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Abstract

Background. Test automation is a widely used tech-
nique to increase the efficiency of software testing.
However, executing more test cases increases the effort
required to analyze test results. At Qlik, automated
tests run nightly for up to 20 development branches,
each containing thousands of test cases, resulting in
information overload. Aim. We therefore develop a tool
that supports the analysis of test results. Method. We
create NIOCAT, a tool that clusters similar test case
failures, to help the analyst identify underlying causes.
To evaluate the tool, experiments on manually created
subsets of failed test cases representing different use
cases are conducted, and a focus group meeting is
held with test analysts at Qlik. Results. The case study
shows that NIOCAT creates accurate clusters, in line
with analyses performed by human analysts. Further,
the potential time-savings of our approach is confirmed
by the participants in the focus group. Conclusions.
NIOCAT provides a feasible complement to current
automated testing practices at Qlik by reducing infor-
mation overload.

Index Terms

Software testing, test automation, test result analy-
sis, clustering, case study.

1. Introduction

When trying to improve software test efficiency, test
automation is often brought forward as a key solution
[1], [2]. However, while automated testing (auto test-
ing) provides the benefits of reducing manual testing,

minimizing human error, and enabling a higher testing
frequency [3, p. 466], new challenges are introduced.
With higher testing frequency the volume of test results
increases drastically. Consequently, there is a need for
tools to navigate the potential information overload [4].

Qlik1, a software company in the business intelli-
gence domain, has adopted auto testing to save time,
improve test coverage and to enable development of
new features in parallel, while assuring a high quality
product. At Qlik, automated tests (autotests) run every
night on multiple source code branches using Bamboo
(see Section 3.2). However, Bamboo simply groups test
results based on the test case (TC) names, and it is both
difficult and time consuming to manually analyze the
large amount of test results.

To support the analysis of test results, Qlik devel-
oped PasCal, a tool that clusters TC failures based on
the error message generated by the failed TCs (see
Section 3.2). However, PasCal still uses a naı̈ve clus-
tering approach: exact matching of the error messages.
Moreover, PasCal was not mainly developed to provide
an overview of the auto testing, but to automatically
generate new bug reports based on TC failures on the
main development branch.

Although PasCal is an important first step toward
improved analysis of results from autotests, there are
still several open challenges. First, there is no efficient
way to determine that specific TCs fail on multiple
branches. Second, intermittent failures due to vari-
ations in the testing environment make the results
unreliable, thus triggering re-execution of autotests.
Third, concluding that multiple TCs fail because of
the same root cause is difficult. All three challenges
are amplified by the information overload caused by

1. www.qlik.com



the auto testing, and the test analysts request support.
To improve the overview of test results, we devel-

oped NIOCAT, a tool that clusters TC failures from
auto testing in multi-branch environments. The cluster-
ing goes beyond exact string matching by calculating
relative similarities of textual content using the vector
space model [5]. Furthermore, we complement the TC
name and error message by execution information, in
line with previous work [6].

We evaluate the accuracy of NIOCAT in a case
study, using three manually constructed scenarios rep-
resentative for the work of test analysts at Qlik. In the
study, we also explore different weighting of textual
information and execution information using space-
filling experimental design [7]. Also, we qualitatively
evaluate NIOCAT through a focus group interview,
following the case study methodology proposed by
Runeson et al. [8].

In this paper, we briefly summarize related work in
Section 2 and describe the case company in Section 3.
Section 4 jointly presents NIOCAT and its evaluation
in Section 4. We present the results in Section 5, and
finally conclude the paper in Section 6.

2. Related work

Information overload affects software engineering,
as large amounts of formal and informal information is
continuously produced and modified. With the growth
of information retrieval and tools, their application to
the software engineering information overload con-
text is a natural step. Recommendation systems have
evolved as a concept to support the navigation through
large spaces of software engineering information [9].
Borg et al. summarize two decades of work in their
recent systematic review of information retrieval for
trace recovery [10]. The history covers a lot of work,
beginning with the seminal work on requirements en-
gineering by Borillo et al. [11], through trace recovery
work initiated by Anoniol et al. [12]. However, when
it comes to application to the information overload in
software testing, the list is much shorter. Only 2 out of
79 papers were about test-test or test-defect relations;
2 were about code-test relations and 10 about test-
requirements relations [10].

The information retrieval research on test artifacts is
mostly related to issue reports, starting with Runeson
et al.’s duplicate detection [8], followed by replications
[6], [13]. However, to our knowledge, there is no
previous application of information retrieval techniques
to the analysis of test results. Our approach is inspired
by the ability to use information retrieval techniques to

find duplicate bug reports, i.e. to cluster similar soft-
ware failures. The work done by Wang et al. [6] and
Lerch et al. [14] showed that execution data combined
with natural language outperforms the natural language
approach. We choose to focus only on failures found
through auto testing, and consequently, the data have
slightly different characteristics compared to the bug
reports. The text is machine generated and not written
by a human reporter. However, we investigate further
if execution data, in this case an HTML snippet, can be
incorporated into the analysis to improve the accuracy
of the clustering of test results, compared to focusing
on textual information alone.

3. Description of the Case

Qlik, a company with over 1,900 employees world-
wide (July 2014), develops business intelligence2 solu-
tions for decision support within a wide range of indus-
tries, e.g. finance, life science, retail, and telecommuni-
cations. The main product, QlikView, has evolved since
the company was founded in Lund, Sweden in 1993.
More functionality and features have been added and
the complexity has grown. The company’s next major
release is a new product called Qlik Sense, migrating
the whole user interface (UI) to web technology. In this
paper, Qlik Sense is the software under test (SUT).

3.1. Software Configuration Management

The development of Qlik Sense is divided into
several feature teams. To allow teams to develop and
maintain the same code base in parallel, a branching
strategy is in place where each team has at least
one development branch. When a team has success-
fully completed a development iteration, the new code
is delivered to the main branch. Auto tests execute
regularly for all active branches. A full system and
integration test suite runs nightly for each branch,
helping teams to detect regression in the software early.
The development branches are kept up to date with the
main branch by regularly performing forward merges.

3.2. Toolchain for Auto Testing

Qlik has developed an auto testing framework, Hor-
sie, that drives the software according to TCs specified
by scenarios written in structured natural language.
Horsie executes the steps specified in the scenarios via

2. Business Intelligence is a set of methodologies and techniques
to transform data into useful information for strategical business
decisions [15].



the Qlik Sense API. Horsie thus provides an integration
between test specification and test execution.

Qlik uses Bamboo3, a solution for continuous in-
tegration by Atlassian, to manage execution of the
autotests. Upon finishing a test suite, the test results
are made available through Bamboo’s web interface.
For each branch, the TC failures are grouped based
on the exact TC names. We refer to this approach to
cluster TC failures as BAMBOO, and later use it for
benchmarking against NIOCAT.

Two main artifacts are produced when executing
autotests. First, log files from Qlik Sense contain
execution information, and if the application crashes,
a stack trace. Second, Horsie’s log files provide infor-
mation on what methods were invoked via the Qlik
Sense API. If a TC fails, Horsie appends two further
pieces of information: 1) an error message provided by
the developer of the TC, and 2) an HTML dump of
the element in the web UI Horsie interacted with when
the TC failed. The HTML dump is a linked list with
HTML elements (including all attributes) starting from
the top level parent element, (i.e. <HTML>), followed
by a list of children down to the specific element.

Another internal tool at Qlik is PasCal, a tool that
automates bug reporting of autotest failures on the
main branch. Figure 1 presents an overview of the
process. If a TC fails, the corresponding Horsie log file
contains an error message. PasCal checks if the error
message has been encountered before by searching in
the bug tracking system using exact string matching. If
the error message has not been previously encountered,
PasCal automatically submits a new bug report. If the
error message has been reported before on the other
hand, PasCal attaches the information from the recent
TC failure to the already existing bug report. A bug
report can thus be considered a group, or a cluster,
of TC failures. We refer to this clustering approach
as PASCAL, and later use it for benchmarking against
NIOCAT.

3.3. Current Challenges in Test Analysis

Several challenges are associated with the analysis
of autotest results at Qlik. Three challenges are con-
sidered particularly important by the test analysts:

Cross Referencing Failures (“Does this TC fail
on multiple branches?”): Each development branch
produces test results from auto testing. However, there
is no easy way to map what TC failures occurred on
which branches. As autotests run nightly for between
ten and fifteen branches, the amount of autotest results

3. https://www.atlassian.com/software/bamboo

Figure 1. Overview of PasCal, a tool for automated
bug reporting. If a new error message is encoun-
tered, PasCal creates a new bug report.

Figure 2. Overview presented by Bamboo dis-
playing autotest results from 18 branches. Cross
referencing TC failures requires manual navigation
into individual branches.

make it practically impossible for a human analyst to
get a proper overview of the current problems in the
SUT. Figure 2 shows the overview of the test results
for multiple branches, as it is presented in Bamboo.
Several autotest suites fail, but three of the failing
branches have only one TC failure, “Ver12.00-dev-ft-
personal”, “Ver12.00-dev-ft-ratatosk” and “Ver12.00-
dev-ft-ratatosk-responsive-grid”. Since Bamboo does
not provide a way to cross reference TC failures
between the branches, the test analyst must manually
navigate into each branch to determine if the same TC
has failed on all three branches.

Intermittent Failures (“Is this really a problem?”):
Qlik refers to TCs that irregularly fail because of
variations in the testing environment (e.g. timing is-



Figure 3. Overview presented by Bamboo show-
ing results from nine consecutive autotest execu-
tions on the same branch. Neither the SUT nor the
TCs changed between the test runs, indicating an
intermittent failure.

sues caused by unbalanced load of test servers) as
“intermittent failures”. Figure 3, also a screen shot
from Bamboo, shows that consecutive execution of
autotests for the branch “main for stability testing”
yields different results. Note that neither the SUT nor
the TCs have changed between the different runs, but
still the test results vary. To determine whether a TC
failure is due to a “real” problem in the SUT, or to an
intermittent failure, typically the autotests are executed
several times. If an overview of all branches with a
particular TC failure was available, the time spent re-
executing the autotests could be saved.

Root Cause Analysis (“Do these TCs fail for the
same reason?”): The same TCs can fail in different
ways, i.e. the same TC may fail in different ways in
different branches. For example, a six-step TC could
fail at any step, but still the same TC name would be
presented by Bamboo. To identify differences between
the two TC failures, additional information about the
failure, such as the error message, has to be taken
into account. Similarly, two different TCs might fail
in a step that both TCs have in common, e.g. an intial
setup step. These problems should not be treated as
two different issues, as the common trigger is the setup

Figure 4. NIOCAT generates a clustering of TC
failures based on user selected autotest results.

phase. Again, a naı̈ve comparison using only the TC
name would not identify this common root cause. A
clustering of all TCs that fail during the same step, i.e.
share a common root cause, would support a timely
resolution of the issue.

4. Study Design and Solution Approach

As the development and evaluation of NIOCAT
were tightly connected, this section contains a joint
presentation. First, based on the background and
challenges described in Section 3, we state two
research questions. Then, the rest of this section
presents the details of NIOCAT, the corresponding
evaluation, and the major threats to validity.

RQ1 How can clustering of test case failures help
test analysts at Qlik navigate the information
overload caused by automated testing?

RQ2 Can execution data be used in addition to textual
information to improve the clustering of test case
failures?

4.1. Solution Approach – NIOCAT

Our approach to support the test analysts at Qlik is
to introduce a tool for high-level analysis of autotest
results. We name the tool NIOCAT – Navigating
Information Overload Caused by Automated Testing.
The output from NIOCAT is a clustering of TC
failures from a user selected set of autotest results.
NIOCAT aims to group similar TCs failures, i.e. each
cluster should represent a unique issue in the SUT,
containing one or several TC failures.

Figure 4 illustrates how NIOCAT processes autotest
results from multiple branches to generate clusters of
TC failures. The small circles represent TC failures,
whereas larger circles depict TC failures that have been
grouped together. To support interactive navigation of
the NIOCAT output, we use QlikView (see Section 3)
to present the results.



Clustering TC failures provides the test analysts a
starting point for further investigation. Test analysts
can use NIOCAT in different ways, what use case
is supported depends on the analyst’s choice of input
autotest results. The use case for a development team
leader might be to analyze data from test runs within
the last seven days, for the team’s branch only. A
configuration manager on the other hand, might look
for a bigger picture and a typical use case could be
to analyze the results from the latest test run for each
development branch.

4.1.1. Representing a TC Failure. NIOCAT repre-
sents a TC failure by three components. Two com-
ponents consist of natural language text: 1) The test
case name (TC Name), and 2) The test case error
message (Message). NIOCAT does not perform any
pre-processing of the textual content in TC Name and
Message. The third component contains execution in-
formation. As the UI of Qlik Sense (the SUT) is based
on web technology, Horsie executes TCs using a web
browser. Thus, the underlying HTML of the elements
that Horsie interacts partly reveals the execution state
of the Qlik Sense application. NIOCAT extracts the
HTML of the element that Horsie interacted with when
the TC failed, including all attributes and parent nodes
(as described in Section 3.2). The HTML is filtered to
contain only element and attribute names as well as
attribute values.

4.1.2. Clustering Algorithm. NIOCAT implements
a clustering algorithm based on cosine similarity in
the vector space model [5]. We define the similarity
between a TC failure and a cluster as the average
similarity between the new TC failure and all TC
failures already in the cluster. The similarity measure
between two individual TC failures is calculated as
a weighted average of the cosine similarities of the
three different components representing a TC failure.
By configuring the component weighting (i.e. putting
emphasis on either TC Name, Message, or HTML),
NIOCAT can be tailored to for the specific use case
at hand. Finally, we we defined a threshold for how
similar two TC failures should be to appear in the
same cluster. A detailed description of the clustering
algorithm follows:

1) Let B = {b1, b2, ..., bn} be the set of development
branches, and biR = {bir1, bir2, ..., birl} be their
respective test results, where n is the number of
branches and l is the number of test runs for
branch bi.

2) Represent each TC failure as a document d that
belongs to (only) one cluster c of documents that
represents a unique problem with the software
product. Let D be the set of all documents rep-
resenting TC failures for all branches, and let C
be the set of all clusters.

3) For each document di ∈ D do
a) Represent the di as three vectors ~di1, ~di2 and

~di3. Each vector is built using the terms in
that component (i.e. TC NAME, Message, and
HTML respectively).

b) Retrieve the clusters cj ∈ C that have been
created so far. Let the documents Dj =
d1j , d

2
j , ...d

k
j be all the documents belonging to

cluster cj .
c) For each pair (di, cj), compute a similarity

score sim(di, cj) between the document and
the cluster. The score is based on the average
similarity score between the document di and
the documents Dj within the cluster cj , such
that

sim(di, cj) =

∑k
t=1 docSim(di, d

t
j)

k
(1)

where

docSim(di, d
t
j) =

∑3
l=1 wl · cosSim(dil, d

t
jl)∑3

l=1 wl

.

(2)
The document to document similarity score
is based on a weighted average similarity
score cosSim(a, b) for each document compo-
nent and wl are the weights for the compo-
nents, respectively. The component similarity
cosSim(dil, d

t
jl) is computed as the cosine

similarity

cosSim(dil, d
t
jl) =

~dil · ~dtjl
‖ ~dil‖ × ‖ ~dtjl‖

(3)

d) Retrieve the cluster cmax with the highest
value of sim(di, cj). If sim(di, cj) is greater
than a predefined threshold T , add di to the
cluster cmax.

4.2. Evaluation Approach – Case Study

We conduct a two phase industrial case study at
Qlik. In the first phase, we quantitatively evaluate the
accuracy of NIOCAT using three reference clusterings
manually created by a test analyst. Using this gold
standard, we systematically tuned the parameters for
the component weighting in the clustering algorithm.
In the second phase, we asked other test analysts at
Qlik for their views in a focus group interview.



RefClust A RefClust B RefClust C
Date of first auto test 2014-03-27 2014-03-23 2014-03-28
Sample period 1 night 1 night ≈1 week
#Branches 2 10 1
#Auto test runs 2 10 9
#Test cases 6,696 33,160 26,464
#Test case failures 25 11 61
#Clusters 4 9 13

Table 1. Characteristics of the three reference
clusterings: A=“compare with main”,
B=“overview all development”, and

C=“analyze single branch”.

4.2.1. Reference Clusterings. There is no single
archetypical NIOCAT use case, thus we created three
reference clusterings (cf. Table 1 RefClust A-C) rep-
resenting important use cases with different charac-
teristics. A test analyst at Qlik created the reference
clusterings, originating from recent auto testing, by
manually examining TC failures from three selected
use cases. The work involved investigating screen
shots, reading log files and interpreting error messages,
in line with the test analyst’s everyday work tasks.

RefClust A represents a use case of comparing
autotest results from two different branches; main
and development. The same suite of autotests were
executed for the two branches during the same night,
resulting in 7 and 18 TC failures, respectively. The test
analyst identified that the TC failures fall into four
distinct problem areas. One of the problems caused
ten TC failures across the two branches, while another
problem caused only one failure in one branch. Two
of the problems caused seven failures each.

RefClust B contains autotest results from one nightly
run of auto testing for all development branches, thus
representing an overview use case. Although more than
30, 000 TCs were executed, only 11 of them failed,
reflecting a more mature state of the SUT. In contrast to
RefClust A, most TC failures for RefClust B originate
from unique problems (9 out of 11).

RefClust C represents a use case of analyzing a
single branch, containing autotest results from nine
consecutive test runs over one week. All autotest
results, including 61 TC failures, originate from auto
testing of a single development branch. The test analyst
classified the TC failures into 13 clusters of various
size. The three largest clusters contain 18, 11 and 8 TC
failures, respectively, while the remaining 10 clusters
contain fewer than six TC failures.

4.2.2. Evaluation Measures. To evaluate the accuracy
of NIOCAT, we compare different clusterings gener-
ated by NIOCAT with corresponding reference cluster-

ings (i.e. gold standards) for three selected use cases.
As recommended in previous clustering research, we
use Adjusted Rand Index (ARI) as a measure for
evaluating different partitions of the same data set
[16], [17]. ARI between a reference clustering and
clusters generated by NIOCAT gives the percentage
of correct decisions, calculated pairwise as described
in Appendix A. We use ARI to enable benchmarking
[18] of both different NIOCAT configurations and the
two baselines BAMBOO and PASCAL (described in
Section 3.2).

4.2.3. Component Weight Tuning. Four parame-
ters configure the NIOCAT clustering algorithm, the
weight of each component in the similarity calculation
(TC Name, Message, and HTML), and the similarity
threshold (T). To identify a feasible parameter setting
for NIOCAT, we systematically evaluated different set-
tings using a uniform space-filling experimental design
[7].

We calculated the ARI for the NIOCAT clusterings
of RefClust A-C with weights ranging from 0.0 to 1.0,
with increments of 0.05. As the weighting of the three
components sums up to 1, we evaluated almost 5, 000
different combinations. Furthermore, we use a decre-
mental approach to explore T, i.e. we iteratively reduce
the similarity threshold for clusters. Our decremental
approach to identify a feasible clustering similarity
is similar to the incremental approach proposed by
De Lucia et al. for trace recovery using information
retrieval [19].

The outcome from the systematic parameter tuning
is reported in triangle graphs (cf. Figures 5–7), in
which each dot represents a parameter setting. A dot
in the center indicates a setting with weights equally
distributed between the different components, and a dot
in the bottom-left represents a setting with emphasis
put on the similarity of the error message, etc.

4.2.4. Evaluation Based on Qualitative Feedback.
As stated by Runeson et al. [20] much of the know-
ledge that is of interest for a case study researcher is
possessed by the people working in the case. Thus,
as a complement to the evaluation based on ARI for
the reference clusterings, we conducted a focus group
interview to receive qualitative feedback of our work.
A focus group is basically a session where data is
collected by interviewing several people at the same
time [20].

Three people from the R&D department at Qlik
participated in the focus group. Two of them work
with configuration management and process automa-
tion, and their daily work involves analysis of results



from auto testing. The third participant works with
development of the autotest framework and is also
working with analysis of autotest results on a regular
basis. Details of the focus group meeting can be found
in Appendix B.

4.3. Threats to Validity

In this work, the primary aim is to support the
case company, thus construct and internal validity are
more important than external validity and reliability.
However, for the generalization of the results, the latter
two are relevant as well.

The construct under study is the analysts’ navigation
of output from autotests. We have collected both the
objective measures of ARI and the subjective opin-
ions from the focus group meeting, together forming
triangulated input data, that improves the construct
validity. The internal validity is primarily concerned
with causal relations, and the only one in this case is
whether the presence of the tool causes the observed
effects. The “Hawtorne effect” can of course never be
excluded, but considered having a minimal impact in
this case, as the tool is the major treatment.

The external validity of the results depend on the
similarity of the development context to others. The
case with several parallel branches is not unique to
Qlik, and neither is the information overload created
from test automation. The reliability of the study is
also relatively good, as the treatment is a tool, which
parameters are openly explored and evaluated; thus
the same results would be achieved by another set of
researchers.

5. Results and Discussion

In this section, results for the two different evalua-
tion techniques are presented. We present the highest
achieved ARI for each reference clustering and the
corresponding parameter setting. The section ends with
the results from the the focus group interview.

5.1. Clustering Accuracy of NIOCAT

Using the best parameter settings, NIOCAT achieved
an ARI of 0.59 for RefClust A (“compare with main”).
This accuracy of the clustering was obtained using
22 different parameters settings as shown in Figure 5,
corresponding to T ranging from 0.85 to 0.55. As seen
in the figure, the highest ARI was achieved by settings
weighting TC Name and Message higher than HTML.
Also, the best settings for RefClust A shifts from up-
weighting Message to TC Name as T decreases.

Figure 5. Optimal NIOCAT settings for RefClust A
wrt. ARI. Textual information is the most important.

For RefClust B (“overview all development”), NIO-
CAT achieves an ARI of 1, corresponding to clustering
identical to the manually created reference clustering.
Figure 6 depicts the parameter settings (almost 400)
that yield the optimal clustering, with T ranging from
0.95 to 0.6. At high levels of T, i.e. a strict clustering
threshold, up-weighting HTML and Message is favor-
able. As T decreases however, TC Name continuously
gains importance.

NIOCAT achieves an ARI of 0.96 for RefClust C
(“identify intermittent failures”) using four different
parameter settings. Figure 7 shows that a balanced
weighting of the components in the similarity calcula-
tion obtains the best results.

The results show that the optimal NIOCAT settings
vary across the three use cases. However, we observe
that when T is high, up-weighting HTML and Message
is favorable. This appears reasonable, as HTML and
Message consist of more machine generated content
than TC Name. Thus, when relying on TC Name for
clustering, T should be relaxed to capture variations
in the natural language. Nevertheless, it is evident that
NIOCAT must provide an intuitive way of changing
the setting, preferably with instant graphical feedback
on the effect of the clusters.

Table 2 summarizes the accuracy of NIOCAT on
RefClust A-C. The table also shows the accuracy of
the baseline approaches to clustering: BAMBOO and
PASCAL. As described in Section 3.2, both BAMBOO



Figure 6. Optimal NIOCAT settings for RefClust B
wrt. ARI. Best weighting depends on T.

Figure 7. Optimal NIOCAT settings for RefClust C
wrt. ARI. A balanced setting is the best.

and PASCAL rely on exact string matching. It is
evident that the naı̈ve grouping of TC failures offered
by BAMBOO is much less accurate than NIOCAT,
as its ARI for all reference clusterings is close to
zero. PASCAL outperforms BAMBOO, and for both
RefClust B and C at least half of the pairwise relations
between TC failures (i.e. in the same cluster, or in dif-
ferent clusters) are correct. However, NIOCAT creates
more accurate clusters than PASCAL, and the achieved
ARI is higher for all three reference clusterings.

5.2. Feedback from the Focus Group

The answers to all the questions regarding the use-
fulness of NIOCAT were positive. All participants
expressed that the output from NIOCAT provides an
improved overview of the current development status,
as compared to the current approach.

Regarding what conclusions could be drawn by

BAMBOO PASCAL NIOCAT
RefClust A 0 0.15 0.59
RefClust B 0 0.65 1
RefClust C 0.2 0.5 0.96

Table 2. ARI for RefClust A-C using the three
clustering approaches. PASCAL and BAMBOO

both rely on exact string matching, using
Message and TC Name respectively.

exploring the output in Qlik Sense, the participants
confirmed that they were able to cross-reference fail-
ures and problems across branches, a valuable feature
in decision making related to the test analysis.

A specific characteristic that the participants ob-
served was the wide spread of problems through the
SUT, meaning that, given a specific problem, an an-
alyst can quickly find how many branches that are
affected. Global frequency for either a specific TC or
for a particular problem was mentioned as a further
benefit of NIOCAT, i.e. how often a problem is
occurring or how often a specific TC fails across all
branches. A participant highlighted that it was valuable
to see how many TC failures in total that a problem
has caused.

One of the participants is responsible for deciding
whether a development team is allowed to deliver its
code changes to the main branch or not. Using NIO-
CAT, s/he could quickly determine which problems
were isolated to one specific development branch. If
the problem only occurs on one branch, that team is
obviously responsible for the failure and thus may not
deliver its changes to the main branch.

The participants discovered several new NIOCAT
use cases during the focus group. The overview pro-
vided by NIOCAT enabled the participants to see what
problems were the most common across all branches.
The participants quickly figured out that a measure-
ment of priority thus could be established, which was
not previously possible. This is a use case we had not
previously thought of.

Another comment from the group was that the
teams, using the information provided by NIOCAT,
can quickly determine if a TC failure is occurring
on other branches. This could help them determine
if they should invest more resources in investigating
the TC failure or if it originates from another team.
The third use case that was new to us, was suggested
as a long term perspective of the tool. A participant
pointed out the possibility to identify problem areas
guided by NIOCAT. The test developers could then
extend their test suites around the areas where many



problems occur.
Regarding the potential usage of NIOCAT, two of

the three participants explicitly stated that they would
use NIOCAT in their daily work if it was available to
them. The third participant estimated that his potential
usage would be on a daily to weekly basis. To further
benefit from the output of NIOCAT the focus group
would like to see direct links to even more information
about the TC failures, e.g. the original log files and
screenshots generated by Horsie.

During the focus group meeting, the participants re-
quested a full analysis across all development branches
with data from a week back from the time of the meet-
ing. During a short break we performed a NIOCAT
analysis of the requested data and presented the output
to the group. The group members were fascinated by
what could be accomplished within a few minutes and
the results caused an intense discussion. Based on the
output, they were eager to take action and discuss
problems with development teams. One of the partici-
pants stated “an overview like this does not currently
exist”. Another participant expressed immediate need
and eagerness to start using the tool. Other quotes from
the group members were “the following few weeks
until the tool is put into production will be painful
since we know how much the tool could help us” and
“imagine all the noise and administration you would
get rid of using this tool”.

6. Conclusion

The overall aim of this study is to help test analysts
at Qlik to overcome the information overload caused
by auto testing in multi-branch development. To help
the results analyst navigate the enormous information
volumes produced by autotests, we developed NIO-
CAT, a tool that analyses test results across different
development branches.

We conclude from the analysis of three reference
clusterings and a focus group interview that (RQ1),
NIOCAT provides an overview that currently does
not exist, and that the participants are eager to start
using the tool in their daily work. Further, the clusters
created by NIOCAT allows a user to quickly discover
information such as on what branches a problem is
occurring and how many test runs failed because of a
certain problem.

Exploring combinations of parameter settings (RQ2)
we conclude that regardless of size and character of
the input data, NIOCAT outperforms the two baseline
approaches by a large margin in regards to partition-
ing TC failures into accurate clusters of problems.
Thus, considering a combination of execution data (i.e.

HTML) and textual information improved the accuracy
of the clustering compared to clustering based on
textual information alone.

Although there is room for further improvements
and enhancements, e.g. preprocessing the textual data
representing a TC failure, the feedback was exclusively
positive and the life of NIOCAT at Qlik will continue
with deployment and real world evaluation.

Epilogue

Six months after development, NIOCAT is now de-
ployed in the Qlik production environment, integrated
with the rest of the testing toolchain.

Appendix A.
Adjusted Rand Index

The rand index, RI , is calculated using the equation

RI =
tp+ tn

tp+ tn+ fp+ fn
(4)

where tp, fp, tn, and fn are the number of pairs,
classified as true/false positives and true/false nega-
tives, respectively. Thus, the rand index is the fraction
of correctly classified pairs of data points among all
pairs of data points [21].

The rand index is intuitive but has several known
drawbacks, e.g. it is highly dependent on the number of
clusters. The Adjusted Rand Index (ARI) was proposed
to overcome these issues [16]. ARI can be calculated
based on the variables from equation 4 for RI [17].
ARI can thus be computed with the following equation

ARI =
ab− c

a2 − c
, (5)

where a, b and c are defined as:

a = tp+ fn+ fp+ tn, (6)

b = tp+ tn, (7)

c = (tp+ fn)(tp+ fp) + (fp+ tn)(fn+ tn). (8)

Appendix B.
Focus Group Procedures

We conducted the focus group in a number of
phases, as suggested by Runeson et al. [20].
i) We explained the concepts of a focus group to the
participants, followed by a brief description of the
purpose with our work.
ii) We explained how NIOCAT works and demon-
strated an example. After the demonstration the par-
ticipants got to navigate and try NIOCAT themselves.



iii) Next, the interview was conducted, based on five
questions:

1) Do you have a clearer overview of the test results
now than you had before?

2) Looking at the result you can see and navigate
through in QlikView, can you draw any conclusions?

3) Would NIOCAT be of use for you in your daily
work? If yes, how? If no, what is needed for you to
use it in your daily work?

4) Is there anything else that you would like
NIOCAT to present, or anything you would like to
change?

5) Do you have any other comments?
iv) We summarized our major findings to confirm that
the participants’ opinions and ideas from the focus
group had been properly understood.

Acknowledgments

The authors would like to thank Lars Andersson at
Qlik for initiating the study. Part of this work was
funded by the Industrial Excellence Center EASE4 –
Embedded Applications Software Engineering.

References

[1] P. Runeson, “A survey of unit testing practices,” IEEE
Software, vol. 23, no. 4, pp. 22–29, 2006.

[2] E. Engström and P. Runeson, “A qualitative survey
of regression testing practices,” in Proc. of the 11th
International Conference on Product-Focused Software
Process Improvement, 2010, pp. 3–16.

[3] I. Burnstein, Practical Software Testing. Springer,
2003.

[4] M. J. Eppler and J. Mengis, “The concept of informa-
tion overload: A review of literature from organization
science, accounting, marketing, mis, and related disci-
plines.” Inf. Soc., vol. 20, no. 5, pp. 325–344, 2004.

[5] G. Salton, A. Wong, and C. S. Yang, “A vector space
model for automatic indexing,” Commun. ACM, vol. 18,
no. 11, pp. 613–620, 1975.

[6] X. Wang, L. Z. 0023, T. Xie, J. Anvik, and J. Sun,
“An approach to detecting duplicate bug reports using
natural language and execution information.” in Proc.
of the 30th International Conference on Software En-
gineering, 2008, pp. 461–470.

[7] L. Pronzato and W. Müller, “Design of computer ex-
periments: Space filling and beyond,” Statistics and
Computing, vol. 22, no. 3, pp. 681–701, 2012.

4. ease.cs.lth.se

[8] P. Runeson, M. Alexandersson, and O. Nyholm, “De-
tection of duplicate defect reports using natural lan-
guage processing.” in International Conference on Soft-
ware Engineering, 2007, pp. 499–510.

[9] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zim-
mermann, Recommendation Systems in Software Engi-
neering. Springer, 2014.

[10] M. Borg, P. Runeson, and A. Ardö, “Recovering from a
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