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Abstract

The main goal of this paper is to establish general constitutive relations for
the electromagnetic fields E,D,B and H in a time domain setting. The four
basic assumptions of the medium are linearity, invariance to time translations,
causality and continuity. These four assumptions imply that the constitutive
relations are convolutions of Riemann-Stieltjes type. A review of the classifi-
cation of media in bianisotropic, biisotropic, anisotropic and isotropic media,
respectively, is made. Dissipation and reciprocity are defined and the con-
straints these concepts make on the constitutive relations are analyzed in
detail. Furthermore, an appropriate form of time reversal and functions of
positive type are introduced and some consequences of these concepts are
showed.

1 Introduction

The Maxwell equations for the macroscopic electromagnetic fields are well known

{
∇× E = −∂tB
∇× H = J + ∂tD.

(1.1)

These equations, however, are not complete. Six more equations, the constitutive
relations, have to be added relating the electric field E, the magnetic induction B,
the displacement field D and the magnetic field H to each other. These constitutive
relations are completely independent of the Maxwell equations. The Maxwell equa-
tions involve only the fields and their sources. The constitutive relations, however,
are concerned with the equations of motion of the constituents of the medium in an
electromagnetic field [16]. Traditionally, these constitutive relations are described
as a relation at fixed frequency. The intensified interest in transient phenomena,
however, especially wave propagation properties in more complex media, motivates
a fresh look at these problems from a different starting point.

The constitutive relations in its most general form are usually given as a relation-
ship between the pairs of fields {D,H} and {E,B}. Other combinations between
different pairs of fields are also frequently used [25]. The constitutive relations used
in this paper can formally be written as a general functional dependence

{
D = D ({E,B})
H = H ({E,B}) . (1.2)

If space is empty the vacuum relations between the fields hold, i.e.

{
D = ε0E
H = B/µ0,

(1.3)

where ε0 and µ0 are the vacuum permittivity and permeability, respectively. The dif-
ference between the non-vacuum relations and the vacuum ones reflects the presence
of a medium.
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The most frequently used constitutive relations in the literature deal with the
case of no coupling between the electric and the magnetic fields. Electric polar-
ization and magnetization are then two separate phenomena and the constitutive
relations separate into two functionals; one relating the electric fields, E and D, to
each other and a separate one relating the magnetic fields, B and H . There are,
however, several classes of materials that do show magneto-electric behavior, and
these are modelled by a coupling between the electric and magnetic fields in the
constitutive relations. The general name for these constitutive relations having a
coupling between the electric and the magnetic fields is bianisotropic media [25].

Magnetic crystals that lack the symmetry of spatial inversion and the symmetry
of time reversal, i.e. all spin directions reversed, can show magneto-electric behavior.
Examples of these materials are Cr2O3 and related oxides [10, 29, 30]. More exam-
ples, such as moving dielectric media, are found in O’Dell [31], who refers to these
media as magneto-electric media. In O’Dell [31] (see also [1] and [24]) the questions
related to the absence of a thermodynamical equilibrium in magneto-electric media
are also addressed. Other types of media that show magneto-electric behavior are
the chiral media. A newborn interest in these media is noted by the extensive new
literature in the field, see e.g. [2, 3, 11, 12, 20, 21, 27].

Several constitutive relations have been suggested as models for the magneto-
electric medium. An early suggestion is due to Born [5]

{
D = ε {E + η∇× E}
B = µH .

The magneto-electric effects are here modelled by the constant η. Since the magneto-
electric effect usually is very small, this constant is small compared to other relevant
quantities. Inserted into the Maxwell equations these constitutive relations imply

ηεµ∂2
t ∇× E + ∇× (∇× E) + εµ∂2

t E = 0.

Later, Condon [7] used

{
D = εE − η∂tH
B = µH + η∂tE,

where again the magneto-electric effects are modelled by the constant η. These
constitutive relations lead to

η2∂4
t E + 2η∂2

t ∇× E + ∇× (∇× E) + εµ∂2
t E = 0.

A third example of constitutive relations for magneto-electric media are those due
to Fedorov [4, 13, 14]1

{
D = ε {E + η∇× E}
B = µ {H + η∇× H} .

1These constitutive relations are also used in the frequency domain. η is then a function of
frequency [28, p. 362].
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The corresponding partial differential equation is then

η2εµ∂2
t ∇× (∇× E) + 2ηεµ∂2

t ∇× E + ∇× (∇× E) + εµ∂2
t E = 0.

These three examples of models all lead to partial differential equations where the
coefficient multiplying the principal part of the equations is small in some sense.
This leads to drastic changes in the wave propagation properties as this constant
varies.

The basic problem in this paper is to investigate the form of the functionals
in (1.2) under certain assumptions that are physically sound. The analysis will
be given in a time dependent formulation and the results are of importance in
the treatment of the transient behavior of the fields on a macroscopic scale. The
underlying microscopic theory is not addressed in this paper.

In elasticity the time domain formulation of the corresponding constitutive rela-
tions has been investigated by several authors. Some of the results in the elastic case
are given in [8, 9, 17, 18]. In the electromagnetic community, however, much less at-
tention has been given to the time domain formulation of the constitutive relations.
The constitutive relations in the electromagnetic case are usually stated as relations
between the appropriate fields for a fixed frequency [25]. A Fourier transformation
then transforms the fixed frequency result to the time domain. However, in the
analysis of the transient behavior of the fields, especially the short time behavior
near a wave front, the investigation of the problem as a time domain problem is more
appropriate. Causality and time invariance are naturally built into the formulation,
whereas in the fixed frequency formulation, these properties have to be added to the
constitutive relations at a later stage.

Some of the mathematical notations used in this paper is introduced in Sec-
tion 2. The general form of the constitutive relations used in this paper is defined
in Section 3. The definitions of the concepts of dissipation, mirror process and
reciprocity are introduced in Sections 4, 5 and 6, respectively. These sections also
contain some consequences on the constitutive relations as functions of time. The
main ideas in this paper are presented in these sections. The mathematical details
in the derivations of the results have been collected in a series of appendices.

2 Mathematical notations

Denote by V a region (bounded and open) in space, bounded by the closed surface
S with outward pointing normal n̂. The region V is assumed to be filled with a
medium, characterized by some non-trivial constitutive relations. Outside V the
vacuum relations in (1.3) are assumed to hold.

All fields in this paper are real-valued functions of the spatial variable r and the
time t. The dependence of the fields on the spatial variable is usually suppressed
throughout the paper since it is not of primary importance for the analysis carried
out below. For this reason only the time dependence of the equations will be dis-
played. In general, no explicit regularity constraints are imposed on the fields as
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functions of the spatial variables except very mild conditions on differentiability2.

Definition 2.1. A function f(t), defined on [a, b], is in Cn on [a, b], denoted Cn[a, b],
if f(t) is continuous on [a, b] and n times continuously differentiable on [a, b].

Definition 2.2. A function f(t), defined on (−∞,∞), is in Hn if f(t) = 0 on
(−∞, 0), and f(t) is in Cn on [0,∞).

Definition 2.3. The class Cn is defined as all vector-valued functions that belong to
Hn ∩Cn on (−∞,∞), that is, all vector-valued functions with n times continuously
differentiable components on (−∞,∞) as a function of the time variable that are
identically zero on (−∞, 0).

The Riemann convolution of two functions ϕ and ψ defined on [0,∞) and
(−∞,∞), respectively, is defined as

ϑ(t) =

∫ t

−∞
ϕ(t− t′)ψ(t′) dt′,

provided ϑ exists for all t ∈ (−∞,∞). The function ϑ so defined on (−∞,∞) is the
Riemann convolution of ϕ and ψ and it is denoted

ϑ(t) = (ϕ ∗ ψ)(t).

The Stieltjes convolution of two functions ϕ and ψ defined on the intervals [0,∞)
and (−∞,∞), respectively, is defined as the Riemann-Stieltjes integral

ϑ(t) =

∫ t

−∞
ϕ(t− t′)dψ(t′),

provided ϑ exists for all t ∈ (−∞,∞). The function ϑ so defined on (−∞,∞) is the
Stieltjes convolution of ϕ and ψ and it is denoted

ϑ(t) = (ϕ� dψ)(t).

If ϕ ∈ H0 and ψ ∈ H1, then

ϑ(t) = ψ(0+)ϕ(t) + (ϕ ∗ ∂tψ)(t), t ≥ 0,

and ϑ ∈ H0.

3 Constitutive relations

3.1 General form

The constitutive relations relate the electric displacement field D and the magnetic
field H with the electric field E and the magnetic induction B. In this paper the
formal constitutive relations is a transformation{

D
H

}
= L

{
E
B

}
.

2See also the comments in the paragraph below Definition 3.1, and footnote 6.
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The transformation L associates with each pair of fields {E,B} a pair of fields
{D,H}. For physical reasons the transformation L is limited to be a linear disper-
sive law defined in the following definition.

Definition 3.1. A transformation L is said to be a linear dispersive law if it to
every pair {E,B} that belongs to the class C0 associates a pair of fields {D,H}
given by

{
D
H

}
= L

{
E
B

}
,

and that satisfies the conditions 1–4 below. Here {D,H} and {D′,H ′} are defined
by

{
D
H

}
= L

{
E
B

}
,

{
D′

H ′

}
= L

{
E′

B′

}
,

where {E,B} and {E′,B′} both belong to the class C0.

1. The transformation is linear, i.e. for every pair of real numbers α, β

L

[
α

{
E
B

}
+ β

{
E′

B′

}]
= αL

{
E
B

}
+ βL

{
E′

B′

}
.

2. The transformation is invariant to time translations, i.e. for every fixed

time3τ > 0 the relation

{
E′(t)
B′(t)

}
=

{
E(t− τ)
B(t− τ)

}
for all t ∈ (−∞,∞) im-

plies{
D′(t)
H ′(t)

}
=

{
D(t− τ)
H(t− τ)

}
for all t ∈ (−∞,∞).

3. The transformation satisfies causality, i.e. for every fixed t such that

{
E
B

}
= 0

on (−∞, t] implies

{
D
H

}
= 0 on (−∞, t].

4. The transformation is continuous, i.e. for every fixed τ and every ε > 0 there
exists a δ(ε, τ) > 0 such that max {|E(t)|, |B(t)|} < δ(ε, τ) for all t ∈ (−∞, τ ]
implies max {|D(τ)|, |H(τ)|} < ε.

The fields E and B in this definition are assumed to be related by the induction
law B(t) = −

∫ t

−∞∇×E(t′) dt′. The fields are therefore not completely independent
of each other. This assumption implies certain regularity restrictions on the fields as
functions of the spatial variables, e.g. E is continuously differentiable as a function of
r in V . Furthermore, it is assumed that all electric fields in class C0 can be generated
in the medium. Although, the electric field E and the magnetic induction B are
connected by the relation above, it is assumed that each component of the electric

3τ < 0 is not of interest here since then
{
E′(t),B′(t)

}
/∈ C0.
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field and the magnetic induction can be generated independently at a specific fixed
position r. This assumption implies that, e.g the electric field E can be chosen
arbitrarily at r, while the magnetic induction B is zero there. This can, of course,
just be true at that specific location. At other points in the medium both E and B
fields exist. Further considerations on this matter are found in Appendix I.

The postulate of invariance to time translations implies that effects due to aging
of the medium are excluded. The last postulate demands, in view of linearity, that
two pairs of {E,B}, which are approximately close to each other in the interval
(−∞, τ ], give two pairs of {D,H}, which are approximately close at time τ . This
continuity requirement can be replaced by a stronger one as shown by the following
theorem.

Theorem 3.1. Let L be linear dispersive law. Then, for every fixed τ and every
ε > 0 there exists a δ(ε, τ) > 0 such that max {|E(t)|, |B(t)|} < δ(ε, τ) for all
t ∈ (−∞, τ ] implies that max {|D(t)|, |H(t)|} < ε for all t ∈ (−∞, τ ].
Theorem 3.2. Let L be a linear dispersive law. Then L is a map from C0 to C0.

The proofs of these two theorems are presented in Appendix B.
The general constitutive relationship considered in this paper between the two

pairs of fields {E,B} and {D,H}, respectively, is assumed to satisfy the basic
postulates made in Definition 3.1. The first three postulates are general and should
hold for all non-aging, linear media that respond causally to electromagnetic distur-
bances. The fourth one, however, is more specific to the medium under consideration
and reflects the equation of motion of the constituents of the medium. This last pos-
tulate is not the most general one that can be formulated, but general enough to
accommodate most electromagnetic phenomena observed in material media4.

The constitutive relations as expressed in the linear dispersive law can be repre-
sented as a Riemann-Stieltjes integral. The following theorem is proved in Appen-
dix C.

Theorem 3.3. To every linear dispersive law there exist four uniquely defined tensor-
valued functions5Gij(t), Fij(t), Kij(t) and Lij(t) of time t defined on (−∞,∞) with
the following properties6:

1. Gij(t) = 0, Fij(t) = 0, Kij(t) = 0 and Lij(t) = 0 on (−∞, 0).

2. Gij(t), Fij(t), Kij(t) and Lij(t) are of bounded variation on every closed subin-
terval of (−∞,∞).

3. Gij(t), Fij(t), Kij(t) and Lij(t) are continuous on the right on (−∞,∞), i.e.
Gij(t) = Gij(t+) and similarly for the other tensors.

4More general constitutive relations, such as instantaneous response to the time derivatives of
the field E, or B, can be obtained by considering a sequence of linear dispersive laws as defined
in Definition 3.1.

5The convention of summation over repeated indices is used in this paper, and the Latin letters
run through the integers 1, 2, 3.

6The regularity of these tensors as functions of the spatial variables is assumed to be, e.g.,
continuously differentiable.
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4. for every pair of fields {E,B} and {D,H} associated through L



Di(t) = (Ej � dGij)(t) + (Bj � dKij)(t)

Hi(t) = (Ej � dLij)(t) + (Bj � dFij)(t).
(3.1)

5. Gij(t) and Fij(t) are tensors of second rank and Kij(t) and Lij(t) are pseudoten-
sors of second rank.

Conversely, every set of tensor-valued functions defined on (−∞,∞), satisfying the
properties 1–5 above, generates in the sense of (3.1), a linear dispersive law.

3.2 Special forms and classification

Restrictions are now introduced on the tensor-valued functions Gij(t), Fij(t), Kij(t)
and Lij(t). It is assumed that these functions, as functions of t, belong to H2 on
(−∞,∞). The constitutive relations in (3.1) can then be written as



Di(t) = aijEj(t) + bijBj(t) + (Gij ∗ Ej)(t) + (Kij ∗Bj)(t)

Hi(t) = cijEj(t) + dijBj(t) + (Lij ∗ Ej)(t) + (Fij ∗Bj)(t),
(3.2)

or 

Di(t) = ∂t(Gij ∗ Ej)(t) + ∂t(Kij ∗Bj)(t)

Hi(t) = ∂t(Lij ∗ Ej)(t) + ∂t(Fij ∗Bj)(t).

In (3.2) the tensor-valued functions Gij(t), Fij(t), Kij(t) and Lij(t) are the time
derivatives of Gij(t), Fij(t), Kij(t) and Lij(t) for t > 0, respectively, and the coeffi-
cients aij, bij, cij and dij are the values of Gij(t), Fij(t), Kij(t) and Lij(t) at t = 0+,
respectively, i.e. Gij(t) = ∂tGij(t) and aij = Gij(0

+) and so on. Gij(t), Fij(t), aij

and dij are tensors of second rank and Kij(t), Lij(t), bij and cij are pseudotensors
of second rank.

As functions of the spatial variables the tensors and coefficients above are as-
sumed to be smooth, but generalizations to the case of discontinuities can be made.
It is physically motivated, see Section 4, that the diagonal elements aii and dii are
non-negative everywhere. It is also convenient to restrict the fields {E,B} to be in
class C1, i.e. to have continuously differentiable components as a function of time t.

Media modelled by these constitutive relations will be referred to as bianisotropic
media and the tensor-valued functions Gij(t), Fij(t), Kij(t) and Lij(t) are called the
generalized susceptibility kernels and they belong to H1 as functions of time. The
tensors aij, bij, cij and dij are referred to as the generalized susceptibility tensors.
Media referred to as chiral or magneto-electric ones are special cases of this more
general concept. The notation bianisotropic is general and reflects the macroscopic
symmetries of the medium and is therefore used throughout this paper.
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The constitutive relations in (3.2) describe the equation of motion of the con-
stituents of the medium in the electromagnetic field. These equations give the addi-
tional information to solve the Maxwell equations in (1.1). The terms characterized
by the four generalized susceptibility tensors aij, bij, cij and dij represent the in-
stantaneous reaction to the fields {E,B}. The convolution parts of the constitutive
relations, represented by the kernels Gij(t), Fij(t), Kij(t) and Lij(t), however, model
the dispersion in the medium, i.e. the fields {D,H} depend on the earlier history
of the fields {E,B}. In this model the convolution parts also represent dissipation
in the medium. The effects of dissipation is further developed in Section 4.

Several authors have suggested constitutive relations in the time domain similar
to (3.2). Toupin and Revlin [34] assume the following constitutive relations



Di(t) =

∑p
ν=0

(
aν

ij∂
ν
t Ej(t) + bνij∂

ν
t Bj(t)

)
+ (Gij ∗ Ej)(t) + (Kij ∗Bj)(t)

Hi(t) =
∑p

ν=0

(
cνij∂

ν
t Ej(t) + dν

ij∂
ν
t Bj(t)

)
+ (Lij ∗ Ej)(t) + (Fij ∗Bj)(t),

which is more general than the one assumed in this paper (see also [35] and [36]).
Media modelled by these constitutive relations are called hemihedral anisotropic
media by the authors.

The medium is referred to as a biisotropic medium if the the tensors aij, bij, cij,
dij, Gij(t), Fij(t), Kij(t) and Lij(t) in (3.2) are isotropic tensors of second rank, i.e.
they are proportional to δij

7. That is, the constitutive relations for a biisotropic
medium are 


D(t) = aE(t) + bB(t) + (G ∗ E)(t) + (K ∗ B)(t)

H(t) = cE(t) + dB(t) + (L ∗ E)(t) + (F ∗ B)(t).
(3.3)

The constants a and d and the functions G(t) and F (t), are scalars, while the
constants b and c and the functions K(t) and L(t), are pseudoscalars, respectively.

An anisotropic medium and an isotropic medium are similarly defined as media
satisfying



Di(t) = aijEj(t) + (Gij ∗ Ej)(t)

Hi(t) = dijBj(t) + (Fij ∗Bj)(t),
(3.4)

and 


D(t) = aE(t) + (G ∗ E)(t)

H(t) = dB(t) + (F ∗ B)(t),
(3.5)

respectively.

7An isotropic tensor is a tensor having the same set of components in all rotated Cartesian
coordinate systems.
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The Maxwell equations are in general

{
∇× E = −∂tB
∇× H = J + ∂tD.

The current density J is assumed to consist of two parts

J = Jf + J ind.

The first part, Jf , referred to as the forced or impressed part, is assumed to have
its support outside the medium of interest, i.e. outside V . These currents excite
the medium and could be sources of electric or magnetic type as well as sources of
non-electric or non-magnetic origin. The other part, J ind, is the induced part of
the current density, and is governed by the equation of motion of the constituents
of the medium. It can therefore be assumed that these currents are included in
the constitutive relations. This assumption is no loss of generality since a new
displacement field, D′, satisfying

D′(t) =

∫ t

−∞
J ind(t

′) dt′ + D(t),

can be defined and where this new displacement field satisfies the constitutive rela-
tions in (3.2). The current J is, therefore, assumed to be absorbed in the displace-
ment current ∂tD and the Maxwell equation inside the medium is

{
∇× E = −∂tB
∇× H = ∂tD.

(3.6)

4 Dissipation

In the presence of dispersion the electromagnetic energy cannot be defined as a
thermodynamic quantity [28, p. 272]. The dispersion implies that energy can be
absorbed in the medium. The effects of absorption are due to the presence of the
generalized susceptibility kernels Gij(t), Fij(t), Kij(t) and Lij(t). The generalized
susceptibility tensors aij, bij, cij and dij give the instantaneous contribution to the
D and H fields and these tensors are related to the energy density of the electro-
magnetic field and not to the absorption of energy in the medium.

The analysis of dissipation in this section is based upon a macroscopic description
of the fields, i.e. the Maxwell equations and the constitutive relations, and the causes
of the dissipation on the microscopic level are out of the scope of this paper. The
dissipation is therefore modelled by the specific form of the constitutive relations.

The fields are assumed to satisfy the Maxwell equations without any source term,
see (3.6), (the induced part of the current density is absorbed in ∂tD), i.e.

{
∇× E = −∂tB
∇× H = ∂tD,
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and the constitutive relations in (3.2), i.e.



Di(t) = aijEj(t) + bijBj(t) + (Gij ∗ Ej)(t) + (Kij ∗Bj)(t)

Hi(t) = cijEj(t) + dijBj(t) + (Lij ∗ Ej)(t) + (Fij ∗Bj)(t).

The Maxwell equations imply the Poynting theorem

∇ · S + E · ∂tD + H · ∂tB = 0,

where

S = E × H .

For fields in C1 integrate the Poynting theorem over an arbitrary volume Vr

centered around r and bounded by the surface Sr (outward directed normal n̂) and
use the constitutive relations (3.2) and integrate over time. The result is

E(τ) =

∫∫∫
Vr

{wem(τ) + wd(τ)} dv,

where dv is the volume measure and

E(τ) = −
∫∫

Sr

∫ τ

0

S(t) · n̂ dt dS,

wem(τ) =

∫ τ

0

{Ei(t) [aij∂tEj(t) + bij∂tBj(t)]

+ ∂tBi(t) [cijEj(t) + dijBj(t)]} dt, (4.1)

wd(τ) =

∫ τ

0

{Ei(t) [∂t(Gij ∗ Ej)(t) + ∂t(Kij ∗Bj)(t)]

+ ∂tBi(t) [(Lij ∗ Ej)(t) + (Fij ∗Bj)(t)]} dt. (4.2)

In this expression E(τ) is the total energy entered through the surface Sr up to time
τ . The quantity wem(τ) is the sum of the electric and magnetic field energy densities
and wd(τ) is the dissipated energy density.

Definition 4.1. A bianisotropic medium is dissipative at a point r in the region
V if and only if for all τ > 0 the total energy E(τ) ≥ 0 for every electromagnetic
field {E,B} in C1 in every volume Vr, such that Vr ⊂ V , around the point r. The
bianisotropic medium is dissipative in V if and only if it is dissipative at all points
in V .

Physically, this definition states that the total electro-magnetic energy entering
through a sphere Sr is always non-negative at all times. Or stated differently, no net
production of electro-magnetic energy inside Sr is possible—the medium is passive.
Furthermore, it is a local property in space. Thus, in principle, parts of the medium
can be dissipative, others not.
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Since the integrand is continuous in the spatial variables this definition is equiv-
alent to

wem(τ) + wd(τ) ≥ 0, τ > 0, (4.3)

for all fields ∈ C1.
The dissipation property implies that the constitutive relations must satisfy cer-

tain symmetries. The following theorem is proved in Appendix D.

Theorem 4.1. Let the bianisotropic medium be dissipative at a point r. Then the
constitutive relations satisfy



aij = aji

bij = −cji
dij = dji,

and the symmetric tensors aij and dij are non-negative definite. The quantity wem

is

wem(τ) =
1

2
aijEi(τ)Ej(τ) +

1

2
dijBi(τ)Bj(τ).

Furthermore, the matrix

(
c20Gij(0) c0Kij(0)
−c0Lij(0) −Fij(0)

)
,

is non-negative definite.

In a dissipative medium the symmetric tensors aij and dij cannot be arbitrary
real numbers. Since the symmetric tensors aij and dij are non-negative definite it
implies that the tensor elements must satisfy



aii ≥ 0

, i = 1, 2, 3,
dii ≥ 0



a2

ij ≤ aiiajj

, i, j = 1, 2, 3, i �= j,
d2

ij ≤ diidjj.

These conditions are necessary for the tensors aij and dij to be non-negative definite.
Similarly, the generalized susceptibility kernels Gij and Fij satisfy



Gii(0) ≥ 0

, i = 1, 2, 3,
Fii(0) ≤ 0

and 


(Gij(0) +Gji(0))2 ≤ 4Gii(0)Gjj(0)
(Fij(0) + Fji(0))2 ≤ 4Fii(0)Fjj(0) , i, j = 1, 2, 3,
(Kij(0) − Lji(0))2 ≤ −4Gii(0)Fjj(0).
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A further restriction of the form of the constitutive relations is given by the
concept of positive functions, which are reviewed in Appendix E8. Results with
applications to viscoelastic media are found in [8]. The following theorem is proved
in Appendix E.

Theorem 4.2. If a bianisotropic dissipative medium has generalized susceptibility
kernels that are continuous at time t = 0, i.e. Gij(0) = Kij(0) = Lij(0) = Fij(0) =
09, then10

(
c20(G

′
ij(0) ±G′

ij(t)) c0(K
′
ij(0) ±K ′

ij(t))
−c0(L′

ij(0) ± L′
ij(t)) −(F ′

ij(0) ± F ′
ij(t))

)
,

and (
c20G

′
ij(0) c0K

′
ij(0)

−c0L′
ij(0) −F ′

ij(0)

)
,

are non-negative definite matrices.

5 Mirror process

The following definition is appropriate for an analysis of the medium under time
reversal. Similar ideas have been used to characterize viscoelastic media [9].

Definition 5.1. The mirror process of the fields {E(t),B(t)} ∈ C0, satisfying

{
E(t) = 0
B(t) = 0,

for all t ≥ τ > 0, is the fields {E∗(t),B∗(t)} defined by

{
E∗(t) = E(τ − t)
B∗(t) = −B(τ − t).

Note that the fields {E∗(t),B∗(t)} ∈ C0. The mirror process of a pair {E(t),B(t)}
is essentially a pair {E∗(t),B∗(t)} for which the time evolution is reversed.

Let w∗
d(τ) denote the dissipated energy density corresponding to the mirror

process {E∗(t),B∗(t)}. If w∗
d(τ) = wd(τ), then the dissipative energy is the same

as in its mirror process. This statement is not equivalent to invariance under time
reversal since the fields {D∗(t),H∗(t)} are, in general, not related in the same sim-
ple way to {D(t),H(t)} as {E∗(t),B∗(t)} to {E(t),B(t)}. The following theorem
is proved in Appendix D and provides a further classification of the symmetries of
the constitutive relations.

8The relation between a function of positive type and its Fourier transform is briefly analyzed
in footnote 13 on page 26.

9This assumption is closely related to the assumption of a non-zero mass of the particles carrying
charge, see also [19, pp. 309-310].

10The prime denotes differentiation with respect to time, i.e. G′
ij(t) = ∂tGij(t) etc.
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Theorem 5.1. A bianisotropic medium, defined by the constitutive relations in
(3.2), satisfies



G′

ij(t) = G′
ji(t)

Kij(t) = Lji(t)
F ′

ij(t) = F ′
ji(t),

(5.1)

if and only if w∗
d(τ) = wd(τ) for all τ > 0 and all fields {E,B} ∈ C1 such that

{E(τ),B(τ)} = {0,0}.

The constitutive relations for a medium that is dissipative and for which w∗
d(τ) =

wd(τ) are therefore



Di(t) = aijEj(t) + bijBj(t) + (Gij ∗ Ej)(t) + (Kij ∗Bj)(t)

Hi(t) = −bjiEj(t) + dijBj(t) + (Kji ∗ Ej)(t) + (Fij ∗Bj)(t),
(5.2)

where the tensors aij, dij, G
′
ij and F ′

ij are symmetrical tensors.

6 Reciprocity

The reciprocity theorem for simple harmonic time dependence was first derived in
1895 by Lorentz. In principle, reciprocity for a general time dependence can be
obtained from this solution by Fourier analysis. The definition and the analysis,
however, presented in this paper, do not rely on any fixed frequency results and
holds for a larger class of time dependence. Instead the definition of reciprocity
is defined as a property in physical space-time. Similar treatments can be found
in e.g. [6, 15, 23, 37]. Moreover, reciprocity is defined as a local property in space.
Thus, in principle, parts of the medium could be reciprocal, others not.

Definition 6.1. A medium is defined to be reciprocal at a point r in the region V
if and only if

∫∫
Sr

{
εijk(E

a
j ∗Hb

k)(τ) + εijk(H
a
j ∗ Eb

k)(τ)
}
n̂i dS = 0,

holds for all τ and all electromagnetic fields {Ea,Ba} and {Eb,Bb} in C1 and for
every closed surface Sr, such that Sr ⊂ V , around the point r. The medium is
reciprocal in V if and only if it is reciprocal at all points in V .

In this definition εijk is the Levi-Civita symbol. Note that the surface integral
in Definition 6.1 has the same value on both sides of the surface S irrespective of
whether the fields have jump discontinuities on this surface due to a jump discon-
tinuity in the material parameters or not (the electric and the magnetic fields have
continuous tangential components on such a surface).

The following theorem is derived in Appendix F and gives a necessary and suf-
ficient condition for reciprocity.
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Theorem 6.1. The medium is reciprocal at a point r if and only if the constitutive
relations are symmetric at r, i.e.



aij = aji

bij = cji
dij = dji



Gij(t) = Gji(t)
Kij(t) = Lji(t)
Fij(t) = Fji(t).

The constitutive relations for a reciprocal medium are



Di(t) = aijEj(t) + bijBj(t) + (Gij ∗ Ej)(t) + (Kij ∗Bj)(t)

Hi(t) = bjiEj(t) + dijBj(t) + (Kji ∗ Ej)(t) + (Fij ∗Bj)(t),
(6.1)

where the tensors aij, dij, Gij and Fij are symmetrical tensors.
An immediate consequence of this theorem is that a dissipative biisotropic me-

dium with b �= 0 is not reciprocal. The most general constitutive relations for a
biisotropic, dissipative medium that is reciprocal are




D(t) = aE(t) + (G ∗ E)(t) + (K ∗ B)(t)

H(t) = dB(t) + (K ∗ E)(t) + (F ∗ B)(t).

Another result of this theorem is that a reciprocal medium, due to Theorem 5.1, nec-
essarily has generalized susceptibility kernels satisfying the mirror process w∗

d(τ) =
wd(τ). The opposite conclusion is, however, not always true. If, however, Gij(0) =
Gji(0), Fij(0) = Fji(0), aij = aji, bij = cji and dij = dji, then the converse conclu-
sion is also true. The common case of a dissipative medium for which bij = cij = 0
and Gij(0) = Fij(0) = 0, satisfies this symmetry.

Appendix A Covariant formulation of the Maxwell

equations

For the sake of a condensed notation and short derivation in the proofs of the
theorems in this paper it is convenient to work with the covariant formulation of the
Maxwell equations and the constitutive relations in space-time.

Define two antisymmetric tensors11 Fµν and Gµν of rank 2 as

Fµν =




0 Bz −By Ex/c0
−Bz 0 Bx Ey/c0
By −Bx 0 Ez/c0
−Ex/c0 −Ey/c0 −Ez/c0 0




11These tensors should not be confused with the susceptibility kernels Gij(t) and Fij(t) in (3.2).
The Greek letter indices run through the integers 1, 2, 3, 4 and the Latin letters run through the
integers 1, 2, 3. The convention of summation over repeated indices is used throughout this paper.
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and

Gµν =




0 Hz −Hy c0Dx

−Hz 0 Hx c0Dy

Hy −Hx 0 c0Dz

−c0Dx −c0Dy −c0Dz 0


 ,

where c0 is the speed of light in vacuum. Both tensors are functions of the 4-vector

xµ = (x, y, z, c0t).

The 4-current is defined as

Jµ = (Jx, Jy, Jz, c0ρ),

and the gradient in four space is

∂µ = (∂x, ∂y, ∂z, c
−1
0 ∂t).

Introduce the metric tensor gµν which is diagonal, with diagonal elements g11 =
g22 = g33 = 1 and g44 = −1. The metric tensor is used to lower and raise the indices
of tensors.

The Maxwell equations in (1.1) in the covariant form are

∂µFνσ + ∂νFσµ + ∂σFµν = 0

∂νG
µν = Jµ.

(A.1)

The constitutive relations defined in (3.2) is also written in a covariant form

Gµν = aµν
σλFσλ + bµν

σλ ∗ Fσλ, (A.2)

where the tensors aµν
σλ and bµν

σλ are antisymmetric in the first pair and the second
pair of indices, respectively, e.g. aµν

σλ = −aνµ
σλ etc. In terms of the tensor-valued

functions in (3.2) these tensors are



aij = 2ai4
j4/c20

bij = εjklai4
kl/c0

cij = εiklakl
j4/c0

dij = 1
2
εiklεjmnakl

mn




Gij = 2bi4
j4/c20

Kij = εjklbi4
kl/c0

Lij = εiklbkl
j4/c0

Fij = 1
2
εiklεjmnbkl

mn,

where εijk is the Levi-Civita symbol.
It should be noted, that the constitutive relations given in (A.2) are not given

in a covariant form, since time convolutions are involved. It is, however, not the
purpose of this paper to give such a covariant formulation. The purpose of this
appendix is to utilize the compact notation of the field tensors Fµν and Gµν and the
compact way of writing the constitutive relations in (A.2). All the analyses found
in this paper are carried out in one fixed space-time coordinate system. In the main
text above, the explicit fields E, D, B and H are used to stress the fact that the
formulation is not written in a covariant form.
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Appendix B Some mathematical proofs

Proof of Theorem 3.1: Let τ be a fixed point in (−∞,∞) and take ε > 0. Then,
there exists a δ(ε, τ) > 0 such that max {|E(t)|, |B(t)|} < δ(ε, τ) for all t ≤ τ and
max {|D(τ)|, |H(τ)|} < ε. Assume there exists a t′ < τ such that

max {|D(t′)|, |H(t′)|} ≥ ε.

Define a new pair of fields by{
E′(t)
B′(t)

}
=

{
E(t− τ + t′)
B(t− τ + t′)

}
,

for all t ∈ (−∞,∞). It is clear that {E′,B′} ∈ C0. Then {D′,H ′} = L {E′,B′},
due to invariance to time translations, satisfies{

D′(t)
H ′(t)

}
=

{
D(t− τ + t′)
H(t− τ + t′)

}
.

Since max {|E′(t)|, |B′(t)|} < δ(ε, τ) for all t ≤ τ , continuity implies that

max {|D′(τ)|, |H ′(τ)|} = max {|D(t′)|, |H(t′)|} < ε.

This contradicts the assumption made above and the theorem is proved.

Proof of Theorem 3.2: Let {E,B} belong to the class C0 and{
D
H

}
= L

{
E
B

}
.

It is immediately clear from property 3 in Definition 3.1 that

{
D
H

}
= 0 on (−∞, 0].

It remains to prove that

{
D
H

}
is continuous on (−∞,∞).

Let τ be a fixed point in (−∞,∞) and ε > 0 and for α > 0 define{
Eα(t)
Bα(t)

}
=

{
E(t) − E(t− α)
B(t) − B(t− α)

}
{

Dα(t)
Hα(t)

}
=

{
D(t) − D(t− α)
H(t) − H(t− α)

}
.

Obviously {Eα(t),Bα(t)} belongs to C0 and{
Dα

Hα

}
= L

{
Eα

Bα

}
,

by Definition 3.1.
First show continuity on the left. By Definition 3.1, property 4, there exists a

δ(ε, τ) > 0 such that

max {|Eα(t)|, |Bα(t)|} < δ for all t ≤ τ ⇒ max {|Dα(τ)|, |Hα(τ)|} < ε.
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Since {E(t),B(t)} is uniformly continuous on (−∞, τ ] there exists a η(δ) such that

max {|Eα(t)|, |Bα(t)|} < δ for all t ≤ τ if α < η.

Thus, {D,H} is continuous on the left, i.e.

max {|Dα(τ)|, |Hα(τ)|} < ε for all α < η.

Continuity on the right is proved with similar arguments. Restrict α to the
interval [0, α0]. Theorem 3.1 shows that there exists a δ(ε) such that

max {|Eα(t)|, |Bα(t)|} < δ for all t ≤ τ + α0,

implies

max {|Dα(τ + α)|, |Hα(τ + α)|} < ε.

Furthermore, {E(t),B(t)} is uniformly continuous on (−∞, τ +α0] and there exists
a η(δ) such that

max {|Eα(t)|, |Bα(t)|} < δ for all t ≤ τ + α0 if α < η.

Thus, there exists an η(ε) ∈ [0, α0] such that

max {|Dα(τ + α)|, |Hα(τ + α)|}
= max {|D(τ + α) − D(τ)|, |H(τ + α) − H(τ)|} < ε for all α < η,

and the right continuity is proved.

Appendix C Representation of the linear disper-

sive law

This appendix contains a proof of Theorem 3.3. Similar proofs are found in [26]
and [18]. It is convenient to split the proof into parts and the following lemma and
scalar version of the theorem are helpful in proving Theorem 3.3.

Lemma C.1. To every continuous linear functional A on the space C = {f : f ∈
C0[a, b], f(b) = 0} there exists a unique real-valued function G with the following
properties.

1. G is of bounded variation on [a, b].

2. G is continuous on the right in (a, b), i.e G(t) = G(t+), for all a < t < b.

3. G(a) = 0,
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and such that

Af =

∫ b

a

f(t) dG(t),

for all f ∈ C. Furthermore, the norm of the functional is

‖A‖ = [Var G]ba .

Proof: Let A be a continuous linear functional on C. By the Hahn-Banach
theorem [33, p. 186], there exists a continuous linear functional B defined on C0[a, b]
such that Af = Bf for all f ∈ C. Furthermore, the norms are equal, i.e. ‖A‖ =
‖B‖. Riesz representation theorem [33, p. 200], (see also [32]), then proves the
existence of a unique function G that is of bounded variation on [a, b] and continuous
on the right in the interior of the interval [a, b]. Furthermore, G(a) = 0 and the
norm ‖A‖ = ‖B‖ = [Var G]ba.

Theorem C.1. Let L be a transformation defined on H0 satisfying

1. The transformation is linear, i.e. for every pair of real numbers α, β
L [αf1 + βf2] = αLf1 + βLf2.

2. The transformation is invariant to time translations, i.e. for every fixed time
τ > 0 the relation f1(t) = f(t− τ) for all t ∈ (−∞,∞) implies
g1(t) = g(t− τ), where g = Lf and g1 = Lf1.

3. The transformation satisfies causality, i.e. for every fixed t such that f = 0
on (−∞, t] implies g = 0 on (−∞, t], where g = Lf .

4. The transformation is continuous, i.e. for every fixed τ and every ε > 0 there
exists a δ(ε, τ) > 0 such that |f(t)| < δ(ε, τ) for all t ∈ (−∞, τ ] implies
|g(τ)| < ε, where g = Lf .

Then L is a map from H0 to H0 and, furthermore, there exists a unique function
G(t) such that

1. G(t) = 0, on (−∞, 0).

2. G(t) is of bounded variation on every closed subinterval of (−∞,∞).

3. G(t) is continuous on the right on (−∞,∞), i.e. G(t) = G(t+).

4. for every f and g associated through L

g(t) = (f � dG)(t).

Conversely, every function G defined on (−∞,∞), satisfying the properties 1–4
above, generates a linear mapping from H0 to H0.
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Proof: By techniques similar to the ones used in the proof of Theorem 3.2 it is
clear that the transformation L maps H0 into H0. Let α > 0 and τ > 0 be fixed
real numbers. For every f ∈ H0 define a function F (t) defined on [−α, τ ] by

F (t) = f(τ − t), t ∈ [−α, τ ]. (C.1)

The function F ∈ C = {f : f ∈ C0[−α, τ ], f(τ) = 0}. Define a linear functional A
on C by

AF = (Lf)(τ),

where F is defined as in (C.1). This linear functional is properly defined due to
causality. To see this, take two functions f1 and f2 in H0 such that they both define
the same F in (C.1). Then f(t) = f1(t)−f2(t) = 0 for all t ≤ τ +α and by causality
(Lf)(τ) = 0, i.e. (Lf1)(τ) = (Lf2)(τ). The linear functional A is also continuous
by property 4. The Lemma C.1 now proves the existence of a unique function Gα,τ

with the following properties.

1. Gα,τ is of bounded variation on [−α, τ ],

2. Gα,τ is continuous on the right in (−α, τ),

3. Gα,τ (−α) = 0,

and such that

AF =

∫ τ

−α

F (t) dGα,τ (t),

for all F ∈ C. Stated differently,

(Lf)(τ) =

∫ τ

−α

f(τ − t) dGα,τ (t),

for all f ∈ H0.
To prove that Gα,τ (t) = 0 for t < 0, let 0 < β < α, and define

fn(t) =

{
0, t < τ + β − 1

n
,

1, t ≥ τ + β,

and where fn is linear between zero and one in the interval [τ +β− 1
n
, τ +β). Then,

due to causality, (Lfn)(τ) = 0 for sufficiently large n and, furthermore,

(Lfn)(τ) = Gα,τ (−β) −Gα,τ (−α) +O(n−1) = Gα,τ (−β) +O(n−1) = 0.

Thus Gα,τ (−β) = 0 for all 0 < β < α, which implies that Gα,τ (t) = 0 at all points
−α ≤ t < 0. The function G, therefore, does not depend on α and the limit in the
integration could for convenience be taken as −∞, i.e.

(Lf)(τ) =

∫ τ

−∞
f(τ − t) dGτ (t) = (f � dGτ )(τ),
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for all f ∈ H0.
The remaining property of G to prove is that G is independent of the parameter

τ . For each f ∈ H0 and τ > 0 define a new function f1(t) = f(t − τ). For this
function holds

(Lf1)(t+ τ) =

∫ t+τ

−∞
f1(t+ τ − t′) dGt+τ (t

′) =

∫ t

−∞
f(t− t′) dGt+τ (t

′).

Then, by invariance to time translations,

∫ t

−∞
f(t− t′) dGt(t

′) = (Lf)(t) = (Lf1)(t+ τ) =

∫ t

−∞
f(t− t′) dGt+τ (t

′).

Uniqueness of the function Gt then implies that Gt is independent of t and

(Lf)(t) =

∫ t

−∞
f(t− t′) dG(t′) = (f � dG)(t).

To prove the converse part of the theorem assume G is a function satisfying the
properties in the theorem and let G define a transformation L by

(Lf)(t) =

∫ t

−∞
f(t− t′) dG(t′) = (f � dG)(t).

It is obvious that this transformation is linear and causal. To see that the
transformation is invariant to time translations, define for τ > 0 f1(t) = f(t − τ),
where f ∈ H0. Then,

(Lf1)(t) =

∫ t

−∞
f(t− τ − t′) dG(t′)

=

∫ t−τ

−∞
f(t− τ − t′) dG(t′) = (Lf)(t− τ).

The continuity is proved by the inequality

|(Lf)(τ)| = |(f � dG)(τ)| ≤ ‖f‖ [Var G]τ0 < ε,

if ‖f‖ = max0≤t≤τ |f(t)| < δ where δ = ε/ [Var G]τ0.

Proof of Theorem 3.3: Consider a linear linear dispersive law and its transfor-
mation L. Due to linearity there exists a set of linear transformations Lµν

σλ such
that in covariant form

Gµν = Lµν
σλFσλ,

for a fixed system of coordinates. Each component in the set of transformations
Lµν

σλ satisfies the assumption of the definition of a linear dispersive law, Defin-
ition 3.1. Thus, it suffices to consider one component of the transformation. An
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application of Theorem C.1 proves the existence of uniquely defined functions Gij(t),
Fij(t), Kij(t) and Lij(t) satisfying properties 1-4 in Theorem 3.3 such that


Di(t) = (Ej � dGij)(t) + (Bj � dKij)(t)

Hi(t) = (Ej � dLij)(t) + (Bj � dFij)(t).

The converse part of the theorem is also clear by Theorem C.1.
The final part of the theorem is to prove that Gij(t), Fij(t), Kij(t) and Lij(t)

have the correct transformation properties. Denote by aij a transformation (proper
rotation or spatial inversion) from one set of coordinates to another, i.e.

x′i = aijxj,

where

aikajk = akiakj = δij, det[aij] = ±1.

The vectors E and D and the pseudovectors B and H transform as{
E ′

i = aijEj

D′
i = aijDj,

(C.2)

and {
B′

i = det[aij]aijBj

H ′
i = det[aij]aijHj,

(C.3)

respectively. The transformation

Di(t) = (Ej � dGij)(t) + (Bj � dKij)(t)

Hi(t) = (Ej � dLij)(t) + (Bj � dFij)(t),

can then, by use of the transformation properties of the fields in (C.2) and (C.3),
be written as


D′

i(t) = (E ′
l � d(aikaljGkj))(t) + (B′

l � d(det[aij]aikaljKkj))(t)

H ′
i(t) = (E ′

l � d(det[aij]aikaljLkj))(t) + (B′
l � d(aikaljFkj))(t).

Compare this expression with the corresponding one in the transformed coordinate
system 


D′

i(t) = (E ′
j � dG ′

ij)(t) + (B′
j � dK′

ij)(t)

H ′
i(t) = (E ′

j � dL′
ij)(t) + (B′

j � dF ′
ij)(t).

Uniqueness of the functions G ′
ij(t), F ′

ij(t), K′
ij(t) and L′

ij(t) then shows that


G ′
ij(t) = aikajlGkl(t)

F ′
ij(t) = aikajlFkl(t)

K′
ij(t) = det[aij]aikajlKkl(t)

L′
ij(t) = det[aij]aikajlLkl(t),

which confirms the correct transformation properties.



22

Appendix D Dissipation and symmetries of the

constitutive relations

Proof of Theorem 4.1: The energy density terms in (4.1) and (4.2) written in
covariant form are

wem(τ) =
1

2
aijσλFij(τ)Fσλ(τ) −

1

2
aµνσλ

∫ τ

0

Fµν(t)∂tFσλ(t) dt, (D.1)

and

wd(τ) =
1

2
Fij(τ)

(
bijσλ ∗ Fσλ

)
(τ) − 1

2

∫ τ

0

Fµν(t)∂t(b
µνσλ ∗ Fσλ)(t) dt,

Denote by C1
0 the subspace in C1 fields12 that satisfy Fµν(τ) = 0. The definition

of dissipation applied to this subspace is

−1

2
aµνσλ

∫ τ

0

Fµν(t)∂tFσλ(t) dt−
1

2

∫ τ

0

Fµν(t)∂t(b
µνσλ ∗ Fσλ)(t) dt ≥ 0, (D.2)

for all fields Fµν ∈ C1
0 . Select two arbitrary components of Fµν ∈ C1

0 and denote{
f1(t) = Fµν(t)
f2(t) = Fσλ(t).

Equation (D.2) then simplifies after integration by parts to (no summation over µ
and ν)

−2
{
aµνσλ − aσλµν

} ∫ τ

0

f1(t)f
′
2(t) dt

−2

∫ τ

0

{
f1(t)(b

µνσλ ∗ f ′2)(t) + f2(t)(b
σλµν ∗ f ′1)(t)

+f1(t)(b
µνµν ∗ f ′1)(t) + f2(t)(b

σλσλ ∗ f ′2)(t)
}
dt ≥ 0.

Let f1 and f2 have support in [ξ− ε/2, ξ+ ε/2], where ξ ∈ (0, τ) and ε taken so small
that [ξ − ε/2, ξ + ε/2] ∈ (0, τ). Use the mean value theorem of integral calculus and
let ε→ 0. The result is

−2
{
aµνσλ − aσλµν

}
ξ1ξ2 ≥ 0,

for all real ξ1 and ξ2. This can, however, only be true if

aµνσλ = aσλµν ,

or equivalently 

aij = aji

bij = −cji
dij = dji.

12The notion that Fµν ∈ C1 is an obvious extension of Definition 2.3, that each component of
Fµν belongs to H1 ∩ C1 on (−∞,∞).
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The electromagnetic field energy density wem in (D.1) then simplifies to

wem(τ) =
1

4
aijklFij(τ)Fkl(τ) − ai4j4Fi4(τ)Fj4(τ)

=
1

2
aijEi(τ)Ej(τ) +

1

2
dijBi(τ)Bj(τ),

for Fµν ∈ C1.
To prove that aij and dij are non-negative definite, choose Fµν ∈ C1 such that

suppFµν ∈ [τ − ε, τ ] and denote ξµν = Fµν(τ). In the limit ε → 0 equation (4.3)
reduces to

1

4
aijklξijξkl − ai4j4ξi4ξj4 ≥ 0,

for all ξµν , or equivalently



aijξiξj ≥ 0

, for all real ξi, ξj,
dijξiξj ≥ 0.

This proves that the tensors aij and dij are non-negative definite.
The statement about the generalized susceptibility kernels at time t = 0 is proved

by using (D.2), which with the symmetry in aµνσλ, simplifies to

−1

2

∫ τ

0

Fµν(t)∂t(b
µνσλ ∗ Fσλ)(t) dt ≥ 0,

for all fields in C1
0 . Let Fµν(t) = ξµνf(t), where f ∈ C1[0, τ ] with f(0) = f(τ) = 0

where the constant tensor ξµν is antisymmetric. Denote by B(t) = −ξµνb
µνσλ(t)ξσλ.

The inequality then is

B(0)

∫ τ

0

f 2(t) dt+

∫ τ

0

f(t) ((∂tB) ∗ f) (t) dt ≥ 0. (D.3)

Let suppf ∈ [ξ − ε, ξ + ε] ∈ (0, τ) and take the limit ε→ 0 which implies B(0) ≥ 0,
i.e.

−ξµνb
µνσλ(0)ξσλ ≥ 0,

for all ξµν . As a matrix relation in a six dimensional Euclidean space (the antisym-
metric tensor ξµν has six independent components) this inequality is equivalent to
that the matrix (

c20Gij(0) c0Kij(0)
−c0Lij(0) −Fij(0)

)
,

is non-negative definite in this six dimensional Euclidean space. This completes the
proof of Theorem 4.1.
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Proof of Theorem 5.1: The dissipated energy density in (4.2) written in covariant
form reads

wd(τ) = −1

2

∫ τ

0

Fµν(t)∂t(b
µνσλ ∗ Fσλ)(t) dt, (D.4)

for all fields Fµν ∈ C1
0 . The field tensor corresponding to the mirror process defined

in Definition 5.1 is F ∗
µν(t) = −Λµ

µ′
Λν

ν′
Fµ′ν′(τ − t), where the time reversal transfor-

mation Λµ
ν is diagonal, with diagonal elements Λ1

1 = Λ2
2 = Λ3

3 = 1 and Λ4
4 = −1.

The corresponding dissipated energy density reads accordingly

w∗
d(τ) = −1

2

∫ τ

0

F ∗
µν(t)∂t(b

µνσλ ∗ F ∗
σλ)(t) dt

= −1

2

∫ τ

0

Fµν(τ − t)∂t

∫ t

0

b̃µνσλ(t− t′)Fσλ(τ − t′) dt′ dt

= −1

2

∫ τ

0

Fµν(t)∂t(b̃
σλµν ∗ Fσλ)(t) dt,

where the tensor-valued function b̃µνσλ(t) is defined as

b̃µνσλ(t) = Λµ′
µΛν′

νΛσ′
σΛλ′

λbµ
′ν′σ′λ′

(t).

The difference wd(τ) − w∗
d(τ) is

wd(τ) − w∗
d(τ) =

1

2

∫ τ

0

Fµν(t)∂t(B
µνσλ ∗ Fσλ)(t) dt, (D.5)

where Bµνσλ(t) = b̃σλµν(t) − bµνσλ(t).
Select two arbitrary components of Fµν ∈ C1

0 and denote
{
f1(t) = Fµν(t)
f2(t) = Fσλ(t).

If wd(τ) = w∗
d(τ) for all Fµν ∈ C1

0 then the integral on the right hand side is zero
and the summation over the components simplifies to
∫ τ

0

dt

∫ t

0

dt′f1(t)B
µνσλ(t− t′)f ′2(t′) =

∫ τ

0

dt

∫ τ

t

dt′f1(t)B
σλµν(t′ − t)f ′2(t′). (D.6)

Let suppf1 ∈ [t0 − ε/2, t0 + ε/2], where t0 ∈ (0, τ). In the limit ε → 0 this equality
becomes ∫ t0

0

Bµνσλ(t0 − t′)f ′2(t′) dt′ =

∫ τ

t0

Bσλµν(t′ − t0)f ′2(t′) dt′,

for all f2 ∈ C1[0, τ ] such that f2(0) = f2(τ) = 0. Take the limit as t0 → τ . By
continuity ∫ τ

0

Bµνσλ(τ − t′)f ′(t′) dt′ = 0,
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for all f ∈ C1[0, τ ] such that f(0) = f(τ) = 0. Integration by parts gives

∫ τ

0

∂tB
µνσλ(τ − t)f(t) dt = 0.

This equation shows that ∂tB
µνσλ(t) = 0, t ∈ [0, τ ], or equivalently



G′

ij(t) = G′
ji(t)

K ′
ij(t) = L′

ji(t)
F ′

ij(t) = F ′
ji(t),

where prime denotes differentiation with respect to time t.
The constant Bµνσλ(t) = Bµνσλ(0) can be determined only when the indices µνσλ

is a mixture between space and time indices. To see this, insert Bµνσλ(t) = Bµνσλ(0)
in (D.6). The result is

(
Bµνσλ(0) +Bσλµν(0)

) ∫ τ

0

f1(t)f2(t) dt = 0,

for all fi ∈ C1[0, τ ] such that fi(0) = fi(τ) = 0, i = 1, 2, which implies that
Bµνσλ(0) + Bσλµν(0) = 0, which implies that Kij(t) = Lji(t), but nothing new for
the generalized susceptibility kernels Gij and Fij. This completes the first part of
the theorem.

The only if part of the theorem is easy. Assume that



G′

ij(t) = G′
ji(t)

Kij(t) = Lji(t)
F ′

ij(t) = F ′
ji(t),

or ∂tB
µνσλ(t) = 0. The assumption implies that

Bµνσλ(0) +Bσλµν(0) = 0.

Then equation (D.5) implies

wd(τ) − w∗
d(τ) = Bµνσλ(0)

1

2

∫ τ

0

Fµν(t)Fσλ(t) dt

=
1

4

(
Bµνσλ(0) +Bσλµν(0)

) ∫ τ

0

Fµν(t)Fσλ(t) dt = 0,

and the proof is completed.

Appendix E Positive functions

The definition and some properties of positive functions are reviewed in this appen-
dix.
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Definition E.1. A real function K(t) ∈ H0 is of positive type if for every real
function f in C0 on [0,∞)∫ τ

0

∫ τ

0

K(t− t′)f(t)f(t′) dt dt′ ≥ 0, for all τ ∈ [0,∞).

The following theorem is a minor variant of a theorem proved in [38, p. 271].

Theorem E.1. Let K(t) ∈ H0 and define a new function K(t) = K(|t|) for all
t ∈ (−∞,∞). Then K(t) is of positive type if and only if for every finite sequence
of non-negative distinct real numbers {ti}n

i=0 the quadratic form

K(ti − tj),

is non-negative definite, i.e.

n∑
i=0

n∑
j=0

K(ti − tj)ξiξj ≥ 0, for all real numbers {ξi}n
i=0 .

An application of this theorem when n = 0 and n = 1 gives{
K(0) ≥ 0
|K(t)| ≤ K(0), for all t ∈ [0,∞).

Proof of Theorem 4.2: From (D.3) it is immediately clear that∫ τ

0

f(t) ((∂tB) ∗ f) (t) dt ≥ 0,

or ∫ τ

0

∫ τ

0

f(t)[B′(t− t′) +B′(t′ − t)] ∗ f(t′) dt dt′ ≥ 0,

for all f ∈ C1[0, τ ] such that f(0) = f(τ) = 0 and where B(t) = −ξµνb
µνσλ(t)ξσλ

13.
An application of Theorem E.1 then implies that14

B′(0) = −ξµνb
′µνσλ(0)ξσλ ≥ 0

|B′(t)| = |ξµνb
′µνσλ(t)ξσλ| ≤ B′(0) = −ξµνb

′µνσλ(0)ξσλ,

13The relation between a function of positive type and its Fourier transform is presented in
e.g. [17]. Bochner’s Theorem implies the existence of a non-decreasing, bounded function α(ω) for
a continuous function of positive type, such that

∂tB(t) =
∫ ∞

−∞
cos ωt dα(ω).

If, furthermore, ∂tB(t) is absolutely integrable on (−∞,∞), then α is smooth and

dα

dω
=

1
2π

∫ ∞

−∞
∂tB(t) cos ωt dt.

This implies that the Fourier transform of B(t) has a non-negative imaginary part.
14The assumptions of vanishing values at the endpoints of the interval [0, τ ] and f ∈ C1 do not

affect the proof of Theorem E.1.
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for all ξµν or equivalently

−ξµνb
′µνσλ(0)ξσλ ≥ 0

−
(
ξµνb

′µνσλ(0)ξσλ ± ξµνb
′µνσλ(t)ξσλ

)
≥ 0,

for all ξµν . This is equivalent to

(
c20(G

′
ij(0) ±G′

ij(t)) c0(K
′
ij(0) ±K ′

ij(t))
−c0(L′

ij(0) ± L′
ij(t)) −(F ′

ij(0) ± F ′
ij(t))

)
,

and (
c20G

′
ij(0) c0K

′
ij(0)

−c0L′
ij(0) −F ′

ij(0)

)
,

being non-negative definite matrices.

Appendix F Reciprocity and symmetries of the

constitutive relations

This appendix contains the mathematical details of the derivation of the necessary
and sufficient conditions for reciprocity. As a preparation to the proof of Theorem 6.1
the following two theorems are proved.

Theorem F.1. Let τ > 0, and b ∈ C0[0, τ ]. If

∫ τ

0

f(t)(b ∗ f ′)(t) dt = 0, (F.1)

for all f ∈ C1[0, τ ], such that f(0) = f(τ) = 0. Then b(t) = 0.

Proof of Theorem F.1: Let t0 be an arbitrary number in (0, τ) and let f(t) =
f1(t) + f2(t), where f1, f2 ∈ C1[0, τ ], f1(0) = f2(0) = f1(τ) = f2(τ) = 0 and
suppf1 ∈ [0, t0] and suppf2 ∈ [t0, τ ]. Repeated use of (F.1) implies that

∫ τ

t0

f2(t)g(t) dt = 0, (F.2)

where g(t) =
∫ t0

0
b(t− t′)f ′1(t′) dt′. Equation (F.2) can only be satisfied for arbitrary

f2 provided g(t) = 0, t0 < t < τ . To see this, assume that g(t1) �= 0, for some
t1 ∈ (t0, τ). By continuity g(t) �= 0 in a neighborhood of t1. Then choose a positive
function f2 with support in this neighborhood. This leads to a contradiction and
g(t1) = 0. Thus, g(t) = 0 for t0 < t < τ or

∫ t0

0

b(t− t′)f ′1(t′) dt′ = 0, t0 < t < τ,
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for arbitrary f1 ∈ C1[0, τ ], f1(0) = 0 such that suppf1 ∈ [0, t0]. This equation shows
that ∫ t0

0

b(t− t′)f1(t′) dt′ = C, t0 < t < τ,

where C is a constant (depending on f1). Thus

∫ t0

0

(b(t− t′) − b(t0 − t′)) f1(t′) dt′ = 0, t0 < t < τ,

for arbitrary f1 ∈ C1[0, τ ], f1(0) = 0 such that suppf1 ∈ [0, t0]. Similar arguments
to the ones above now show that b(t) = b = constant, t ∈ (0, τ). Equation (F.1) is
then

b

∫ τ

0

f 2(t) dt = 0,

for all f ∈ C1[0, τ ], such that f(0) = f(τ) = 0. Thus b = 0.

Theorem F.2. Let τ > 0, a a constant and b ∈ C0[0, τ ]. If

a(f1 ∗ f2)(τ) + (f1 ∗ (b ∗ f2))(τ) = 0, (F.3)

where fi(t), i = 1, 2 are arbitrary functions in C0[0, τ ] such that fi(0) = 0, i = 1, 2.
Then a = 0 and b(t) = 0.

Proof of Theorem F.2: Let ε > 0, t0 ∈ (ε, τ − ε) and suppf1 ∈ [t0 − ε, t0 + ε].
Apply the mean value theorem of integral calculus to (F.3) with f2(t) = f1(τ − t).

af 2
1 (t0 + θ1ε) + ε(1 − θ2)f1(t0 + θ2ε)b(ε(θ3 − θ2))f1(t0 + θ3ε) = 0,

where θi ∈ [−1, 1], i = 1, 2 and θ3 ∈ [θ2, 1]. This equality can only be true if a = 0
(let ε be sufficiently small and choose f1(t0) different from zero). Thus,∫ τ

0

f1(τ − t)(b ∗ f2)(t) dt = 0,

where fi(t), i = 1, 2 are arbitrary functions in C0[0, τ ] such that fi(0) = 0, i = 1, 2.
The theorem is now proved by Theorem F.1 by restricting f1(t) = f(τ − t) ∈ C1,
f(0) = f(τ) = 0 and f2(t) = f ′(t).

Proof of Theorem 6.1: Define the 3-vector gi(ab) for any field Fµν ∈ C1 as

gi(ab) = F4σ(a) ∗Gσi(b) = εijkE
a
j ∗Hb

k/c0,

where the arguments a and b indicate two different source configurations, respec-
tively. Straightforward calculations using (A.1) and (A.2) show that

c0∂ig
i(ab) = −1

2
Λµ

µ′
Λν

ν′ {
aµνσλFµ′ν′(a) ∗ (∂tFσλ(b))

+Fµ′ν′(a) ∗
(
bµνσλ ∗ (∂tFσλ(b))

)}
+ c0F4µ(a) ∗ Jµ(b),
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where the time reversal transformation Λµ
ν is diagonal, with diagonal elements

Λ1
1 = Λ2

2 = Λ3
3 = 1 and Λ4

4 = −1.
Interchanging the a and b and subtraction imply

c0
(
∂ig

i(ab) − ∂ig
i(ba)

)
=

−1

2
ãµνσλFµν(a) ∗ (∂tFσλ(b))

−1

2
Fµν(a) ∗

(
b̃µνσλ ∗ (∂tFσλ(b))

)
(F.4)

+c0F4µ(a) ∗ Jµ(b) − c0F4µ(b) ∗ Jµ(a),

where the tensors ãµνσλ and b̃µνσλ are defined as

ãµνσλ = Λµ′
µΛν′

νaµ′ν′σλ − Λσ′
σΛλ′

λaσ′λ′µν ,

and

b̃µνσλ(t) = Λµ′
µΛν′

νbµ
′ν′σλ(t) − Λσ′

σΛλ′
λbσ

′λ′µν(t).

The source density Jµ is here interpreted as the forced or impressed part of the
sources and thus zero inside the medium. Reciprocity, as it is defined in Defini-
tion 6.1, then implies

∫∫∫
Vr

ãµνσλFµν(a) ∗ (∂tFσλ(b)) dv

+

∫∫∫
Vr

Fµν(a) ∗
(
b̃µνσλ ∗ (∂tFσλ(b))

)
dv = 0,

where Vr is an arbitrary region around r. Due to continuity in the spatial variables
the integrand must be zero, i.e.

ãµνσλFµν(a) ∗ (∂tFσλ(b)) + Fµν(a) ∗
(
b̃µνσλ ∗ (∂tFσλ(b))

)
= 0.

This equality, however, is studied in Theorem F.2, e.g. take15

f1(t) = Fµν(a)(t)

f2(t) = ∂tFσλ(b)(t)

a = ãµνσλ

b(t) = b̃µνσλ(t).

Thus, the following symmetries hold

Λµ′
µΛν′

νaµ′ν′σλ = Λσ′
σΛλ′

λaσ′λ′µν ,

15Note that the a and b configurations are independent. Thus, only one component of Fµν(a)
and Fµν(b), respectively, is different from zero.
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and

Λµ′
µΛν′

νbµ
′ν′σλ(t) = Λσ′

σΛλ′
λbσ

′λ′µν(t).

or in the notation of (3.2)



aij = aji

bij = cji
dij = dji



Gij(t) = Gji(t)
Kij(t) = Lji(t)
Fij(t) = Fji(t).

The if part of the theorem is easy. The assumption of the symmetries in the
constitutive relations imply that

Λµ′
µΛν′

νaµ′ν′σλ = Λσ′
σΛλ′

λaσ′λ′µν ,

and

Λµ′
µΛν′

νbµ
′ν′σλ(t) = Λσ′

σΛλ′
λbσ

′λ′µν(t).

This symmetry and (F.4) with vanishing source density Jµ prove that gi(ab) = gi(ba)
and the theorem is proved.

Appendix G Discontinuous solutions

Solutions to the Maxwell equations that are discontinuous can conveniently be de-
fined as solutions to integral equations in space-time [22]. These integral equations
may be obtained from the covariant formulation of the Maxwell equations in Ap-
pendix A, see (A.1).

Let Ω be a region (open and bounded) in space-time and let Γ be its boundary.
An application of the divergence theorem in 4-space then implies that




∫∫∫
Γ
{n̂µFνσ + n̂νFσµ + n̂σFµν} dS = 0

∫∫∫
Γ
n̂νG

µν dS =
∫∫∫∫

Ω
Jµ dv,

(G.1)

where dS and dv are the surface and volume elements in 4-space, respectively, and
where n̂ν are the components of the normal unit vector of Γ in 4-space directed away
from Ω. Solutions of these equations are called weak solutions16. These solutions
may be discontinuous along hypersurfaces in space-time.

Suppose a weak solution is discontinuous along a hypersurface φ(x, y, z, t) = 0.
The form of this hypersurface φ = 0 is now investigated.

Assume that the hypersurface φ(x, y, z, t) = 0 divides the region Ω into two
regions Ω1 and Ω2. Denote by Γi the part of Γ that is the boundary of Ωi, i = 1, 2,
and denote by Γ0 the portion of φ = 0 that lies in Ω. Thus Γ1 + Γ2 constitutes the
entire surface Γ, see Figure 1.

16Note that still weaker solutions can be formulated but this is not necessary for the analysis
carried out in this appendix.
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Γ0

Γ1

Γ2

Figure 1.

Apply (G.1) to the regions Ω,Ω1 and Ω2, respectively. The result is




∫∫∫
Γ0
{n̂µ[Fνσ] + n̂ν [Fσµ] + n̂σ[Fµν ]} dS = 0

∫∫∫
Γ0
n̂ν [G

µν ] dS = 0,

where the brackets indicate the difference of the values of the tensors Fµν and Gµν

on both sides of the hypersurface φ = 0. Since Ω can be chosen arbitrarily small
and enclose an arbitrarily small section of φ = 0 the integrands must be zero, i.e.
on φ = 0



n̂µ[Fνσ] + n̂ν [Fσµ] + n̂σ[Fµν ] = 0

n̂ν [G
µν ] = 0.

In terms of the fields E, B, D and H these equations are




∇φ× [E] = −(∂tφ)[B]
∇φ · [B] = 0
∇φ× [H ] = (∂tφ)[D]
∇φ · [D] = 0.

(G.2)

In a biisotropic medium without dispersion, i.e. with the constitutive relations




D(t) = aE(t) + bB(t)

H(t) = cE(t) + dB(t),

and where a and b are assumed to be non-zero constants, the jump discontinuities
in the fields satisfy (the generalized susceptibility tensors are assumed to be smooth
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functions of the space variables)


[D(t)] = a[E(t)] + b[B(t)]

[H(t)] = c[E(t)] + d[B(t)].

This equation and (G.2) imply


{a(∂tφ)
2 − d(∇φ)2}[B(t)] = (b+ c)(∂tφ)∇φ× [B(t)]

{a(∂tφ)
2 − d(∇φ)2}[E(t)] = (b+ c)(∂tφ)∇φ× [E(t)].

A necessary condition on the surface φ = 0 to support a discontinuity in the fields
is therefore

a(∂tφ)
2 = d(∇φ)2.

Furthermore, if b �= −c there can be no discontinuity in the tangential components
of E and B on the surface φ = 0.

In a biisotropic medium with dispersion the constitutive relations are


D(t) = aE(t) + bB(t) + (G ∗ E)(t) + (K ∗ B)(t)

H(t) = cE(t) + dB(t) + (L ∗ E)(t) + (F ∗ B)(t).

The scalars a and d (functions of the space coordinates) are again assumed to be
non-zero. If ∂tφ �= 0 then the jump discontinuities in the fields satisfy


[D(t)] = a[E(t)] + b[B(t)]

[H(t)] = c[E(t)] + d[B(t)],

and the result is identical to the non-dispersive case. If ∂tφ = 0 then it is easy to
show that the medium can support no discontinuities at all.

Appendix H The wave equation

The wave equation for some special cases of the media is given in this appendix.
For a homogeneous biisotropic media, i.e. constitutive relations


D(t) = aE(t) + bB(t) + (G ∗ E)(t) + (K ∗ B)(t)

H(t) = cE(t) + dB(t) + (L ∗ E)(t) + (F ∗ B)(t),

the wave equation is

d∇× (∇× E) + ∂2
t

{[
1 + dF̃∗

]
[aE +G ∗ E]

}

−∂t

{[
1 + dF̃∗

]
[(b+ c)∇× E + (L+K) ∗ (∇× E)]

}
= 0,
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where the resolvent F̃ of F satisfies

dF̃ + d−1F + F ∗ F̃ = 0.

Another example is a bianisotropic medium with constitutive relations



Di(t) = aEi(t) + bijBj(t) + (G ∗ Ei)(t) + (Kij ∗Bj)(t)

Hi(t) = cijEj(t) + dBi(t) + (Lij ∗ Ej)(t),

where 


bij = bξij
cij = cξij
Kij = Kξij
Lij = Lξij,

and

ξij =


 0 1 0

−1 0 0
0 0 0


 .

These constitutive relations are the appropriate ones for a moving isotropic disper-
sive dielectric. The wave equation for this medium is

d(∂i∂jEj − ∂j∂jEi) + ∂2
t [aEi +G ∗ Ei]

−∂tξij [bεjkl∂kEl +K ∗ (εjkl∂kEl)]

−∂t [cεijk∂jξklEl + L ∗ (εijk∂jξklEl)] = 0.

The wave equation for a general bianisotriopic medium is (no assumption on
homogeneity of the medium is made)

εijk∂j [dklεlmn∂mEn + Fkl ∗ (εlmn∂mEn)] − ∂tεijk∂j [cklEl + Lkl ∗ El)]

− ∂t [bijεjkl∂kEl +Kij ∗ (εjkl∂kEl)] + ∂2
t [aijEj +Gij ∗ Ej] = 0.

This equation can also be rewritten in a compact vector-dyadic notation as

∇× [d · (∇× E) + F ∗ (∇× E)] − ∂t∇× [c · E + L ∗ E]

− ∂t [b · (∇× E) + K ∗ (∇× E)] + ∂2
t [a · E + G ∗ E] = 0.

Appendix I On the arbitrariness of the compo-

nents of the field tensor

That each component of the field tensor Fµν can be treated separately is an as-
sumption already discussed in Section 3 and the following simple non mathematical
argument can be of interest.
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There is no loss of generality in choosing the point r as the origin. Assume the
sources (outside V ) can be arranged such that the electric field in a neighborhood
of the origin is

E1(r, t) = c0f(t+ z/c− t0)ê1,

or

E2(r, t) = c0f(t− z/c− t0)ê1,

where c is a constant and f(t) is in H1 ∩ C0. The speed of light in vacuum is
denoted by c0. It is obvious that these fields are in C0 for a suitable choice of t0.
The associated magnetic inductions are

B1(r, t) = −c0
c
f(t+ z/c− t0)ê2,

and

B2(r, t) =
c0
c
f(t− z/c− t0)ê2,

respectively. If the two fields are added and evaluated at the origin the only non-
vanishing components of Fµν are

F14(t) = −F41(t) = 2f(t− t0).

Subtraction of the two fields gives only contributions to the components F13 = −F31.
For the other components hold similar results. In this paper it is assumed that the
medium and the sources generating the fields Fµν are such that each components of
Fµν can be chosen independently.
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