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Abstract
Shock waves are discontinous solutions to quasi-linear partial differential equa-
tions, and can be studied through a singular perturbation known as the van-
ishing viscosity technique. The vanishing viscosity method is a means of
smoothing the shock, and we study the case of electromagnetic waves in bian-
isotropic materials. We derive the conditions arising from this smoothing
procedure for a traveling wave, and the waves are classified as fast, slow or
intermediate shock waves.

1 Introduction

Electromagnetic waves propagating in an instantaneously reacting material can be
modeled with a system of quasi-linear, partial differential equations. It is well known
that such a model can exhibit shock solutions, i.e., solutions which become discon-
tinuous in finite time even if the initial/boundary data are smooth. This poses
severe problems for numerical methods, such as finite difference schemes, which are
often based on the assumption of continuous and differentiable solutions.

In order to overcome this problem, we can model the material on a finer scale,
which requires a denser grid and thus increases the memory demands and the com-
putation time. Another approach, is to develop more powerful numerical methods,
which can handle discontinuous solutions. The development of these numerical
schemes benefits from an understanding of the propagation of shock waves; for in-
stance, Godunov’s scheme is based on the solution of Riemann’s problem [14, 15],
where the shock wave is generated by discontinuous initial data. A variation of
Godunov’s scheme is Glimm’s scheme, which is used to show global existence of
solutions to certain systems of equations [13, 20].

The aim of this paper is to increase the understanding of electromagnetic shock
waves, modeled with the Maxwell equations. Mainly using techniques from [31],
we analyze the wave propagation in bianisotropic materials, i.e., materials with
different properties for different polarizations of the waves, and a possible coupling
between the electric and the magnetic field [23, p. 7]. This adds insight not only
to the numerical treatment of electromagnetic waves in complicated materials, but
also provides some physical intuition.

The Maxwell equations can be considered as a hyperbolic system of conservation
laws. A good introduction to the numerical approximation of such systems is given
in [14], which introduces the analytical theory as well as some common schemes in
one and two spatial dimensions. There is presently not a good mathematical un-
derstanding of systems of conservation laws in several dimensions, but some general
references are [7, 14, 20, 30, 34].

Perhaps the most familiar kind of “electromagnetic” shock wave is in the field of
magnetohydrodynamics, from which we give only a few references [1, 6, 10, 12, 17],
[25, pp. 245–253]. Electromagnetic shock waves in isotropic media have previously
been treated theoretically, see [25, pp. 388–391], [2] and references therein. Re-
cently, a few papers on experiments concerning electromagnetic shock waves have
been published [3, 4, 8]. In continuum mechanics, G. A. Maugin has recognized the
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similarity between shock waves and phase transition fronts as singular sets in irre-
versible motion, with a dissipation related to the power expanded by a driving force
on the singularity set, see [27, 28].

In this paper, we study when the shock waves can be defined as the limit of
continuous traveling wave solutions to an approximate problem, where the discon-
tinuity is smoothed over a small region. This is the shock structure problem, which
was introduced by Gel’fand [11], and is given an extensive treatment in [33]. A thor-
ough treatment of this problem in magnetohydrodynamics is found in [10], and a
recent paper deals with the structure of electromagnetic shock waves in anisotropic
ferromagnetic media [19].

This paper is organized as follows. In Section 2 we introduce the Maxwell equa-
tions and the constitutive relations used to model the electromagnetic waves, as well
as the general form of the entropy condition. In Section 3 we present the vanishing
viscosity method of smoothing the solutions of quasi-linear, hyperbolic equations.
The consequences of the vanishing viscosity method for traveling waves are studied
in Sections 4 and 5, where we show that there exists three kinds of electromagnetic
shock waves: the fast, the slow, and the intermediate shock wave. In Section 6 we
also mention another form of dicontinuous solutions, contact discontinuities, which
cannot be analyzed with the vanishing viscosity method for traveling waves. How-
ever, they exist only under the condition of linear degeneracy, and we present this
condition and its opposite, genuine nonlinearity, in Section 6. The different kinds
of shock waves are illustrated with phase portraits of a certain system of ordinary
differential equations in Section 7, and some concluding remarks are made in Sec-
tion 8.

2 The Maxwell equations, constitutive relations

and the entropy condition

In this paper we use a slight modification of the Heaviside-Lorentz units for our fields
[21, p. 781], i.e., all electromagnetic fields are scaled to units of

√
energy/volume,{

E =
√
ε0ESI

H =
√
µ0HSI

{
D = 1/

√
ε0DSI

B = 1/
√
µ0BSI,

(2.1)

where E and H is the electric and magnetic field strength, respectively, and D and
B is the electric and magnetic flux density, respectively. The index SI is used to
indicate the field in SI units. We use the scaled time t = c0tSI, where c0 = 1/

√
ε0µ0

is the speed of light in vacuum, and the constants ε0 and µ0 are the permittivity
and permeability of free space, respectively. The six-vector notation from [18, 31],
i.e.,

e =

(
E

H

)
, d =

(
D

B

)
, ∇× J =

(
0 −∇× I

∇× I 0

)
, (2.2)
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enables us to write the source free Maxwell equations in the compact form

∇× Je + ∂td = 0. (2.3)

In this paper we treat the six-vectors as column vectors, i.e., we write the scalar
product as eTd =

∑6
i=1 eidi. This is merely for notational convenience and does not

capture the full mathematical structure, which is not needed here. On occasions, we
also consider the scalar product between two three-vectors, in which case we use the
standard notation E · D =

∑3
i=1EiDi. For more ambitious attempts to construct

a six-vector notation, we refer to [18, 26].
The Maxwell equations must be supplemented by a constitutive relation, whose

purpose is to model the interaction of the electromagnetic field with the material.
When the material reacts very fast to stimulance, we can model it with an instan-
taneous constitutive model, where the values of the electric flux density D and the
magnetic flux density B are completely determined by the values of the electric field
strength E and magnetic field strength H at the same point in spacetime. We write
this as

d(r, t) = d(e(r, t)), (2.4)

where d(e) is the gradient of a scalar function φ(e) with respect to e, i.e., in
terms of thermodynamics, the field gradient of the thermodynamic potential (or
the free energy density or the free enthalpy density) [5, 25]. We use the notation
d(e) = φ′(e) to denote this derivative, i.e., di(e) = ∂φ/∂ei, i = 1, . . . , 6. The
model is passive if we require that the symmetric 6×6 matrix d ′(e) = φ′′(e), where
[d ′(e)]ij = ∂2φ/∂ei∂ej, is a positive definite matrix, which is the case if the scalar
function φ(e) is a convex function.

The initial value problem for the Maxwell equations with an instantaneously
reacting constitutive model is

∇× Je + d ′(e)∂te = 0, e(x, 0) = e0(x), (2.5)

and since d ′(e) is positive definite and symmetric, this is by definition a quasi-
linear, symmetric, hyperbolic system of partial differential equations [34, p. 360].
This system has been extensively studied in [31], where it is shown that the equations
in general support two waves, the ordinary and the extraordinary wave, each with
its own refractive index.

Due to the quasi-linearity, the system (2.5) may exhibit shock solutions, i.e.,
even if we give smooth initial data, the solution becomes discontinuous in finite
time. This means that the derivatives cannot be classically defined everywhere, but
we can make a weak formulation of the problem by requiring the equality∫ ∞

0

∫
R3

[eT∇× Jϕ + d(e)T∂tϕ] dV dt+

∫
R3

d(e0)
Tϕ(x, 0) dV = 0 (2.6)

to hold for all six-vector test functions ϕ defined on R
3 × [0,∞), i.e., vector-valued

functions which are infinitely differentiable with compact support. One problem
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with this weak formulation is that we lose uniqueness, i.e., there are several weak
solutions e which satisfy the above criteria.

If the solution e to (2.5) is smooth, we can multiply the equations from the left
by eT to obtain the Poynting theorem, or energy conservation law,

∇ · S(e) + ∂tη(e) = 0, (2.7)

where S(e) = E × H is the Poynting vector, and η(e) = eTd(e) − φ(e) is the
electromagnetic energy. When the solution e is not smooth, this inequality is no
longer valid since the derivatives are not defined in the classical sense. However, as
is shown in [32], it is reasonable to replace it with the inequality

∇ · S(e) + ∂tη(e) ≤ 0, (2.8)

which is interpreted in a weak sense, i.e., for all scalar test functions ϕ ≥ 0 defined
on R

3 × [0,∞), the inequality∫ ∞

0

∫
R3

[S(e) · ∇ϕ+ η(e)∂tϕ] dV dt+

∫
R3

η(e0)ϕ(x, 0) dV ≥ 0 (2.9)

holds. The inequality (2.8) is called an entropy inequality, and if e satisfies both
(2.8) and (2.5), it is called an entropy solution. It is frequently conjectured that
entropy solutions are unique [14, p. 32], and we refer to [32] for a discussion of the
physical interpretation of this inequality. In the following section, we show how the
entropy inequality is a natural consequence of the vanishing viscosity method.

3 Vanishing viscosity regularization

The loss of uniqueness for the weak solution is important to resolve if we want to
make numerical approximations of the differential equations. This problem has been
extensively studied for scalar conservation laws and systems of conservation laws in
one space variable [9, 14, 20, 33, 34], where the conservation law is typically written
∂tu+

∑
i ∂xi

fi(u) = 0. The knowledge of systems of conservation laws in several space
variables is limited, but a common assumption is that reasonable (physical) solutions
should arise as limits to the regularized equation ∂tuδ +

∑
i ∂xi

fi(uδ) = δ∇2uδ, when
δ → 0. Since the second order derivative is often used as a model for a small
viscous effect, this method is called the vanishing viscosity method. The benefit of
the vanishing viscosity method is that for each δ > 0 we can usually prove that the
initial value problem is well posed, with unique, differentiable solutions. We can
define a unique limit u as δ → 0 if we can find a convergent sequence of solutions
{uδ}. However, this limit u must also be shown to satisfy the original conservation
law, which is often nontrivial. For systems of conservation laws in several dimensions,
this is still an unsolved problem [30].

We propose to use a similar method to define solutions to our quasi-linear system
of equations, where we study the equations

∇× Jeδ + ∂td(eδ) = δ∇2eδ, eδ(x, 0) = e0(x), δ > 0. (3.1)
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Standard PDE theory guarantees a C∞ solution eδ to this equation for every δ > 0
for suitable e0, see [34, pp. 327–332]. An important result is that if the viscosity
solution eδ converges boundedly almost everywhere in the limit δ → 0, the limit
satisfies the entropy condition from the previous section. To see this, multiply (3.1)
with eδ and observe


eT

δ ∂td(eδ) = ∂t(e
T
δ d(eδ) − φ(eδ)) = ∂tη(eδ)

eT
δ ∇× Jeδ = ∇ · (Eδ × Hδ) = ∇ · S(eδ)

eT
δ ∇2eδ = −|∇eδ|2 + ∇2|eδ|2/2,

(3.2)

where η(eδ) is the electromagnetic energy in the medium and S(eδ) is the Poynting
vector. Note that all the derivatives are classically defined, and we have the following
scalar inequality,

∇ · S(eδ) + ∂tη(eδ) ≤ δ∇2|eδ|2/2. (3.3)

It can be shown that if eδ is uniformly bounded in the supremum norm and converges
almost everywhere to e as δ → 0, then this limit solution e is a weak solution to
(2.5) and satisfies the inequality

∇ · S(e) + ∂tη(e) ≤ 0 (3.4)

almost everywhere, see [14, p. 27] and [34, p. 438]. In the following sections, we
study the consequences of the vanishing viscosity method in the case of traveling
waves, which provides us with a more precise means of writing the entropy condition.

4 Inner solutions and shock structure

In this section we largely follow the ideas presented in many textbooks, e.g., [9, pp.
600–603], [14, pp. 79–83], [33, pp. 508–510] and [34, p. 431]. Dropping the index δ
for brevity, we investigate the singularly perturbed Maxwell equations (3.1) for the
existence of solutions in the form of traveling waves,

e = e(
z − vt

δ
) = e(ζ), (4.1)

where we have chosen z to be the coordinate in the propagation direction, and v is
the speed of the shock wave. We also require the derivative e′(ζ) to disappear as
ζ → ±∞, and a typical situation is depicted in Figure 1. In the language of singular
perturbation theory [22], the traveling wave corresponds to an inner solution of the
problem (3.1), and is a means of analyzing the microscopic behavior of the solution
at a scale of order δ. The microscopic properties of a number of discontinuities which
are distant at a macroscopic scale can be treated by considering them as isolated
traveling waves of the type (4.1). Observe that ζ → ∞ does not necessarily mean
z → ∞, it is sufficient that z > vt and δ → 0.

The traveling wave solution (4.1) must satisfy the ordinary differential equation

ẑ × Je′ − v{d(e)}′ = e′′, (4.2)
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z

shock transition region
(inner solution)

er

el

(outer solution)

(outer solution)

e

δ

Figure 1: A typical traveling wave profile. The idea is that the inner solution shall
provide a smooth transition between the outer solutions, the left and right constant
states el and er. The solution typically arises in Riemann’s problem, where the
initial values are e(x, 0) = e0(x) = el for z < 0 and er for z > 0.

where ẑ denotes the unit vector in the z-direction. Observe that this equation does
not involve the parameter δ, reflecting the fact that we are studying properties at a
certain scale. Integrating the above equation once implies

ẑ × Je − vd(e) − e′ = ẑ × Jel,r − vd(el,r) − (e′)l,r, (4.3)

where el,r = limζ→∓∞ e(ζ). Taking the opposite limit e → er,l in (4.3) implies the
Rankine-Hugoniot jump condition

ẑ × J[[e]] − v[[d(e)]] = 0, (4.4)

where we use the notation [[e]] = er − el and [[d(e)]] = d(er) − d(el) to indicate the
jumps in the quantities e and d(e) over the shock. Note that the Rankine-Hugoniot
condition is a vector identity, and that the jump in d(e) cannot have a component
parallel to ẑ, unless v = 0.

We use the assumption (e′)l,r = 0 to write (4.3) as a system of autonomous,
ordinary differential equations,

e′ = ẑ × J(e − el,r) − v(d(e) − d(el,r)), (4.5)

with the asymptotic boundary conditions limζ→∓∞ e(ζ) = el,r. It is clear that these
states are critical points for the system (4.5), i.e., the right hand side is zero for
these states. In the following section we investigate when the system (4.5) has a
solution, and what conditions this infers on the speed v. The corresponding ODE
for ferromagnets described by the Landau-Lifshitz constitutive equation is studied
in detail in [19] .
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5 The entropy condition for a traveling wave

A solution to (4.5) that connects its critical points el and er, where el �= er, is called
a heteroclinic orbit [29]. Before investigating these orbits, we show that homoclinic
orbits, i.e., solutions where el = er and e �= el,r somewhere on the orbit, cannot
exist. Multiplying (4.5) with (e′)T we obtain

0 ≤ |e′|2 =
(
eTẑ × J(

e

2
− el,r) − vφ(e) + veTd(el,r)

)′
= ψ(e)′, (5.1)

which shows there exists a scalar function ψ(e) which is nondecreasing along the
orbit. Such a function must be constant on a homoclinic orbit, implying |e′|2 = 0,
and thus e must be constant throughout the orbit, which degenerates to a point.

The existence of a heteroclinic orbit for the system (4.5) requires that the unsta-
ble manifold of one critical point intersects the stable manifold of the other, where
the unstable and the stable manifold is associated with the positive and the nega-
tive eigenvalues of the linearized problem, respectively. If the heteroclinic orbit is to
be stable under small perturbations, then the sum of the dimensions of the stable
and unstable manifold must exceed the dimension of the phase space [33, p. 509].
In our case, the relevant manifolds are the unstable manifold for el and the stable
manifold for er. The dimensions of these manifolds can be calculated from counting
how many eigenvalues of the linearized equations that are greater/lesser than zero
at each critical point. The linearized equations are

(e − el,r)′ =
[
ẑ × J − vd ′(el,r)

]
(e − el,r). (5.2)

Temporarily denoting the 6 × 6 matrix d ′(el,r) by A, the problem of deducing the
dimension of the stable and unstable manifolds consists in counting positive and
negative eigenvalues for the matrix ẑ × J − vA. Since A is positive definite, the
signs of the eigenvalues are the same as for the problem

[ẑ × J − vA]ui = λiAui ⇒ [ẑ × J − (v + λi)A]ui = 0. (5.3)

Using the same technique as in [31], we formulate this eigenvalue problem as

ciwi =
√

A
−1

[ẑ × J]
√

A
−1

wi, (5.4)

where
√

A is the symmetric, positive definite square root of A, ci = v + λi, and
wi =

√
Aui. The matrix in the right hand side is a congruence transformation of

ẑ × J, and it is well known that such a transformation does not change the signs
of the eigenvalues [16, p. 251]. Since ẑ × J has the (double) eigenvalues ±1 and 0,
there are always two negative eigenvalues c3,4 < 0 and two zero eigenvalues c5,6 = 0.
This implies λ3,4,5,6 ≤ −v < 0. The argument concerning the dimensions of the
stable and unstable manifolds can then involve only the positive eigenvalues c1 and
c2, and the corresponding λ1 and λ2. In order for the sum of the dimension of the
unstable manifold (λ > 0) at el and the dimension of the stable manifold (λ < 0)
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at er to be larger than six (the dimension of the phase space), one of the following
conditions must hold:


0 < λ1(e

l) < λ2(e
l) and λ1(e

r) < 0 < λ2(e
r), or

λ1(e
l) < 0 < λ2(e

l) and λ1(e
r) < λ2(e

r) < 0, or

0 < λ1(e
l) < λ2(e

l) and λ1(e
r) < λ2(e

r) < 0.

(5.5)

Observe that the dimension of the unstable manifold at el is calculated from the
number of positive eigenvalues, i.e., the number of positive eigenvalues in the left
column of (5.5). The dimension of the stable manifold at er is calculated from the
number of negative eigenvalues, i.e., the number of negative eigenvalues in the right
column of (5.5) plus four, since we deduced earlier that λ3,4,5,6 are always negative.

The two positive eigenvalues c1,2 = v + λ1,2 are identified as the characteristic
wave speeds in the material, which are determined from the eigenvalue problem (5.4)
for each state el,r, as in [31]. The speeds are in general functions of both the state, el

or er, and the propagation direction, ẑ, but we choose to suppress the dependence
on the propagation direction since this is constant in this paper.

The conditions on λ1,2 above can be written in terms of the shock speed v and
the characteristic wave speeds c1,2 as


v < c1(e

l) < c2(e
l) and c1(e

r) < v < c2(e
r) (slow shock)

c1(e
l) < v < c2(e

l) and c1(e
r) < c2(e

r) < v (fast shock)

v < c1(e
l) < c2(e

l) and c1(e
r) < c2(e

r) < v (intermediate shock).

(5.6)

These expressions constitute the entropy conditions for electromagnetic, plane shock
waves. The nomenclature “fast shock” and “slow shock” is in accordance with [19]
and [10], and “intermediate shock” is from [10]. Note that the fast and the slow
shock are closely connected to the ordinary and extraordinary rays for anisotropic
materials, see for instance [23, pp. 68–71] and [25, pp. 331–357].

To conclude this section, we note that our entropy condition is analogous to the
Lax entropy condition for an n-dimensional, strictly hyperbolic system of conserva-
tion laws ut + f(u)x = 0. This condition is that there should exist an index k such
that {

λ1(u
l) < · · · < λk−1(u

l) < v < λk(u
l) < · · · < λn(ul)

λ1(u
r) < · · · < λk(u

r) < v < λk+1(u
r) < · · · < λn(ur),

(5.7)

where λ1(u), . . . , λn(u) are the eigenvalues of the n × n matrix f ′(u) and v is the
shock speed (see for instance [9, p. 589], [14, p. 76], [20, p. 61], [33, p. 261]).

6 Genuine nonlinearity and contact discontinu-

ities

When ci(e
l) = ci(e

r) for i = 1 and/or i = 2, one or several of the conditions (5.6)
may not be applicable. This phenomenon occurs for a type of waves called contact
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discontinuities, which are characterized by

ci(e
l) = ci(e

r) = ci(e) and ẑ × J(e − el,r) − ci(d(e) − d(el,r)) = 0, (6.1)

for all e ∈ γ, where γ is a smooth curve connecting el to er in R
6. Differentiating the

latter condition along the curve γ, implies [ẑ × J − cid
′(e)]ė = 0, where ė denotes

the tangential derivative of e along this curve. This means ė is proportional to the
eigenvector ei by definition. That the speed is constant on the curve γ can also be
written

0 = ċi = (De ci)
Tė = (De ci)

Tei, (6.2)

where De ci denotes the gradient of the speed ci with respect to the six-vector e, i.e.,
(De ci)k = ∂ci/∂ek. This means that the eigenvector ei must be orthogonal to De ci.
We say the field ei is linearly degenerate if eT

i De ci = 0, and genuinely nonlinear if
eT

i De ci �= 0, see e.g., [14, p. 41]. One reason for the term linearly degenerate is
that contact discontinuities travel along non-crossing characteristics, just as in the
linear case. An interesting feature of contact discontinuities is that their structure
is not captured by the traveling wave ansatz, since the right hand side of (4.5) is
identically zero. In this paper, we restrict ourselves to investigating a few explicit
examples.

Our first example is a constitutive relation which always has one linearly de-
generate field. For an instantaneously reacting, isotropic, nonmagnetic material, we
have the constitutive relations

D(E) = F (|E|2)E, B = H . (6.3)

It is not difficult to prove that the characteristic speeds are

c1(E) =
1√

F (|E|2) + 2F ′(|E|2)|E|2
, c2(E) =

1√
F (|E|2)

, (6.4)

with the corresponding eigenvectors defined by ei = (Ei,H i)
T, where H i = ẑ ×Ei

for i = 1, 2, and

E1(E) = E/|E|, E2(E) = ẑ × E/|E|. (6.5)

Since the speed is independent of H , we have eT
i De ci = Ei ·DE ci for i = 1, 2. From

the explicit expressions (6.4) it is seen that DE c1 ∼ DE c2 ∼ E, where the ∼ sign
indicates proportionality. It is clear that E1 ·DE c1 �= 0 and E2 ·DE c2 = 0, i.e., the
field E1 is genuinely nonlinear and E2 is linearly degenerate. We interpret a wave
where the change in E is orthogonal to E, i.e., ∂tE ∼ E2, as a circularly polarized
wave. This is motivated by the fact that the amplitude |E| does not change, but the
vector E appears to rotate when observed as a function of time at a given point in
space. Thus, we have found that circularly polarized waves in an isotropic medium
are linearly degenerate.
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Our second example is a constitutive model where there are no linearly degen-
erate fields. The model is

D(E) = (1 + C · E)E +
|E|2

2
C, B = H , (6.6)

which is not valid for all E, since D′(E) = (1 + C · E)I + CE + EC is not
positive definite everywhere. However, it is positive definite if |C||E| < 1/3, and
thus the model suffices as an approximation for E small enough. For this model,
the three-vector C represents a “nonlinear axis” of the material, which is obviously
anisotropic. It is straightforward to show that when both C and E are orthogonal
to ẑ, we have

c1,2 =
1√

1 + 2C · E ± |E||C|
, and E1,2 =

E

|E| ±
C

|C| , (6.7)

where the upper sign corresponds to c1 and E1, and H1,2 = ẑ × E1,2. The scalar
product Ei · DE ci from which we analyze genuine nonlinearity can be shown to be

E1,2 · DE c1,2 = −3

2

C · E/|E| ± |C|
(1 + 2C · E ± |C||E|)3/2

. (6.8)

We see that one of these quantities is zero if E is parallel or antiparallel to C, but
any situation inbetween means E1 · DE c1 �= 0 and E2 · DE c2 �= 0. This shows
that this model usually has no linearly degenerate fields, and contact discontinuities
occurs only when the electric field is parallel or antiparallel to the axis C. We
conclude this example by noting the peculiarity that when the scalar product C ·E
is negative, the characteristic speeds c1,2 may be larger than one, which is the speed
of light in vacuum in our units. This may further restrict the validity of this model.

7 Numerical demonstration of shock structure for

an anisotropic material

In this section we show numerically that there exists a structure (an inner solution
dissipatively connecting two states) for a nonlinear anisotropic material. In order to
present a concise example, we regularize the Maxwell equations in the electric field
only, i.e., {

−∇× H + ∂tD = −δ∇2E

∇× E + ∂tB = 0.
(7.1)

The benefit of this approach is to reduce the phase space of the resulting system
of ordinary differential equations to two dimensions, which enables us to plot the
phase space easily. The approach is reasonable if we consider the Faraday law to
be exact, and a similar technique is sometimes used for equations describing gas
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dynamics [9, p. 602]. The anisotropic material is described by the constitutive
equation

D(E) =


(2 + |E|2)Ex

(3 + |E|2)Ey

(4 + |E|2)Ez


 , B = H , (7.2)

where in this section the fields are dimensionless, see [31] for details on the scaling.
This model has an anisotropic linear part and an isotropic nonlinear part, i.e.,
practically the same example material as in [31].

The system of ordinary differential equations corresponding to (4.5) becomes


E ′
x

E ′
y

E ′
z

0
0
0




=




0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0







Ex − El,r
x

Ey − El,r
y

Ez − El,r
z

Hx −H l,r
x

Hy −H l,r
y

Hz −H l,r
z




− v




(2 + |E|2)Ex − (2 + |El,r|2)El,r
x

(3 + |E|2)Ey − (3 + |El,r|2)El,r
y

(4 + |E|2)Ez − (4 + |El,r|2)El,r
z

Hx −H l,r
x

Hy −H l,r
y

Hz −H l,r
z



. (7.3)

With El,r
z = H l,r

z = 0 we have Ez = Hz = 0 throughout the shock, and |E|2 =
E2

x + E2
y . By eliminating the magnetic field and the z-components, we obtain the

following 2 × 2 system of ordinary differential equations,(
Ex

Ey

)′
=

1

v

(
Ex − El,r

x

Ey − El,r
y

)
− v

(
(2 + E2

x + E2
y)Ex − (2 + (El,r

x )2 + (El,r
y )2)El,r

x

(3 + E2
x + E2

y)Ey − (3 + (El,r
x )2 + (El,r

y )2)El,r
y

)
,

(7.4)

which contains all the qualitative information we need. We remark that this system
can be integrated exactly for certain values of El,r

x and El,r
y , but we refrain from

exploiting this possibility in this paper. Phase portraits, i.e., plots of the vector
fields on the right hand side of the equations above, are found in Figures 2, 3 and
4 for a fast shock, an intermediate shock and a slow shock, respectively. Figure 5
depicts the phase portrait for a shock with mixed polarization, and Table 1 lists the
relevant numbers used in each phase portrait. It is clearly seen from the figures that
there exists a path connecting the critical points.

8 Discussion and conclusions

By studying a parabolic regularization of the quasi-linear Maxwell equations, we
have proposed a classification of electromagnetic shock waves into three categories:
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Fig. El
x El

y Er
x Er

y v cl
1 cl

2 cr
1 cr

2 ∆
2 0.000 0.000 0.500 0.000 0.667 0.577 0.707 0.555 0.603 −0.011
3 0.200 0.000 1.000 0.000 0.556 0.573 0.687 0.447 0.500 −0.087
4 0.788 0.000 1.000 0.000 0.476 0.509 0.525 0.447 0.500 −0.002
5 0.617 0.472 1.000 1.000 0.400 0.478 0.574 0.342 0.475 −0.059

Table 1: Relevant values for the phase portraits. The last column is the entropy
difference ∆ = ẑ · (S(er)−S(el))−v(η(er)−η(el)), and since all the numbers in the
column are negative, we see that all the waves satisfy the original entropy condition
(2.8).

–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Ey

0 0.2 0.4 0.6
Ex

Figure 2: Phase portrait of a fast shock wave structure problem. The critical
points are (El

x, E
l
y) = (0.000, 0.000) and (Er

x, E
r
y) = (0.500, 0.000).

slow, fast and intermediate. This classification depends on how the shock speed
relates to the characteristic speeds in the material, which in turn depend on the
field strengths on both sides of the shock. These shock conditions can probably be
improved with the help of Conley’s index theory, as in [10, 33].

There also exists an additional kind of discontinuity, the contact discontinuity,
which only occurs for linearly degenerate fields. In particular, we have showed that
circularly polarized waves in isotropic, nonlinear media, exhibits contact discontinu-
ities. The further study of contact discontinuities is beyond the scope of this paper,
but it is seen from the analysis in Section 6 that it is important to understand which
constitutive relations that permit a linearly degenerate field.

We consider the parabolic regularization term ∇2e merely as a mathematical
technique used in order to obtain a well posed problem, and do not require it to
have a physical interpretation. Though, it is noteworthy that it may arise as a
consequence of a multiple scale analysis of a more detailed constitutive relation,
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–0.04

–0.02

0
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Ey
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Figure 3: Phase portrait of an intermediate shock wave structure problem. The
critical points are (El

x, E
l
y) = (0.200, 0.000) and (Er

x, E
r
y) = (1.000, 0.000).

for instance when temporal and/or spatial dispersion is taken into account. The
dispersion can be modeled with a convolution, for instance d = χ1 ∗ e + χ2 ∗ e ∗ e,
where ∗ denotes temporal and/or spatial convolution. Introducing a microscopic
and a macroscopic time or space variable and performing a formal multiple scale
expansion, it is found that the leading order term of the solution should satisfy
∇× Je + ∂td(e) = δD2 e, where D2 is a second order differential operator in time
and/or space. In the case of D2 = ∂2

t , i.e., “temporal viscosity”, we note that even
though we obtain exactly the same analysis for a traveling wave profile as for the
term ∇2e used in this paper, this version of the Maxwell equations is noncausal,
and very difficult to treat in more than one spatial dimension. A similar system of
equations in one dimension is studied as a boundary value problem in [24], and the
influence of the noncausality is found to be small when δ is small.
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