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Abstract

In this paper transient electromagnetic wave propagation in an inhomoge-
neous, cold plasma is considered. It is assumed that a constant magnetic
induction is present and that the plasma is spatially inhomogeneous in the
direction of the magnetic induction. Losses in the plasma are modeled with a
collision frequency ν. The direct problem, which is to calculate the reflected
and transmitted responses of the plasma, is considered in this paper. Special
attention is paid to the precursor effects in the plasma and several examples
of precursor effects in an inhomogeneous plasma are showed.

1 Introduction

One-dimensional propagation of transient waves in dispersive media has tradition-
ally been treated mostly in the frequency domain. In some cases, e.g. when precur-
sor effects are pronounced, this is probably the only way to treat these problems,
see [4, pp. 316–326] and [7], since the stationary phase method and related methods
then can be used to obtain approximate solutions. However, there are a number
of wave propagation problems in media where these effects are less pronounced,
e.g. wave propagation in the ionosphere. In these cases, time domain methods are
an alternative to frequency domain methods. Some advantages with time domain
methods versus frequency domain methods are that they facilitates the physical in-
terpretation of the results, the numerical implementation is simpler and the solutions
obtained in the time domain automatically satisfy causality.

Recently, transient wave propagation in isotropic dispersive media has been treat-
ed in the time domain using wave splitting and invariant imbedding techniques,
see [1] and [5]. The main purpose for the development of a time domain method
for dispersive media was to solve the inverse problem, i.e. finding the memory
function which characterizes the medium, from reflection or transmission data. This
is equivalent of finding the dispersion relation in the frequency domain. The same
method can be applied to direct scattering from isotropic inhomogeneous dispersive
media and in some cases to the corresponding inverse problem, see [3].

In this paper scattering of transient electromagnetic fields from gyrotropic in-
homogeneous dispersive media is considered. The problem is one-dimensional with
the pulse propagating normal to the stratification of the medium. The dispersion
is modeled by a generalized Ohm’s law where the current density is expressed as a
convolution of a conductivity kernel and the electric field. In the direct problem the
explicit expression for the conductivity kernel is not crucial. However, in order to
have a realistic model, e.g. of the ionosphere, a neutral plasma is considered. The
conductivity kernel is then expressed in terms of the electron density and the col-
lision frequency which are functions of depth in the medium. This choice of model
is well suited for the inverse problem. Since the medium is anisotropic there are
two independent reflected components of the field which are sufficient for the recon-
struction of the electron density and the collision frequency. This inverse problem
will be treated in a subsequent paper.
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This model of the ionosphere is, of course, too simple to be realistic. There are,
however, a number of generalizations that can be made in order to make the model
more realistic. Thus, the direction and the strength of the magnetic field may vary
in the vertical direction. It is reasonable to include the effects of the motion of
the ions in the conductivity kernel since they are of importance for the long time
behavior of the scattered fields, see [2, p. 4]. An important extension of the method
itself is to consider transient waves at oblique incidence. The phenomena that occur
at oblique incidence are of course strongly frequency dependent and it is of interest
to see how these phenomena show up in a time domain treatment of the problem.
These extensions are addressed in a subsequent paper.

In appendix A, an alternative method of solving the direct problem for a homo-
geneous medium is discussed. Two Volterra equations of the second kind are derived
which solve the direct scattering problem and also the inverse scattering problem
for a spatially homogeneous conductivity kernel. These Volterra equations are con-
siderably much simpler and faster to solve numerically than the integro-differential
equations which solve the inhomogeneous problem.

In a second appendix, appendix B, a reciprocity relationship for gyrotropic media
is presented. This relationship is used to show how the transmitted field from an
incident field from one side is related to the transmitted field from an incident field
from the other side.

2 Gyrotropic medium without restoring force

In this section a generalized Ohm’s law is defined in the time domain for a gyrotropic
medium.

Consider a neutral plasma characterized by an electron density N(r), an effective
collision frequency ν(r), and a constant magnetic induction B0. If the positive
charges are considered to be heavy and if the restoring force between the electrons
and the positive charges is neglected, the polarization of the plasma is governed by
the equation of motion for the electrons

m
(
∂2

t r(t) + ν(r)∂tr(t)
)

= q (E(r, t) + ∂tr × B0) ,

where m and q are the mass and the charge of the electron, respectively. The
magnetic field is oriented along the z direction, B0 = ẑB0, and is assumed static
(i.e. the static field B0 is assumed to be much greater than the induced magnetic
field due to the electromagnetic wave). By introducing the definition of current
density J

J(r, t) = N(r)q∂tr

the equation of motion becomes

∂tJ(r, t) + ν(r)J(r, t) + ωgẑ × J(r, t) = ω2
p(r)ε0E(r, t),

where the gyrotropic frequency ωg and the plasma frequency ωp(r) are defined as

ωg =
qB0

m
, ω2

p(r) =
N(r)q2

ε0m
.
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and ε0 is the permittivity of vacuum.
A generalized Ohm’s law may be introduced as (i = 1, 2, 3 correspond to the x, y

and z-directions, respectively)1

Ji(r, t) =
∫ t

−∞ Σij(r, t− t′)Ej(r, t
′) dt′ = (Σij(r, ·) ∗ Ej(r, ·))(t)

= (Σij ∗ Ej)(r, t).
(2.1)

Notice the shorthand notation for the convolution integral introduced in this equa-
tion. When the Ohm’s law is inserted into the equation of motion the following
equation is obtained

(
Σij(r, 0) − ε0ω2

p(r)δij
)
Ej(r, t) + (fij ∗ Ej)(r, t) = 0,

where

fij(r, t) = ∂tΣij(r, t) + ν(r)Σij(r, t) + ωgεi3kΣkj(r, t),

and εijk is the Levi-Civita density. Since the electric field is arbitrary, the conduc-
tivity kernel Σij(r, t) is determined by

{
Σij(r, 0) = ε0ω

2
p(r)δij

∂tΣij(r, t) + ν(r)Σij(r, t) + ωgεi3kΣkj(r, t) = 0.

The unique solution to these equations is




Σ11(r, t) = Σ22(r, t) = ε0ω
2
p(r)e−ν(r)t cosωgt

Σ12(r, t) = −Σ21(r, t) = ε0ω
2
p(r)e−ν(r)t sinωgt

Σ33(r, t) = ε0ω
2
p(r)e−ν(r)t

Σ13(r, t) = Σ23(r, t) = Σ31(r, t) = Σ32(r, t) = 0.

(2.2)

There is no polarization or magnetization of the medium and thus the Maxwell
equations are

∇× E = −∂tB
∇× B = µ0J + 1

c2
∂tE

where µ0 is the permeability of vacuum and where c = 1/
√
µ0ε0 is the speed of light

in vacuum.
From these equations and the Ohm’s law, eq. (2.1), the wave equation in a

source free region is obtained

(
∂k∂kδij − ∂i∂j −

1

c2
∂2

t δij

)
Ej(r, t) −

1

c2
∂t(Σij ∗ Ej)(r, t) = 0. (2.3)

1The more general assumption Ji = aEi + ε0Σij ∗ Ej implies that a = 0.
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3 Scattering kernels and imbedding equations

In this section we treat one-dimensional wave propagation in a stratified medium.
In the region z < 0 there is vacuum and in the region z > 0 the medium is assumed
to be stratified in the vertical direction, i.e. in the z-direction. The medium is
characterized by the conductivity kernel introduced in the generalized Ohm’s law,
eq. (2.1). The electromagnetic field is assumed to be vertically propagating and the
following shorthand notation for the electric field will be used

E(z, t) = x̂E1(z, t) + ŷE2(z, t).

Since the z-component of the field is zero, all matrices are 2× 2 and will be written
boldface without indices. The following short-hand notation for a matrix product
and a convolution of two matrices will be used

AB = Ai1B1j + Ai2B2j

A ∗ B = Ai1 ∗B1j + Ai2 ∗B2j.

All matrices can be shown to commute with each other and the equations can be
written formally using this shorthand matrix notation. The wave equation (2.3)
simplifies to

∂2
zE(z, t) − c−2∂2

tE(z, t) − c−2∂t(Σ ∗ E)(z, t) = 0.

The two coupled second order PDE’s can be rewritten as four coupled first order
PDE’s, which in a matrix notation read

∂z

(
E(z, t)
∂zE(z, t)

)
= c−2

{(
0 c21

1∂2
t 0

)
+

(
0 0

Σ ∗ ∂t 0

)} (
E(z, t)
∂zE(z, t)

)

= A

(
E(z, t)
∂zE(z, t)

)
,

where (Σ ∗ ∂tE)(z, t) =
∫ t

−∞ Σ(z, t− t′)∂t′E(z, t′) dt′, 1 is the 2× 2 unit matrix and
0 is the 2 × 2 zero matrix.

In the homogeneous region, z < 0, the electromagnetic field can be split up in
a left-moving and a right-moving part. Based on this splitting, the following more
general splitting can be defined which splits the field into two parts even in the
inhomogeneous region, z > 0

E±(z, t) =
1

2

[
E(z, t) ∓ c∂−1

t ∂zE(z, t)
]

where ∂−1
t ∂zf(z, t) =

∫ t

−∞ ∂zf(z, t
′) dt′.

In a matrix notation this change of basis reads(
E+(z, t)
E−(z, t)

)
= 1

2

(
1 −1c∂−1

t

1 1c∂−1
t

) (
E(z, t)
∂zE(z, t)

)

= P

(
E(z, t)
∂zE(z, t)

)
.

(3.1)
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The formal inverse of the operator P is

P−1 =

(
1 1

−1c−1∂t 1c−1∂t

)
.

The wave equation can now be rewritten in terms of four coupled first order
PDE’s for the plus and minus fields

∂z

(
E+(z, t)
E−(z, t)

)
= PAP−1

(
E+(z, t)
E−(z, t)

)

=

{
c−1

(
−1 0
0 1

)
∂t + 1

2

(
−Σ −Σ
Σ Σ

)} (
E+(z, t)
E−(z, t)

)
.

(3.2)

From Duhamel’s principle it can be shown that there exists a linear relation
between the plus and the minus parts of the electric field

E−(z, t) = (R ∗ E+)(z, t). (3.3)

The kernel R(z, t) is referred to as the reflection matrix kernel. For z < 0 the
reflection matrix kernel then relates the reflected field to the incident field.

An integro-differential equation, referred to as the imbedding equation, can be
obtained for the reflection matrix kernel by utilizing the equations (3.2) and (3.3).
Differentiate eq. (3.3) with respect to z and use the dynamics of the fields E±, eq.
(3.2). After lengthy calculations the following equations are obtained:

2c∂zR − 4∂tR = Σ + Σ ∗ R + R ∗ Σ + R ∗ Σ ∗ R (3.4)

and

R(z, 0) = 0, z ≥ 0.

Assuming unique solvability of these equations gives R11 = R22 and R12 = −R21,
which also can be concluded from symmetry arguments, and the explicit equations
read

2c∂zR11 − 4∂tR11 = Σ11 + (Σ11 ∗ ·) [2R11 +R11 ∗R11 −R12 ∗R12]

−2(Σ12 ∗ ·) [R12 +R11 ∗R12]

2c∂zR12 − 4∂tR12 = Σ12 + 2(Σ11 ∗ ·) [R12 +R11 ∗R12]

+(Σ12 ∗ ·) [2R11 +R11 ∗R11 −R12 ∗R12] ,

(3.5)

If the medium is of finite length, L, the R-kernels satisfy the boundary conditions

R11(L, t) = R12(L, t) = 0.
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The transmitted field through a medium of finite length L is related to the
incident field as follows

E+(L, t+ L/c) = D(0)E+(0, t) + (T ∗ E+)(0, t).

This representation can be generalized to the region 0 < z < L as

E+(L, t+ (L− z)/c) = D(z)E+(z, t) + (T ∗ E+)(z, t). (3.6)

As was the case for the reflection operator the above representation can be justified
by the Duhamel’s principle.

Differentiate eq. (3.6) with respect to z and use the dynamics of the fields E±, eq.
(3.2). After lengthy calculations the following imbedding equations are obtained:

2c∂zT = DΣ + DΣ ∗ R + T ∗ Σ + T ∗ Σ ∗ R. (3.7)

Any discontinuity in T (z, t) along t = di(z) > 0 has to satisfy d′i(z) = 0. The matrix
D(z) satisfies

∂zD(z) = 0.

The matrix D thus is the unit matrix

D = 1,

since D(L) = 1. From the symmetries in the conductivity kernel Σ and the reflection
matrix kernel R and from eq. (3.7) it follows that T11 = T22 and T12 = −T21. This
also follows from the axial symmetry. The transmission kernels T11 and T12 then
satisfy

2c∂zT11 = Σ11 + (Σ11 ∗ ·) [R11 + T11 + T11 ∗R11 − T12 ∗R12]

−(Σ12 ∗ ·) [R12 + T12 + T11 ∗R12 + T12 ∗R11]

2c∂zT12 = Σ12 + (Σ11 ∗ ·) [R12 + T12 + T11 ∗R12 + T12 ∗R11]

+(Σ12 ∗ ·) [R11 + T11 + T11 ∗R11 − T12 ∗R12] .

(3.8)

4 The Green function approach

In the section above, the reflected or transmitted fields were obtained using invariant
imbedding technique. To obtain the internal fields a method which is not based on
the invariant imbedding technique will be used. The basis for this method is the
following representation, which can be verified from the Duhamel’s principle,

(
E+

E−

)
(z, t+ z/c) =

(
E+

0

)
(0, t) +

(
G+(z, t) ∗ E+(0, t)
G−(z, t) ∗ E+(0, t)

)
(4.1)
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Here E+(z, t+ z/c) and E−(z, t+ z/c) are the splitted fields inside the medium, i.e.
E+(z, t + z/c) and E−(z, t + z/c) are related to E(z, t + z/c) and ∂zE(z, t + z/c),
by eq. (3.1), and the kernels G+ and G− are the Green functions for the time
dependent problem. It should be noted that time t is measured from the wavefront.
It is straightforward to derive equations for the Green functions using a similar
technique as in the previous section.

The z-derivative of (4.1) reads

∂z

(
E+

E−

)
(z, t+ z/c) +

1

c
∂t

(
E+

E−

)
(z, t+ z/c) =

(
G+

z (z, t) ∗ E+(0, t)
G−

z (z, t) ∗ E+(0, t)

)

By using the dynamics for E+(z, t+ z/c) and E−(z, t+ z/c), eq. (3.2), the following
system of PDE’s is obtained

−1

c

(
∂t +

1

2

(
Σ∗ −Σ∗
−Σ∗ Σ∗

)) [(
E+

0

)
(0, t) +

(
G+(z, t) ∗ E+(0, t)
−G−(z, t) ∗ E+(0, t)

)]
+

+
1

c

(
E+

t

0

)
+

1

c
∂t

(
G+(z, t) ∗ E+(0, t)
G−(z, t) ∗ E+(0, t)

)
=

(
G+

z (z, t) ∗ E+(0, t)
G−

z (z, t) ∗ E+(0, t)

)
.

Since the incoming field, E+(0, t), is an arbitrary function of t, the Green functions
have to satisfy the following integro-differential equations

G+
z = − 1

2c

(
Σ + Σ ∗

(
G+ + G−))

G−
z − 2

c
G−

t =
1

2c

(
Σ + Σ ∗

(
G+ + G−))

,

and the initial conditions

G−(z, 0) = 0

G+(z, 0) = − 1

2c

∫ z

0

Σ(0, z′)dz′.

Thus the Green functions satisfy a system of four coupled first order PDE’s. Un-
like the imbedding equations for the reflection and transmission kernels, the equa-
tions for the Green functions do not contain any double convolutions. Numerically,
these equations are then one order faster to solve than the imbedding equations. It
should be noted that the boundary values of the Green functions are

G+(0, t) = 0

G−(0, t) = R(0, t)

G+(L, t+ L/c) = T (0, t)

G−(L, t) = 0.

A limitation of the Green function technique is that numerically it requires the
storage of gridpoints in both time and space. Thus N ×N arrays have to be stored
whereas in the numerical solution of the imbedding equations for the reflection and
transmission kernels only N × 1 arrays have to be stored.
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Figure 1: The plasma frequency given by the Chapman profile.

5 Numerical examples

In the numerical examples presented in this section it was necessary to use around
1000 points in both the z− and t−discretizations. The Green function technique
would require on the order of 30 MB of internal memory and thus only the invariant
imbedding technique has been used.

A straightforward discretization of the equations for the reflection and transmis-
sion kernels, eqs. (3.5) and (3.8) is obtained by an application of the trapezoidal rule.
The equations are integrated along their characteristics, i.e. along 2z/c−t =constant
and z =constant, respectively, by the trapezoidal rule. The stepsize in z and in t are
then coupled to each other by ∆z = ∆tc/2. As shown in the first example below, the
coupling of the discretization in space and time sometimes leads to time consuming
numerical calculations.

In the first example the z−dependence of the conductivity kernel is chosen ac-
cording to the Chapman law, cf. [2, p. 9]. The Chapman law is a simplified model
of the ionosphere where the electron density is given by

N(z) = N0 exp{1

2
(1 − (z − z0)

H
− exp(

z0 − z
H

)}.

In this example, the reference height, H, is choosen to be 10 km, the height for the
maximum electron density, z0, is 115 km and the maximum electron density, N0, is
2.8 × 1011m−3.

The corresponding plasma frequency as a function of z is shown in figure 1. A
constant collision frequency, ν = 100Hz, is assumed and the gyrotropic frequency
is ωg = 106 rad/s which is in accordance with the earth magnetic induction. There
are two time-scales involved in this problem. The first time-scale is defined by the
period of the gyrotropic frequency and the other time-scale is defined by the time it
takes for the wave-front to pass through the main part of the medium. The time-
scales then differ with three orders of magnitude and it is the smallest of these scales
that will determine the step-size in both time and space.
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Figure 2: The reflection kernels.

Figure 3: The plasma frequency ωp(z) = 2.5 × 106 − 2.5 × 106 cos(2πz/L) rad/s.

As expected the kernels reflect the smooth behavior of the profile. However,
when the curves are magnified it is possible to see a signal, superimposed on the
smooth curve, that oscillates with the gyrotropic frequency. From figure 2 it is seen
that the reflection kernels R11 and R12 are out of phase. This can be understood
from eq. (3.5) where it is seen that the time derivative of the reflection R12 has the
same source term as R11.

It is likely that precursor effects can occur in a gyrotropic medium since it has
the same structure as a Lorentz medium, cf. [4]. The first precursor is essentially
determined by the initial values of the conductivity kernel and its first derivative,
whereas the second precursor is caused by the internal resonance frequency of the
medium, i.e in this case the gyrotropic frequency. In the second example the magni-
tude of the material parameters and the length of the medium were chosen so that
both the first and the second precursor could be seen in the transmission kernels.
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Figure 4: The transmission kernels.

The plasma frequency varies like

ωp(z) = 2.5 × 106 − 2.5 × 106 cos(2πz/L) rad/s

where L = 2 km, as seen in figure 3, and the gyrotropic frequency is ωg = 5 ×
106 rad/s.

The values are realistic for the ionosphere, i.e. it should be possible to see both
the first and the second precursor in a time domain experiment. As seen in figure 4,
the transmission kernel first has an oscillatory behavior, where the frequency of the
oscillations decreases with time. This part of the transmission kernel corresponds to
the first precursor. In the case of a homogeneous plasma it is approximately equal

to ωp

√
L
2ct
J1(ωp

√
2Lt
c

), where L is the lenghth of the medium and J1 is the Bessel

function of the first order. After a certain time there is a second oscillation of the
transmission kernel that appears. It corresponds to the second precursor and has a
less rapid variation then the first precursor. According to [4] the second precursor
is delayed a time ts � L

2c
(ωp

ωg
)2 � 3µs relative to the wave-front which is in good

agreement with figure 4.

6 Conclusions

In the present paper, reflection and transmission from a gyrotropic medium are ana-
lyzed. A constitutive relation, based upon the equation of motion for the electrons,
is introduced and it is seen that in the time domain the medium is characterized by
a conductivity kernel which acts as a memory function for the medium. The reflec-
tion and transmission kernels for the plasma are calculated using the wave splitting
and the invariant imbedding technique. The solution is implicitly given as coupled
integro-differential equations for the scattering kernels. Numerical solutions to these
equations are presented for a simplified model of the ionosphere and also to a denser
plasma with a large magnetic induction where precursor effects appear.
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An alternative method to the invariant imbedding method is also discussed in
this paper. In this method coupled PDE’s for the Green functions are obtained. This
method is used in a subsequent paper to obtain the internal fields in a gyrotropic
medium at oblique incidence, and where also the precursors in the ionosphere are
addressed in more detail.

Appendix A The homogeneous plasma

In this appendix it is shown that the reflection and transmission kernels for a ho-
mogeneous plasma, i.e. where ωp and ν are constant, can be obtained by solving
two Volterra equations of the second kind. Numerically, these Volterra equations
are one order faster to solve than the integro-differential equations. The equations
are derived by a Laplace transformation of eqs. (3.4) and (3.7).

For a plasma of finite length, L, one round-trip, τ , is defined as the time it takes
for the wave-front to go back and forth once in the medium, i.e. τ = 2L/c. For a
homogeneous plasma the reflection matrix kernel is independent of z for times less
than one round-trip and thus the equation for the reflection matrix kernel, eq. (3.4)
can be integrated in time to give

4R + G + G ∗ R + R ∗ G + R ∗ G ∗ R = 0, 0 < t < τ, (A.1)

where G = ∂−1
t Σ. The matrices R and G are here assumed to commute, which

can be verified for the case of a gyrotropic medium. To obtain the reflection matrix
kernel for times larger than one round-trip eq. (3.4) is Laplace transformed,

2c∂zR̃ = Σ̃ + 2Σ̃R̃ + R̃Σ̃R̃ + 4sR̃.

A tilde over a character denotes the Laplace transform, i.e. R̃(s) is the Laplace
transform of the matrix R(t) where s is the variable of the transform. The formal
solution to this equation at z = 0 reads

R̃(s) = r̃(s)[1 − exp(−Φ̃(s) − sτ)][1 − r̃(s)2 exp(−Φ̃(s) − sτ)]−1,

where

Φ̃(s) = sτ((1 + G̃(s))
1
2 − 1). (A.2)

and

r̃(s) = [1 − (1 + G̃(s))
1
2 ][1 + (1 + G̃(s))

1
2 ]−1. (A.3)

The interpretation of the formal expressions is then given by a Taylor series expan-
sion. By a formal expansion, R̃(s) can be written as

R̃(s) = r̃(s) +
∞∑

n=0

((r̃(s))2ṽ(s) − ṽ(s))(r̃(s)r̃(s)ṽ(s))n exp(−(n+ 1)sτ),



12

where

ṽ(s) = r̃(s) exp(−Φ̃(s)).

By introducing

ẽ(s) = exp(−Φ̃(s)/2) − 1,

ṽ(s) can be written as

ṽ(s) = ṽ(s)(ẽ(s))2 + 2r̃(s)ẽ(s) + r̃(s).

In the time domain the reflection matrix kernel thus has the following series expan-
sion

R(0, t) = r(t) +
∞∑

n=0

[(r ∗ r ∗ v − v)(∗r ∗ v)n](t− (n+ 1)τ), (A.4)

where r(t) and v(t) are the inverse Laplace transforms of r̃(s) and ṽ(s), respec-
tively, and where the terms on the right hand side are understood to be zero for
negative arguments. The series expansion then corresponds to a multiple scattering
expansion. From eq. (A.4) it is obvious that r(t) is the reflection matrix kernel for
times less than one round-trip. This can also be seen by deriving eq. (A.1) from the
expression in eq. (A.3). Thus r(t) satisfies the equation

4r + G + 2G ∗ r + r ∗ G ∗ r = 0. (A.5)

The matrix v(t) is obtained from

v = r ∗ e ∗ e + 2r ∗ e + r. (A.6)

The matrix e(t) satisfies the following Volterra equation of the second kind

2te(t) + [f ∗ e](t) + f(t) = 0, (A.7)

where

f(t) = tΦ(t).

and Φ(t) is the inverse Laplace transform of Φ̃(s), which can be written as

Φ(t) =
τ

2
{(Σ ∗ r)(t) + Σ(t)}

as seen from eqs. (A.2) and (A.3). The Volterra equation (A.7) is easy to derive by
noticing that

2∂sẽ(s) = −(∂sΦ̃(s)) exp(−Φ̃(s)/2) = −(∂sΦ̃(s))ẽ(s) − ∂sΦ̃(s)

and using that the inverse Laplace transform of ∂sΦ̃(s) is −tΦ(t).
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It is seen that the reflection matrix kernel can be obtained by solving two Volterra
equations of the second kind, eqs. (A.5) and (A.7), and by performing the convolu-
tions and summations in eqs. (A.6) and (A.4).

The Laplace transform of the equation for the transmission kernels, eq. (3.7),
reads

2c∂3T̃ = Σ̃(1 + R̃)(1 + T̃ ).

If R̃ and T̃ commute, the formal solution to this equation at z = 0 reads

T̃ (0, s) = −r̃(s)R̃(s) + ẽ(s)(1 − r̃(s)R̃(s))

and thus in the time domain

T (0, t) = e(t) − [r ∗ R](t) − [e ∗ r ∗ R](t).

Appendix B A reciprocity relationship

A gyrotropic medium is in general not reciprocal. It is, however, possible to prove a
reciprocity relationship by introducing a complementary medium. This is the same
idea that is used in [6] for bianisotropic media. The reciprocity theorem will then
be used to prove that the transmission kernel for an incident wave propagating in
the positive z−direction is identical to the transmission kernel for an incident wave
traveling in the negative z−direction.

Let {E,H} be the electromagnetic field satisfying the Ohm’s law, eq. (2.1), and
let {Ec,Hc} be an independent electromagnetic field satisfying the Ohms law for a
complementary medium

J c
i = Σji ∗ Ec

j (B.1)

i.e. with the transpose of the original conductivity kernel. This corresponds to
reversing the direction of the magnetic induction B0. Both media are otherwise
identical and the conductivity kernel is given by eq. (2.2). From the Maxwell equa-
tions, the Ohm’s laws given by eqs. (2.1) and (B.1) for the medium and the com-
plementary medium, respectively, and by use of Gauss’ law the following reciprocity
relationship is seen to hold

∫∫
S

∫ t

0

{εijk(Ec
j (t

′)Hk(t− t′) +Hc
j (t

′)Ek(t− t′))}dt′n̂idS = 0. (B.2)

The surface S is closed and n̂i is its outward pointing normal.
Now, let the medium be stratified in the z-direction and extend from z = 0 to

z = L. Outside the medium there is vacuum. Let E(z, t) be the total field from an
incident field propagating in the negative z−direction for z > L, i.e. from E−(z, t) =
x̂E−

x (L, t + (z − L)/c), and let Ec(z, t) be the total field for the complementary
medium from an incident field propagating in the positive z−direction for z < 0,
i.e. from Ec+(z, t) = x̂Ec+

x (0, t− z/c). Both incident fields are assumed to impinge
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on the slab at time t = 0, i.e. E(L, t) = Ec(0, t) = 0 for t < 0. If the surface S
is choosen as the surface of a straight cylinder extending from z = 0 to z = L the
reciprocity theorem implies

ε3jk{[Ec
j ∗Hk](0, t) + [Hc

j ∗ Ek](0, t)} = ε3jk{[Ec
j ∗Hk](L, t) + [Hc

j ∗ Ek](L, t)}

By differentiating this equation with respect to t and using

∂tHi(z, t) = − 1

µ0

εi3kEk,3(z, t),

where Ek,3(z, t) = (∂zE3)(z, t) one gets

[Ec
1 ∗ E1,3](0, t) + [Ec

2 ∗ E2,3](0, t) − [Ec
1,3 ∗ E1](0, t) − [Ec

2,3 ∗ E2](0, t) =
[Ec

1 ∗ E1,3](L, t) + [Ec
2 ∗ E2,3](L, t) − [Ec

1,3 ∗ E1](L, t) + [Ec
2,3 ∗ E2](L, t)

(B.3)

Now 


Ec
i (0, t) = Ec+

i (0, t) + Ec−
i (0, t)

Ec
i (L, t) = Ec+

i (L, t) = Ec+
i (0, t− L/c) + [T c+

ij ∗ Ec+
j ](0, t− L/c)

Ei(L, t) = E+
i (L, t) + E−

i (L, t)
Ei(0, t) = E−

i (0, t) = E−
i (L, t− L/c) + [T−

ij ∗ E−
j ](L, t− L/c)

where T c+
ij (t) is the physical transmission kernel for the complementary medium for

an incident field propagating in the positive z−direction and T−
ij (t) is the physical

transmission kernel for the medium for an incident wave propagating in the negative
z−direction. By inserting these representations in eq. (B.3) and using that for z = 0
and z = L

E+
i,3 = −1

c
∂tE

+
i

E−
i,3 = 1

c
∂tE

−
i ,

it follows that

T−
ij (t) = T c+

ji (t).

From the imbedding equation for the transmission kernel, eq. (3.6), and for the
reflection matrix kernel (3.3) it follows that that reflection matrix kernel and trans-
mission matrix kernel for the complementary medium is equal to the transpose of
the corresponding kernels for the medium, i.e.

Rc+
ij (0, t) = R+

ji(0, t)
T c+

ij (0, t) = T+
ji (0, t)

and thus

T−
ij (t) = T+

ij (t).
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