LUND UNIVERSITY

A general power-series expansion method for scalar analysis of the guided modes in
an optical fiber

Lundin, Richard

1987

Link to publication

Citation for published version (APA):

Lundin, R. (1987). A general power-series expansion method for scalar analysis of the guided modes in an
optical fiber. (Technical Report LUTEDX/(TEAT-7003)/1-20/(1987); Vol. TEAT-7003). [Publisher information
missing].

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

« You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/cb42fe12-5569-4d79-90bd-6653460ccc4c

CODEN:LUTEDX/TEAT-7003)/1-20/(1987)

A General Power-Series Expansion
Method for Scalar Analysis of the
Guided Modes in an Optical Fiber

Richard Lundin

Department of Electroscience
Electromagnetic Theory

Lund Institute of Technology
Sweden




Richard Lundin

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
P.O. Box 118

SE-221 00 Lund

Sweden

Editor: Gerhard Kristensson
(© Richard Lundin, Lund, 1987



A General Power-Series Expansion Method
for Scalar Analysis of

the Guided Modes in an Optical Fiber

Richard Lundin
Department of Electromagnetic Theory, Lund University,

Institute of Science and Technology, S-221 00 Lund, Sweden.

A power-series expansion method for approximate analysis of
the guided modes in a cylindrical, radially inhomogeneous,
dielectric waveguide is presented. The method is developed
for an arbitrary piece-wise polynomial permittivity
profile. The solution of the scalar wave equation is
constructed by a sequence of power-series expansions.
Convergence is ensured and accuracy maintained by
regulating the distance (= the steplength) between
successive expansion points. It is demonstrated, by
analytical reasoning and numerical examples, that a short
steplength is inefficient. The characteristic equation and
the cutoff condition are expressed in a unified manner. The
method presented is competitive in terms of accuracy

achieved and computing time required.



INTRODUCTION

An optical fiber can be idealized to a cylindrical
dielectric waveguide (see Fig. 1l and Fig. 2). In order to
investigate the propagation characteristics of the guided
modes, Maxwell's equations must be solved. A general (i.e.
treating an arbitrary piece-wise polynomial permittivity
profile) and exact (i.e. no approximation in the process of
solving Maxwell's equations) power-series expansion method
(abbreviated PSEM) is presented in Ref. 1. In this paper a
corresponding general PSEM is presented which solves the
well-known scalar equation exactly. Since scalar analysis
involves an approximation the analysis is approximate.

The formulas are less complex in the scalar case. As a
consequence the computer programming is easier. If multi-
variable optimization is to be performed then the shorter
computer time required by scalar analysis may prove
advantageous. The result obtained by scalar analysis may be
adjusted and verified by exact analysis. Further, a basis
for comparative study is provided by the corresponding

methods of exact and scalar analysis.

MAXWELL'S EQUATIONS

Maxwell's field equations are



X
an=je(r)ziz, (2)
0

where e(r) is the relative permittivity profile, Zg is the

wave impedance of vacuum and kg is the vacuum wavenumber,
kg = 2n/lo , . (3)

where A; 1s the vacuum wavelength. If terms involving &' (r)

are neglected then

VE +e(r) K2E = 0, (4)

VPH + e (r) k>H = 0. (5)
The electric and magnetic field vectors of a guided mode
can be expressed as

E =e(r)u + jey(r) uy+ je,(r)u,, (6)

H = ?% gp(r) u, + é; g (r) u, + g: g,(r) u, , (7)
where the common factor

exp(j(ot -Bz-vp)) (8)

has been omitted.



SCALAR ANALYSIS

The transverse field function R(s) is a bounded solution

of the scalar wave equation

2
R''(s) + TR'(s) + [e-2" - D51 R(s) =0, (9)
S

where the normalized radial coordinate s is defined as

0]
]

kor = 2nr/lo , (10)
and the normalized propagation constant A is defined as
A = ﬁ/ko = Deffective - (11)

The normalized propagation constant A can be interpreted as
\ \ , , 2

an "effective refractive-index" and the quantity A as an

"effective relative permittivity". If the maximum value of

the relative permittivity is ¢; and the cladding value is e,

then

SA <eg . (12)

R and R' are, as a consequence of Eg. (8), continuous
functions of the normalized radial coordinate s. A
discontinuity in the permittivity profile & induces a

discontinuity in R'"'.



Wnen v =0 the scalar solution is

and

When v# 0 the scalar

BE-/FH modes:

where

r =1,
ey = R,

g = —AR,

9, = - [R'+< R],
m =1,

e, = R,

9o = AR,

e, = —'% [R'+ T R]

solution 1is

m = |v| + q,
e, = R,
U
e(p_qlvl ’
1 . m
e, = - I [R"+ g ;-R],
v
9r = 9 7 MR,
9 = AR,
Vv m
9: = ~a 57 [R'"*+a g RI,

(13a)

(13b)

(13c)

(13d)

(14a)

(14b)

(l4c)

(14d)

(15a)

(15b)

(15c)

(154d)

(15e)

(15%)

(15g)



q=-1 = HE-mode, (16a)

q=+1 & EH-mode. (16b)

m=20,1, --- , (17a)
and

Il =1,2, «+- . (17b)

The scalar expressions for the transverse amplitude
functions € 7 €y + 9, and Jde @re exact solutions of the
first and second components of Egs. (4) and (5). For

example, the first component of Eg. (4) 1is

1 2 1+v 2v
e ' + ;‘er' + [e=-A - 32 ]l e, - ;5 o = 0. (18)

The scalar expressions for the axial amplitude functions e,
and g, are subsequently obtained from the third components

of Egs. (1) and (2). In this process the approximation

€ = A (19)

is made. Substitution of the scalar expressions into Egs.

(1) and (2) demonstrates that scalar and exact analyses

coincide only in the case of TE-modes.



A POWER-SERIES EXPANSION METHOD

The method of undetermined coefficients is now employed
to solve Eq. (9). This mathematical technique is described
in Ref. 2. The fiber profile e(s) is assumed given as in
Ref. 1. The transverse field function R is expressed at an

arbitrary expansion point p as

a,(p) (s-p)". (20)

o
]
Jlea8

At the origin p=0 and substitution of Eq. (20) into

Eg. (9) yields

a, = 0, n <m, (21la)

an = Cyy (21b)
2 Lo

an = 2 2 [ -A an_z + Z el an_z__l ], n > m, (ZlC)

where C; is an arbitrary constant and

a_; = 0. (21le)

If Ly is less than zero then the sum in Eg. (21c) is zero.

At an expansion point p#0 the coefficients a; and a; are

obtained through proper summation of the previous power-
series (R and R' are continuous). Again, substitution of

Eq. (20) into Eqg. (9) yields



1 2 2
a = [ Aa,_, + 2pA a -1
n+2 (n+1) (n+2)p2 n-2 n

Ly

2
+ (p2x2+m2_n2)an - p(n+l) (2n+l)a_,; - l§ p e a

L, Lj
- X 2pejja - X e0ay; 1, n=20,1, «--, (22a)
l= =
where
Ly = min(n,Nm+k—l), k=1,2,3 (22Db)
The solution in the core is
R(s) = C; Ry (s), s £ koa, (23)
and the solution in the cladding is
2 1/2

. o , 3
where K, are modified Bessel functions The boundary

condition at the core-cladding interface is (R and R' are
continuous)

2 2
2 2 2 2

where

Sg = kgpa. (27)



The condition for a non-trivial coefficient-vector (C1,Cy)

to exist is
2 1/2
det D = - R, (l-12) / Kyp' + Ry K, = O. (28)

The normalized propagation constants corresponding to
guided modes appear as zeroes of the characteristic

equation (28). At cutoff the solution in the cladding is

R(s) =Cy s, s 2 koa, (29)

and the boundary condition is

-m
-m-1
Consequently the cutoff condition is
-m-1 -m
det.D =R, m S, + Ry s, = 0. (32)

The characteristic equation (28) and the cutoff condition

(32) can be unified into

Ly = [m+h (w)] Rl/so4-Rl' = 0, (33)

where

w = (12—82)1/250 ’ (34)
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and

h (w) w K1 (W) /K (W), w > 0, (35a)

hy (0)

]
o

(35b)

It is evident from (9) that the origin is a singular
point. If the power-series representing the relative
permittivity profile e(s) is infinite, then there may be
singular points of & in the complex s-plane. Normally the
profile is given as piece-wise polynomial and then the
origin is the only singular point.

The steplength § must be less than the radius of
convergence. If the profile is piece-wise polynomial then
the radius of convergence is infinite when expanding at the
origin and equal to the distance to the origin, i.e. equal
to p, when expanding at p#0. The steplength must also, of
course, be less than or equal to the distance to the next
profile expansion point Pn- The steplength may also,
especially in multi-mode fibers, be limited by loss of
accuracy due to the appearance of terms of great magnitude
and alternating signs.

A graded profile may be approximated as piece-wise
constant. Then Eg. (9) can be solved in each layer in terms
of Bessel functions. Arnold et al.4 compare the efficiency
of this approach with the efficiency of a fourth order

Runge-Kutta method. It is found that the Runge-Kutta method
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is superior to the stratification method in its computing
time by a substantial factor (=20). Arnold points out
that the stratification procedure itself introduces an
error of 0(8) in each layer (=step) and that redundant
information is generated when evaluating the Bessel
functions. When employing a fourth order Runge—-Kutta method
the error in each step is 0(85) and the total error is
08" .

Consider now the power-series expansion method. We want
to investigate, qualitatively, how accuracy and computing
time depend on steplength 8 and expansion order N. The
investigation is based on the assumption that the behavior
of the coefficients of the oscillating function R(s) is
comparable with the behavior of the elementary functions
sine and cosine. Consequently the absolute value of term

number n is estimated as
8" /n! . (36)

If the terms are summed up to and including term number N

then the error E can be estimated as

E =8 1/ (N+1) !, (37)

and consequently

1/ (N+1)

= [E- (N+1)! ] (38)
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The accuracy in each step is estimated by E and the
computing time in each step is proportional to N. The total
computing time is thus proportional to N/§. The absolute
value of the greatest term in expression (36) can be
estimated as

tmax = max(l, 88/8!) . (39)

If the sum is assumed to be approximately unity then the

number of lost significant figures can be estimated as
10
10g (tpa,) - (40)

Numerical values are given in Table 1l and 2. Stirling's

formula is

N! = N exp (-N) (21:N)1/2,_ N =1,2, -+ r (41)
and yields

N/d = e = 2.71, N >> 1, (42)

10g(5°/8!) =~ %log(e) -5 = 0.43 5  § >> 1. (43)

The total error is the accumulated effect of the errors
in each step. Thus, for a certain fixed degree of accuracy
in each step, a shorter steplength will produce a larger

total error. It is evident from Table 1l and 2 that a small
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steplength is inefficient in terms of computing time. A
fourth order Runge-Kutta method corresponds to expansion
order N equal to four. If a high degree of accuracy is
required then the reduction in computing time when changing
from a fourth order method to a high order method may be
very substantial. A very long steplength is prohibited by
severe loss of accuracy. For example, if the machine
precision is eight decimal digits then all accuracy is lost

if a steplength 8=20 is employed.

NUMERICAL EXAMPLES

The efficiency of the power-series expansion method is
compared with the efficiency of a fourth order Runge-Kutta
method. The computing time for a single evaluation of the
function L, was measured for different expansion
orders (PSEM) and different steplengths (R.-K.). This was
done for a single-mode step-index fiber (see Fig. 3) and
for a single-mode triangular-ring fiber (see Fig. 4).
Realistic fiber parameters were chosen and a fixed trial
value of the normalized propagation A constant was used.
The step-index core-profile was, of course, represented by
a single constant. The triangular-ring core-profile was
represented by a second degree polynomial (linear in
refractive index) and two constants. When employing the

PSEM the quantities R, (sy) and R,;'(s,) were computed in a



single-step (step-index fiber) and three steps (triangular-

ring fiber). The machine precision was 18 decimal digits.
These numerical examples indicate that if a high degree

of accuracy is required then the PSEM is superior by a very

substantial factor.

CONCLUSION

A power-series expansion method, which solves the well-
known scalar wave equation for an arbitrary pliece-wise
polynomial permittivity profile, has been presented. This
PSEM is, at least if a high degree of accuracy is required
and for certain permittivity profiles, superior in terms of
computing time when compared with short steplength methods

such as stratification methods and Runge-Kutta methods.

14
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Tablel. Six-figure accuracy in each step (E=10 )

Table 2. Twelve-figure accuracy in each step (E=10

Fig. 1. A cylindrical structure.

Fig. 2. The relative permittivity profile.

Fig. 3. Computing time as a function of accuracy achieved
in a single-mode step-index fiber. The dashed line
represents a fourth-order Runge-Kutta method and the solid

line represents the power-series expansion method.

Fig. 4. Computing time as a function of accuracy achieved
in a single-mode triangular-ring fiber. The dashed line
represents a fourth-order Runge-Kutta method and the solid

line represents the power-series expansion method.
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expansion steplength computing number of
order time lost figures
10
N ) N/§ log(tmax)
4 0.12 33.6 0.0
10 1.12 8.9 0.0
20 3.89 5.1 1.0
40 10.53 3.8 3.7
80 24.73 3.2 9.6
Table 7
expansion Steplength computing number of
order time lost figures
10
N § N/§ log(tmax)
4 0.008 .532.1
10 0.32 31.2
20 2.01 9.9
40 7.51 5.3 .
80 20.85 3.8 8.0

Tabls 2
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