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Abstract

In this thesis some research questions regarding durability and quality of roads
has been investigated. The questions are analyzed from an image analysis point of
view and aims to be a complement to existing methods for analyzing asphalt.

One important factor for the durability of the asphalt layer on roads is the
affinity between the stones in the asphalt and the binder that holds the stones to-
gether, called bitumen. One step in testing the affinity is to manually estimate the
degree of bitumen coverage after the stones covered in bitumen has been washed
for a while. The goal with the first two papers is to replace this manual estimation
by image analysis methods. The first paper deals with the easier problem where
there is a clear color difference between the stones and the bitumen. By using
reference images to get information of the typical stone and bitumen color and a
graph-cut algorithm we get result that seems to be close to the real degree of bi-
tumen coverage. In the second paper we instead look at the problem with darker
stones. In this case we cannot see a clear color difference between the stones and
the bitumen. Instead we notice that bitumen and stones reflect light in different
ways and take multiple images with lighting from different directions. The de-
gree of bitumen coverage is then estimated by detecting specular reflections in the
images.

Another quality control of asphalt is to estimate the size distribution in an
asphalt sample and see if it corresponds to the recipe for the asphalt. This is in-
vestigated in the third paper, where slices of the asphalt are analyzed. The analysis
consists of segmenting the stones individually so that the size of all grains can later
be estimated.
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Preface

This thesis is based on the following papers:

• Hanna Källén, Anders Heyden, Kalle Åström and Per Lindh, “Measure-
ment of Bitumen Coverage of Stones for Road Building, Based on Digital
Image Analysis”, IEEE Workshop on Applications of Computer Vision, Breck-
enridge, 2012.

• Hanna Källén, Anders Heyden and Per Lindh, “Measuring Bitumen Cov-
erage of Stones using a Turntable and Specular Reflections”, International
Conference on Computer Vision Theory and Applications, Barcelona, 2013.

• Hanna Källén, Anders Heyden and Per Lindh, “Estimation of Grain Size
in Asphalt Samples using Digital Image Analysis”, to be submitted to IEEE
Workshop on Applications of Computer Vision, Steamboat Springs, 2014.
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Introduction

Segmentation of images occurs as subproblems in all the research problems in
this thesis. Segmenting an image means to separate the image in different regions
where pixels in the same region belong to the same object or are similar in some
other way. The most common segmentation is foreground and background seg-
mentation. In this case we only have two regions where the first represent the
interesting part of the image, the foreground, and the rest the not so interesting
background. This introduction aims to present some of the segmentation tech-
niques available that will be used through this thesis. Also some morphological
operations to manipulate the segments will be presented.

1 Morphology

Morphological operations [3] are used to shrink or expand shapes or to smoothen
the boundaries of an object. Some of the most common operations are erosion,
dilation, opening and closing.

Morphological operations are often used on binary images but could also be
extended to gray scale images. Here we will only focus on binary images. All
the morphological operations are performed with two sets, one of them is the
image and the other one is a small set called structuring element. The structuring
element could for example be a square, a cross or a disc.

1.1 Erosion and Dilation

Erosion is used to shrink objects by removing elements at or close to the boundary.
It is defined by

A	B = {x ∈ X|x+ b ∈ A for every b ∈ B}, (1)

1



Introduction

where A is the object and B the structuring element. X is the whole image.
Dilation is used to expand the object by adding elements close to the bound-

ary. Dilation is defined as

A⊕B = {x ∈ X|x = a+ b for some a ∈ A and b ∈ B}. (2)

Figure 1 shows an example of erosion and dilation on the object seen in Figure 1a.
The structuring element used in both the erosion and dilation is in this case is a
3 × 3 square. The image after erosion can be seen in Figure 1b and Figure 1c
shows the image after dilation.

(a) Original image. (b) After erosion. (c) After dilation.

Figure 1: Erosion and dilation performed on the same object.

1.2 Opening and Closing

The opening of a set is defined as erosion with a structuring element followed by
dilation with the same structuring element on the resulting object. The closing is
the opposite, dilation followed by erosion. Both opening and closing will cause
some smoothing of the contour of the object. The opening will remove small
out-sticking elements but will not affect deep valleys, which the closing will.

Figure 2 shows opening and closing with the same square structuring element
on the image shown in Figure 2a. The opening can be seen in Figure 2b and the
closing in Figure 2c.

2



2. Thresholding

(a) Original image. (b) After opening. (c) After closing.

Figure 2: Opening and Closing performed on the same object.

2 Thresholding

A simple way to segment an image into foreground and background is by thresh-
olding the intensities. Pixels with intensities below the threshold are labeled as
background and pixels above the threshold are labeled as foreground or vice versa.
Thresholding works well in those cases where there is a clear intensity difference
between the foreground and background, but it is very sensitive for which thresh-
old that is chosen.

Figure 3 shows segmentation of an image with three different thresholds. The
original image is seen in Figure 3a, the threshold in Figure 3b is too low and does
not give any satisfying segmentation of the image. The threshold in Figure 3d is
chosen too high while the threshold in Figure 3c is a good choice of threshold.

2.1 Otsu Method

There are some methods that try to find a good threshold automatically. One of
the most famous method is called the Otsu method and was described in [5].
The idea behind this method is to minimize the within-class variation where
the threshold is separating the pixels in two different classes. The best thresh-
old should then be the one that separates the pixels in a way that the variations
within the classes are as small as possible.

First a histogram for the gray levels is computed, this histogram is then nor-
malized and regarded as a probability distribution so that pi = ni/N , where ni
is the number of pixels with intensity i and N is the total number of pixels. The
threshold k separates the pixels into two classes, background pixels, C0, with in-
tensities lower or equal to k and foreground pixels, C1, with intensities higher

3
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(a) Original image. (b) Threshold 60.

(c) Threshold 90. (d) Threshold 140.

Figure 3: Segmentation of an image with three different thresholds.

than k. The probability that a pixel belongs to the background is computed as

ω0 =

k∑
i=0

pi. (3)

In the same way we compute the probability that a pixel belongs to the foreground
class

ω1 =

K∑
i=k+1

pi, (4)

where K is the maximum intensity.
The within-class variation can then be defined by

σ2
w = ω0σ

2
0 + ω1σ

2
0, (5)

4



2. Thresholding

where σ2
0 is the variation of the background pixels and σ2

1 is the variation of the
foreground pixels.

Otsu shows that minimizing this within-class variation is the same as maxi-
mizing the between-class variation defined by

σ2
b = ω0ω1 (µ1 − µ0)2 , (6)

where µ1 and µ0 are the mean intensity of the two classes given by

µ0 =
k∑
i=0

ipi/ω0 (7)

µ1 =
K∑

i=k+1

ipi/ω1. (8)

We find the optimal threshold by computing the between-class variance for all
thresholds and then choosing the one that gives the highest value of the between-
class variation.

Figure 4 shows the segmentation of an image by thresholding with a threshold
chosen by the Otsu method.

(a) Original image. (b) Threshold by Otsu.

Figure 4: Segmentation of an image with threshold chosen by the Otsu method.
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3 Graph-Cuts

Graph-Cuts [1, 2, 4] is often used for segmenting images. The idea is to ex-
press the problem in terms of minimizing an energy function. This function is
represented by a graph, where nodes are the variables with edges between them.
Minimizing the function will be the same as calculating the maximum flow in
the graph if all weights on the edges are non-negative, which there are many algo-
rithms for.

We want to find labels, fp, for all pixels, p, in the best possible way. These
labels are in this case foreground or background. We want to do this in a way
that pixels close to each other are more likely to be assigned to the same label.
The optimal solution to this problem will be to minimize an energy function
consisting of a data part and a regularization part, on the form

E(f) =
∑
i∈P

Di(fi)︸ ︷︷ ︸
data part

+
∑
i,j∈N

wij(fi, fj)︸ ︷︷ ︸
regularization part

, (9)

where Di is a term that typically measures how well label fi fit the data and P
is the set of all pixels. The term wij describes how hard we should punish if two
neighboring pixels have different labels and the set N is the set of all interacting
pixels, neighbors. The terms wij can either be set individually for each pair of
pixels or to a constant, same for all pairs.

An illustration of the graph-cut method is shown in Figure 5. Figure 5a
shows a small image of 3 × 4 pixels. The corresponding graph can be seen in
Figure 5b, the pixels are connected in a 8-neighborhood, meaning that pixels not
at the border has 8 neighbors. The nodes in the graph correspond to the pixels
in the image and they are connected to their neighbors by the edges shown in
the illustration. Every edge has a weight associated, denoted by wij , which is the
weight between pixel i and pixel j.

Then all nodes are connected to a foreground and background node called
source, S, and sink, T . This can be seen in Figure 5c. The weight of the edge
from the foreground node, S, to pixel i is denoted by wSi and usually depends on
the intensity difference between the foreground node and the pixel. In the same
way the weight for the edge between the background node and a pixel is denoted
wT i. Those will correspond to the term Di in Equation 9. Then an optimization

6



3. Graph-Cuts

(a) Original image.

w12

w15 w26

w16

w25

w56

(b) Corresponding graph.

wS9

wT9

S

T

(c) Foreground and background node.

S

T

(d) Separated graph.

Figure 5: Illustration of a graph.

algorithm is performed to find the best possible cut, meaning the cut where the
total cost is as low as possible. The cut must be done in such a way that all pixels
in the end have an edge to either the foreground or the background node, not
both. There cannot exist any edges from one side of the graph to the other. The
cost for cutting one edge depends on the weight, high weight means high cost,
and the total cost is the sum of the weight for all edges that must be cut. Figure 5d
shows the separated graph with the cut marked with a black line. The pixels that
afterwards are connected to the foreground node are classified as foreground and
the others to background.
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3.1 Segmentation of an Image using Graph-Cut

Figure 6 shows an example of a segmentation done by graph-cuts for three differ-
ent values of the regularization term. The weights between the pixels are set to a
constant, different in the different images, and the weights to the foreground and
background nodes are set to be the intensity difference between the pixel and the
foreground and background node respectively. The original image can bee seen
in Figure 6a and the result of the segmentation can be seen in Figures 6b, 6c and
6d.

(a) Original image. (b) Regularization 10.

(c) Regularization 25. (d) Regularization 100.

Figure 6: Segmentation of an image by the graph-cut method with three different
regularization terms.

8



4. Fast Marching

4 Fast Marching

The fast marching algorithm was presented by J. A. Sethian in [7] and [8]. It is
a numerical technique that follows the evolution of an interface. Figure 7 shows
such an interface expanding in the directions of the arrows.

F
F

F

F

F

F
F

F

inside

outside
interface

Figure 7: An interface expanding in the direction of the arrows.

In the fast marching method we start with some initial boundary and let
this curve expand according to some speed function, F , that depends on the
application. In this thesis we will use the fast marching method for segmenting
images and therefore we will start the curve somewhere where we are certain it is
background and let the curve propagate from this.

The equation of the arrival function in one dimension can be derived by using
the equation x = F · T (x), where x is the distance, T (x) the arrival function
and F the speed of the curve. Taking the derivative we get

1 = F
dT

dx
.

In multiple dimensions this becomes the Eikonal equation

|∇T |F = 1, (10)

where T is the arrival time for the curve and F is the speed function for the curve.
The arrival time at a point tells at which time the curve is expected to reach that

9
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point. The speed function at a point decides how fast the curve is propagating at
a certain point.

After a while we will stop the propagation and let the pixels inside the interface
be set to background and the pixels that have not been reached by the curve to
foreground.

4.1 Algorithm

We discretize the space by a finite grid, in the case of images it is already discretized
and the grid points are the pixels. The grid points are then put in one of the
following classes: Known, Trial or Far. Known consist of the grid points on the
boundary of the interface or points already passed by the curve. These points
have already been assigned with an arrival time. Trial consist of the points that
are neighbors to the boundary and not in Known. For these points a temporary
arrival time can be computed, and the points are also put in a min-heap to easily
and efficiently find the element with the smallest arrival time. Far consist of all
other points.

The min-heap is a data structure, a tree, organized in a way that the top el-
ement is always the smallest one, in this case the smallest means that it has the
smallest arrival time. This makes it very efficient to find the smallest arrival time
without having to search through all elements.

The fast marching algorithm goes as follows:

1. Initialize, add the points at the initial boundary to Known, calculate the
temporary arrival time for the neighbors, not in Known, according to Sec-
tion 4.2, add them to Trial and to the heap.

2. Take out the first element from the heap which is the point with the small-
est arrival time, add it to Known and remove it from Trial.

3. For all neighbors not in Known: update arrival time according to Sec-
tion 4.2, add the ones not already in Trial to Trial and to the heap.
While updating the arrival times, also update the heap.

4. Repeat 2-3 until the heap is empty or until the smallest of the arrival times
is larger than some threshold.

10



4. Fast Marching

4.2 Updating the Arrival Times

To find the arrival function we want to find a solution for the Eikonal equation
derived earlier

|∇T |F = 1.

We solve this differential equation numerically by using the following updat-
ing scheme (

max(D−xij T, 0)2 + min(D+x
ij T, 0)2

+ max(D−yij T, 0)2 + min(−D+y
ij T, 0)2

)1/2

=
1
Fij

, (11)

where Fij is the speed at the point (i, j), D−xij is the one sided derivative in

the negative x-direction defined by D−xij = T (x)−T (x−h)
h . In the same way

D+x
ij is the one sided derivative in the positive x-direction defined by D−xij =

T (x+h)−T (x)
h . D−yij and D+y

ij are defined in the same way.
If we use a slightly different approximation of the gradient, introduced in [6],

we get the more convenient upwind scheme(
max(D−xij T,−D+x

ij T, 0)2

+ max(D−yij T,−D
+y
ij T, 0)2

)1/2

=
1
Fij

. (12)

In this thesis we will use the fast marching algorithm for segmenting images.
In this case the grid points are the pixels in the images and the derivatives can
be computed more easily. If we call the arrival time we want to calculate T and
the arrival times for the neighbors as shown in Figure 8, we can calculate the
derivatives as

D−xij T = T − a
D+x
ij T = b− T

D−yij T = T − c
D+y
ij T = d− T,

(13)

where a, b, c and d are the arrival times for the neighbors of the interesting pixel.
If we assume that the arrival times a and b are both known we can have one

of the following cases:

• Both a and b are smaller than T , T > a, T > b

11
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Ta b

c

d

Figure 8: The arrival times for the current grid point and its neighbors. The arrival
time we want to update is denoted by T and the arrival times for the neighbors are
denoted a, b, c and d.

• a is smaller than T but b is larger, T > a, T ≤ b

• b is smaller than T but a is larger, T ≤ a, T > b

• Both a and b are larger than T , T ≤ a, T ≤ b.

For the first case we get max(T − a,−(b− T ), 0) = max(T − a, T − b, 0) =
T −min(a, b). For the second case we get max(T − a, T − b, 0) = T − a, but
since we also know that b > a this will be the same thing as writing max(T −
a, T − b, 0) = T −min(a, b). The same thing applies for the third case. For the
last case we get max(T − a, T − b, 0) = 0.

Then we can reduce the four cases above to just two. In similar way we get
two cases when c and d are known.

Equation 12 will look different depending on the size of T . Therefore we
have to solve it for the three following cases:

• T > min(a, b) and T > min(c, d)

• T > min(a, b) and T ≤ min(c, d)

• T ≤ min(a, b) and T > min(c, d).

The fourth case T ≤ min(a, b) and T ≤ min(c, d) can never occur since T has
to always increase and therefore has to be larger than the arrival time for at least
one of its neighbors.

12



4. Fast Marching

In the first case when T > min(a, b) and T > min(c, d) we get

max(T − a, T − b, 0)2 + max(T − c, T − d, 0)2

= (T −min(a, b))2 + (T −min(c, d))2

= 2T 2 − 2(min(a, b) + min(c, d))T + min(a, b)2 + min(c, d)2.

And we can rewrite Equation 12 as

T 2 − (min(a, b) + min(c, d))T +
1
2

(
min(a, b)2 + min(c, d)2 +

1
F 2

)
.

(14)

This is a quadratic equation with two solutions and we choose the larger of the

two. The solution will be real as long as |min(a, b) −min(c, d)| ≥
√

2
F . If this

does not hold we ignore this case.

For the second case when T > min(a, b) and T ≤ min(c, d) we instead get

max(T − a, T − b, 0)2 + max(T − c, T − d, 0)2 = (T −min(a, b))2 + 0,

and we can rewrite Equation 12 to

T =
1
F

+ min(a, b). (15)

In the third case we get in the same way

T =
1
F

+ min(c, d). (16)

These three cases will yield three different arrival times for the pixel. We are
interested in the largest possible solution. For the first case the arrival time must
satisfy T > min(a, b) and T > min(c, d). If it does not we cannot use this
equation.

Since F is always greater than zero it is enough to just look at one of the cases
two and three. If we choose T = 1

F + max(min(a, b),min(c, d)) the arrival
time will automatically be greater than both min(a, b) and min(c, d), violating
the constraints.

13
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By this we can reduce the two latter cases to one, namely

T =
1
F

+ min(a, b, c, d). (17)

We can only have two possible outcomes for the solution of this equation, either
T is between min(a, b) and min(c, d) or greater than both, in the latter case we
cannot use this equation.

In the end we just have to calculate the arrival times according to Equation 14.
If the solution gets real and it does not violate the constraints this will be the
largest of the solutions. Otherwise we calculate the arrival times according to
Equation 17.

Usually the arrival times for all the neighbors are not known, but this will not
make any substantial difference in the calculations. If we know one of a and b we
just set min(a, b) to the one we know. In the same way we set min(c, d) to the
one we know of c and d. Setting this we can calculate the arrival times exactly
as before. If we do not know any of a and b we have to know at least one of c
and d, in this case we calculate the arrival time according to Equation 17 setting
min(a, b, c, d) = min(c, d).

4.3 Segmentation of an Image using Fast Marching

Figure 9 shows an example when fast marching was used to segment an image into
foreground and background. The original image can be seen in Figure 9a. This
image is then transformed to a speed image shown in Figure 9b where white means
high value and black low. The speed function has to be chosen depending on the
application. In this case we have a dark background and a bright foreground so we
choose a speed function that will give high values for dark pixels and low values
for brighter pixels. The speed function is given by

F (x, y) =
1

1 + eI(x,y)/v
, (18)

where I(x, y) is the intensity of the given point and v determine the steepness of
the function.

Then we initialize the fast marching to start at the edges of the image expand-
ing inwards to the center. The arrival times can be seen in Figure 9c, blue means
low arrival times and red and yellow color means higher arrival times. We get the
final segmentation shown in Figure 9d by thresholding on the arrival times with

14
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(a) Original image. (b) Speed function.

(c) Arrival times. (d) Segmentation.

Figure 9: Segmentation of an image using the fast marching method.

some suitable threshold. The red line shows the border between foreground and
background.
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Abstract: The top layer of a road is made up of a mixture of stones and bitumen
and the durability is dependent on how well the bitumen adheres to the stones.
The standard way of determining the bitumen coverage in the industry is the so
called rolling bottle method, where a number of stones covered with bitumen are
put in a rolling bottle and the bitumen coverage is estimated after different times.
This paper describes a novel method for measuring the bitumen coverage of the
stones by using advanced segmentation methods instead of manual inspection.
The stones are put on a table and a number of images with different exposure
times are taken. The images are normalized and the stones are segmented from the
background based on a threshold obtained from an optimality criterion. Then the
bitumen covered parts of the stones are segmented based on a graph-cut method.
The results are compared to manual inspection and are well in agreement with
these.

1 Introduction

When building roads one wants them to be as lasting as possible to avoid expen-
sive repairs. Usually the surface of the road consists of a mixture of stones of dif-
ferent sizes and a petroleum-based material called bitumen. To avoid that stones
get loose from the pavement the affinity between the stones and bitumen has to
be as good as possible. The affinity is measured by the rolling bottle method. The
goal with this paper is to improve the manual analysis in this method using digital
image analysis techniques.

1.1 Rolling Bottle Method

The rolling bottle method is a method to investigate the affinity between stones
and bitumen. The stones are first mixed with bitumen so that they are completely
covered in bitumen. After they been stored for a few days the stones covered in
bitumen are put in a glass bottle filled with distilled water.
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The glass bottles are then put on a bottle rolling machine, see Figure A.1.
On this machine the bottles are rolling for a couple of hours so that some of the
bitumen gets teared off from the stones. In this study we first let the bottle roll for
four hours. After rolling a few hours the bottle is removed from the machine to

Figure A.1: A bottle rolling machine, the bottles filled with distilled water and stones
are rolling on the machine so that bitumen get teared off from the stones.

estimate the degree of bitumen coverage. The stones are put on a piece of silicon
coated paper and two experienced laboratory assistants are visually observing the
stones in order to estimate the degree of bitumen coverage.

Afterwards, the stones are put back into the bottle and the bottle continues
rolling. After rolling in total 24, 48 and 72 hours, the degree of bitumen coverage
is again estimated by the same laboratory assistants.

A problem with current state of the art is that it is not objective, two different
labs can get different result since the degree of bitumen coverage is estimated
by different laboratory assistants in different labs. It is also very hard to make
a correct estimation and the accuracy of the estimations are not sufficient. The
purpose of this project is to improve the estimation by taking photographs of the
rolled stones and then use digital image analysis techniques to analyze the stones.
This would make the method more objective since the same computer program
can be used in different labs.

1.2 Previous Work

There is not a lot written about trying to estimate the degree of bitumen coverage
by using image analysis. In [12], an algorithm for doing this has been developed.
In the proposed method, a cyan-colored background for easy segmentation of
the background has been used. To avoid sparkles and reflections in the image a
cyan-colored truncated cone, with the camera in one of the bases, is used. To
classify pixels either as stones or bitumen, a principal component analysis was
implemented. Using the first component the images were thresholded and pixels
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below the threshold were classified as bitumen. However, this is a completely
different approach to the one proposed here.

Concerning segmentation there is a vast literature describing several differ-
ent segmentation methods. The first methods were based on thresholding and
region growing techniques. Also methods from mathematical morphology were
frequently used (opening, closing, etc.) in order to smoothen out the contours.
The starting point of modern segmentation methods, based on variational for-
mulations, was the introduction of active contours, so called snakes, see [9], later
developed as geodesic active contours [5, 6], active region [15].

A development of active contours to more general level-sets was done by Os-
her and Sethian in [14] and [13]. The main advantage of the level-set represen-
tation is the flexibility to change topology and improved numerical methods. A
faster version of level-sets, so called fast marching, was presented in [16].

Another approach to segmentation based on variational methods is the so
called area based methods. The pioneering work, the Chan-Vese method, is based
on the Mumford-Shah functional, see [7]. Yet, the main drawback of those meth-
ods is the existence of local minima due to non-convexity of the energy func-
tionals. Minimizing those functionals by gradient descent methods makes the
initialization critical. A number of methods have been proposed to find global
minima such as [1, 8].

A new development into discrete methods, based on graph-theory, is the so
called graph-cut methods, introduced by Boykov, Kolmogorov and others, [3, 4,
10]. The main advantage of these methods is that they can guarantee that the
solution reaches the global minimum and they are usually very fast.

1.3 Overview of the System

Figure A.2 shows an illustration of the analysis system. Input to the image analysis
system are two series of images of stones; one before covered in bitumen and
one of stones completely covered in bitumen. These two image series are used
as reference images. There is also a series of images from each time point we
want to calculate the degree of bitumen coverage. The image analysis system for
calculating the degree of bitumen coverage for one time point works in several
steps. First adjust the intensity of the image is adjusted so that images with the
same exposure time get approximately the same intensity on the background. By
thresholding the images we segment the stones from the background, and for
each stone we create a mask. For all stones the pixels inside the mask are classified
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either as bitumen or stone using a graph cut method. When all pixels in the image
series are classified, we calculate the degree of bitumen coverage by counting the
number of bitumen pixels and stone pixels.

Figure A.2: Illustration of the image analysis system. As input to the system we have
a number of series of images, these images are analyzed and we get the degree of
bitumen coverage for the requested times.

2 Segmenting Foreground from Background

We first want to segment the foreground from the background, for each stone we
want to find a cut-out from the original image and a mask. The segmentation is
made by thresholding with a suitable threshold. Since we have a series of images
we match the stones in different images to each other and the mask from each
images are merged to create a final mask for the stone.

2.1 Intensity Adjustment

In order to be able to compare different images to each other they need to have
the same color intensity at the background. In the images there is a calibration
stick with three fields; a white, a light gray and a dark gray. The calibration stick
is used as a reference and the images are adjusted so that images with the same
exposure time all have the same intensity in the three calibration fields. These
fields are quite large homogeneous squares. In order to locate them we first use an
edge detector to locate edges. Inside the squares there are no edges since the fields

22



2. Segmenting Foreground from Background

are homogeneous, therefore we search for large squares without edges to find the
three fields. For each field we then compute a median value for the intensity in
the three color channels; red, green, and blue. The images of the stones before
they are covered in bitumen are used as reference images and the other images are
adjusted according to them. Figure A.3 shows a plot for the intensity for the three
fields for one single channel. On the x-axis we have the intensity for the images
that we want to adjust and on the y-axis we have the intensity for the reference
image. A linear function with slope k and constant term m has been fitted to the
points in the plot using the least square method.
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y = kx + m

Figure A.3: The intensity for the three fields for one channel, the straight line has
been fitted to the points and the equation of this line is used to adjust the image on
the x-axis to the same intensity as the reference image on the y-axis.

To adjust one channel of the image to the intensity of the reference image the
image is multiplied with the slope of the linear function and then the constant
term is added. The new intensity is calculated by

Inew = kI +m , (A.1)

where Inew is the adjusted intensity, k the slope of the function, I the original
intensity and m the constant term. This adjusts the intensity of one channel in
the image, the other channels are adjusted in the same way.

2.2 Segmentation of the Stones

To segment out the stones from the background, we threshold the image. The
thresholding is done considering the color difference between the image pixels
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and a completely white pixel. We calculate the difference by

di =

√
(Ivr − Iir)2 + (Ivg − Iig)2 + (Ivb − Iib)2 , (A.2)

where di is the color difference between the image pixel number i and a white
pixel, Ivj the intensity for the white pixel in channel j and Iij the intensity for
pixel i in channel j.

Since the background is white, background pixels will get small values on di
and foreground pixels will get larger values. To segment out the foreground from
the background, a suitable threshold is chosen and pixels with larger values on di
than the chosen threshold is considered to be foreground.

A detail from an image is shown in Figure A.4 a) and the color difference
between the image pixels and a white pixel is shown in Figure A.4 b). Black
means small difference and white large difference. The result of the thresholding
is shown in Figure A.4 c), where the white areas are foreground.

Figure A.4: The segmentation process, first the color difference between the image
and a white pixel is calculated for the image, then the image is thresholded. Small
segments and segments of strange shape are removed to get the final segmentation.

To remove some foreground that are not stones, we remove segments that are
either too small or too large, the remaining segments of appropriate size is likely
to be stones. The result can be seen in Figure A.4 d). If two stones are lying
too close to each other, the segmentation often fails and classifies some of the
background as foreground. This results in that two stones close to each other will
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be connected. We remove these connected segments by comparing the area of the
convex hull to the stones with the area of the stones itself. The convex hull to a
stone is the smallest possible convex area which contains the stone. Figure A.4 e)
shows the convex hull to the stones, the stones are white and the gray areas are
the part of the convex hull that lies outside the stones. If the area of a stone and
the area of the convex hull differ too much, the segment is removed. The holes
in the segments that are left are filled and the final segmentation can be seen in
Figure A.4 f ).

Choosing threshold The segmentation algorithm needs a good threshold to
work properly. However, the threshold varies between images. To automatically
find the most suitable threshold, the following procedure is used. First we thresh-
old the image with a few different thresholds and counts the number of stones,
segments of appropriate size. The thresholds are chosen so that the steps between
them are quite large. We choose the first threshold that gives us sufficient many
stones as a starting threshold. The image is then thresholded with the chosen
threshold, segments that are at appropriate size and with not too big difference
between the area and the area of the convex hull are classified as stones. The indi-
vidual stones are then thresholded with a number of higher thresholds and for all
thresholds and stones, the area of the stone and the difference between the area of
the stone and the area of the convex hull are stored.

Figure A.5 shows the result for one stone after thresholding with three dif-
ferent thresholds. The white areas represent the foreground and the cyan-colored
areas are the part of the convex hull to the foreground that lies outside of the
foreground. If we set a too low threshold, second image to the left, we will get a
non-smooth border between to foreground and background which result in a big-
ger difference between the area of the convex hull and the area of the foreground.
With a too high threshold, the image to the right, we get bays instead which also
results in big difference between the area of the convex hull and the area of the
foreground.

We define a discrete function, f(k), that depends on which threshold we
use. For each threshold we calculate the difference of the areas of the stones and
the areas of the convex hull and summarize over all stones. For normalization
we divide all area differences by the area difference for the first threshold. The
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Figure A.5: Result after thresholding one stone with three different thresholds. The
white area is the foreground and the cyan-colored areas are the parts of the convex
hull that lies outside of the foreground.

function is defined by

f(k) =
∑
j

δAjk
δAj1

, (A.3)

where k is the threshold, δAjk is the area difference for stone j and threshold k
which is calculated by Aconvex hull −Astone.

Figure A.6 shows the graph to the function for a number of thresholds, k.
We want the difference between the areas and the areas of the convex hull to be
small, and a small value on f means that the sum of all differences are small.
Therefore to find a suitable threshold we find the minimum value of f and select
the threshold that gives that.

Figure A.6: The sum of area differences as a function of the thresholds. We choose
the threshold where the function has its minimum.
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2.3 Matching the Stones between Different Images

Sometimes the images in the image series are displaced relative each other. To use
all images in the series we have to register all images so that they are on top of
each other. The displacements is estimated by matching the stones from different
images to each other and compare the coordinates of the center of mass of the
stones. The stones in the first image in the series are compared with the stones in
the rest of the images. For all stones in the first image, the distance, with respect
to the difference in x- and y-coordinates and difference in the area, to all stones
in the rest of the images is calculated. The distance is given by

dijk = ‖si − skj‖2 , (A.4)

where dijk is the distance between stone number i in the first image, si, and stone
number j in the current image, skj . The vector s contains the area and the x-
and y-coordinates of the center of mass of the stone, s = (A,mx,my).

For all stones, si, and image, k, we select the stone, sjk, that matches the
stone si best, i.e. the stone that gives the smallest distance, dijk. To avoid mis-
matches which occurs when the segmentation algorithm fails to segment out
stones in some of the images, we set a limit for how much the x- and y-coordinates
are allowed to deviate from the x- and y-coordinates for the stone in the first im-
age.

2.4 Merging of the Masks and Images

When the stones are segmented from the background a mask for all stones are
stored. The mask is a binary image that is white where there is stone and black
otherwise. After the matching process we get a series of masks representing the
same stone in the different images. The mask differs somewhat from each other
and we want to put these masks on top of each other to create a resulting mask.
Figure A.7 a) shows a number of masks representing the same stone.

The masks are then aligned so that the centers of mass coincide. After this,
the masks are added together which can be seen in Figure A.7 b). The white pixels
correspond to pixels that were inside all masks and the black pixels pixels that were
outside all masks. The gray pixels at various shades are pixels that sometimes were
inside, sometimes outside the masks.

Pixels that were inside sufficiently many masks, typical half of them or more,
is set to white and the rest of the pixels are set to black. Since the pixels at the
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Figure A.7: Merging of the masks, first the masks are aligned and added together.
Pixels that were outside of more than half of the masks are removed from the mask,
finally the mask is reduced in size with a few pixels.

edge of the masks are uncertain we reduce the size of the mask using morpholog-
ical erosion and set pixels close to the edge to black. The result can be seen in
Figure A.7 c).

To each stone there is also a series of images of the stone, which are cut-
outs from the original images. These images are also aligned according to the
displacements of the masks into a multidimensional image.

3 Segmenting Bitumen from Stone

To segment bitumen pixels from stone pixels we use a graph-cut algorithm, in-
stead of making one big graph of the entire image we set up a small graph for each
stone. The weights between pixels in the image depend of the color difference be-
tween the pixels. The weights between a pixel to the foreground and background
node depends of the similarity between the pixel and a typical bitumen or stone
pixel respectively.
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3.1 Graph Segmentation

To split the image in foreground and background we use a graph-cut algorithm,
the image is represented as a graph which is divided in two parts into foreground
and background. A graph consists of nodes and edges, in the graph representation
of the image a node represent a pixel in the image, and between adjacent pixels
there are edges connecting the pixels. Figure A.8 a) shows a small image with
2 × 4 pixels and the corresponding graph can be seen in Figure A.8 b). The
example shows a 4-connected neighborhood, the pixels are only connected with
an edge if they lie next to each other. The weights wij denotes the dependency
between pixel i and pixel j, higher values of wij makes the pixels more likely to
belong to the same class, i.e. foreground or background.

Figure A.8: Illustration of a graph. An image is represented as a graph with edges of
different weight between the pixels, the pixels are also connected to a foreground and
background node. The graph is then split so that the sum of the removed weights is
as small as possible.

All nodes are then connected to a foreground and background node, source
and sink, which can be seen in Figure A.8 c). The foreground node is denoted
with an S, the background node with a T and the weight between the foreground
node and pixel i is denoted with wSi. To segment the image we want to cut edges
in the graph in a way so that all nodes in the end have an edge to either the
foreground or the background node. We also want the total cost for doing that
to be as small as possible, were the cost to remove an edge depends on the weight
of the edge. The total cost for splitting the graph is the sum of the weight of
the edges we have to remove. Figure A.8 d) shows the separated graph with the
cut marked with a black line. Pixels connected to the S node are classified as
foreground and pixels connected to the T node are classified as background.
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3.2 Clustering

To determine which pixels that is stone and bitumen respectively, we want to find
information about how a typical stone and bitumen pixel looks like. To find this
information we use the two reference series to cluster the pixels in different cluster
where pixels that are similar to each other belong to the same cluster. When we
do the clustering, we use all images in the series and the pixels will therefore be
multidimensional arrays with three channels from each image. The clustering
process for clustering pixels in one stone is shown in Figure A.9. The pixel vector
to the right in Figure A.9 a) corresponds to the pixel marked with a square in the
original images to the right. All pixel vectors are then clustered together to some
different clusters, which is illustrated in Figure A.9 b). The clustering is done
using a k-means algorithm, described in [11]. For each cluster a cluster center
is calculated, which is the mean value for all vectors belonging to that cluster.
Figure A.9 c) shows the result of the clustering, where the different colors in the
figure corresponds to different clusters.

Figure A.9: Illustration of clustering. All pixels from the image is extracted and
clustered together to a few cluster. The last image shows which pixels that belong to
which cluster.

In the same way, we cluster the pixels in the images of the stones completely
covered in bitumen, in this way we get some pixel vectors, the cluster centers,
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representing a typical bitumen pixel.

3.3 Segmenting the Stone Pixels from the Bitumen Pixels

For segmenting the images into stone and bitumen we use the graph-cut method
described in Section 3.1. Each stone is represented with a small graph where
the weight between the pixel nodes and the stone, background, and bitumen,
foreground, node depends on how similar the pixels are to the typical stone and
bitumen pixel respectively. For each pixel, the distance to all cluster centers are
calculated, both the cluster centers representing the stones and the centers repre-
senting bitumen. The distance between a pixel and a cluster center is calculated
by

dik = ‖pi − pk‖2 , (A.5)

where dik is the distance between pixel number i and cluster center number k
and pi and pk are the pixels vectors containing the intensity for all images and
channels for pixel i and cluster center k.

Then the weights to the S-node, bitumen, are chosen, inspired by [2], as

wSi = e−x
2
i/(2σ2) , (A.6)

where xi is a normalized distance from the pixel to the closest bitumen cluster
and σ a constant that controls how fast the exponential function decreases. The
distance xi is calculated by

xi =
dib

dib + dis
, (A.7)

where dib is the distance from pixel i and the closest bitumen cluster and dis the
distance to the closest stone cluster. The weights to the background node, stone,
wT are then set to wT = 1− wS .

We choose the weight between pixels in the image to an exponential function
that depends on the color difference between the pixels. Then we calculates the
weight by

wij = 10ed
2
ij/(2σ2) , (A.8)
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where dij is the color difference between pixel i and pixel j and σ a constant. The
distance dij is normalized, so that it is independent of how many images it is in
the image series and calculated by

dij =
‖pi − pk‖2

255
√
n

, (A.9)

where pi and pk are the pixel vectors for pixel number i and j respectively and n
is the length of these vectors.

When we know all weights we can split the graph to background and fore-
ground according to Section 3.1. This will tell us which pixels that are bitumen
and which pixel that are stone.

3.4 Calculation of the Degree of Bitumen Coverage

To calculate the degree of bitumen coverage we simply count the number of pixels
that were classified as bitumen and the number of pixels that were classified as
stone. The degree of bitumen coverage is given by

db =
nb

ns + nb
, (A.10)

where db is the degree of bitumen coverage, nb is the number of bitumen pixels
and ns the number of stone pixels.

4 Experiments

To evaluate the accuracy of the image analysis system, different stone materials
with different color and darkness were tested. Each material was analyzed both
by the image analysis system and by experienced laboratory assistants. As the
standard prescribes, the visual estimation of the degree of bitumen coverage by
the laboratory assistants were done by investigating a few number of stones and
compare to prescribed guidelines. Since the exact degree of bitumen coverage is
hard to estimate it is only done by 5 % accuracy.

Figure A.10 shows the result of the segmentation for one of the images, the
stone material in this image is denoted D and is of light rock type. The stones
in the images have been rolling in the bottle for 72 hours before they were placed
on the paper and photographed. The left image shows a survey picture and the
right image shows a detail from the image. The red lines shows the boundary
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trial 1 trial 2 trial 3
degree of bitumen coverage 42.4 % 42.4 % 43.4 %

Table A.1: The degree of bitumen coverage for material D calculated from three
different images. The stones are the same in all images but placed differently.

between background and foreground and the blue lines shows the boundary be-
tween stones and bitumen.

Figure A.10: Result after 72 hours for stone material D. The red lines show the
border between stones and background and the blue lines shows the border between
bitumen and stone.

For this image the degree of bitumen was calculated to 38.6 %. At the same
time two independent laboratory assistants estimated the degree of bitumen cov-
erage to 35 and 40 %. The degree of bitumen coverage calculated with the image
analysis method lies in between them. Together with visual study of the result
image one can conclude that the image analysis gives accurate result.

Since we can only see one side of the stones we want to investigate the re-
peatability of the method. To do this we collected all the stones and placed it
randomly on the paper again. New images were taken and the degree of bitumen
was calculated again. This was repeated a few times. The result of the different
trials can be seen in Table A.1.

The result after 72 hours for a different type of stone is shown in Figure A.11.
The stone material, denoted by B, is reddish and a bit darker than the previous
material.

The degree of bitumen coverage was calculated to 13.6 %. The laboratory
assistants both estimated the coverage to 10 %. By studying the result image one
can see that the segmentation algorithm seems to segment the bitumen from the
stone in a correct way. The result is also close to the estimation by the laboratory
assistants.
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Figure A.11: Result after 72 hours for stone material B. The red lines show the
border between stones and background and the blue lines shows the border between
bitumen and stone

trial 1 trial 2 trial 3
degree of bitumen coverage 13.6 % 12.7 % 14.1 %

Table A.2: The degree of bitumen coverage for material B calculated from three
different images. The stones are the same in all images but placed differently.

In the same way as the other lighter stones these stones were also collected,
again placed on the paper and photographed. Then the new images were analyzed
to again investigate how the result changes depending on the placement of the
stones. The result can be seen in Table A.2.

degree of bitumen coverage
image analysis assistant 1 assistant 2

material D after 4 h 92.6 % 95 % 95 %
material D after 24 h 57.5 % 60 % 60 %
material D after 48 h 46.4 % 45 % 45 %
material D after 72 h 38.6 % 40 % 35 %
material B after 72 h 13.6 % 10 % 10 %

Table A.3: The degree of bitumen coverage for the different stone materials and times
estimated both by the image analysis system and by two independent laboratory
assistants.

Table A.3 shows a summary of the results for two different kinds of stones.
For the first material the degree of the bitumen coverage has been calculated at
four different times, but for the second stone material only one time is considered.
In all cases the automatic image analysis method gives result that is close to the
visual estimations by the laboratory assistants. Since the results from the image
analysis is close to the results from the traditional method, it indicates that our
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method gives result close to the true degree of bitumen coverage even though
the results from the laboratory assistants should not be considered as the ground
truth.

5 Conclusions and Future Work

Using image analysis to estimate the degree of bitumen coverage of the stones
works well for light and middle dark rock types. The method presented in this
paper gives accurate results and the repeatability is good.

The method has also been tested on darker, almost black, stones. For these
stones the color and intensity of the stones are almost the same as for the bitumen,
and the described method is not suitable. To solve the problem with darker stones
we need to use a different photo and lightening arrangement.
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Measuring Bitumen Coverage of Stones using a Turntable
and Specular Reflections
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Abstract: The durability of a road is among other factors dependent on the affin-
ity between stones in the top layer and bitumen that holds the stones together.
Poor adherence will cause stones to detach from the surface of the road more
easily. The rolling bottle method is the standard way to determine the affinity
between stones and bitumen. In this test a number of stones covered in bitumen
are put in a rolling bottle filled with water. After rolling a number of hours the
bitumen coverage are estimated by visually investigating the stones. This paper
describes a method for automatic estimation of the degree of bitumen coverage
using image analysis instead of manual inspection. The proposed method is based
on the observation that bitumen reflects light much better than raw stones. In
this paper we propose a method based on the reflections to estimate the degree
of bitumen coverage. The stones are put on a turntable which is illuminated and
a camera is placed straight above the stones. Turning the table will illuminate
different sides of the stones and cause reflections on different part of the images.

1 Introduction

When building roads one wants them to be as lasting as possible to avoid expen-
sive repairs. Usually the surface of the road consists of a mixture of stones of dif-
ferent sizes and a petroleum-based material called bitumen. To avoid that stones
get loose from the pavement the affinity between the stones and bitumen has to
be as good as possible. The affinity is measured by the rolling bottle method. The
goal with this paper is to improve the manual analysis in this method using digital
image analysis techniques.

1.1 Rolling Bottle Method

The rolling bottle method is a method to investigate the affinity between stones
and bitumen. The stones are first mixed with bitumen so that they are completely
covered in bitumen. After they have been stored for a few days the stones covered
in bitumen are put in a glass bottle filled with distilled water.
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The glass bottles are then put on a bottle rolling machine, see Figure B.1. On
this machine the bottles are rolling for a couple of hours so that some of the bitu-
men gets teared off from the stones. After rolling a few hours the bottle is removed

Figure B.1: A bottle rolling machine.

from the machine to estimate the degree of bitumen coverage. The stones are put
on a piece of silicon coated paper and two experienced laboratory assistants are
visually observing the stones in order to estimate the degree of bitumen coverage.

A problem with current state of the art is that it is not objective, two different
labs can get different result since the degree of bitumen coverage is estimated
by different laboratory assistants in different labs. It is also very hard to make
a correct estimation and the accuracy of the estimations are not sufficient. The
purpose of this project is to improve the estimation by taking photographs of the
rolled stones and then use digital image analysis techniques to analyze the stones.
This would make the method more objective since the same computer program
can be used in different labs.

1.2 Previous Work

In [8], an algorithm for trying to estimate the degree of bitumen coverage by using
image analysis has been developed. In the proposed method, a cyan-colored back-
ground for easy segmentation of the background has been used. To avoid sparkles
and reflections in the image a cyan-colored truncated cone, with the camera in
one of the bases, is used. To classify pixels either as stones or bitumen, a princi-
pal component analysis was implemented. Using the first component the images
were thresholded and pixels below the threshold were classified as bitumen.

A more advanced method for estimating the degree of bitumen coverage was
suggested by [12]. To avoid reflections in the bitumen surface, the stones are put
in a crystallization dish where they were covered with distilled water. A plastic
cylinder were put around the aggregates and illuminated from outside to ensure
diffuse lightening to prevent shadows to occur. A probability based segmentation
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method was used for segmenting the images. To train parameters in the classifier,
reference images on the background, the raw aggregates and aggregates completely
covered in bitumen were used.

Both these methods rely on a difference in appearance between the aggregates
and bitumen. In this paper we focus on the more difficult problem when the
color of the stones are very similar to the color of bitumen.

Concerning segmentation there is a vast literature describing several differ-
ent segmentation methods. The first methods were based on thresholding and
region growing techniques. Also methods from mathematical morphology were
frequently used (opening, closing, etc.) in order to smoothen out the contours.
The starting point of modern segmentation methods, based on variational formu-
lations, was the introduction of active contours, so called snakes, see [6].

A development of active contours to more general level-sets was done by Os-
her and Sethian in [10] and [9]. The main advantage of the level-set represen-
tation is the flexibility to change topology and improved numerical methods. A
faster version of level-sets, so called fast marching, was presented in [11].

Another approach to segmentation based on variational methods is the so
called area based methods. The pioneering work, the Chan-Vese method, is based
on the Mumford-Shah functional, see [4]. Yet, the main drawback of those meth-
ods is the existence of local minima due to non-convexity of the energy func-
tionals. Minimizing those functionals by gradient descent methods makes the
initialization critical. A number of methods have been proposed to find global
minima such as [1, 5].

A new development into discrete methods, based on graph-theory, is the so
called graph-cut methods, introduced by Boykov, Kolmogorov and others, [2, 3,
7]. The main advantage of these methods is that they can guarantee that the
solution reaches the global minimum and they are usually very fast.

2 Methods for Estimating the Degree of Bitumen Cover-
age

A problem when trying to take images of stones covered in bitumen is that we
often get specular reflections in the bitumen. The idea in this paper is to instead
of trying to avoid the specular reflections we try to use it for segmenting the
images. For that reason we want to take several images, typically 20-30, with light
from all possible directions. In practice it turns up to be more practical to place
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stones on a turntable which we turned a bit between images than to place a high
number of light sources around the scene.

Our system for analyzing the images then consists of three parts. First we have
to register the images to each other. After registration we segment the foreground,
stones, from the background using all images. Last, for the pixels classified as
foreground we estimate the degree of bitumen coverage by using a probability
based classification method.

2.1 Experimental Setup

The setup used to take images can be seen in Figure B.2. In the setup we have one
camera, one light source and one turntable. The camera is placed straight above
the turntable and facing downwards, looking at the stones from above. Beside the
camera we have a light source that illuminates the stones from one direction. By
turning the turntable we get light from many more directions. To easier segment
the stones from the background we use a blue background on the turntable.

Figure B.2: The experimental setup for taking the pictures. The camera is looking
straight down to the turntable, the lamp gives light from one direction but turning
the turntable different sides of the stones will be illuminated.

Figure B.3 shows some examples of images that we get from our setup, these
stones are completely covered in bitumen.

2.2 Registration and Segmentation of Stones from Background

To be able to use the images we have to register them to each other. This is
done by extracting some corresponding key points in all images and compute a
homography from all images to some reference image. The homography is a 3×3
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Figure B.3: Example of images, the original images before transformation.

matrix H so that

λy = Hx, (B.1)

where H is the homography, λ a scaling factor, x is the point in the reference
image and y is the corresponding point in the image that we want to transform,
x and y are given in homogeneous coordinates.

Then the images are transformed according to the homography associated
with the current image. Figure B.4 shows the same images as Figure B.3 after the
transformations.
When the images are transformed we want to find out which part of the image

that is stone and which part is background. Since the shadows are quite sharp in
the images we take a mean image of all the images and use that for segmentation.
The mean image can be seen in Figure B.5, now the shadows are much smoother.
The segmentation is done by thresholding in the blue channel of the image. The
threshold is chosen manually, which is not crucial for the segmentation result.

2.3 Estimation of the Degree of Bitumen Coverage

To estimate the degree of bitumen coverage we look at the difference between the
highest value for a pixel through all images and the lowest value. If there are any
specular reflections in any of the images this difference will be high. The differ-
ence image for stones completely covered in bitumen can be seen in Figure B.6,
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Figure B.4: Example of images, the images after transformation.

Figure B.5: The mean image used to segment foreground, stones, from background.

as can be seen in the image we do not get reflections everywhere. We use some

Figure B.6: The difference image.

reference images with stones covered in bitumen and the raw stones to build his-
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tograms for the difference of the highest and the lowest value. These histograms
are then used to find a probability function, that tells how likely a pixel with a
certain difference is to be bitumen and stone respectively. The histograms are
normalized so that they sum up to 1. The probability that a pixel with intensity i
is bitumen can be calculated by

Pb(i) =
hb(i)

hb(i) + hs(i)
, (B.2)

where Pb(i) is the probability that a pixel with intensity i is bitumen, hb(i) is the
value of the histogram for bitumen pixels with intensity i and hs(i) is the is the
value of the histogram for stone pixels with intensity i.

Figure B.7 shows the histograms and the probability functions for two dif-
ferent stone materials. The blue curves show the curves for bitumen and the red
curves show the curves for stone.

Figure B.7: Histograms and probability functions for stone material A and B.

To estimate the degree of bitumen coverage for stones that are partly cov-
ered in bitumen the differences for all pixels are computed. The image is also
segmented into foreground and background. For all the foreground pixels, the
probability that a pixel is bitumen is calculated. Figure B.8 shows an image of
the probabilities that pixels is bitumen, white means that a pixels is very likely to
be bitumen and black pixels are very unlikely to be bitumen. Then the degree of
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Figure B.8: Probability image for being bitumen, white indicates high probability
and black low.

bitumen coverage is estimated by

dbc =

∑
i P (i is bitumen)

N
, (B.3)

where dbc is the degree of bitumen coverage, P (i is bitumen) is the probability
that pixel number i is bitumen and N is the total number of pixels. Only pixels
that were classified as foreground are considered.

3 Experiments and Results

The method has been tested for two different stone materials, one dark and one
lighter. The results from the image analysis have been compared with the visual
investigation by experienced laboratory personnel. Table B.1 shows the result for
the two materials. The results are close to the visual estimations by the laboratory
assistant, but the visual estimation could also deviate from the true answer.

degree of bitumen coverage
image analysis manual inspection

material A 46.8 % 50 %
material B 29.2 % 35 %

Table B.1: The degree of bitumen coverage for the different stone materials estimated
both by the image analysis system and by visual inspection.
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4 Conclusions and Future Work

With this method we can automatically compute the degree of bitumen coverage
even for stone materials with a darker color close to the color of bitumen. We still
have to work a bit on the lightening arrangement to ensure to get more specular
reflections in the images.
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Abstract: Asphalt is made of a mixture of stones of different sizes and a binder
called bitumen, the size distribution of the stones is determined by the recipe of
the asphalt. One quality check of asphalt is to see if the real size distribution of
asphalt samples is consistent with the recipe. This is usually done by first extract
the binder using methylenchloride and the sieving the stones and see how much
that pass every sieve size. Methylenchloride is highly toxic and it is desirable to find
the size distribution in some other way. In this paper we find the size distribution
by slicing up the asphalt sample and use image analysis techniques on the cross-
sections. First the stones are segmented from the background, bitumen, and then
rectangles are fit to the detected stones. We then get the sizes of the stones by
taking the with of the rectangle.

1 Introduction

1.1 Background

One of the quality control of hot mix asphalt (HMA) is to check the recipe of
the mixture. This check could be performed on HMA directly from the plant
or on samples that are drilled from the finished pavement. The quality check in-
cludes determination of particle size distribution via sieving. The test consists of
the determination of the particle size distribution of the aggregates in the bitumi-
nous mixture by sieving and weighing. A granulometric analysis of the aggregate
is performed after binder extraction. The binder extraction is often performed
with methylenchloride (dichloromethane). Methylenchloride is toxic and the Eu-
ropean Union has decided to reduce the usages of methylenchloride.

After the binder distraction the material is sieved in order to determine the
particle size distribution. The method proposed in this paper is an alternative to
binder extraction in combination with sieving. The asphalt sample to be analyzed
is sliced into a few slices. Then each two-dimensional slice is analyzed by image
analysis methods to find the size distribution for all slices.
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1.2 Related Work

The article [1] combine a canny edge detection with thresholding to find an ini-
tially segmentation of the image. They also use the watershed algorithm to deal
with the problem of grains being too close to each other and therefore segmented
as one segment. The watershed algorithm is performed on a distance image, the
binary image of the foreground after applying boolean distance to it. In this way
the separate segments with concavities along the contours.

In [4] they use the L*a*b color space to segment the grains from the bitumen
background. After converting to the L*a*b color space they easily find a good
threshold and then they perform thresholding. The same problem as mentioned
in the earlier article with undersegmented segments they also find and solve it in
the same way with the watershed algorithm.

Both articles compare to the true aggregate gradation and both show good
correlations.

2 Methods

To estimate the size distribution of the stones in one slice of the sample we first
segment the image by using the fast marching method. In the resulting segmenta-
tion it often happens that stones lying too close to each other belongs to the same
foreground segment even if they are not supposed to. In order to get correct size
estimations we need to separate these segments. This is done by applying some
morphological operations. After this correction rectangles are fit to the segments
and the sizes is estimated as the width of the fitted rectangle for each stone.

2.1 Fast Marching

The fast marching algorithm was presented by J. A. Sethian in [2] and [3]. It is
a numerical technique that follows the evolution of an interface. It numerically
solves the Eikonal equation

|∇T |F = 1, (C.1)

where T is the arrival time for the curve and F is the speed function for the curve.
For solving the Eikonal equation at a grid point we use the following scheme for
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updating the arrival times(
max(D−xij T,−D+x

ij T, 0)2

+ max(D−yij T,−D
+y
ij T, 0)2

)1/2

=
1
Fij

, (C.2)

where D−xij is the one sided derivative in the negative x-direction defined by

D−xij = T (x)−T (x−h)
h .

The grid points are put in one of the following classes: Known, Trial or Far.
Known consist of the grid points on the boundary or points already passed. These
points have already been assigned with an arrival time. Trial consist of the points
that are neighbors to the boundary and not in Known. For these points a tempo-
rary arrival time can be computed, and the points are also put in a min-heap to
easily and efficiently find the element with the smallest arrival time. Far consist
of all other points.

The fast marching algorithm goes as follows:

1. Initialize, add the points at the initial boundary to Known, calculate the
temporary arrival time for the neighbors, not in Known, according to equa-
tion C.2, add them to Trial and to the heap.

2. Take out the first element from the heap which is the point with the small-
est arrival time, add it to Known and remove it from Trial.

3. For all neighbors not in Known: update arrival time according to equa-
tion C.2, add the ones not already in Trial to Trial and to the heap.
While updating the arrival times, also update the heap.

4. Repeat 2-3 until the heap is empty or until the smallest of the arrival times
is larger than some threshold.

To start the fast marching algorithm we need to initialize it at some points,
points we know belongs to the background. To do this we threshold the image
with a low threshold. The chosen threshold should be so low that points below
it can certainly not be stone. Then we let the curve propagate from these points.
For larger areas below the threshold we start the curve at the boundary and tag
the points inside as Known.
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To know at what speed the curve should advance at a certain point we need a
speed function. We choose to use a logistic function defined by

F (x, y) =
1

1 + eI(x,y)/v
, (C.3)

where F (x, y) is the speed at point (x, y), I(x, y) is the intensity at the same
point in the input image and v is a scaling factor that controls the steepness of the
function. The function for three different values on v can be seen in Figure C.1
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Figure C.1: The speed function used with three different values on the steepness
factor v. On the y-axis is the speed and on the x-axis is the pixel intensity.

The speed function is then applied to the original image converted to grayscale.
The original image and the speed image can be seen in Figure C.2.

The fast marching algorithm produce the arrival times for every grid points,
pixels in this case. The image is then segmented by thresholding the arrival times.
Pixels with arrival times smaller than the threshold are set to background and the
rest to foreground.

2.2 Refining the Segmentation

Sometimes when stones are very close to each other in the sample it is not enough
bitumen between them, and the fast marching algorithm have a hard time sepa-
rating those stones into different segments. That would require a high threshold,
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Figure C.2: The original image on top and the speed image at the bottom.

but using a too high threshold would make it impossible to find the smaller stones
in the sample. Therefore we choose a lower threshold and try to deal with the un-
dersegmented segments in another way. Figure C.3 shows such a segment.

For this purpose we use the morphological methods erosion and dilation in
a clever way. First we perform binary erosion on the segments, this will, if the
segments have concavities, cause the segment to eventually fall apart into two or
more segments. If the size of the segment, after performing erosion repeatedly
without the segment falling apart, is less than half of the original size, we guess
that the shape is good and take back the original segment. When it does fall
apart we continue the process on the new smaller segments keeping count on
how many times we perform the erosion. Afterwards we perform dilation the
same number of times that we performed erosion until the last separation of the
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Figure C.3: A segment with strange shape that probably should be two different
segments. The red line shows the border of the segment.

segment. In this way all non-convex segments get separated in two or more new
segments. Some smoothing of the contour will also occur, but since we are not
interested in the shape itself only the size it will not cause any problem for the
overall method. Both erosion and dilation are performed with a disc of radius 4
pixels as structuring element.

The algorithm can be summarized as:
For all segments:

until the segment is too small:
perform binary erosion
if separated:

run the algorithm again on the new segments
dilate if the segment was split earlier

This will in some cases cause some overlap between different segments. Since
we do not want that, we find these intersections of segments, and assign all those
pixels to belong to either of the overlapping segments. This is done by first sub-
tracting the overlap from all the interesting segments and then iteratively alternate
between first dilate one of the two segment, assign the pixels in the intersection
between the overlap and the dilated segment to that segment and then perform
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the same thing with the other segment. This continues until all points in the
overlap is assigned to one of the segments.

After applying this algorithm to the segments in Figure C.3 we get the result
shown in Figure C.4. The image shows the original segment with the border of
the new one showed with the red contour.

Figure C.4: The segment after separation to two new smaller segments. The red lines
indicates where the border of the separated segments are.

2.3 Size Estimation

To estimate the size of the stones use the method described in [5], slightly ad-
justed, to find the rectangle that fit the segments best. The best-fit rectangle is the
rectangle with the smallest width that the segments fit into.

The method consists of two main steps, first the orientation of the segment is
estimated using the least-second moment method. Then the rectangle is fit using
the Multiple Ferret method.

The idea to find the orientation is to find the line through the object that
minimizes the total moment. We want to minimize the integral

E =

∫∫
I
R2 dx dy, (C.4)

where R is the perpendicular distance from the point (x, y) to the line we seek
for and I is the integration area, the segment we want to find the orientation of.
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A segment with the line giving the least moment is shown in Figure C.5.

θ

R

Figure C.5: The main rotation axis.

The integral in equation C.4 can also, with θ as shown in Figure C.5, be
written as

E =
1
2

(Ix + Iy) +
1
2

(Ix + Iy) cos 2θ − 1
2

sin 2θ (C.5)

= Iy sin2 θ − Ixysinθ cos θ + Ix cos2 θ, (C.6)

where Ix =
∫∫
I′(x

′)2 dx′ dy′, Ixy =
∫∫
I′(x

′y′) dx′ dy′, Iy =
∫∫
I′(y

′)2 dx′ dy′.
By moving the center of the segment, (x̄, ȳ), to the origin we obtain the new
coordinates x′ = x− x̄ and y′ = y − ȳ.

Minimizing E then gives:

sin 2θ =
Ixy√

I2
xy + (Ix − Iy)2

(C.7)

cos 2θ =
Iy − Ix√

I2
xy + (Ix − Iy)2

(C.8)

Knowing sin 2θ and cos 2θ we can easily compute θ and in that way get the
orientation of the segment.

If we know the angle of the main rotation axis in the figure we can find a box
around the segment by using dot products. We start by extracting all boundary
points of the segment. For all these boundary points, x = (x, y), we calculate the
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dot product between the point vector and an vector, u, which is of unit length
and at an angle θ from the x-axis. This vector is simply

u = (cos θ, sin θ), (C.9)

where θ is the angle for the rotation axis as before.
By taking the dot products between a point vector, x, and the vector u we

get the length of the orthogonal projection of x on u. If we save the points that
gives the highest and lowest value of the dot product we get the points x1 and x2

shown in Figure C.6. The points together with the direction v gives us the two
lines l1 and l2 that both are tangents to the segment. The vector v is perpendicular
to u and given by v = (− sin θ, cos θ).

u
θ

l1l1

v

l2l2

v

x1

x2

Figure C.6: The points that gives the smallest and largest dot product between itself
and u. The vector v is perpendicular to u and shows the direction of the lines l1 and
l2.

In the same manner we can calculate the dot product between the bound-
ary points and the vector v, find the maximum and the minimum and receive
the lines l3 and l4, shown in Figure C.7. The corners of the rectangle are then
achieved by finding the four intersections of the lines.

The orientation of the segment that we get from minimizing the total mo-
ment will just give us an approximative estimation of the angle of the rectangle.
To find the rectangle that fit the segments the best we try different angles around
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l1l1

l2l2

l3

l4l4

Figure C.7: The four lines that surround the segment.

θ, calculate a rectangle for all these angles as described, and choose the one with
the smallest width. Figure C.8 shows the best fit rectangle for some segments,
the red lines shows the rectangles using the angle estimated by the total moment
method and the cyan colored lines shows the rectangle after optimization.

Figure C.8: Four segments with the best fit rectangle in cyan colored lines and the
rectangle obtained with the angle estimated by the total moment method shown in
red lines.
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3 Results

Figure C.9 shows an asphalt sample with the best-fit rectangle for the detected
stones in cyan-colored lines. The bottom image shows a close up of some part of
the top image. By looking in the image we see that the boxes seems to fit what we

Figure C.9: Original image with the best-fit rectangle marked with cyan colored
lines, the bottom image is a close up of a part of the top image.

would expect is the stones in the sample quite well. All the visible stones in this
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sample also looks to be surrounded by a box indicating that the method works
well to find the stones in the two dimensional image. The size distribution of the
grains can be seen in Figure C.10. On the y-axis is the percentage of stone mass
passing the sieve for different sieve sizes on the x-axis.
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Figure C.10: Size distribution of the stones in the asphalt sample. The sieve size in
millimeters is on the x-axis and the percentage passing at a given sieve size is on the
y-axis.

4 Conclusions and Future Work

The method shows promising results since the rectangles fit the grains in a good
way. However, no comparison with the real size distribution has been done yet.
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