the solution space, phase retrieval algorithms rely on certain constraint conditions 
which necessitate a priori information about the specimen [4,8,9]. For CDI experiments, it has 
already been suggested that 3D structures can be determined from a single view. The 2D 
diffraction pattern needs to be recorded with sufficiently fine sampling and projected on an 
Ewald sphere within a 3D coordinate space [19]. Therefore, the reconstruction algorithm is 
computationally intensive and requires many iterations involving 3D Fourier transformations. 

In contrast, the non-iterative approach demonstrated here is based on a conventional X-ray 
Fourier-transform holography (FTH) experiment and determines an unambiguous 
reconstruction by exploiting the information contained in a single hologram recorded on a 2D 
pixel detector. The holographic reconstruction of the wave field in the plane of the reference 
source allows to propagate the angular spectrum of the reconstructed object wave along the 
beam axis [18,20] and thereby refocus specimen features outside the depth-of-field. The finite 
depth-of-field resulting from the scattering geometry can be used to measure the distance 
between features along the beam axis as has been demonstrated for holography experiments 
using soft X-rays [21] and extreme ultra-violet (EUV) radiation [22,23]. In this work, the 
depth information is used to reconstruct a complete 3D model of a specimen. The method can 
be seen as an analogue to digital holographic microscopy (DHM) [2,24] as the position of 
different features along the optical axis (i.e. the longitudinal position) is determined by 
bringing the feature into focus. Similar to DHM and contrary to non-holographic methods, 
this information is retrieved post-experimentally from a single Fourier-transform hologram, 
which can hence be recorded in a single exposure if required. As specimen we use an 
artificial, extended 3D test structure whose longitudinal dimension exceeds the optical setup’s 
depth-of-field. From the hologram reconstructions at different longitudinal coordinates, the 
displacements of the specimen features from the sample substrate are measured and 
transferred into a 3D model reconstruction. A suitable specimen feature is utilized to 
determine the transversal and longitudinal resolution. The results are compared to the 
theoretical prediction. 

2. Theory 

In soft-X-ray FTH, the hologram is recorded in the far-field as an interference pattern of the 
beam scattered by the object with an unperturbed reference beam [16–18]. The field of view 
is usually restricted by an aperture, fabricated into an X-ray-opaque metal-film mask that is 
produced in close proximity to the sample substrate. The reference beam allowing for phase-
encoding typically originates from a small pinhole adjacent to the object fabricated into the 
same mask [17], while the use of more complex reference beams is also possible [13,25]. This 
integrated mask design monolithically couples the source of the reference wave to the object 
to be imaged and generates the remarkable stability of FTH against drift and vibration during 
exposure. Since no optical elements are blocking the space around the integrated mask, FTH 
provides flexibility to realize a variety of sample environments [26,27] and in particular the 
possibility to easily reach the sample with an optical pump [28]. In addition, the off-axis 
geometry of the reference wave source from the object effectively spatially separates the 
twin-images occurring in the hologram reconstruction. Due to these advantages and its simple 
experimental design, FTH with X-rays is routinely applied in numerous experiments such as 
relating to imaging nanomagnetic structures [26–32] or biological specimen [7,13,21,33]. 

#217184 - $15.00 USD Received 16 Jul 2014; revised 30 Aug 2014; accepted 31 Aug 2014; published 6 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22,  No. 21 | DOI:10.1364/OE.22.024959 | OPTICS EXPRESS  24962



In the single pinhole reference case further considered here, the image reconstruction is 
retrieved by a 2D spatial Fourier transformation of the recorded hologram and results in a 2D 
information of the amplitude and phase of the object’s exit wave, i.e. one obtains the 2D, 
complex wavefield leaving the object. The in-focus contribution of this wavefield is obtained 
from the plane parallel to the detector which includes the reference source. This 2D 
reconstruction shows optimally resolved features for the portion of the specimen that has a 
sufficiently small longitudinal separation from this plane of the reference source, i.e. features 
within the depth-of-field. However, the holographic reconstruction of the wave field in the 
plane of the reference source allows to propagate the angular spectrum of the reconstruction 
[18,20] along the beam axis and thereby refocus specimen features outside the depth-of-field. 
It has been shown that the plane of least confusion can be separated from the plane of the 
reference by numerically propagating the reconstructed specimen wave front according to the 
physical separation between both planes [21,25]. Similarly, a thoroughly focused 
reconstruction of an extended 3D object can be obtained by numerically propagating the 
reconstructed wave fronts of individual object features outside the depth-of-field into focus. 
Additionally, the finite depth-of-field can be used to measure the position of a particular 
feature along the optical axis by examining the feature’s reconstruction for different 
propagation lengths [22,23]. We thus consider the depth-of-field as the longitudinal resolution 
limit that allows a clear distinction between features that are closely displaced along the 
optical axis. 

The application of the free-space propagator requires a homogeneous wavelength 
throughout the object, i.e. the refractive index is assumed to be constant. For large spatial 
deviations of the specimen refractive index within the propagation distance, the actual wave 
front is distorted and might deviate from the numerically retrieved reconstruction. Generally, 
in the X-ray regime, the refractive index is close to unity [34] and spatial distortions caused 
by an inhomogeneous refractive index within one attenuation length are expected to be much 
smaller than the longitudinal and lateral resolution limits. 

In the following we assume that the geometry of the FTH experiment allows to record 
sufficiently large scattering angles such that the limit for the lateral spatial resolution is set by 
the lateral size of the reference aperture and not by the maximum momentum transfer. The 
phase information in the hologram is encoded by the object–reference interference and is 
accessible only up to scattering angles with sufficiently high fringe contrast, i.e. up to 
scattering angles with adequate reference and object beam intensity. For a circular reference 
pinhole of diameter d, illuminated by a plane wave, the intensity distribution of the reference 
beam in the mask plane is a circular disk with constant intensity. In the far-field, the reference 
beam intensity on the detector is given by the Airy pattern. Typically, image information is 
gathered predominantly for scattering angles within the radius of the central Airy disk, still 
containing sufficient intensity of the reference beam. Considering the Airy disk’s first 
minimum as the upper limit for the definition of the system’s effective numerical aperture 
(NAeff = 1.22 λ/d), both the lateral resolution Δr and depth-of-field are defined by the diameter 
of the reference pinhole. For illumination with radiation of wavelength λ, the modulus of the 
depth-of-field (Δz =  ± λ / 2NA2) [34] can be assessed by substituting NA with NAeff: 

 
21

2 1.22
d

z
λ
 Δ >  
 

 (1) 

Remarkably, in the case of reference-limited FTH, the lateral resolution only depends on the 
size of the reference aperture (Δr ≅ d) while the depth-resolution additionally depends on the 
wavelength of the illumination and improves for larger wavelengths. This at first sight 
counterintuitive effect is the result of the increasing divergence of the reference beam with 
increasing wavelength. 
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Please note, that relation (1) represents the lower boundary of the depth-of-field given by 
the first minimum (with zero intensity) of the diverging reference beam. For real detection 
systems affected by noise and limited photon statistics, the maximum detected scattering 
angle with sufficient signal-to-noise ratio and the corresponding NAeff will be smaller 
resulting in a larger depth-of-field than the given boundary. 

3. Experiment 

The 3D test object was produced together with the holographic mask on a 350 nm thick 
silicon nitride membrane coated with a 1.3 µm gold film. In a first step, an object aperture of 
4.4 µm in diameter was milled into the metal film utilizing a focused ion beam (FIB). 
Subsequently, the reference pinhole was produced at a distance of 10 µm from the centre of 
the object aperture with an exit diameter of 80 nm. The actual test structure was fabricated by 
FIB-assisted deposition of platinum (Fig. 1). The sample includes a diagonal ramp that 
extends over the object aperture and a group of five differently shaped bodies deposited 
within the object aperture on the silicon nitride substrate. The ramp is 1.1 µm wide and has an 
inclination angle of 45° relative to the substrate. Apertures of different shape were milled into 
the ramp corresponding to four different elevations above the substrate. 

The mask-based FTH experiment was performed at the undulator beamline U41-PGM at 
the BESSY II synchrotron source, in a configuration as described in Ref [17]. The sample 
was placed 220 mm upstream of a back-illuminated charge-coupled device (CCD) with 2048 
× 2048 pixels (pixel size 13.5 μm). Soft X-rays with a photon energy of 400 eV 
corresponding to a wavelength of λ = 3.1 nm were used to illuminate the sample. The 
hologram was recorded by accumulating 200 frames with 250 ms exposure time each. In this 
configuration we expect a lower boundary for the depth-of-field of |Δz| > 693 nm in the 
reconstruction. 

 

Fig. 1. Scanning electron microscopy images of the test sample made of 3D platinum 
structures. The side view of the sample (a) shows the structured ramp which extends above the 
object hole. The ramp is deposited with 45° inclination on a gold mask. The small pinhole seen 
on the upper left represents the reference source, while the large circular aperture seen at the 
bottom right constitutes the object aperture. The top view (b) shows different platinum 
structures deposited on the silicon nitride membrane on a Si3N4 membrane at the bottom of the 
object aperture. Corresponding to four equidistant height levels, differently shaped marker 
apertures have been milled into the ramp. The width of the vertical slit in the centre of the 
white box is measured to 43 ± 7 nm. 

The direct beam was blocked by a circular beamstop to reduce the dynamic range of the 
scattering signal to the technical capabilities of the CCD detector. The missing intensity at 
low scattering angles corresponds to high-pass filtering of the hologram. In addition to the 
first measurement, the centre of the diffraction pattern was recorded in a second exposure 
without beamstop, but using a 150 nm thick gold filter to attenuate the beam. In order to 
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decrease the CCD readout time, the region of interest was limited to a 200 × 200 pixel matrix 
which was centred in the hologram. The centre was recorded by accumulating 1000 frames 
with 0.9 s exposure time each. In the final single-view hologram, both exposures where 
patched together after matching the intensities in the overlap region. 

 

Fig. 2. Fourier-transform holography experiment. (a) Scheme of FTH setup. With a coherent 
X-ray beam incident from the left side, the holographic mask defines a reference wave and the 
object illumination. The blue curve on the right side corresponds to the far field as recorded on 
the detector and shows the normalized intensity (Inorm) profile of the phase encoding reference 
beam which originates from the small pinhole of diameter d in the mask plane. (b) Coherent 
diffraction pattern from the 3D test structure in Fig. 1 constituting a Fourier transform 
hologram, recorded with soft X-rays with λ = 3.1 nm. The intensity is plotted in logarithmic 
scale. The white circle has a radius of qzero = 96 µm−1 momentum transfer and corresponds to 
the first minimum of Airy pattern of the reference pinhole. The evaluation of depth-of-field 
and smallest resolved spot size in the reconstruction relies on a small real space feature that 
corresponds to a momentum transfer of qmax = 73 µm−1 indicated by the red circle. 

The patched hologram shown in Fig. 2(b) was reconstructed by a 2D Fourier 
transformation after zero-padding the hologram to 4096 × 4096 pixels. The focus was shifted 
along the beam axis by applying the free-space propagator to the reconstruction as described 
in Refs [18,20]. 

4. Results 

Figure 3(a) shows the reconstruction of the patched hologram without application of the free 
space propagator. By default, the focus is in the plane of the reference-wave source, i.e. in the 
mask plane. This initial reconstruction, hence, corresponds to a zero propagation length. As 
seen in Fig. 3(a), features on the bottom of the object hole (marked by arrows) are reproduced 
without defocus blurring while the ramp is out of focus. Depending on the longitudinal 
separation from mask plane, the ramp shows ever more pronounced diffraction fringes 
towards the top. At the photon energy utilized for illumination, the object shows strong 
absorption without significant phase shift. For a numeric identification of the refocus distance 
of a particular feature from the mask plane, suitable focus criteria thus rely on an analysis of 
the reconstructed amplitudes [35–38]. Numerically indentifying the optimal focus is 
especially promising for a single extended focal plane with many features [35,36], or for 
small objects that are well separated [37]. In our reconstruction a numerical focussing was 
hampered by two aspects: (i) For extended features that are permeating different focal planes 
(the platinum ramp), the common numeric approaches would rely only on a limited amount of 
pixels that can be brought into focus at a time. (ii) The in-focus part of the specimen is often 
superimposed by fringes of nearby features of a different focal plane. Additionally, Fourier 
transform holograms are often high-pass filtered via use of a central beam block (in contrast 
to this work). In these cases, edge ringing is amplified in the reconstruction of high-pass 
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filtered holograms and a numeric evaluation is even more challenging. On the other hand, the 
optimal propagation length can conveniently be determined by a visual inspection of the 
reconstruction. By observing the reconstruction for different propagation lengths, fringes of 
defocused edges are seen to converge for the propagation distance approaching the separation 
between the particular feature and the mask plane. It is thus possible to reliably find the 
optimal propagation length of sharp features without any a priori knowledge. For the 
evaluation of the recorded hologram data, the visual approach delivered results that were 
superior over numeric methods relying on an analysis of the variance [38], modulus [35] or 
entropy [36] of the reconstructed amplitude. 

In Fig. 3(b) we present the reconstructed wave field after numerically propagating the 
initial reconstruction 6 µm upstream. This distance corresponds to a separation from the mask 
plane that shifts the lower part of the ramp into focus. As a result, the height markers on the 
low side of the ramp are in focus and clearly resolved while features at the bottom of the 
object hole and at the top of the ramp are defocused. The associated propagation length was 
found by minimizing fringes around the features of interest. The tip of the ramp including the 
markers located at this position can be brought into focus by propagating the initial 
reconstruction 9 µm upstream (Fig. 3(c)). This value is in agreement with the total 
longitudinal dimensions of our sample as determined via scanning electron microscopy. 

 

Fig. 3. Real part of the reconstructed object wave field corresponding to different longitudinal 
displacements from the substrate. Reconstruction (a) corresponds to the mask plane whereas 
(b) and (c) are retrieved after numerically propagating the reconstructed wave field upstream 
by 6 µm and 9 µm, respectively. Focused features are indicated by black arrows. 

The lateral resolution and the depth-of-field of the reconstruction were evaluated in a 
certain region of interest (ROI) on the ramp indicated by the white box in Fig. 4(b). Features 
in the 1µm × 1µm ROI as magnified in Fig. 4(c) are focused at a propagation distance of 7 
µm. The lateral resolution was determined by evaluating the pixels indicated by a red line 
through the fine central slit. In the scanning electron micrograph, the width of the slit was 
measured to 43 ± 7 nm. Figure 4(a) shows the normalized values (real part) of the 
corresponding pixels in the reconstruction. The smallest reconstructed feature size in lateral 
direction, corresponding to the full width at half maximum (FWHM) as determined from Fig. 
4(a) is 64 nm. In the reconstruction, the measured feature size corresponds to the finite width 
of the fine slit which is convoluted with the FTH point spread function. Considering Gaussian 
transmission profiles of slit and reference, we estimate a resolution limit of 48 ± 8 nm 
(FWHM). In Fig. 4(d) we show the reconstructed wave field (real part) along the slice marked 
by the red line in Fig. 4(c) for different numerical propagation distances of the reconstruction. 
The data plotted in Fig. 4(a) is thus identical to a transverse line profile at zero propagation 
distance in Fig. 4(d). A longitudinal line profile (dotted blue line) is extracted on the right side 
of Fig. 4(d). The depth-of-field, identified by a 20% drop of the reconstructed real part [34], is 
determined to be ± 1.2 µm. 
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Fig. 4. Determination of lateral and longitudinal resolution limits in the reconstruction. The 
line scan (a) is obtained in the region indicated by the white box in (b) and evaluates the 
reconstructed exit wave associated with the fine slit as marked in the close-up image (c). For 
the same line, this procedure was repeated as a function of longitudinal propagation distance to 
determine the depth-of-field, the result is compiled in (d) along the dashed blue line, the 
intensity of the real part decreases by 20% after propagating by 1.2 µm. For the resolution 
determination the sampling in the reconstruction was increased by a factor of 8 via zero-
padding the original hologram prior to Fourier transformation. 

From the quantitave assessment of the longitudinal position of the reconstructed features, 
we are able to compile a 3D model of our object. As in-focus features are distinguished 
visually by the appearance or disappearance of fringes at their edges, we aim to identify these 
edges at their respective longitudinal height in a second step. The edges were found by 
computing the variance of the real parts in a 9 × 9 pixel matrix (corresponding to 225µm × 
225µm) that was shifted pixelwise across the whole reconstruction resulting in 2D variance 
map. These variance maps were calculated for different propagation lengths. The presence of 
edges within the depth-of-field results in a strong increase in variance [38] and corresponding 
pixels could be isolated by simply thresholding the variance map. The resulting wireframe-
style 3D model maps the specimen edges at their respective longitudinal positions and is 
presented in Fig. 5(a). A visualisation of the 3D surface topography information in a 2D plot 
is illustrated in Fig. 5(b). Here, we have combined reconstructions for different propagation 
lengths into an entirely focused, color-coded reconstruction. The color overlay in this 
reconstruction corresponds to the longitudinal height of the particular feature while the local 
image brightness still corresponds to the reconstructed specimen wave field (real part). The 
longitudinal feature positions are taken from the model presented in Fig. 5(a) and were 
interpolated between feature boundaries. The longitudinal position of edges from strongly 
absorbing features as plotted in Fig. 5 corresponds to distance from the FTH mask where the 
respective edge first intercepts the beam. Once a strong absorber brings the beam to 
extinction, no information on objects shadowed in this way can be obtained. This is a 
principal limitation and fully analogous the situation encountered when recording focus series 
in microscopy, e.g. using visible light. For this reason, specimen that are best dedicated for 
this 3D imaging method show features that are well separated or semi-transparent. 

As expected from the geometry of the experimental setup, the lateral resolution is far 
superior to the longitudinal resolution limit. The measured depth-of-field in the experiment 
deviates considerably from the predicted lower boundary of relation (1) for two reasons. 
Firstly, the feature used for the evaluation of the depth-of-field is not point-like but has a 
finite width of 43 ± 7 nm. In the reconstruction, the intensity profile through the slit is wider 
than the profile of the point spread function of the FTH imaging process. As a consequence, 
the depth-of-field of the FTH setup is overestimated. Secondly, the detection of the hologram 
is affected by noise of the CCD and the limited photon statistic, in particular, at high 
scattering angles (cf. Fig. 2(b)). The phase-encoding interference signal on the detector is not 
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recorded with sufficient signal-to-noise ratio up to the given zero-intensity boundary of the 
reference wave’s Airy disk at qzero = 96 µm−1 (white circle in Fig. 2(b)). Instead, the effective 
maximum scattering angle up to which the hologram is modulated will be smaller, resulting 
in a larger depth-of-field. The effective maximum momentum transfer of qmax = 73 µm−1 
considering both the finite feature width and the detection limitations is shown as red circle in 
Fig. 2(b). It can be concluded that the true effective depth-of-field of the FTH setup 
considering hologram signal-to-noise (and not considering the limitations of the finite test 
feature) lies between 0.7 µm and 1.2 µm. 

Relation (1) for Δz above also suggests that the longitudinal resolution can be improved 
by using lower photon energies while still maintaining sub-100 nm lateral resolution. For 
instance, the lower boundary for the longitudinal resolution reduces to Δz =  ± 159 nm when 
the FTH mask in this experiment would have been illuminated with a wavelength of λ = 13.5 
nm, i.e. a prominent wavelength for destructive single-shot experiments at the free-electron 
laser in Hamburg (FLASH) [11,39]. 

 

Fig. 5. 3D representations of the reconstructions at different longitudinal coordinate z 
(“height”). (a) Wireframe model only displaying feature boundaries at their respective in-focus 
propagation distance relative to the mask plane. (b) Color-coded representation of the 
longitudinal coordinate of the test sample surface. For object parts not placed close to sharp 
features (such as the non-structured parts in the center of the ramp) the height coordinate was 
obtained by interpolation. 

5. Conclusion 

We demonstrate the extraction of depth information from a single soft-X-ray Fourier-
transform hologram. Our approach allows a precise and intuitive measurement of longitudinal 
displacements of object features, analogous to a focus series “through an object” in light 
microscopy. Using this information, we are able to reconstruct a 3D model of a test object. In 
the reconstruction, we estimate a lateral resolution of 50 nm and a longitudinal resolution of ± 
1.2 µm. The depth resolution can significantly be improved by either increasing the 
wavelength of the X-ray illumination or by further reducing the size of the reference wave 
source, given that the coherent photon flux and the resulting signal-to-noise ratio in the 
hologram is not a limiting factor. As the method is compatible to FTH with more complex 
reference structures for increased efficiency [13,25], a reduction of the reference wave 
intensity when reducing the reference aperture diameter can be compensated to optimize the 
hologram fringe visibility. 
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Given the limitations of the approach demonstrated here as compared to obtaining 3D 
information via tomography [3,7], we anticipate the application of this 3D imaging method 
especially for weakly absorbing samples, e.g. for research in life science, in situations where 
the acquisition of many projection images is not possible. In particular, this is the case when 
the sample is structurally changing in time due to dynamic processes such as inherent or 
triggered dynamics or radiation damage. In this case, our approach allows to obtain 3D 
information on the sample from a single-view snapshot hologram in a diffract-before-destruct 
[11,12] approach. 
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