

LUND UNIVERSITY

A short-lived aeolian event during the Early Holocene in southern Norway

Alexanderson, Helena; Henriksen, Mona

2014

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Alexanderson, H., & Henriksen, M. (2014). A short-lived aeolian event during the Early Holocene in southern Norway. 1-1. Abstract from 14th International Conference on Luminescence and Electron Spin Resonance Dating, Montréal, Canada.

http://www.led2014.uqam.ca/images/circulaires/Book%20of%20abstract%20Internet.pdf

Total number of authors: 2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

- or research.
- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

A short-lived aeolian event during the Early Holocene in southern Norway

Helena Alexanderson & Mona Henriksen

Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden (helena.alexanderson@geol.lu.se) Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway (mona.henriksen@nmbu.no)

The Starmoen dune field in southern Norway was formed during a single, brief phase of aeolian activity right after the last deglaciation, 11-10 ka ago, as shown by tightly clustered quartz OSL ages and non-migrating dunes with few discordances. Luminescence characteristics depend on sediment type, and incomplete bleaching causes age overestimation for glacifluvial deposits.

Geology

Crescentic dunes and dune heaps at

Starmoen in the Jømna valley form part of one of Norway's largest dune fields. The dunes overlie glacifluvial sediments, deposited during the last deglaciation.

Chronology

Quartz OSL ages were determined from the 180-250 μm fraction of 14 samples at the Lund Luminescence Laboratory, Sweden. Both large and small aliquots were measured, using sample-adapted SAR-protocols on a Risø TL/OSL reader DA-20.

Successively steeper beds indicates in-place build-up from a low heap to a dune, rather than a dune that has migrated to its present position, as seen in this example of a ground-penetrating radar (GPR) profile across a dune at Starmoen 3. This suggests that the dune-forming phase was short and did not allow for much migration.

Table 1. OSL data from Starmoen

Large aliquots 13013 gl: 13014 13015 13016 13017 13018 reco 13019 13020 13021 gl:	lacifluvial aeolian aeolian aeolian aeolian cent aeolian	Starmoen 1 Starmoen 1 Starmoen 1 Starmoen 1 Starmoen 1	370 300 280 130	27.7 ± 2.6 10.3 ± 0.7 10.7 ± 0.6	$\begin{array}{c} 85.92 \pm 6.94 \\ 33.67 \pm 1.57 \end{array}$	22/27 20/27	3.10 ± 0.13	13	
13013 gla 13014 13015 13015 13016 13017 13018 13019 13020 13021 gla	lacifluvial aeolian aeolian aeolian aeolian cent aeolian	Starmoen 1 Starmoen 1 Starmoen 1 Starmoen 1 Starmoen 1	370 300 280 130	27.7 ± 2.6 10.3 ± 0.7 10.7 ± 0.6	$\begin{array}{c} 85.92 \pm 6.94 \\ 33.67 \pm 1.57 \end{array}$	22/27 20/27	3.10 ± 0.13	13	
13014 13015 13016 13017 13018 reco 13019 13020 13021 gli	aeolian aeolian aeolian aeolian cent aeolian	Starmoen 1 Starmoen 1 Starmoen 1 Starmoen 1	300 280 130	$\begin{array}{c} 10.3\pm0.7\\ 10.7\pm0.6\end{array}$	33.67 ± 1.57	20/27	2.26 ± 0.15		
13015 13016 13017 13018 reco 13019 13020 13021 gli	aeolian aeolian aeolian cent aeolian	Starmoen 1 Starmoen 1 Starmoen 1	280 130	10.7 ± 0.6		20121	3.20 ± 0.13	5	
13016 13017 13018 reco 13019 13020 13021 gli	aeolian aeolian cent aeolian	Starmoen 1 Starmoen 1	130		33.30 ± 0.75	26/27	$3.11~\pm~0.15$	3	
13017 13018 reco 13019 13020 13021 gli	aeolian ent aeolian	Starmoen 1		9.8 ± 0.5	33.45 ± 0.77	28/30	$3.40~\pm~0.15$	5	
13018 rece 13019 13020 13021 gli	cent aeolian		70	10.0 ± 0.5	33.53 ± 0.68	26/27	$3.36~\pm~0.16$	4	
13019 13020 13021 gli	applian	Starmoen 2	25	0.013 ± 0.005	0.05 ± 0.02	18/24	$3.62~\pm~0.17$	6	
13020 13021 gla	aeonan	Starmoen 3	420	9.9 ± 0.5	29.18 ± 0.75	29/42	$2.95~\pm~0.13$	11	
13021 gla	aeolian	Starmoen 3	120	9.8 ± 0.6	32.67 ± 1.10	26/27	$3.33~\pm~0.15$	6	
	lacifluvial	Jømna	300	44.2 ± 4.2	139.32 ± 11.09	37/39	$3.15~\pm~0.15$	4	
13022	aeolian	Jømna	190	13.2 ± 0.8	39.76 ± 1.26	26/33	$3.01~\pm~0.14$	7	
13023	aeolian	Jømna	95	11.8 ± 0.8	35.87 ± 1.81	23/26	$3.03~\pm~0.14$	6	
13024 gla	lacifluvial	Hornmoen bruk	200	66 ± 6	199.61 ± 16.17	23/30	$3.03~\pm~0.13$	11	
13025 gla	lacifluvial	Hornmoen bruk	120	54 ± 5	171.93 ± 12.83	23/33	3.21 ± 0.14	8	
13026 rece	ent aeolian	WP86	5	0.60 ± 0.08	1.66 ± 0.21	27/27	$2.76~\pm~0.13$	10	
Small aliquots									
13013 gla	lacifluvial	Starmoen 1	370	29.4 ± 2.3	91.23 ± 5.55	39/93	3.10 ± 0.13	13	14.2 ± 1.5
13015	aeolian	Starmoen 1	280	9.6 ± 0.5	29.75 ± 0.53	51/96	3.11 ± 0.15	3	9.8 ± 0.8
13021 gla	lacifluvial	Jømna	300	46.8 ± 4.2	147.51 ± 10.93	48/96	3.15 ± 0.15	4	23 ± 3
13022	aeolian	Jømna	190	14.7 ± 0.9	44.12 ± 1.61	41/96	3.01 ± 0.14	7	11.5 ± 1.2
1		Lun	d-130	16		4]	Lund-1301	6	• •

A fast component dominates the signal, as shown above in comparison with Risø calibration quartz, although the Starmoen quartz is not very bright. The luminescence response to dose continues to grow until ~200 Gy $(D_0 \sim 55 \, \text{Gy}).$

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108

Position (m)

Few discordances are found in both GPR profiles and open sections, as shown above and right. This supports a single aeolian episode with minor reworking.

Aeolian and glacifluvial sediments may be

sedimentologically very similar, but are distinctly different in their luminescence characteristics. Below are examples of thinly laminated aeolian and glacifluvial deposits from Starmoen 3 and Hornmoen bruk, respectively.

A modern analogue, a small dune forming at a sand pit, shows that the aeolian sand is bleached and can give accurate ages.

IR-tests and preheat plateau tests show that the aeolian samples have no feldspar contamination (mean IR/Blue ratio 2%) and could be analysed with preheat/cutheat at 260°/240°, while most glacifluvial samples suffered from feldspar contamination (IR/B 10-34%) and needed preheat/cutheat at $220^{\circ}/200^{\circ}$ or $180^{\circ}/160^{\circ}$.

glacifluvial sediments is suggested by broad and skewed small-aliquot dose distributions. Minimum age model (MAM-3) ages yield younger ages than the mean, but still older than expected from the regional deglaciation history and are based on very few aliquots (low p-values).

Acknowledgements & references

Financial support from the Crafoord Foundation and the Norwegian University of Life Sciences.

Klemsdal, T. (2010). The eolian landforms and sediment in the valley of River Jømna, east of Elverum, south-east Norway. *Norsk Geografisk Tidsskrift* 64(2): 94-104.