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Introduction

This work is concerned with the so-called structure-and-motion problem in com-
puter vision. Given two or more two-dimensional images of a scene, the task is to
compute the three-dimensional shape of the scene (the structure) and the position
and orientation of the camera when taking the images (the motion). This intro-
duction will very briefly cover the basics of multiple-view geometry and recon-
struction, and some of the standard algorithms and results used in the included
papers.

1 Pinhole Camera Model

In this work, as in most of the computer vision literature, the camera is modeled
as an old-fashioned pinhole camera, where light from the scene passes through a
focal point (the camera center) and falls on the image plane, forming an inverted
image. Geometrically, undoing this inversion is equivalent to placing the image
plane in front of the camera center (see Figure 1). If the camera center is at the
origin and the optical axis is aligned with the z-axis of the coordinate system, the
image projection of the pointX can be computed as x = (fX1/X3, fX2/X3)>.
In the general case, with camera center position C and orientation R, the scene
point must first be transformed into the camera coordinate system,Xc = R(X−
C). It is convenient to express x andX in homogeneous coordinates, where an extra
dimension is added to the representation, so that e.g. X = (X1, X2, X3, 1)>.
Each point is now represented by an equivalence class where X ∼ X̄ if X = λX̄
for some λ 6= 0. With this convention, point projection can be described by the
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Introduction

linear equation

x =

x1

x2

x3

 = KPX =

f α u
0 γf v
0 0 1

(R −RC
)
X . (1)

The actual projection is then obtained from the representative of x with third
coordinate equal to one, i.e. (x1/x3, x2/x3, 1)>. The matrix K encodes the
intrinsic parameters of the camera that map the projected point to actual pixel
coordinates. The aspect-ratio parameter γ allows for non-square pixels, the skew
parameter α for non-perpendicular image coordinate axes, and the offset (u, v)
accounts for the fact that the pixel coordinate system origin is at a corner of the
image and not at the principal point. In most applications we can safely assume
γ = 1 and α = 0, and that the principal point is in the center of the image.

Real camera lenses also exhibit varying degrees of geometric distortion. In the
papers that follow, it will be assumed that such distortions have been compensated
for in the input to the algorithms. Except for in Paper A, it will also be assumed
that all the intrinsic parameters f , γ, α, u and v are known; when this is the case,
we say the camera is calibrated, and it is convenient to work with the normalized
image coordinates K−1x. We shall then simply assume the projection model
x = PX .

X

C

x

f
Optical axisPrincipal point

Figure 1: Pinhole camera model.
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2. Maximum Likelihood Estimation

2 Maximum Likelihood Estimation

Solving structure-and-motion is an inverse problem where the loss of depth in-
formation in projections from 3D to 2D needs to be overcome. The problem
is complicated further by the fact that image measurements are never exact, but
exhibit a certain degree of noise. Given a probabilistic model of this noise, it
can be argued that the best solution to the problem is the structure and motion
which maximizes the probability of observing the measured data, the maximum
likelihood estimate. Encoding the structure and motion in a parameter vector θ,
the solution we seek is

θ∗ = arg max
θ

L(θ) , (2)

where

L(θ) = L(θ | x̃) = p(x̃ | θ) (3)

is the likelihood function and x̃ a vector of measured image projections. If Π(θ)
gives the expected noise-free projections given camera and point parameters in θ,
the reprojection error may be defined as r(θ) = x̃−Π(θ) and p(x̃ | θ) = D

(
r(θ)

)
where D is the probability density function of the noise distribution. In the case
of zero-mean Gaussian noise, D = N (0,Σ), the likelihood function becomes

L(θ) ∝ e− 1
2 r(θ)

>Σ−1r(θ) , (4)

and equivalently, taking the logarithm,

θ∗ = arg min
θ

r(θ)>Σ−1r(θ) . (5)

Under the common assumption Σ = σ2I , this reduces further to just minimizing
the sum of squares of the reprojection errors, i.e. a quadratic cost function. For
other noise distributions, corresponding cost functions are similarly derived.

Unfortunately, finding the maximum likelihood solution is in general diffi-
cult, and often structure-and-motion must be solved as a sequence of subprob-
lems. These consist of triangulation, resectioning and bundle adjustment, which
we describe below.

3



Introduction

3 Triangulation

Triangulation is the problem of finding the scene point X given its projection in
two or more images and the corresponding camera poses. If the camera parame-
ters and image projections are known precisely, the rays passing through camera
centers C(i) and corresponding image points x(i) intersect in a single point. If
there is noise in the image measurements, the rays will most likely not intersect,
but we may try to find a point X that best explains the observations, a maximum
likelihood estimate. As shown in Section 2, this involves minimizing the distance
between the computed projection of X in the images and the measured values
x(i), a non-linear function with many local optima. In general this can only be
accomplished using iterative optimization techniques. To find an initial estimate
to start the iterative algorithm, or in the noiseless case, one may use a simple lin-
ear solution. In homogeneous coordinates we have x(i) = P (i)X , i = 1, . . . , n,
which translates to the projections(

x
(i)
1

x
(i)
2

)
=

1

P
(i)
3 X

(
P

(i)
1 X

P
(i)
2 X

)
(6)

where the subscript indicates the row of the vector or matrix. Each image gives
two linear equations in X ,(

x
(i)
1 P

(i)
3 − P

(i)
1

x
(i)
2 P

(i)
3 − P

(i)
2

)
X = 0 , (7)

which may be solved in a least-squares sense using the singular value decomposi-
tion. This method is fast and handles an arbitrary number of views, but it mini-
mizes an algebraic error rather than the geometric reprojection error, which may
produce poor results. For the case of only two or three views there exist methods
which can compute the maximum likelihood triangulation under the assumption
of Gaussian measurement noise, essentially in closed form [2, 5, 1]. In Paper C
we revisit the triangulation problem and show how to deal with uncertainty not
only in the image measurements but also in the camera parameters.

4 Camera Resectioning

Camera resectioning is the problem of determining the camera parameters given
scene points X(i) and corresponding image projections x(i). If the intrinsic pa-
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4. Camera Resectioning

X

C1 C2

x1 x2

Figure 2: The principle of triangulation.

rameters are known, this is often referred to as pose estimation since only the
camera translation and orientation need to be recovered. In the most general case,
we seek the 3-by-4 camera matrix M best explaining the observations. Using (6),
each projection x(i) gives two linear equations in the components of M ,

(
X(i)> 0 0 0 x

(i)
1 X(i)>

0 0 0 X(i)> x
(i)
2 X(i)>

)
M11

M12
...

M34

 = 0 . (8)

With 11 or more equations, i.e. at least six point projections, the camera matrix
may be uniquely determined (up to scale). It may then be factored intoM = KP
using RQ or Cholesky factorization, separating the intrinsic and pose parameters.
If the intrinsic parameters are known, methods exist that allow pose estimation
from three point projections, with up to four possible solutions; the correct one
can be chosen by considering additional points. The linear method is again sim-
ple, but minimizes an algebraic rather than a physically meaningful error. It also
does not enforce the physical constraints that the observed scene points should all
be in front of the camera, a problem which arises frequently in practice using this
method.

As shown in Section 2, the assumption of Gaussian measurement noise im-
plies that the maximum likelihood solution is obtained by minimizing the sum
of squared reprojection errors. If we instead content ourselves with minimizing
the maximum error, camera resectioning may be solved as a sequence of linear
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feasibility problems [4]. Choose an ε > 0, and require the vertical and horizontal
components of all reprojection errors to be smaller,∣∣∣x(i)

1 −
M1X

(i)

M3X(i)

∣∣∣ < ε , (9)∣∣∣x(i)
2 −

M2X
(i)

M3X(i)

∣∣∣ < ε . (10)

These constraints may be formulated as
−X(i)> 0 0 0 0 (x

(i)
1 − ε)X(i)>

X(i)> 0 0 0 0 −(x
(i)
1 + ε)X(i)>

0 0 0 0 −X(i)> (x
(i)
2 − ε)X(i)>

0 0 0 0 X(i)> −(x
(i)
2 + ε)X(i)>



M11

M12
...

M34

 < 0 . (11)

To ensure that all points end up in front of the camera, the additional constraints
M3X

(i) > 0 may be added. The task is then to find the smallest ε admitting
a solution, which can be accomplished through bisection. Note that this for-
mulation minimizes the maximum component-wise reprojection error. To use
the Euclidean error instead, the linear inequalities can be replaced by second or-
der cone constraints, at increased computational cost. Since a number of convex
programs must be solved, the above approach is more costly than the direct lin-
ear algorithm, but usually gives better results since it minimizes a geometrically
meaningful error. The exception is when there are outliers in the input data, i.e.
grossly incorrect image measurements, which the max norm is highly sensitive to.
The output of the above algorithms is usually used as the starting point for non-
linear optimization to find a maximum likelihood estimate. In Paper C we study
the pose estimation problem with uncertainty also in the observed 3D structure,
in analogy with the triangulation case.

5 Bundle Adjustment

To get the best reconstruction possible for the given input data, the statistically
optimal maximum likelihood solution is preferred. As above, this comes down to
minimizing the reprojection errors, but now over all images and all camera and
point parameters simultaneously. As already mentioned, this is a difficult prob-
lem, and finding a globally optimal solution is generally intractable. Given a good
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5. Bundle Adjustment

enough initial estimate, however, local optimization methods often find solutions
at or near the global optimum. Optimization over all parameters is known as bun-
dle adjustment, and the most popular method by far is Levenberg-Marquardt (LM)
iteration, a slight variation of the Gauss-Newton method. Define the reprojection
error function r : Rp → Rm mapping the p camera and point parameters θ to m
reprojection errors, stacked in a vector. The Gauss-Newton algorithm attempts to
minimize the sum of squared errors s(θ) =

∑m
i=1 ri(θ)

2, which again is suitable
under the assumption of Gaussian measurement noise. Taylor expansion gives

s(θ + δθ) ≈ s(θ) + (∇s)>δθ +
1
2
δθ>Hδθ , (12)

a quadratic approximation of the function around the current estimate θ. The
gradient has the special form

∇s = 2

(
m∑
k=1

∂rk
∂θ1

rk, . . . ,
m∑
k=1

∂rk
∂θp

rk

)
= 2r>J , (13)

where J is the Jacobian of r(θ). Similarly, the Hessian matrix H has elements

Hij = 2
m∑
k=1

∂rk
∂θi
· ∂rk
∂θj

+ 2
m∑
k=1

∂2rk
∂θi∂θj

· rk . (14)

Assuming that the second order derivatives are bounded and the errors rk small
near the minimum, the second term is dropped and H ≈ 2J>J . To minimize s,
the approximation (12) is differentiated with respect to δθ and equated to zero,
giving J>Jδθ = −J>r. In each iteration, this linear system may be solved for
the update step δθ. In the LM algorithm, one instead solves

(J>J + λI)δθ = −J>r . (15)

As λ → ∞, the solution approaches pure gradient descent. Far from the mini-
mum, the quadratic local approximation of Gauss-Newton may be a poor fit to
the actual cost surface, and moving to its minimum could actually increase the
reprojection error. If so, λ is increased, giving a solution closer to the gradient
descent step. As one approaches the minimum, λ may be decreased to take ad-
vantage of the quadratic convergence of Gauss-Newton. Augmenting the diagonal
of the matrix also ensures it is positive definite so that a unique solution exists.

7



Introduction

The main computational costs of LM are computing the partial derivatives in
J and solving the system (15). Due to the special structure of bundle adjustment
problems, the Hessian has regular and easily predictable sparsity patterns which
can be exploited allowing the solution of very large problems with millions of
parameters.

If the variables are partitioned into camera and point parameters so that θ =
(θc, θp)

>, J = (Jc Jp) and r = (rc, rp)
> are similarly partitioned and the LM

system to solve can be written(
U W
W> V

)(
δθc
δθp

)
=

(
−J>c rc
−J>p rp

)
(16)

where U = J>c Jc and V = J>p Jp are block diagonal with one block per camera
and point respectively. Block Wij is only non-zero if camera i observes point j.
Eliminating θp from the top row using the Schur complement of V allows us to
solve for the camera parameters separately,(

U −WV −1W> 0
W> V

)(
δθc
δθp

)
=

(−J>c rc +WV −1J>p rp
−J>p rp

)
. (17)

After δθc is found, the point parameters can be solved for using back substitution.
The dominating cost is forming the Schur complement S = U−WV −1W> and
solving for the camera parameters. Since V is block diagonal it can be inverted
in time linear in the number of points, and the back substitution operation is
orders of magnitude cheaper. S has a particular block sparsity pattern, where
block Sij is non-zero only if camera i and j observe a common point. Thus,
depending on the scene geometry, the matrix exhibits varying degrees of sparsity.
Real datasets are typically sparse enough that it is much more efficient solving the
system using sparse Cholesky factorization or conjugate gradient algorithms than
by dense factorization. Paper D presents an alternative method of exploiting the
sparsity pattern of S to accelerate and potentially parallelize the computations.

5.1 Robust cost functions

Since the LM algorithm minimizes the sum of squared reprojection errors, it max-
imizes the reconstruction likelihood assuming normally distributed errors. Gaus-
sian noise is a good approximation for the small measurement errors introduced
by the limited resolution of the input images and imprecise feature detection al-
gorithms. It is, however, not a good model for the large errors which sometimes

8



5. Bundle Adjustment

occur due to incorrect matching of features between images. Such outlier data will
severely skew the results because of the high cost they incur under the quadratic
penalty function. To deal with outliers, robust cost functions giving less impor-
tance to large errors are required. A popular choice is the Huber function, defined
as

C(x) =

{
x2 if |x| < β

2β|x| − β2 otherwise .
(18)

It assigns quadratic cost to small errors and linear to large, and is convex which
ensures it does not give rise to new local minima. The influence of outliers
is greatly reduced, so that the result of the bundle adjustment comes close to
the ML estimate for the outlier-free data. The outliers may then be detected
and removed. To incorporate a robust cost function C into the LM algo-

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

x

Figure 3: Huber cost function, β = 0.2.

rithm, iterative reweighting is usually employed. By scaling each component
of the vector r by the weight wi =

√
C(ri)/|ri|, the sum of squared errors

s =
∑m

i=1(wiri)
2 =

∑m
i=1 C(ri) assumes the desired value. The step equation

(15) is modified to

(J>WJ + λI)δθ = −J>Wr , (19)

where W = diag(w2
1, . . . , w

2
m). The weights are recomputed each iteration as

the errors ri change. In Paper C, iterative reweighting is used both for robust
bundle adjustment and in triangulation and pose estimation.

9



Introduction

6 Covariance Estimation

In Papers B and C we use the fact that (J>Σ−1J)−1, with J as above and Σ
the measurement noise covariance matrix, provides an estimate of the covariance
of the estimated structure and motion. Under assumptions of Gaussian noise, a
simple and intuitive proof of this is given in [3], on which the following is based.
The result is exact for affine projection functions; in the non-linear case, the
function can be approximated by its tangent plane and an approximate estimate
is obtained.

Lemma 1 Let v be a random vector in Rm with mean v̄ and covariance matrix
Σ, and f : Rm → Rp an affine mapping defined by f(v) = f(v̄) + A(v − v̄).
Then f(v) is a random variable with mean f(v̄) and covariance matrix AΣA>.

This follows easily from the definitions of mean and covariance, and is needed
in the proof of the following theorem:

(Result 5.9 [3]) Let f : Rp → Rm be an affine mapping of the form f(θ) =
f(θ̄)+J(θ− θ̄), where J has rank p. Let x ∈ Rm be a Gaussian random variable
with mean x̄ = f(θ̄) and covariance matrix Σ. Let g : Rm → Rp be the mapping
taking a measurement x to the maximum likelihood parameter estimate θ̂. Then
θ̂ = g(x) is a random variable with mean θ̄ and covariance matrix (J>Σ−1J)−1.

Proof. The measurement model f : Rp → S ⊂ Rm takes parameters to expected
measurements. The surface S is the space of all possible noise-free measurements.
Since J has full rank, f is one-to-one and invertible. Define η : Rm → S as the
function mapping any measurement x to the unique closest point on S, in the
Mahalanobis norm ‖x‖Σ =

√
x>Σ−1x. The composition g = f−1 ◦η thus rep-

resents the maximum likelihood estimator, and may also be expressed as g(x) =
argminθ ‖x− f(θ)‖Σ = argminθ ‖x− f(θ̄)− J(θ − θ̄)‖Σ. Evaluating g is a
weighted linear least-squares problem, and the normal equations give the solution
g(x) = θ̂ = (J>Σ−1J)−1J>Σ−1

(
x−f(θ̄)

)
+ θ̄. This shows that g is an affine

function of x. Since f(θ̄) = x̄ and θ̄ = f−1(x̄) = g(x̄), Lemma 1 applies and
gives the covariance matrix of θ̂ as (J>Σ−1J)−1J>Σ−1ΣΣ−1J(J>Σ−1J)−1 =
(J>Σ−1J)−1.

This result may also be obtained using standard estimation theory. It can
be shown that the maximum likelihood estimator under Gaussian noise, to first

10



6. Covariance Estimation

order, is unbiased and achieves the Cramér-Rao lower bound, i.e. that the co-
variance is given by the inverse of the Fisher information matrix, which is indeed
J>Σ−1J (see e.g. [6]).

The condition that f is invertible means that no two points in the parameter
space may give rise to the same measurements. This is the case for triangulation
and pose estimation, where the cameras or points, respectively, are fixed in the co-
ordinate system. However, when computing the covariance of a whole structure-
and-motion system, the problem of gauge freedom appears. Any collection of
scene points and cameras may be jointly translated, scaled and rotated without
affecting the resulting image projections, thus an entire family of parameters are
ML estimates of the same input data. Since for each degree of gauge freedom the
rank of the information matrix drops by one, this ambiguity must be eliminated
by choosing a minimal parametrization before the above result can be applied. To
accomplish this, typically one camera is considered fixed, eliminating six degrees
of freedom, and the distance to a second camera constrained, fixing the scale of
the reconstruction.

Alternatively, one may take the Moore-Penrose pseudo-inverse of the rank-
deficient information matrix instead, as the following results show.

(Result 5.11 [3]) Let f : Rp → Rm be a differentiable mapping taking pa-
rameters θ to measurements x. Let S be a smooth manifold of dimension d
embedded in Rp passing through point θ, and such that f is one-to-one on S in
a neighborhood of θ, mapping S to a manifold f(S) ⊂ Rm. Denote by f−1

the local inverse of f restricted to the surface f(S) in a neighborhood of x. Let
a Gaussian distribution be defined on Rm with mean x and covariance matrix
Σ and let η : Rm → f(S) be the mapping taking a point in Rm to the closest
point on f(S) in the Mahalanobis norm ‖·‖Σ. Via f−1 ◦ η the probability dis-
tribution on Rm induces a distribution on Rp with covariance matrix equal to
first order to (J>Σ−1J)+A = A(A>J>Σ−1JA)−1A>, where A is any matrix
whose columns span the tangent space to S at θ.

Proof. Let g : Rd → Rp map an open neighborhood U ⊂ Rd to an open subset
of S containing θ. Then f ◦ g : Rd → Rm is one-to-one on U . Let J and A be
the Jacobian matrices of f and g, respectively. The Jacobian matrix of f ◦g is then
JA. Result 5.9 can now be applied to the first-order expansion of f ◦ g about θ,
transporting the covariance backwards to covariance matrix (A>J>Σ−1JA)−1.
This matrix has rank and dimension d and so is invertible. Propagating this
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covariance forward through g into the higher-dimensional space using lemma 1
gives the desired result, Σθ = A(A>J>Σ−1JA)−1A>. Substituting AB for A
leaves this expression unchanged if B is invertible, so Σθ only depends on the
column span of A.

Note that we are free to choose the manifold S (and thus g and A). The
following lemma simplifies the result for a particular choice:

Lemma 2 Let M be symmetric, and let M+ be its Moore-Penrose pseudo-
inverse. Then M+ = A(A>MA)−1A> = M+A if A>MA is invertible and
span(A) = span(M).

Proof. Let M = UDU> be the singular value decomposition of M . If M
has rank r, U may be partitioned into U =

(
U ′ U ′′

)
where U ′ are the first

r columns and span(U ′) = span(M). We may write M = U ′D′U ′> where
D′ = diag(σ1, . . . , σr). The pseudo-inverse can then be computed as M+ =
U ′(D′)−1U ′>. As remarked above, M+A = M+AB for any invertible B. Since
by assumption M and A span the same space, there is an invertible B s.t. AB =
U ′ (given by B = A+U ′). Now M+A = M+U ′ = U ′(U ′>MU ′)−1U ′> =
U ′(U ′>U ′D′U ′>U ′)−1U ′> = U ′(D′)−1U ′> = M+.

By taking the pseudo-inverse of the Fisher information matrix, we are thus
choosing span(A) = span(J>Σ−1J) = span(J>). This corresponds to the re-
stricted parameter manifold S being locally orthogonal to the null-space of the
Jacobian J . This is natural, since moving in this space does not change the mea-
surements, but only explores the various gauge freedoms of the parametrization.
In a sense, the pseudo-inverse allows us to compute covariances of structure-and-
motion reconstructions independently of the coordinate system; if the gauge is
locked by fixing parameters, the computed covariances will be expressed relative
to these. On the other hand, the cost of computing the pseudo-inverse may be
prohibitive in practice, while the ordinary inverse is not. As discussed in Paper C,
different regularizing constraints may then be added to the reprojection function
making J full rank.
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A Step Towards Self-calibration in SLAM:
Weakly Calibrated On-line Structure and Motion

Estimation

SEBASTIAN HANER AND ANDERS HEYDEN

Centre for Mathematical Sciences, Lund University

Abstract: We propose a structure and motion estimation scheme based on a dy-
namic systems approach, where states and parameters in a perspective system are
estimated. An on-line method for structure and motion estimation in densely
sampled image sequences is presented. The proposed method is based on an ex-
tended Kalman filter and a novel parametrization. We derive a dynamic system
describing the motion of the camera and the image formation. By a change of
coordinates, we represent this system by normalized image coordinates and the
inverse depths. Then we apply an extended Kalman filter for estimation of both
structure and motion. Furthermore, we assume only weakly calibrated cameras,
i.e. cameras with unknown and possibly varying focal length, unknown and con-
stant principal point and known aspect ratio and skew. The performance of the
proposed method is demonstrated in both simulated and real experiments. We
also compare our method to the one proposed by Civera et al. and show that we
get superior results.

1 Introduction

Estimation of 3D structure and motion from 2D images is a central problem in
computer vision. There exist essentially two different approaches to solve this
problem: batch approaches and iterative (recursive) approaches. Batch methods
aim at providing an accurate result by using information from all images at the
same time. These approaches are typically based on multi-view tensors, bundle
adjustment or convex optimization, see [9] for the former and [13] for the lat-
ter. These methods are not suitable for real-time applications, both due to their
complexity and off-line nature, requiring all images to be gathered before any
computations can be made. Iterative (or recursive) algorithms aim for real-time
performance, by updating a current estimate as soon as a new image becomes
available. These algorithms are either based on variations of methods used for
batch approaches, e.g. iteratively estimating the camera pose and the structure,
[3], or by fast estimation of relative motion [18].

Yet another approach is to formulate the camera motion and the imaging pro-
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cess as a dynamic system and apply non-linear observers to estimate the structure
and the translational and rotational velocities of the motion. The standard ap-
proach is to apply an extended Kalman filter to a dynamic system, with a perspec-
tive transformation in the output equations. One of the pioneering approaches
is [2], where an extended Kalman filter is applied directly to the dynamic sys-
tem, without any re-parametrization. Another approach, based on tracking the
essential matrix can be found in [19].

For structure estimation only, i.e. known motion, a number of non-linear
observers based on methods for automatic control theory have been developed,
e.g. [17, 12, 4, 8, 1, 15, 14, 6]. Similar approaches, based on adaptive non-linear
observers, for full structure and motion estimation can be found in [20, 21, 10].

Lately, [7, 5] developed a new parametrization for use with the extended
Kalman filter, using the inverse depth, adjusting the uncertainties to the imag-
ing situation and fixing the imaging rays from the first camera in order to gain
stability. The parametrization is highly redundant but performs well in most sit-
uations, both in terms of accuracy and robustness. Another approach based on
inverse scaling can be found in [16].

This paper describes how a re-parametrization of the underlying perspective
dynamic system can be used to formulate the structure and motion estimation
problem as an observer problem of a non-linear dynamic system, with a linear
output function. We will show that this novel parametrization will result in a
more accurate extended Kalman filter. Moreover, we will allow a weakly calibrated
camera, i.e. a camera with unknown and possibly varying focal length, unknown
and constant principal point and known aspect ratio and skew.

2 Problem Formulation

Consider a calibrated perspective camera that is observing a moving rigid object.
Observe that it is just a philosophical difference between assuming a fixed camera
and a moving object or a moving camera and a fixed object, since it is only the
relative motion that can be estimated, but for modelling purposes one or the other
might be preferable. Assume a camera system where the camera is situated at the
origin and the optical axis is aligned with the z-axis. Let yi denote the image
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coordinates and xi denote the (time-varying) object coordinates. Introducing

ξ =

(
x1

x3
,
x2

x3

)>
, (A.1)

motion and image formation can be described by the dynamic system

ẋ = Ax+ b

y = Cfξ + δ ,
(A.2)

where

A = S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (A.3)

is the skew symmetric matrix obtained from the (possibly time varying) angular
velocity vector

ω =
(
ω1, ω2, ω3

)>
, (A.4)

b =
(
b1, b2, b3

)>
(A.5)

denotes the (possibly time varying) translational velocity, and Cf and δ are in-
trinsic camera parameters. In our case we have

Cf =

(
afc sfc
0 fc

)
, (A.6)

where s denotes the (known) skew, a the (known) aspect ratio and fc the (un-
known and possibly varying) focal length and

δ =

(
x0

y0

)
, (A.7)

denotes the (unknown) principal point. After a suitable change of coordinates,
we may assume that

Cf =

(
fc 0
0 fc

)
, (A.8)

since s and γ are assumed to be known.
We can now state the problem as follows:
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On-line structure and motion estimation: Given the image coordinates y from
(A.2), estimate recursively the object coordinates x, the (time varying) motion
parameters ω and b, the (time varying) focal length f and the principal point δ.

3 The Parametrization

Consider (A.2) and define the scalar γ and the vector z by

γ =
1√
x>x

, z = γx , (A.9)

which can be interpreted as the inverse distance to the object. Observe that ξ,
according to (A.1) and by the definition of z, also can be expressed as

ξ =

(
z1

z3
,
z2

z3

)>
. (A.10)

This means, using (A.9) and the definition of ξ in (A.1), that the vector z may be
assumed known, since it can be expressed as

z =
1√

ξ2
1 + ξ2

2 + 1
(ξ1, ξ2, 1)> . (A.11)

This vector can be interpreted as the image coordinates on a spherical image plane.
In the case of calibrated cameras, z is a measurable signal, and can therefore be

considered an output of the system (A.2). The parametrization exploits this fact,
and aims at rewriting the system (A.2) so that z appears explicitly in the equa-
tions. In the self-calibration case, i.e. where the focal length fc and the principal
point (x0, y0) are unknown, z is measurable up to a transformation involving the
intrinsic parameters of the camera.

Using (A.2) and the fact that x>Ax = 0 since A is skew-symmetric, gives,
introducing

g0(z) = I − zz> , (A.12)

a rewritten dynamic system, corresponding to (A.2), on the form

ż = Az + g0(z)bγ

γ̇ = −γ2z>b (A.13)

y = Cfξ + δ .
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For the motion of more than one point, a dynamic system corresponding to
(A.13) is obtained as

żi = Azi + g0(zi)bγi

γ̇i = −(γi)2(zi)>b

yi = Cfξ
i + δ

, i ∈ {1, 2, . . . , N}, (A.14)

where N denotes the number of feature points. Equation (A.9) together with
(A.13) and its multipoint version (A.14), constitute the desired dynamic vision
parametrization, from which we shall proceed. Observe that the dynamic system
contains four state variables per point; three for z and one for γ and that z has to
fulfill the constraint |z| = 1.

4 The Extended Kalman Filter

The extended Kalman filter estimates the system state sk given a previous esti-
mate ŝk−1, a new measurement µ and state transition and observation models
sk = f(sk−1) and µk = h(sk). At every time-step the new state and the state
covariance P are predicted,

ŝk|k−1 = f(ŝk−1|k−1)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 +Qk−1

(A.15)

and, given a new measurement µk, corrected to

ŝk|k = ŝk|k−1 +Kk

(
µk − h(ŝk|k−1)

)
Pk|k = Pk|k−1 −KkHkPk|k−1

(A.16)

where

Fk−1 =
∂f

∂s

∣∣∣∣
ŝk−1|k−1

, Hk =
∂h

∂s

∣∣∣∣
ŝk|k−1

Kk = Pk|k−1H
>
k (HkPk|k−1H

>
k +Rk)

−1

(A.17)

and Q and R the assumed process and measurement noise covariances, respec-
tively.
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Adapting the dynamic system (A.14) to the EKF setting, the state vector is
taken to be

s =
(
b>, ω>, fc, x0, y0, (z

1)>, γ1, . . . , (zN )>, γN
)>

, (A.18)

while the measurement vector is given by

µ = h(s) =
(
y1

1, y
1
2, . . . , y

N
1 , y

N
2

)>
(A.19)

with components

yi = Cfξ
i + δ =

(
fc 0
0 fc

)(
zi1/z

i
3

zi2/z
i
3

)
+

(
x0

y0

)
. (A.20)

The update equation is a discretized version of (A.14):

z̃i = eS(ωk)zik + g0(zik)bkγ
i
k

γ̃i = γik − (γik)
2(zik)

>bk

zik+1 = z̃i|z̃i|−1

γik+1 = γ̃i|z̃i|

, i ∈ {1, 2, . . . , N} , (A.21)

where |zi| = 1 is enforced.
Note that we assume a camera-centric coordinate system and estimate only

linear and angular velocities, which must be integrated over time to recover the
absolute motion.

Adding features

A main advantage of the camera-centric coordinate system is the ease with which
new features can be inserted into the filter; the uncertainty of new features is in-
dependent of any extrinsic camera parameters, unlike in the unified inverse depth
parametrization. Removing features simply means deleting the corresponding en-
tries, rows and columns in the state vector and covariance matrices, but if a feature
is only temporarily occluded or otherwise not detected, it can still be kept in the
filter if it is assigned an infinite measurement uncertainty.
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5. Experiments

Complexity

The computational complexity of the filter can be made lower than that of e.g. the
unified inverse depth parametrization. First note that since the output function
h is linear if the measured image coordinates are first transformed using equation
(A.11), it is fully represented by the Jacobian H , and very sparse. In fact, all non-
zero elements equal one, and multiplying a matrix by H amounts to removing
rows or columns of the matrix. Thus four matrix multiplications can be avoided
in the filter update step. The update equation, however, is not linear, due to the
camera-centric representation, and the Jacobian F will no longer be (nearly) diag-
onal, as in the world-centric case. But it will still be rather sparse, with the first 6
columns full and the rest block diagonal with 4-by-4 blocks. The a-priori covari-
ance update can thus still be performed quite efficiently. The fact that only three
or four parameters are required per feature is a considerable advantage compared
to the unified inverse depth scheme, where features must eventually be converted
to a Cartesian parametrization to maintain frame rate.

5 Experiments

In the following experiments, no priors on the structure or motion are given.
Features are initialized at an arbitrary depth and with large uncertainty in the γ
coordinate. The linear and angular velocities are assumed constant, and acceler-
ation is modelled as zero-mean Gaussian process noise. When assuming varying
focal length, the variation is also modelled as process noise, while an unknown
principal point is assumed fixed but initialized with some uncertainty at the cen-
ter of the image.

As has been reported in [5], the EKF can converge under these circumstances;
however, it is found that fixing the depth of one point, thus determining the
overall scale, greatly aids convergence. Further, the normalization step of the
update equation (A.21) has been found not to be strictly necessary (when using
the full parametrization) and in fact does not significantly impact the results.

Constant and known intrinsic parameters

We repeat an experiment in [16] and show that the proposed parametrization does
not suffer from the underestimation of uncertainty associated with the inverse
depth parametrization of [5] and typically converges faster as a result (Figure A.1
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and A.2). This issue of inconsistency is common to many SLAM algorithms and
is analyzed in e.g. [11].

(a) Unified inverse depth

(b) Proposed

Figure A.1: Position and covariance estimates after observing 30 frames of simulated
data (black: ground truth, blue: estimate ±σ). The inverse depth parametrization
underestimates the errors, here leading to slower convergence, while the proposed
parametrization more accurately captures the depth uncertainty.
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5. Experiments

Figure A.2: Convergence plot of the Cartesian coordinates of a point in a simulated
reconstruction problem. Top: inverse depth, bottom: proposed parametrization.

Figure A.3: Visual result of integrating geometry into a tracked video sequence (from
left to right, frames 1, 50 and 70 are shown). The green box shows the solution
using the proposed method, while the red was computed using the inverse depth
parametrization. Although the re-projection errors are similar, the proposed method
produces a more accurate motion estimate.

Varying focal length and unknown principal point

In experiments on noisy simulated data the filter is able to track varying focal
length and determine an offset in the principal point (Figure A.4 and A.5). Ob-
serve that even if the convergence rate for the principal point is relatively low, the
motion estimation and structure estimation is converging much faster.
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Real data

We also apply the proposed and unified inverse depth methods to a real video se-
quence. The camera motion and 3D coordinates of 7 feature points tracked (using
the KLT algorithm) over 70 frames of a desktop sequence are reconstructed. Some
geometry is overlaid to verify the results (Figure A.3). A (subjective) assessment
indicates that the proposed method gives a more consistent reconstruction than
unified inverse depth.

In a more general setting we use the following structure and motion frame-
work:

• From the first frame, extract SURF features and add them to the state vec-
tor. The observed features are initialized to lie in a plane at unit depth.
To set the overall scale, the depth of one feature is fixed by assigning zero
uncertainty in the γ coordinate.

• For subsequent frames:

1. Extract and match features to those active in the filter. Remove out-
liers by fitting an affine transformation between the observed feature
locations and their predicted locations in a RANSAC scheme.

2. Assign active features not detected in the current frame infinite mea-
surement uncertainty. Features not detected for a set number of
frames, e.g. 100, are removed from the filter by deleting the appro-
priate entries.

3. Update the filter state.

4. If the number of active features is too low, select new ones from the
unmatched features in the current frame and initialize their depth as
the mean depth of the currently visible active features.

While SURF features are computationally expensive (compared e.g. to the ap-
proach in [7]), they facilitate the redetection of previously observed landmarks.
In Figure A.6 the algorithm is applied to a typical augmented reality scenario.

6 Conclusions

We have used a novel parametrization together with the extended Kalman filter
for full structure and motion estimation, and successfully dealt with unknown
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6. Conclusions

Figure A.4: Result of experiment on simulated data. 15 intermittently visible features
were observed by a circling camera at a noise level of about 1 pixel. The focal length
varied while the principal point remained fixed. Dashed lines: ground truth.

Figure A.5: Re-projection error in the above experiment. The error increases towards
the end of the sequence as the camera moves further from the point cloud.

and varying focal length and unknown principal point. The filter has low com-
putational complexity, is shown to perform well on both simulated and real data
and has been favorably compared to state-of-the-art approaches.
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Figure A.6: Visual result of integrating geometry into a video sequence using the
proposed parametrization and a fully calibrated camera. SURF feature matching and
RANSAC provide robust tracking. The cube is automatically aligned after detecting
the dominant plane.
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Optimal View Path Planning for Visual SLAM
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Abstract: In experimental design and 3D reconstruction it is desirable to mini-
mize the number of observations required to reach a prescribed estimation accu-
racy. Many approaches in the literature attempt to find the next best view from
which to measure, and iterate this procedure. This paper discusses a continuous
optimization method for finding a whole set of future imaging locations which
minimize the reconstruction error of observed geometry along with the distance
traveled by the camera between these locations. A computationally efficient it-
erative algorithm targeted toward application within real-time SLAM systems is
presented and tested on simulated data.

1 Introduction

Visual simultaneous localization and mapping (SLAM) is the task of determining
the position and orientation of a camera while concurrently building a map of
the environment, using the camera images and possibly other sensors as input. It
is a chicken-and-egg type problem; given the map, localization is relatively easy
and given the camera positions, map triangulation is straightforward. Accom-
plishing both at once is at the heart of the SLAM problem, which has received
a lot of attention in both the robotics and vision research communities. Much
effort is spent improving the robustness and accuracy of algorithms, particularly
with respect to error accumulation, drift and loop closing (see e.g. [1, 11]). A less
studied problem is how to make efficient use of the information collected in ac-
tive SLAM systems, i.e. systems where the motion of the sensor can be controlled.
This article considers the problem of maximizing the useful information gained
from a fixed number of images by active planning of the vision sensor movement.
Specifically, we consider the task of finding a camera trajectory between two pre-
determined locations such that the reconstruction accuracy of observed geometry
is maximized while the path length is minimized. The envisioned application is
robot path planning, where the accuracy usually is a secondary objective, so the
focus is on providing the best reconstruction given time or distance constraints.

In this work we only consider the geometric aspects of the problem and do not
account for availability of texture or object occlusion, which are of course issues
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in a real system relying on feature tracking. We further assume the following:

• An initial maximum likelihood estimate of the structure is available, based
on observations up to that point.

• All cameras along the trajectory are oriented towards a particular point of
interest, e.g. the centroid of the features to be estimated.

• The camera can be positioned with such relative accuracy that its pose and
location is fully known at each observation.

These assumptions may be relaxed, as discussed in Section 6.2. Finally, the robot
path is represented by a sequence of camera locations, and the number of cameras
on the path must be chosen in advance.

As an experimental design problem, so-called ‘camera network design’ has been
studied extensively in the photogrammetry literature. The emphasis is on ob-
taining the most accurate reconstruction given a limited number of cameras, and
time can be spent finding an optimal configuration. For example, in [5] a genetic
optimization algorithm is used to search the high-dimensional parameter space
of camera placements. Similar stochastic algorithms are usually employed since
the problem is intrinsically multi-modal i.e. the objective function has many local
minima, cf. [6]. In the context of 3D reconstruction in controlled environments,
the task at hand is usually referred to as ‘next best view planning’, suggesting that
given an approximate reconstruction we seek a single next view that will reduce
the error the most. This is the case in [14] where the authors reconstruct objects
using a camera mounted on a robotic arm. The object geometry is estimated us-
ing a Kalman filter, and the next imaging location is determined by searching a
discrete parameter space and evaluating the expected information gain in the filter
at each position. A different approach is taken in [13] where the next imaging lo-
cation is decided based only on the single currently least well-determined feature,
allowing a simple closed form solution. In the above problem formulations there
are usually few or no constraints imposed on possible sensor configurations, com-
putational complexity is less of an issue and the ‘next best view’ approaches do
not consider more than one future observation. This work will show that given
constraints on the camera positions, good solutions for many future observations
can be found relatively quickly. For a recent general survey of the sensor planning
field see the book by Chen et al. [2].
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The work most similar in spirit to ours is [4] where the path of a robot mov-
ing in the plane is planned based on the expected reconstruction accuracy of an
observed object. An approximation of the geometry is given and the expected
information gain from observing the object from a particular vantage point is de-
termined on a discrete grid of camera locations. Each grid cell is assigned a cost
proportional to the inverse of the information gain, and a minimum cost path
is found between the starting point and the global minimum grid cell. The al-
gorithm does not take into account the new information gained after an actual
observation is made, however, and becomes computationally expensive if we allow
the camera to move in three dimensions. The minimum cost path formulation
also restricts the choice of cost function. This work proposes an efficient con-
tinuous optimization approach to the problem of finding a short path with large
information gain.

2 Problem Formulation

The planner takes as input an initial estimate of the structure, the current location
of the sensor and the desired destination. The output is a path, represented by a
discrete set of sensor locations, connecting these points. The number of locations
on the path can be set explicitly or deduced from e.g. the robot’s speed and sample
rate and the distance to be travelled. For the experiments in this paper the sensor
is assumed to be a single fully calibrated camera, although extension to stereo and
multi-camera systems is straightforward. The standard pinhole camera model
is used, so that the relation x = f(P,X) between a world point X and its
projection x in homogeneous coordinates is given by

λf(P,X) = KM

(
X
1

)
=

fx 0 u0

0 fy v0

0 0 1

(R | −Rt
)(X

1

)
(B.1)

where R and t are the camera rotation and translation and K represents the
known intrinsic calibration parameters. However, any differentiable projection
function f(P,X) may be substituted, e.g. to include radial distortion terms.

In the interest of reducing the parameter space dimension, each camera is
parametrized only by its position and is automatically oriented toward a point
of interest, typically chosen as the centroid of the structure under consideration.
Features are deemed visible if they fall within the camera’s field of view; possible
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occlusion by other objects is not considered. The measurement uncertainty of
features is also considered fixed.

We define the optimization problem as follows: minimize the reconstruction
uncertainty of observed geometry and the distance traveled by the sensor between imag-
ing locations. These are conflicting objectives, which are combined in a cost func-
tion defined below.

3 Cost Function

Lacking ground truth data or other a priori information, the quality of a recon-
struction can only be judged by the statistical uncertainty of the estimate. Con-
densing a probability distribution into a scalar quality measure is not entirely
straight-forward, however, and choices must be made depending on the intended
application. Also, in most situations only estimates of the probability distribution
are available, e.g. the mean and covariance. In the experimental design litera-
ture, many summary statistics have been proposed and are usually functions of
the eigenvalues of the covariance matrix, e.g. the trace and determinant, cf. [9].
In the structure-from-motion problem, the eigenvalues have a direct geometric
interpretation which we consider below.

If we assume the position and orientation of the camera is fully known when
an observation is made, the structure estimates corresponding to individual fea-
tures are independent of each other, and the covariance matrix is block diagonal
with 3-by-3 blocks (assuming point features). The eigenvalues of each block cor-
respond to the semi-axes of the ellipsoid representing the variance of the feature
location. We would like these ellipsoids to be as small as possible, but in what
sense? If we minimize the volume, i.e. the determinant, we admit solutions where
a point may be very well-determined in two directions but with a large uncertainty
in the third (typically the depth). Minimizing the determinant of the entire co-
variance matrix (the so-called D-optimality criterion) could favor solutions where
one point is very well determined while others are much less certain. For naviga-
tion and mapping purposes, we would like all, or at least the majority of features
to be reconstructed to reasonable accuracy. Minimizing the largest eigenvalue (E-
optimality) would achieve this, but results in a non-smooth objective function.
We choose to minimize the sum of the eigenvalues (A-optimality), i.e. the trace
of the covariance matrix, which provides a good trade-off with the added compu-
tational benefit of not having to calculate individual eigenvalues.
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Before introducing the cost function, we discuss how to compute the trace
given a set of measurements.

3.1 Calculating Covariance

In many recent SLAM systems (e.g. [8, 12, 10]) maximum likelihood estimates
obtained via bundle adjustment are available. We assume the structure estimate
is optimal in the ML sense with respect to the observations; then the informa-
tion matrix is given to first order by I = J>R−1J where J is the Jacobian of
the reprojection error evaluated at the minimum, and R the measurement noise
covariance [7]. Also, the (pseudo-)inverse of I gives an approximation of the
covariance matrix. Since information is additive, including new observations in
the estimate amounts to summing the individual information matrices. In other
words, to calculate the effect of new observations on the structure estimate, we
compute the Jacobian of each observation and add the corresponding informa-
tion matrices to the initial one. New observations may of course shift the ML
estimate, invalidating the approximation, but this is avoided in a natural way as
discussed in Section 4.

Given a world point X and a camera P , let x̂ be the measured image coor-
dinate, and f(P,X) the projection function mapping X to the expected image
coordinate x. Define the re-projection error as EX(P,X, x̂) = f(P,X) − x̂
with Jacobian

JX =
dEX
dX

=

 ∂f1
∂X1

∂f1
∂X2

∂f1
∂X3

∂f2
∂X1

∂f2
∂X2

∂f2
∂X3

 . (B.2)

If several points X1,...,N are observed simultaneously, let

E(P,X1:N , x̂1:N ) =

EX1

...
EXN

 (B.3)

with block diagonal Jacobian

J =

JX1 0
. . .

0 JXN

 . (B.4)
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The information matrix for a single image is then given by

I(P,X1:N ) =

J
>
X1R

−1
1 JX1 0

. . .
0 J>

XNR
−1
N JXN

 (B.5)

where usually the Ri =
(
σ2 0
0 σ2

)
.

The final information matrix given the initial information I0 and images from
camera positions P 1,...,M is now

IM = I0 +
M∑
j=1

I(P j , X1:N ) . (B.6)

Note that the computation is linear in the number of observed features and
the number of images, and that the covariance of the estimate is the inverse,
ΣP 1:M ,X1:N = I−1

M . For notational convenience, from hereon let P denote the
set P 1:M of camera poses along a path, and X = X1:N the estimated structure.

3.2 Cost Function

We propose the following cost function:

C(P,X) =
1
N

tr(ΣP,X) +
α

(M − 1)1−q

M−1∑
j=1

‖P j+1
pos − P jpos‖q

= U(P,X) + αD(P ) ,

(B.7)

i.e. the uncertainty measure plus a function of the camera path, weighted by a
constant factor α > 0, where q ≥ 1. The normalization constants N−1 and
(M−1)q−1 are designed to make the cost approximately invariant with respect to
the number of observed features and camera positions on the path. Note that by
choosing q > 1, D(P ) will favor solutions with equidistant spacing between the
camera positions, and introducing an offset d,D(P ) =

∑M−1
j=1 (‖P j+1

pos − P jpos‖−
d)q, we can impose the soft constraint that the path length be d(M − 1), if de-
sired.
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3.3 Cost Function Properties

The multi-modality of the objective functions normally used in next best view
planning makes optimization difficult. The proposed cost function is no excep-
tion, but due to the somewhat local nature of the sought solution there are obvious
bounds on the cost and geometry of the path.

Proposition B.1. U(P 1:M , X) is a non-negative decreasing function of the number
of observations M .

Proof. The information matrix I is positive semidefinite. Including a new obser-
vation amounts to adding another positive semidefinite matrix ∆I to I , and the
result is again positive semidefinite. By the Courant-Fischer theorem, we know
that the (sorted) eigenvalues satisfy λi(I + ∆I) ≥ λi(I) for all i = 1, . . . , n
and equivalently λi(Σupdated) = λi

(
(I + ∆I)+

)
≤ λi(I

+) = λi(Σinitial).
Evidently tr(Σupdated) ≤ tr(Σinitial).

Theorem B.2. The length of the path at the minimum P ∗ is bounded.

Proof. Given any initial estimate P̂ of the path, we have

αD(P ∗) ≤ U(P̂ ,X) + αD(P̂ )− U(P ∗, X)

≤ U(P̂ ,X) + αD(P̂ )

≤ Uinitial + αD(P̂ )

where Uinitial = 1
N tr(Σ0) and Σ0 the covariance of the current structure es-

timate. Since ‖P j+1
pos − P jpos‖ < ‖P j+1

pos − P jpos‖q + 1, the length of P ∗ is
bounded from above by (M − 1)1−q(α−1Uinitial +D(P̂ )

)
+M − 1.

We see that the path must be contained inside an ellipsoid with foci at the
(fixed) first and last camera positions, and that the bound can be computed easily
in advance. As expected, the optimal path approaches the line segment between
the foci as α grows.

This result suggests that we may attempt to find and compare several local
minima by optimizing with varying initial paths sampled from within the feasible
ellipsoid.
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4 Proposed Algorithm

As noted in the introduction, the next best view problem is known to suffer from
multiple local minima, cf. [6]; this is true for all reasonable choices of U . Finding
the global minimum is a difficult problem, and the prevailing approach in the
literature seems to be more or less exhaustive search over a discretized parameter
space, [14, 4], or stochastic optimization methods, [3, 5]. In the interest of speed,
however, we adopt a gradient based optimization scheme, using the well-known
Levenberg-Marquardt (LM) method. LM minimizes the 2-norm of a residual
vector r, which we construct as

r =

(
tr(ΣP,X1)

N
, . . . ,

tr(ΣP,XN )

N
,
α‖P 2

pos − P 1
pos‖q

(M − 1)1−q , . . . ,
α‖PM

pos − PM−1
pos ‖q

(M − 1)1−q

) 1
2

(the exponent indicates element-wise square root) so that ‖r‖2 = C(P,X).
The parameter space is the M − 2 intermediate camera positions; the camera
orientation is determined by its position and the interest point.

The final hurdle is how to evaluate the cost function before any observations
are made. The best we can do is predict what the camera will see at a particular
location given the current best estimate of the structure. Assuming that measure-
ments are corrupted with zero-mean noise, the expected observation is simply the
projection x = f(Pi, X). Such an observation has zero reprojection error, and
so does not affect the ML estimate.

The optimization is applied within the following framework:

1. Given an initial estimate of the structure, calculate its centroid and let this
be the camera’s point of interest. Select a target location for the camera, i.e.
select the end point of the path.

2. Generate an initial path by linear interpolation between the first and last
camera locations. The number of discrete camera locations along the path
could be selected to match the image sampling rate and speed of the robot,
but this would normally result in far too many locations and a very high-
dimensional search space. However, it stands to reason that more images
taken from approximately the same vantage point do not contribute qual-
itatively to the reconstruction, so a relatively sparse distribution of camera
locations is sufficient.
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3. Find a minimum of the cost function wrt. P using the LM algorithm. For
improved convergence, an optimal step length may be selected through line
search.

4. Move the camera to the next location along the path and make an actual
observation. Update the structure estimate with this new information, and
update the camera interest point location and path end point, if needed.

Repeat steps 3 and 4, each time with one less camera location along the path and
using the previous path estimate as an initial guess.

5 Experiments

We first apply the above algorithm to the scenario of a robot trying to pass through
a doorway. The doorway is represented by a rectangular array of point features
which are optimally triangulated from the first two views, see Figure B.1(a). In
all experiments we assume an image measurement noise σ equivalent to about
one pixel. The target location is placed in front of the doorway, and the path
is discretized with four waypoints in between. The optimization is run until
convergence and the robot is moved to the next prescribed location along the
path, where a new image is acquired and the structure estimate is updated using
bundle adjustment.

The influence of the parameter α is illustrated in Figure B.2 and Table B.1.
The robot passes by a point cloud, and to get a closer look it must make a detour.
A large α penalizes long paths at the expense of reconstruction accuracy.

6 Discussion

6.1 Computational Complexity

As noted in Section 3.1, the cost function can be evaluated inO(MN) time. The
LM algorithm requires the computation of the Jacobian of the residual vector r
each iteration. The analytic expression may be very complicated and expensive to
evaluate, so a finite difference approximation is preferred. The cost function must
be differentiated with respect to 3(M − 2) parameters, requiring 3(M − 2) + 1
function evaluations to compute the Jacobian. But the covariance matrix is a func-
tion of a sum of individual information matrices, where only one term changes
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(a) (b) (c) (d) (e)

Figure B.1: Doorway scenario. The robot wishes to approach the passage while
determining its geometry as accurately as possible. The first two cameras on the path
represent the last two images the robot has acquired and provide the initial optimal
triangulation of the geometry. Red dots indicate which cameras are free to move,
the red cross is the point of interest. In this case subsequent observations do not
visibly change the initially planned path. The uncertainty ellipsoids represent 5σ in
(a) and 50σ in (b)-(e). Note that in the latter cases the expected uncertainties, given
all observations along the path, are displayed. The values q = 3 and α = 4.5 · 10−7

were used.
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Figure B.2: Here the robot passes (from right to left) by a point cloud and makes
a detour to get as close to the features as possible; this is natural, since the closer
the feature, the higher its angular resolution. Four cases are plotted, fading out with
increasing values of α.

Optimized path Straight path

α Rel. err. Rec. err. Rel. err Rec. err

1.0 · 10−7 1.64 · 10−3 8.32 · 10−4 2.02 · 10−3 1.03 · 10−3

0.5 · 10−7 1.25 · 10−3 7.15 · 10−4 ” ”
0.2 · 10−7 5.36 · 10−4 4.53 · 10−4 ” ”

Table B.1: Relative error U(P,X)/U(P 1:2, X) and absolute reconstruction error
1
N

∑N
i=1‖Xi −Xi

true‖, where X1:N
true is the ground truth structure being observed,

computed for different values of α in the scenario of Figure B.2. The relative error
represents the expected decrease in uncertainty from the initial estimate given by the
first two images, the reconstruction error the actual error after all observations have
been made. As α is decreased, the optimized path deviates more from the straight line
between the first and last camera position, and the reconstruction error is decreased.
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as the camera parameters are perturbed one at a time. By careful bookkeeping of
the information matrices only 4 instances need to be computed for each camera
instead of all 3(M − 2) + 1 of a naïve implementation. This lowers the com-
plexity of computing the Jacobian from O(M2N) to O(MN). Nevertheless, in
real-time applications computing the path should take a few seconds at most, and
recent SLAM systems track hundreds or thousands of features. It may therefore
be necessary to restrict attention to a subset of reconstructed features, e.g. those
with the largest uncertainty, when evaluating the cost.

Furthermore, due to the iterative nature of the optimization, the path com-
putation may be aborted before convergence but still yield a good approximation,
depending on available time and computational resources.

6.2 Extensions

The assumptions in Section 1 can of course be relaxed. If an initial ML structure
estimate is not available, we can either choose to ignore any prior information and
initialize the algorithm using optimal triangulation from the most recent images,
or simply substitute a non-ML estimate (e.g. from an EKF). If the estimate is good
enough, the inverse of the covariance matrix will still be a good approximation to
the Fisher information. Even if it’s a poor approximation we would expect the
optimized paths to yield better reconstruction accuracy than a straight or random
one.

The requirement that the camera be oriented toward a particular point is only
intended to reduce the dimension of the parameter space. Optimization over the
orientations, or other rules for selecting orientation based on camera position and
estimated structure could easily be incorporated.

It is also assumed that the camera position and orientation are known to high
accuracy when acquiring images. Obviously, this is rarely true in a practical SLAM
system, where there may be considerable uncertainty in the robot location. How-
ever, the location is usually well-determined relative to nearby, recently observed
features, so for short-term local path planning this is a fair approximation. Never-
theless, incorporating the camera uncertainty in the covariance estimation would
be straightforward, but would also introduce correlations between features. The
information and covariance matrices would no longer be block diagonal, raising
the computational load considerably, and the cost function would possibly have
to be modified to include the camera location uncertainty. The practical gain of
incorporating such information is less clear.
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7. Conclusion

The nature of the optimization scheme makes it easy to incorporate different
constraints. For example, in the basic formulation (B.7) points behind the camera
contribute the same information as if they were in the corresponding position in
front of the camera, resulting in a physically incorrect model of image acquisition.
This can be rectified by weighting the information gain from each observation by
a function of the point’s depth. A suitable function can be seen in Figure B.3,
which smoothly diminishes the influence of points as they come too close to the
camera. Similar weighting must also be employed to encourage the camera to

z0 z1

0

0.5

1

Figure B.3: Differentiable weight function

keep the scene structure in its limited field of view, where points near or outside
the image borders are downweighted. The effects of this weighting can be seen
in Figure B.2, where the path taken for small values of α would otherwise have
passed right through the point cloud.

It is also possible to include penalty constraints on the path curvature, and
obstacles in the robot’s path can be modeled as a potential field added to the cost
function, see Figure B.4.

7 Conclusion

This paper has presented a continuous optimization approach to certain instances
of the next best view planning problem, aimed toward application in SLAM sys-
tems. Unlike previous algorithms the next best view is chosen with consideration
of several expected future observations. While the solutions are only locally opti-
mal, experiments show that reconstruction accuracy is still much improved, at a
computational cost linear in the number of cameras and features.
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Figure B.4: Obstacle avoidance may be accomplished by adding a smooth potential
to the cost function.
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Covariance Propagation and Next Best View Planning for
3D Reconstruction

SEBASTIAN HANER AND ANDERS HEYDEN

Centre for Mathematical Sciences, Lund University

Abstract: This paper examines the potential benefits of applying next best view
planning to sequential 3D reconstruction from unordered image sequences. A
standard sequential structure-and-motion pipeline is extended with active selec-
tion of the order in which cameras are resectioned. To this end, approximate
covariance propagation is implemented throughout the system, providing run-
ning estimates of the uncertainties of the reconstruction, while also enhancing
robustness and accuracy. Experiments show that the use of expensive global bun-
dle adjustment can be reduced throughout the process, while the additional cost
of propagation is essentially linear in the problem size.

1 Introduction

Three-dimensional reconstruction from unordered image sequences is a well-
studied problem in the computer vision literature, see e.g. [13, 2, 7, 12, 4]. Part of
the challenge is that little is known about the input data at the outset in terms of
scene coverage or camera calibration. Active sensor planning, on the other hand,
is the problem of finding the optimal input data to a reconstruction algorithm,
given full control over image acquisition (see [3] for an overview). In the pho-
togrammetry literature this is known as the ‘camera network design’ problem. For
example, in [5] a genetic algorithm is used to search a high-dimensional param-
eter space of camera placements to find the optimal measurement setup, given a
limited number of cameras. In a serial acquisition process, the ‘next best view’
(NBV) problem asks from which viewpoint to capture the next image, given a
partial reconstruction, to minimize some objective such as the reconstruction er-
ror. NBV planning is most effective when the user has full control over image
acquisition, and has been applied to vision metrology using cameras mounted on
robotic arms [16, 15], and autonomous robot exploration [6, 8].

This paper applies view planning to the unordered image reconstruction prob-
lem; although we are not free to choose any viewpoint, there is usually a choice
between a subset of the images at every step of a sequential algorithm. The aim is
to choose the image giving the smallest error, which we approximate as the trace
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of the camera covariance matrix times the reprojection error. To be able to de-
termine the covariance, it is necessary to know the uncertainty of the observed
geometry. In the following sections, it is shown how this is achieved by propagat-
ing covariances when resectioning cameras and triangulating points, and how as
a side effect the algorithms gain robustness and better approximate the maximum
likelihood estimate.

2 Estimation from Uncertain Geometry

The cornerstones of sequential structure-and-motion are triangulation and cam-
era pose estimation. Usually, one attempts to find the maximum likelihood so-
lution given noisy image measurements, but assuming that all other parameters
are known exactly. This is of course rarely the case, since points and cameras are
triangulated and resectioned using noisy data. Below, we derive algorithms that
also take the uncertainty of the 3D structure or camera parameters into account.

2.1 Pose Estimation

Consider the problem of camera pose estimation givenN 3D point coordinatesX
and their measured projections in one image, x̃. Assuming there are errors in the
image measurements, the problem is to find the maximum likelihood solution,
i.e. the camera parameters θ∗ satisfying

θ∗ = arg max
θ

L(θ) , (C.1)

where

L(θ) = L(θ | x̃, X) = p(x̃ | θ,X) (C.2)

is the likelihood function. In this formulation it is assumed that the structure pa-
rameters X are precisely known. More generally, given a probability distribution
of X , the problem is to maximize

L(θ) =

∫
R3N

p(x̃ | θ,X)p(X) dX . (C.3)

We restrict our attention to the case of Gaussian distributions. Then we have

L(θ) ∝
∫
R3N

e−‖x̃−f(X,θ)‖2
R · e−‖X−X̄‖2

Q dX , (C.4)
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where f(X, θ) is the projection of the pointsX using camera parameters θ,R the
measurement error covariance, Q and X̄ are the covariance matrix and mean of
the distribution of X and ‖y‖2

Σ = y>Σ−1y the squared Mahalanobis distance.
Next, we project the distribution of X onto the image plane, by integrating along
the light rays. Formally, for a given θ we parametrize each 3D point by its image
projection x = f(X, θ) and depth ρ, so that

L(θ) ∝
∫
R2N

e−‖x̃−x‖
2
R

(∫
RN

e−‖(x,ρ)−X̄‖2
Q dρ

)
dx . (C.5)

The right-hand factor is a distribution on the 2N -dimensional generalized image
plane, and may be seen as the projection of a random variable, i.e. f

(
N (X̄,Q), θ

)
.

By Taylor expansion about X̄ , f can be approximated by f̃(X, θ) = f(X̄, θ) +
J(X − X̄), and for affine functions f̃

(
N (µ,Σ), θ

)
= N

(
f̃(µ, θ), JXΣJ>X

)
with JX = ∂f

∂X

∣∣
θ
. We now have

L(θ) ∝∼
∫
R2N

e−‖x̃−x‖
2
R · e−‖f(X̄,θ)−x‖2

JQJ> dx , (C.6)

which may be seen as the convolution (u ∗ v)(τ) =
∫
u(x)v(τ − x) dx of the

Gaussians u(x) = e−‖x−x̃‖
2
R and v(x) = e

−‖x−0‖2
JQJ> , with τ = f(X̄, θ).

The convolution of Gaussians is particularly simple,N (x̃, R) ∗ N (0, JQJ>) =
N (x̃, R+ JQJ>), giving

L(θ) ∝∼ e
−‖x̃−f(X̄,θ)‖2

R+JQJ> . (C.7)

Maximizing the likelihood is then equivalent to minimizing

− logL(θ) ∝∼ ‖x̃− f(X̄, θ)‖2
R+JQJ> , (C.8)

which can be solved using an iteratively reweighted nonlinear least-squares algo-
rithm. In fact, only a minor modification to a standard algorithm for minimizing
the reprojection error is required. For example, a Levenberg-Marquardt optimiza-
tion loop would be modified to

while not converged do
· · ·
W ← (R+ JXQJ

>
X)−1

δθ ← (J>θ WJθ + λI)−1J>θ Wb
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Figure C.1: Resectioning: the uncertainties of the 3D points are projected onto the
image plane and convolved with the image measurement uncertainty giving the re-
projection error metric. Note that the projections are not necessarily independent;
however, in this work inter-point covariances are discarded for computational rea-
sons.

· · ·
end while

where Jθ = ∂f
∂θ

∣∣
θ

and JX as above. After convergence, the covariance matrix of
the recovered camera parameters θ∗ can be estimated by the inverse of the Hessian
matrix evaluated at the minimum, Σθ ≈ (Jθ∗W

∗J>θ∗)
−1 [9, 11].

Of course, a good initial guess is required to start the iterative algorithm,
and can be obtained using standard minimal or linear solvers. The general ef-
fect of taking the distribution of X into account is to give more weight to well-
determined 3D points than uncertain ones when finding the camera pose.

2.2 Triangulation

Handling uncertainty in camera parameters when triangulating 3D structure is
completely analogous to the pose estimation case. The linearized problem formu-
lation is to find

θ∗ = arg min
θ

‖x̃− f(θ, P̄ )‖2
R+JSJ> , (C.9)

where θ now represents the 3D structure, P̄ is the mean of the distribution of the
cameras with covariance S and J = ∂f

∂P

∣∣
θ
.
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2.3 Complexity

The introduction of the weight matrix W in the algorithms above inevitably in-
curs extra computational costs. In particular, if the input variables are correlated,
W will be a full matrix and the natural sparsity of the problems is lost. To mitigate
this, we will assume no correlation between pairs of cameras or points, so that W
is block diagonal. Such simplification is also necessary since the full covariance
matrix of even a moderately sized reconstruction problem would occupy hundreds
of gigabytes of memory. Furthermore, it may not be necessary to recompute W
every iteration, since the projection is not expected to change significantly given
a good initialization.

3 Covariance Propagation

The proposed algorithms open the possibility of covariance propagation through-
out the reconstruction process. Uncertainties in 3D points are transferred to
uncertainty in resectioned cameras, which in turn transfer uncertainty to trian-
gulated points, and so on. In this manner, a rough estimate of the covariances
is available at any time and can be used, for example, to improve reconstruction
accuracy and for next best view planning, which we exploit to reduce error accu-
mulation.

Below we detail a system for 3D reconstruction from unordered image se-
quences and show the benefits that can be gained.

3.1 Selecting the Seed

In choosing the set of images on which to initialize the reconstruction, we strive
for the following: the initial reconstruction should be stable, contain many struc-
ture points and it should be near the center of the camera graph (the graph with
each camera a vertex and edges between cameras observing common features).
The latter is motivated by the fact that error accumulation is a function of the
distance from the seed; if the ‘degrees of separation’ from the seed is kept low,
error accumulation can be minimized. We therefore wish to minimize the dis-
tance of every camera to the seed. For our purposes we define the center as any
vertex of the camera connectivity graph with minimal farness, the sum of shortest
distances from the node to all others. We define the edge weights of the graph as
1/max(0, nc − 4), where nc is the number of observed points common to both
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cameras. This heuristic, while ignoring the actual two-view geometry, is based on
the assumption that cameras sharing many observed points are well-determined
relative to each other. The maximum imposes a 5 point overlap threshold, needed
to determine relative motion between views. Now, all shortest paths in the graph
can be computed and summed for each camera, the k lowest scoring yielding a set
of candidate images. For each candidate, an adjacent view with a balance between
many common image points and good parallax is selected as in [13], i.e. each
pairing is scored according to the proportion of outliers to a homography fit. The
top-scoring pair is selected, and standard two-view reconstruction is performed,
followed by bundle adjustment.

3.2 Fixing the Gauge

Reconstruction from image measurements only is subject to global translation,
rotation and scale ambiguity. Unlike [14], which measured pairwise covariances
in local coordinate systems, we need globally referenced covariances and so must
compute these for the seed reconstruction. For the covariances to be defined we
must fix the gauge, especially the scale, since the dimension of the nullspace of
the Hessian matches the number of degrees of freedom of the system. From a the-
oretical standpoint, taking the pseudoinverse of the unconstrained Hessian is the
most satisfying solution [9, 11], however it can be computationally very expensive
if the seed views share many points (i.e. > 1000). An alternative approach is to
constrain the parameters of the system by adding penalties to the cost function,
making the Hessian full rank so it can be inverted without finding an SVD. Dif-
ferent constraints lead to somewhat different estimates of the covariance; one way
is to lock the first camera and impose a distance constraint on the mean of the
structure points, as was done in [14], or one can simply fix the distance between
the first and second camera. The first prior gives results closer to the pseudoin-
verse, but also destroys the sparsity of the Hessian matrix making inversion more
expensive. In cases where the pseudoinverse is too expensive we choose the second
option which preserves sparsity.

After fixing the scale, there is still a difficulty in quantifying just how large an
uncertainty is, since it must be put in relation to the overall size of the reconstruc-
tion. The scale is unknown in the beginning, since there is no guarantee that the
distance between the seed cameras is representative of the whole scene. This has
implications for the various outlier rejection thresholds used in the reconstruction
pipeline.
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4 Next Best View Planning

View planning in a sequential reconstruction process aims to actively choose the
most favorable sensor configuration (camera position and orientation) to achieve
a certain goal, in this case geometric accuracy. In each iteration, we can choose
which camera to resection among those observing a sufficient number of trian-
gulated points. Usually, the camera observing the largest number of triangulated
points is chosen first. However, if the geometry is such that the pose is poorly
determined, triangulations using the image will have larger errors, propagating to
subsequently resectioned cameras, etc. It therefore makes sense to minimize the
error accumulation in every step. To this end, we propose to select the camera
with lowest estimated reconstruction error, by exhaustive search among candidate
images. The covariance is computed by first resectioning the camera using a linear
or minimal solver and taking the inverse of the Hessian, Σcam ≈ (JθWJ>θ )−1

as defined in Section 3. As a scalar measure of reconstruction error we use
trace(Σcam) · εrp, where εrp is the mean reprojection error. This turns out to give
better results than the covariance alone; a small estimated covariance does not
necessarily imply a low reprojection error, and a well-determined camera should
ideally have both. Note that the score can be cached for each camera between
iterations and need only be recomputed if more points in the camera’s view have
been triangulated. While the number of views that need to be resectioned in each
iteration is dependent on the particular data set and could theoretically grow with
the number of triangulated points, in practice this number is found to be approx-
imately constant throughout the reconstruction process and typically between 10
and 50.

5 Reconstruction Pipeline

We apply NBV planning and covariance propagation to the problem of recon-
struction from unordered image collections. We will assume that matching and
tracking of image features has been performed and is outlier free. If not (as in
the last experiment below), the proposed method is easily integrated with outlier
detection schemes such as RANSAC. The algorithm is mainly standard fare:

1. Find initial seed views (Section 3.1).

2. Reconstruct and bundle adjust the seed geometry.
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3. Compute the covariance of the seed (Section 3.2).

4. Choose a camera to resect following Section 4. Resect using a linear method;
if it fails (i.e. large reprojection error or points behind the camera) try an
L∞ formulation [10] instead. If that also fails, choose another camera and
try again. Else, refine the camera pose by minimizing (C.8) and store its
covariance.

5. Triangulate all points seen by at least two resectioned cameras using a lin-
ear method. Compute an approximate uncertainty by evaluating the Hes-
sian of the standard reprojection error and taking the trace of the inverse.
Well-determined points, i.e. with low covariance and reprojection error, as
specified by thresholds, are kept and further refined by minimizing (C.9).
Store the covariance derived from this reprojection error.

6. (Optional) Bundle adjust over all or part of the reconstruction, and update
covariances accordingly.

7. If possible, goto 4) and find the next view, else terminate.

In the first experiments below, bundle adjustment is only performed on the
seed to demonstrate the efficacy of the approach in reducing error accumulation.
In real use, step 6 should performed at regular intervals. The cost of updating the
covariances afterwards is a computational bottleneck, which needs to be adressed.

6 Experiments

Figure C.2 shows a simple synthetic example of the dependence on the seed of the
propagated covariances. Although the relative uncertainties between all cameras
remain the same in our linearized Gaussian propagation model, in reality the
reconstruction errors depend heavily on the path taken.

Next, the algorithm is applied to a dataset extracted from photos of the
‘Spilled blood’ church in St. Petersburg. The reconstruction and a comparison
with a standard method is shown in Figures C.3 and C.4. The comparison shows
the mean standard reprojection error and the ground truth deviation, defined
as the mean distance of each triangulated point from its ground truth position,
after the two point clouds have been aligned using a Procrustes transformation.
The ‘ground truth’ in this case has been obtained from the system described in
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Figure C.2: Toy example of camera array observing a wall illustrating the covariance
estimation results depending on which seed is chosen (from left to right, cameras 1
and 2, 19 and 20, 39 and 40). The points and cameras are color coded by the trace of
their covariance, with green through blue to red for increasing uncertainty. Choosing
the seed in the middle reduces the maximum camera uncertainty with respect to the
seed.

[12]. The plain method, without covariance propagation or NBV planning, runs
into trouble around iteration 300 and does not manage to resection all cameras,
whereas the proposed algorithm does and is generally more robust and accurate.
A similar comparison is made for the ‘Trafalgar’ dataset of [1] in Figure C.5.

Finally, we compare three variants of the proposed algorithm on the Lund
Cathedral dataset. The covariance propagation and next best view-planning can
be used independently, i.e. the next image can be chosen by the maximum overlap
principle while propagating covariances, or the next view can be chosen based on
camera uncertainty calculated using zero point covariances, with no propagation.
As Figure C.7 shows, using NBV planning alone doesn’t work well at all and the
process breaks down, like the plain method. Propagation without planning works
almost as well as both combined, and is probably the greatest contributing factor.

Next, we apply the proposed algorithm to a more realistic scenario. The
‘Örebro castle’ dataset is corrupted by replacing 5% of matches with artificially
generated outliers. Camera resectioning is preceded by RANSAC outlier detec-
tion, and we allow local bundle adjustment to be performed every 20 iterations,
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Figure C.3: Resulting point cloud reconstruction of the ‘Spilled blood’ dataset using
the proposed algorithm, color coded by estimated covariance. No bundle adjustment
has been performed. The dataset has 781 images, 162,521 points and 2,541,736
feature measurements.
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Figure C.4: Comparison between the proposed algorithm and a ‘plain’ method on
the ‘Spilled blood’ dataset. In the plain method the standard reprojection error is
minimized instead, and the next camera is chosen by the maximum overlap principle.
Running times were 22 and 13 min respectively. There is no absolute scale on the top
graph since it depends on the overall scale of the reconstruction, which is arbitrary.
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Figure C.5: Results for the Trafalgar dataset (256 images). Running times were 83
and 138 s respectively.
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Figure C.6: Resulting point cloud reconstruction of the Trafalgar dataset.

optimizing over the 20 last resectioned cameras and the triangulated points visible
in these views. Measurements from other cameras where the points are visible are
also included. A robust Huber cost function is used, and measurements with high
reprojection error after convergence are deemed outliers and removed. The result-
ing point cloud reconstructions are shown in Figure C.9. The proposed method
produces higher quality output and, surprisingly, is faster in this case. Note that
in this experiment the covariances are not updated after bundle adjustment, and
still there is marked improvement.

After bundle adjustment, the estimated covariances of the affected parame-
ters are no longer valid and need to be updated. As mentioned in Section 3.2,
inverting the whole Hessian matrix of the LM system is infeasible for all but the
smallest problems. However, since we only need the diagonal blocks of the co-
variance, a lot of work can be saved. If the covariance matrix corresponding to the
camera parameters only is known, the individual point covariance blocks can be
computed very efficiently. The Hessian of a typical BA problem has the particular
structure

H =

(
A>Σ−1A A>Σ−1B
B>Σ−1A B>Σ−1B

)
=

(
U W
W> V

)
(C.10)
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(a) Plain (b) NBV, no propagation

(c) Propagation only (d) Propagation and NBV

Figure C.7: Lund Cathedral dataset (1060 images, 45770 points, 408625 projec-
tions) reconstructed using the baseline algorithm, next best view-planning only with-
out propagating covariances, propagating covariances but using the maximum over-
lap principle, and the proposed algorithm, using both NBV planning and propaga-
tion.
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Figure C.8: Error plots for the Lund Cathedral dataset.

where Σ is the measurement noise covariance matrix and U and V are block
diagonal with blocks corresponding to the cameras and points respectively. In
the fixed-gauge case, the covariance of the camera parameters is then given by
Σc = (U − WV −1W>)−1 and the covariance for point i is given by Σpi =
V −1
i W>i ΣcWiV

−1
i +V −1

i where Vi is the corresponding block of V , andWi the
corresponding rows of W (see [9] for details). Exploiting the sparsity of W , the
product W>i ΣcWi can be evaluated in time proportional to the number of cam-
eras observing point i. The dominating cost is in practice computing the camera
covariance, i.e. forming and inverting the Schur complement, typically of cubic
cost in the number of cameras. When this number is low, the covariance update
is fast (on the order of a few seconds), but as the reconstruction grows the cost
becomes prohibitive and the time would be better spent on bundle adjustment.
However, as shown above, updating the covariances is not critical to the perfor-
mance of the algorithm, and an approximation may be sufficient. For example,
experiments have shown that only inverting the diagonal blocks corresponding
to individual cameras of the Schur complement gives a reasonable approximation
to the full inverse. Nevertheless, efficient updating of the covariances remains an
open problem and is the subject of future work.
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(a) Standard method, 908 s. (b) Propagation and NBV planning, 782 s.

Figure C.9: Reconstructions of the Örebro castle dataset with 5% outliers and local
bundle adjustment every 20 iterations. The difference in processing time is due to
the plain method often failing to resection cameras using the fast linear method and
falling back on the slower but more robust L∞ solver, and more often failing and
reattempting triangulation as new views are resectioned.
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7 Conclusion

The proposed method increases robustness to errors such as poorly resectioned
cameras and poorly triangulated points, reduces error accumulation and also pro-
vides estimates of reconstruction accuracy which could be further processed for
outlier detection etc. This comes at a cost of up to a twofold increase in running
time. However, this cost is practically linear in the problem size, whereas iter-
ated bundle adjustment costs betweenO(n3) andO(n4), depending on problem
structure. Thus, trading less frequent bundling for covariance propagation and
next best view planning should pay off for large problems.
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Abstract: Bundle adjustment is an integral component of most multiple-view re-
construction algorithms in computer vision. The sparse bundle adjustment algo-
rithm exploits sparsity patterns in the problem structure and input data for effi-
cient solution. The dominating cost depends on the fill-in of the reduced camera
matrix whose pattern is known as the secondary structure of the problem. In cen-
tered object applications, where a large number of images are taken in a small area,
the camera matrix obtained when points are eliminated is dense. On the other
hand, visual mapping systems where long trajectories are traversed yield sparse
matrices. In this paper, we propose a decomposable bundle adjustment method
which naturally adapts to the fill-in pattern of the camera matrix improving the
performance of visual mapping systems. The algorithm decomposes the normal
equations into small subsystems which are ordered in a junction tree structure.
To solve the original system, local factorizations of the small dense matrices are
passed between clusters in the tree. The proposed algorithm has been tested on
simulated and real data for different environment configurations, showing good
performance.

1 Introduction

Bundle adjustment (BA) is a non-linear least squares technique used for the refine-
ment of cameras and 3D structure parameters from a set of images. The standard
reference is the work presented in [14]. Efficient solutions can be achieved by
exploiting the sparseness of the problem, known as primary structure [5], where
constraints just exist between points and cameras. The key idea is to eliminate
point elements from the system and solve for the reduced camera matrix instead.
For dense camera matrices the computational cost of BA is O(n3

c) where nc is
the number of cameras. A well optimized sparse bundle adjustment (SBA) im-
plementation is presented in [10]. In [9] the secondary structure of the system
(connections between cameras) is exploited for visual mapping applications where
long trajectories are traversed. In this case, the camera matrix becomes a sparse
system [6] which is solved using a sparse Cholesky solver (CHOLMOD [3]) along
with an engineering approach to index sparse matrices efficiently. The final solu-
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tion obtained is a maximum a posteriori (MAP) estimate of the camera poses and
the environment structure.

In this paper, we propose a decomposable bundle adjustment (DBA) method
to efficiently solve the reduced camera matrix system, obtaining at the same time
the probability marginals of the variables involved. This algorithm decomposes
the original system into smaller dense submatrices which are ordered in a tree. To
decompose the normal equations in an ordered and correct way we use a junction
tree structure [2]. The result is an exact bundle adjustment algorithm with the
following main advantages:

• We do not have to choose between dense (e.g. LAPACK Cholesky) or sparse
(e.g. CHOLMOD) linear solvers depending on the secondary structure of
the problem. Since the camera matrices in the tree are dense we can always
use dense solvers which are very well optimized.

• When the optimization ends, the small Hessian in each node of the tree
represents the marginal information matrix of the camera and point ele-
ments in that cluster.

• Matrices present in different branches of the tree can be treated indepen-
dently which means that parallel or distributed solutions can be imple-
mented to efficiently solve bundle adjustment problems.

Using a junction tree structure to decompose and solve a linearized system of
equations is closely related to the work presented in [4] and the recent and quite
interesting Bayes Tree structure proposed in [8]. The main differences with these
techniques are twofold: First, these methods are based on factorizing the measure-
ment Jacobian using QR matrix decompositions and, as a consequence, they do
not obtain clique marginals of the clusters but a MAP estimate. In our case the lo-
cal information matrices of the cameras are decomposed using Schur complement
operations, in order to calculate the belief propagation messages, which allows us
to easily recover the covariance marginals for each cluster. These marginals are im-
portant to check the decisions made during data association. Second, instead of
using a general ordering algorithm to solve the sparse system we take advantage of
the special structure of the complete information matrix in pure visual scenarios.
In visual applications the number of elements in the structure drastically outnum-
ber the camera poses. The junction tree is built according to the reduced camera
matrix, which is the costly system to solve in BA, whereas the points and observa-
tions are added afterwards. This way each tree cluster replicates in a smaller scale

72



2. Decomposable Systems

the same typical primary structure of BA. As a consequence, solving for the points
at each tree node requires linear time.

The paper is organized as follows. In Section 2 we explain the concept of
decomposable systems. Then, in Section 3 we show that the normal equations
solved in each iteration of BA are decomposable. In Section 4 we present the
proposed DBA algorithm with an explanation of its main protocol to perform
computations along the junction tree. The results on simulated experiments and
real data are presented in Section 5. The potential of the DBA algorithm to be
parallelized is treated in Section 6. Finally we draw the conclusions and discuss
future work in Section 7.

2 Decomposable Systems

This subsection is mainly based on [12]. A linear system Ux = u is called
decomposable if there is no direct relation between some of its variables. For
example, the following system U1 U12 0

U21 U2 U23

0 U32 U3

 x1

x2

x3

 =

 u1

u2

u3

 (D.1)

is decomposable since there is no direct relation between variables x1 and x3

(U13 = 0 and U31 = 0). The advantage of a decomposable system is that
it can be split into smaller subsystems. Equation (D.1) can be decomposed as
U′x′ = u′ and U′′x′′ = u′′ given by:[

U1 U12

U21 U′2

] [
x1

x2

]
=

[
u1

u′2

]
(D.2)[

U′′2 U23

U32 U3

] [
x2

x3

]
=

[
u′′2
u3

]
(D.3)

such that U2 = U′2 +U′′2 and u2 = u′2 +u′′2 . Let us express this decomposition
as U = U′ ⊕U′′ and u = u′ ⊕ u′′ where ⊕ stands for the generalized sum of
matrix or vector elements according to their index.

In order to obtain a solution for the original system, (D.2) and (D.3) can-
not be solved independently since both systems are linked by x2. Instead the
following protocol can be applied:
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1. Perform Gaussian elimination in (D.2) to eliminate the influence of x1 on
the common element x2, obtaining[

U1 U12

0 U′m2

] [
x1

x2

]
=

[
u1

u′m2

]
(D.4)

where

u′m2 = u′2 −U21U
−1
1 u1 (D.5)

U′m2 = U′2 −U21U
−1
1 U12 . (D.6)

Matrix U′m2 is known as the Schur complement of U1.

2. Add this marginal to (D.3), i.e. U′′ ⊕U′m2 and u′′ ⊕ u′m2 :[
U′′2 + U′m2 U23

U32 U3

] [
x2

x3

]
=

[
u′′2 + u′m2

u3

]
(D.7)

3. Solve for x2 and x3. To solve for x1 just apply back substitution in (D.4):

U1x1 = u1 −U12x2 (D.8)

It can be shown that this procedure is equivalent to eliminating x1 in (D.1),
solving for x2 and x3 and then applying back substitution to obtain x1.

3 Decomposable Structure of Bundle Adjustment

Given a set of measured image feature locations zij , the goal of bundle adjustment
is to find 3D point positions Pj and camera parameters Ci that minimize the L2

norm of the reprojection error r(x) [7]. Using a first order approximation for the
residuals yields a linearized least squares problem,

min
x
‖r(x + δx)‖2 ≈ ‖r(x) + Jδx‖2 (D.9)

where x comprises the set of cameras and points and J is the Jacobian of the resid-
ual. At each iteration, the step δx is calculated by solving the normal equations

(J>J + Iλ)δx = −J>r(x) . (D.10)
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Figure D.1: Bundle adjustment example. (Left) The relation between cameras and
points is given by the undirected graph G(V, E) where V is the set of vertices
representing cameras and points and E is the edge set of G. Observe that edge
(Ci, Pj) ∈ E if there is an observation zij of point j by camera i. (Right) Camera
graph GC(VC , EC) obtained when points are eliminated. Observe that cameras get
connected if they observe a common point. Matrices H and Um depicted in the
example can be interpreted as the corresponding adjacency matrices of the graphs.

The damping parameter λ is commonly added to ensure a decreasing step when
Newton directions are rejected [11]. The Jacobian J can be partitioned into
camera and point parts [JC ,JP ]. For an observation zij the corresponding
element of JC is given by JCij = ∂r(Ci, Pj)/∂Ci whereas for JP we have
JPij = ∂r(Ci, Pj)/∂Pj .

Figure D.1 left shows a simple example that will help us study the special
structure of BA. Since each row in J only relates a camera and point pair, the
information matrix and vector in (D.10) inherit a special fill-in structure called
primary structure represented by the sparse block diagonal camera and point ma-
trices U and V. Matrix W represents the pairwise relation of cameras and points.

The sparse bundle adjustment algorithm in [5] takes advantage of the primary
structure to efficiently handle the normal equations. The key idea is to eliminate
the points obtaining a smaller camera system Um, solve for the cameras and then
apply back substitution to solve for the points. When Um is sparse, the camera
system is commonly solved using CHOLMOD routines [3] in addition to re-
ordering strategies like COLAMD while in the dense case, Cholesky factorization
is implemented using LAPACK routines.

75



Paper D

After Gaussian elimination the reduced camera matrix Um is given by:
C1|1 + C1|2 C12|1 C13|2 0 0

C>12|1 C2|1 + C2|4 0 C24|4 C25|5
C>13|2 0 C3|2 + C3|3 C34|3 0

0 C>24|4 C>34|3 C4|3 + C4|4 C45|4
0 C>25|5 0 C>45|4 C5|4

 (D.11)

Figure D.1 right represents the new camera graph GC(VC , EC) obtained. The
notation used for the elements in (D.11) is chosen as a mnemotechnic rule to
easily calculate the matrix Um from graph G in Figure D.1 left. A diagonal
element Ci|j stands for the information gained about camera i due to its relation
with point j. Off-diagonal elements Cik|j represent the indirect relation between
camerasCi andCk that appears when a common observed point Pj is eliminated.
These elements are calculated as follows:

Ci|j = Uij −WijV
−1
j W>ij (D.12)

Cik|j = −WijV
−1
j W>jk (D.13)

where Uij = J>Cij
JCij , Wij = J>Cij

JPij and Vj =
∑

i\(i,j)∈EG J
>
Pij
JPij .

Expression (D.11) reflects that for visual mapping scenarios, BA produces
camera matrices Um that can be decomposable. In fact, for long camera trajecto-
ries the camera matrix becomes increasingly sparse.

4 Decomposable Bundle Adjustment using a Junction Tree

We propose a decomposable algorithm for BA based on the operations ex-
plained in Section 2. To deal with complex systems we use a junction tree struc-
ture that allows us to automatically decompose and solve the original system in
the correct order.

Given a graph G(V, E), a junction tree for G is an undirected graph T (N , ET )
with the following properties:

• Each vertex Ni ∈ N is a subset of V . These vertices are called clusters.

• For each edge (Vi,Vj) ∈ E there is some cluster Nk containing both Vi
and Vj .
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Algorithm 1 [x, T ] = DBA(x0, z)

1: Initialize λ;
2: x = x0; k = 0; stop= 0;
3: T = buildJT(x, z);
4: r = calculateJacobiansAndResiduals(T );
5: while (not stop) and (k <maxIter) do
6: k = k + 1;
7: collectEvidence(T → Nroot, λ);
8: [δx, rnew] = distributeEvidence(T → Nroot, λ);
9: if ‖δx‖ ≤ ε1(‖x‖+ ε1) then

10: stop= 1;
11: else
12: if ‖rnew‖2 < ‖r‖2 then
13: stop = (‖r‖ − ‖rnew‖ < ε2‖r‖);
14: x = x + δx;
15: updateJT(T ,x);
16: r = calculateJacobiansAndResiduals(T );
17: Decrease λ;
18: else
19: Increase λ;
20: end if
21: end if
22: end while

• For any two clusters Ni and Nj , all clusters on the unique path joining
them contain the intersection Ni ∩ Nj . For each edge (Ni,Nj) ∈ ET we
associate a separator Sij = Ni ∩Nj .

Our proposed method is shown in Algorithm 1. Before the iteration loop
starts the function buildJT builds a junction tree that decomposes the original
system by distributing cameras, points and measurements to each cluster. Then,
for each iteration, a two-way message passing protocol [1] is implemented to
solve the normal equations using the basic operations explained in Section 2. In
the first pass, the collectEvidence function propagates, from the leaves up to the
root, information of common elements between a cluster and its parent using
Gaussian elimination. In the second pass, the distributeEvidence function starts
solving for variables at the root and then goes down to the leaves performing
back substitution to solve for the remaining cluster variables. In the following
subsections we analyze in more detail these functions.
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Figure D.2: Building a junction tree from the camera graph GC . (Left) The camera
graph at each step of the vertex elimination process is shown. The elimination order
chosen is C5, C4, C3. The square surrounding a vertex shows the camera to be elim-
inated. The shadowed area represents the cluster Ni created by the eliminated node
and its neighbors. We can also see the cluster graph created during the elimination
process. Note that after camera C3 is eliminated the clusters that would be obtained
eliminating C1 or C2 would not be maximal and therefore are not shown. (Middle)
Junction tree obtained from GC . (Right) Final junction tree created after assigning
points and measurements to the corresponding camera clusters. For each cluster the
associated undirected graph of camera and points relations is also represented. Notice
that points Pj and observations zij are uniquely distributed among the tree clusters.

4.1 Building a Junction Tree

Using z and the mnemotechnic rule explained in Section 3 we build the adjacency
matrix of cameras GC . Then a junction tree for GC is built applying the following
steps:

1. Choose an ordering for VC and eliminate vertices. We assign each elimi-
nated vertex and its neighbors to a cluster Ni. After a node is eliminated
its neighbor nodes in GC get connected.

2. Build a graph with the maximal clusters, i.e. those that are not contained
in other clusters.

3. Weight each edge of the cluster graph (Ni,Nj) with the number of com-
mon elements between Ni and Nj . The junction tree is given by the max-
imum weight spanning tree of the cluster graph.

Different junction trees can be obtained for the same graph depending on the
elimination order and the maximum spanning tree chosen. In this paper we use
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COLAMD [3] for the elimination ordering. Figure D.2 left shows an example of
the construction of a junction tree. Note that a camera can belong to multiple
clusters.

Once the cameras have been distributed we uniquely assign each point Pj
and its corresponding measurements z∗j to a cluster of the tree. The cluster must
contain all the cameras from which the point is observed. If more than one cluster
fulfills the condition the point is assigned to the node with fewer elements. Figure
D.2 right shows the final junction tree obtained for our example.

4.2 Collect Evidence

An implementation of the function collectEvidence is shown in Algorithm 2. For
each cluster in the tree this algorithm recursively collects information from its
children. To facilitate the explanation we will make use of Figure D.3 left. In
the example N2 is the root of the tree with children N1 and N3. Line 4 of the
algorithm eliminates points from the current cluster system obtaining the reduced
camera matrix Um

Ni
. The camera marginals of the example can be calculated from

Figure D.2 right using the mnemotechnic rule:

C2|4 C24|4 C25|4
Um
N1

C>24|4 C4|4 C45|4
C>25|4 C>45|4 C5|4

0 0 0
Um
N2

0 C3|3 C34|3
0 C>34|3 C4|3

C1|1 + C1|2 C12|1 C13|2
Um
N3

C>12|1 C2|1 0
C>13|2 0 C3|2

Observe that the original camera matrix in (D.11) has been decomposed as
Um = Um

N1
⊕Um

N2
⊕Um

N3
.

Suppose that we are in cluster N1. In line 15 we obtain the cameras s =
(C2, C4) in common with its parent N2. In line 18 we apply Gaussian elimina-
tion to obtain the Schur complement Um

N1
(C2, C4) of C5. The same procedure

is carried out for clusterN3 obtaining the marginal Um
N3

(C2, C3) of the elements
in common with N2. Finally line 9 adds these matrices to the parent camera sys-
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Figure D.3: (Left) Collect function. Information about cameras C2 and C4 in cluster
N1 are sent to its parent N2 by means of their marginal Um

N1
(C2, C4). The same

procedure is performed by cluster N3. (Right) Distribute function. Root cluster N2

sends updated information back to its children.

tem, Um
N2

= Um
N2
⊕Um

N1
(C2, C4)⊕Um

N3
(C2, C3). Notice that we are basically

following steps 1 and 2 explained in Section 2 to solve a decomposed system.

4.3 Distribute Evidence

The distributeEvidence function is shown in Algorithm 3. Since the root contains
all the information required, line 3 directly solves for the correction δCN2 of
cameras in N2. For the rest of the clusters line 9 sends back the solution of the
common cameras to its children whereas line 10 performs a back substitution
operation to solve for the remaining camera elements in the cluster. For example,
N1 receives the correction for cameras (C2, C4) from its parent N2 and then
calculates the correction for C5 using back substitution. For all clusters in the
tree, line 13 performs back substitution to calculate point corrections. Finally, in
line 17 the function is recursively called to traverse the whole tree down to the
leaves.

5 Results

The experimental setup is based on a MATLAB comparison between the DBA
and a standard SBA implementation. For the SBA we use the MATLAB built-in
CHOLMOD library to solve sparse camera matrices. In order to speed up the
execution and provide the same resource conditions common operations of both
algorithms (i.e. computing residuals, Jacobians, and the inverse of block diagonal
matrices) have been implemented in C code using MEX functions. Both SBA
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Algorithm 2 collectEvidence(T → Ni, λ)

1: ui = J>ciri; vi = J>piri;

2: Ui = J>ciJci; Vi = J>piJpi; Wi = J>ciJpi;
3: Vi = Vi + λI;
4: [um

i ,U
m
i ] = gaussElim(ui,vi,Ui,Vi,Wi)

5:
6: for j = children(T → Ni) do
7: collectEvidence(T → Nj , λ)
8: {s: elements in Sji separator}
9: Um

i (s, s) = Um
i (s, s) + Um

j (s, s)
10: um

i (s) = um
i (s) + um

j (s)
11: end for
12:
13: if T → Ni 6= T → Nroot then
14: k = parent(T → Ni)
15: {s: elements in Sik separator}
16: {q: camera elements not in Sik}
17: Um

i (q,q) = Um
i (q,q) + λI;

18: [um
i (s),Um

i (s, s)] =
gaussElim(um

i (s),um
i (q),Um

i (s, s),Um
i (q,q),Um

i (s,q));
19: end if

and DBA run on a 2.6 GHz Pentium Core Quad provided with 4 Gb of RAM.

5.1 Running Time Evaluation on Synthetic Experiments

Experiment nP nz tSBA tDBA %

Zig-Zag 79516 1083424 2.83s 1.77s 37.46
Outward 72134 570900 3.47s 2.41s 30.62
Random 69764 798798 6.83s 4.02s 41.16

Table D.1: Synthetic experiments setup

We have designed three synthetic experiments. Cameras are placed in a regu-
lar 3D environment where points are uniformly distributed. The depth at which
a point is detected is limited to lie between 10 and 40 m. This is a valid sup-
position since in real applications objects have different levels of description at
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Algorithm 3 distributeEvidence(T → Ni, λ)

1: if T → Ni = T → Nroot then
2: Um

i = Um
i + λI;

3: δixc
= Um

i \um
i ;

4: else
5: k = parent(T → Ni)
6: {s: elements in Sik separator}
7: {q: camera elements not in Sik}
8:
9: δixc

(s) = δkxc
(s);

10: δixc
(q) = backSubs(um

i (q), δixc
(s),Um

i (q,q),Um
i (s,q));

11: δixc
=

[
δixc

(s)
δixc

(q)

]
12: end if
13: δixp

= backSubs(vi, δ
i
xc
,Vi,Wi)

14: δix =

[
δixc

δixp

]
15:
16: for j = children(T → Ni) do
17: distributeEvidence(T → Nj , λ)
18: end for

different distances. Also, to avoid geometry configuration problems, we only use
those points that are observed from at least three separate camera positions. The
first experiment consists of a set of cameras located on a zig-zag path. The sec-
ond experiment is designed such that cameras follow an inward-outward path.
For the third experiment, cameras are located randomly. For this simulation we
fixed the maximum number of points in a bounded area while in the rest of the
experiments the point cloud grows as long as we add more cameras as occurs in
exploration trajectories.

Figure D.4, shows the running time per iteration for DBA and SBA. In or-
der to analyze the scalability, both algorithms are run several times for different
number of cameras from 300 to 1500. Table D.1 summarizes the main cost per
iteration at the maximum number of cameras along with the percentage of time
reduction. The number of points and processed observations are also listed. For
both algorithms the computation time per iteration considers the time required
to carry out Schur complement and back substitution operations, as well as the
time required to solve the complete camera reduced system. For DBA we ad-
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Figure D.4: Synthetic experiments: zig-zag (left column), in-outward (middle col-
umn) and random (right column). Example of the secondary structure pattern (top).
Running time per iteration (bottom). Results obtained by increasing nC from 3 to
15 hundred positions.

ditionally consider the time of adding all the camera marginals sent by children
clusters when collecting information up the junction tree (lines 9-10 of Algorithm
2). The ‘zig-zag’ (left) and ‘in-outward’ (middle) experiments show an almost lin-
ear growth with nc since adding new cameras only changes the dimension of the
reduced camera matrix but not the pattern of the secondary structure. In these
cases, DBA achieves an average reduction rate of 36.8% and 40.65% respectively.
The ‘random’ experiment (right) yields a more connected camera graph such that
the secondary structure gets denser leading to a quadratic time growth. This oc-
curs because we increase nC in a fixed size area. On average, DBA takes 49.8%
less time than required by SBA. We have verified in all cases that the calculations
of residuals, Jacobians and forming the Hessian submatrices take the same time
for both SBA and DBA algorithms.

5.2 Evaluation on Real Data

We have carried out a comparison of DBA and the standard SBA for four real
image collections. Three of the datasets are part of the Microsoft Photo Tourism
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Experiment nC nP nz tSBA tDBA % nV JTdepth nPB

Ladybug 783 83581 372940 27.57s 11.73s 57.45 192 56 16
Public square 519 32068 286162 4.45s 2.38s 46.52 56 22 5
Trafalgar 256 65127 225688 1.97s 1.49s 24.37 86 23 19
Venice 87 110844 554826 5.59s 5.04s 9.86 4 4 1

Table D.2: Real experiments setup. Columns: number of cameras nC , number of
points nP , number of observations nz , number of junction tree clusters nV , junction
tree depth JTdepth, number of parallelizable branches nPB .

project [13]. Table D.2 summarizes the setup configuration for each collection.
The first dataset corresponds to a tree-lined avenue traversed by a car with a
mounted Ladybug sensor, a camera system providing six images at each acqui-
sition instant. The second dataset is an ordered sequence of images of a public
square. The third collection is a set of tourist images taken at Trafalgar Square. Fi-
nally, the fourth dataset corresponds to tourist pictures of a portion of Saint Mark
Square in Venice. For all datasets, a modified version of the Bundler software [13]
with partial optimization has been used to obtain the initial seed. The experi-
ments present different fill-in patterns for the reduced camera matrix as shown in
Figure D.5, left column.

For the ‘ladybug’, ‘public square’ and ‘Trafalgar’ datasets, we can identify sep-
arate regions in the secondary structure matrix mainly due to the distributed lo-
cation of the cameras in the experiments. In these cases, there is an important
computational time reduction for DBA, especially in the first two experiments
where DBA requires approximately 50% less time than SBA. The ‘Venice’ exper-
iment is an example of little gain using DBA since all cameras are looking at a
common part of the scene. For object centered applications this indicates that
DBA and SBA achieve almost the same performance. Observe that the junction
tree built for the ‘Venice’ experiment gets automatically adapted to the dense re-
lation between cameras since only 4 consecutive clusters are generated, see Figure
D.5 (bottom row).

6 Parallelization

The most costly operations of a BA method are the calculations needed to build
the camera and point Jacobians, the construction of the information vectors and
matrices and the solution of the linear system of equations. An important feature
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of the proposed algorithm is its potential capability to parallelize or distribute over
several machines most of these operations.

Since all nodes of the tree have an independent set of observations the cal-
culateJacobiansAndResiduals function can be run in parallel for all nodes simul-
taneously. For the collect and distribute functions we can take advantage of the
junction tree structure. The key insight is that calculations performed in different
branches of the tree are independent and therefore can be parallelized. For exam-
ple, line 7 in Algorithm 2 can be run simultaneously for all children of the current
node. This can be easily understood using Figure D.3 left. Observe that the ma-
trices sent to the rootN2 by clustersN1 andN3 can be calculated simultaneously.
Similarly, line 17 in Algorithm 3 can also be called in parallel. Table D.2 shows
for each of the real experiments the number of potentially parallelizable branches
nPB . Observe that for the first three experiments a Core Quad processor could
take advantage of all four cores since nPB > 4. However, it would be interesting
to reduce the depth of the junction tree JTdepth in order to make the branches of
the tree more balanced and increase nPB .

7 Conclusions

In this paper we have analyzed the decomposable structure of bundle adjustment,
which depends on the sparseness of the reduced camera matrix. To take advan-
tage of this property, we have proposed a new decomposable bundle adjustment
algorithm that automatically splits the original normal equations into smaller sys-
tems using a junction tree. A good capability of DBA is that the tree structure
gets adapted to the secondary structure of the problem revealing its natural spar-
sity. To solve the decomposed system a two-way passing algorithm based on local
Gaussian elimination and back substitution operations is implemented. An inter-
esting side effect of the message passing protocol is that each clique tree obtains
its corresponding marginal information matrix that can be used to check or carry
out data association decisions. The performance of the proposed algorithm has
been empirically evaluated using simulated and real experiments. In these ex-
periments the DBA algorithm obtains good results compared to a standard SBA
implementation for a wide range of camera configurations.

A very appealing property of DBA is that matrices present in different branches
of the tree can be treated independently. This makes DBA suitable for parallel and
distributed implementations. For future research we are interested in developing
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algorithms for multiple core systems using this technique as well as analyzing
good ordering strategies to build junction trees that increase the number of paral-
lel branches. In addition, we are interested in developing an incremental version
of this algorithm following the nice ideas presented in [8].
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Figure D.5: Real experiments: ‘ladybug’, ‘public square’, ‘Trafalgar’ and ‘Venice’.
The secondary structure matrix (left column). Junction tree built (middle column).
Obtained BA reconstruction (right column).
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