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Abstract

Transient wave propagation in a finite bi-isotropic slab is treated. The inci-
dent field impinges normally on the slab, which can be inhomogeneous wrt
depth. Dispersion and bi-isotropy are modeled by time convolutions in the
constitutive relations. Outside the slab the medium is assumed to be homoge-
neous, non-dispersive and isotropic, and such that there is no phase velocity
mismatch at the boundaries of the slab. T'wo alternative methods of solution
to the propagation problem are given—the imbedding method and the Green
function approach. The second method is used to solve the inverse problem
and the first to generate synthetic data. The inverse scattering problem is to
reconstruct the four susceptibility kernels of the medium using a set of finite
time trace of reflection and transmission data.

1 Basic equations

The wave propagation problem in bi-isotropic media has received extensive atten-
tion during recent years. The fixed frequency problem has been analyzed by many
authors, see [3,10] for a review of recent work. Transient problems have also been
addressed, see [8,9]. The present analysis of the transient problem is a generalization
of previous work for the isotropic slab, see Ref. [7], and applies the generalization of
the wave splitting technique to the Maxwell equations [12].

Consider a dispersive bi-isotropic slab with boundaries, z = 0 and z = d. The
slab can be inhomogeneous in the z-direction. Outside the slab, the medium is
assumed to be non-dispersive with constant permittivity eye and permeability piop.
The phase velocity ¢ and the wave impedance 7 of the surrounding medium is then

given by
R _[Pop \/ﬁ
c= =—=, =4/ ==
v/ €€ b \ EU €p€ €

respectively!. The slab is assumed to have no mismatch at the boundaries, z = 0 and
z = d. The appropriate constitutive relations used in this paper are, see Ref. [6,9]*:

{ enD(r,t) = E(r,t) + (G + F) « E)(r,t) + n((K + L) « H)(r,t) 11

cB(r,t) = ((-K+ L)x E)(r,t) +nH(r,t) + n((G — F) « H)(r,t)

where time convolution is denoted by x, i.e.

t
(Gx E)(r,t)= / G(z,t —tE(r,t") dt'

The kernels G' and F model the ordinary dispersive effects, while K and L model the

bi-isotropy of the medium. If L = 0, the medium is reciprocal [6]. Causality implies

that the functions G, F, K and L are identically zero for ¢ < 0. Furthermore, all

IThe subscript zero indicates the corresponding vacuum values.
2Note the change in notation between this paper and these references.



kernels are assumed to be continuously differentiable functions of ¢ for ¢ > 0 at each
point 7 in the interior of the slab. Outside the slab, G, F', K and L are all identical
to zero.

The slab is excited by a (known) general plane wave, with electric field E;,
propagating in the positive z-direction. Moreover, the electric field FE is everywhere
assumed to be of the form

E(r,t) =e,E,(2,t) + e, Ey(z,t)

and similarly for the other electromagnetic vector fields®. Thus, by introducing the
reflected, E,, and the transmitted, FE,, electric fields, respectively, the total electric
field outside the slab can be written as

B(et) = E;(z,t)+ E.(z,t), z2<0
2u= Ei(z,t), z>d

The source free Maxwell equations are the basic equations that model the dy-
namics of the electromagnetic fields.

V x E(r.t) = —LB{;:’”
v H(r 1) = 2P0

It is convenient to use a matrix notation and, therefore, vectors in the x-y-plane are
identified with their column vector representations, i.e.

B = (F(0)

The Maxwell equations can then be written

g FE _12 cJB
0z \nJH )  ¢ot \enD

= (0 7)

The constitutive relations (1.1) are now used to eliminate the D and the B-fields
in this equation. The result is

c% (”fH ) - (I(+_ FG++LF)§* I—+(£<G+_Lb;>>k*> % (an) (12

where I is the 2 x 2 identity matrix and where

where J is defined by

G=GI, K=KJ, F=FI, L=1LJ

3e.,en,e, is the usual basis in R3.



2  Wave splitting

The wave splitting is a change of the dependent variables such that the new variables
represent the general left- and right-going waves in a medium without dispersion,
e.g., outside the slab. The idea of wave splitting has been used in several scattering
problems, e.g., [1,2,11,12]. Here, the same splitting as in an earlier paper, see [9],
is used, i.e., the linear map

(5523) =P (nféz(’;,)t)) (2.1)

where the 4 x 4 matrix P is defined as

1(1 -1
P_§<I I)

is adopted. Note that E*(z,t) are continuous at the boundaries of the slab, i.e., on
the planes z = 0 and z = d, and hence they are continuous vector fields.

Outside the slab, E*(z,t) are the electric fields of the general right- and left-
going waves, respectively. Inside the slab, no interpretation in right- and left-going
waves is possible, but the definition (2.1) is, nevertheless, well defined everywhere,

and
E(z,t) = E*(2,t) + E (2,t)

H(x 1) — %J (B*(2) — B (=.1))

3 Dynamics

The fields satisfy the system of equations in (1.2). The plus and minus fields E*(z, ¢)
and E~(z,t), defined in Section 2, satisfy a similar system of equations. These
equations are equivalent to (1.2) and straightforward to derive using (1.2) and (2.1).
The result is

9 (EY\ (-1 0\ 0 (E* L (-G-K -F+L) 0 E*
‘92 \E-) " \o 1) \E F+L G-K) ot \E-

The first term gives the dynamics for the free space contribution, and the second
the perturbation due to the dispersion in the slab.

Propagation of singularities gives information about the rotation and the atten-
uation of the wave front as it propagates through the medium. Assume there is a
finite jump discontinuity in the plus field ET at z = 0. This finite jump discontinu-
ity propagates through the medium and the finite jump discontinuity at depth z is
related to its value at z = 0 as

[E*(z,t+z/c)] = Q(0,2) [ET(0,1)]

where the 2 x 2 matrix Q(0, z) quantifies the rotation and the attenuation of the
discontinuity. The square bracket [E+(z, t+z/ c)] denotes the finite jump discon-
tinuity of the field at the point (z,t + z/c), i.e.

[E*(z,t+2/c)] = ET(2,t + 2/c+0) — EY(z,t + z/c — 0)



The field E~ shows no finite jump discontinuity of this kind and therefore the total
field E has exactly the same finite jump discontinuity as the field E* above. Notice
also, that the finite jump discontinuity [E+(0, t)} is the same on either side of the
interface of the slab.

The matrix Q(0, z) can be explicitly solved and expressed in the following general
notation, see Ref. [9]:

Qo) = o) (Snf ) )

where the angle of rotation of the wave front ¢(z1, 25) is

1 [*
(21, 22) = ——/ K(2',0)dz
cJ.,

and the attenuation factor a(z, z) is
1 [*
a(z1,22) = ——/ G(Z,0)d7 (3.2)
cJ.,

Notice that this result holds for an inhomogeneous slab with arbitrary susceptibility
kernels G(z,t), F(z,t), K(z,t) and L(z,t).

4 The scattering operators

By use of linearity, causality and time-invariance, the scattering operators that relate
the incident field E*(0,¢) to the reflected field E~(0,t) and the transmitted field
E*(d,t + d/c) must be of the form

{ E_(()?t) = (Rph() * E+(07 )) (t) (4 1)
Ef(d,t+d/c) = Q(0,d) {ET(0,t) + (Tpu(-) * ET(0,-)) (t)} '

where Ry, (t) and Tpu(t) are the physical reflection and transmission kernels, re-
spectively, and Q(0, d) defined in (3.1).

By the axial symmetry of the problem, it is obvious that the form of the scattering
operators is

_(BY(@) —R() _ (T -1
Rult)= (i) aiy ) O () 1) 0

It is easy to see that all 2 x 2 matrices of this form commute.

5 The Imbedding equations

The wave splitting naturally leads to the study of a subsection |z, d] of the slab [0, d].
For each subsection the reflection and transmission imbedding kernels are defined

by
{E = (R(z,) * E*(2,") (1)
E*(d,t+ (d— )/c) Q(z,4d) {E+(z,t) + (T(z7 ) x ET(z, )) (t)}



where

_ (Ri(z,t) —Ra(z,t) _ (Ti(z,t) —Ty(z,t)
R(Z’t)_(Rg(z,t) Rl(z,t))’ T(Z’t)_<T2(z,t) Tl(z,t)>

due to axial symmetry. By continuity of the split vector fields, the following bound-
ary values are obtained:

R(0,t) = Ryn(t) R(d,t) =
T(0,¢) = Tpu(t)

The subsection problem generates a one parameter family of reflection and trans-
mission kernels, which satisfy integro-differential equations. These imbedding equa-
tions are for the reflection kernel

cO,R—20R=0,{F+L+2G*R+ (F—-L)«xRx*R} (5.1)
R(d,t) =0
R(z,40) = —(F(z,+0) + L(z,40)) /2

exp (2a(z,d)
Rz, 20— 2) o) = 22 C4ED)

and for the transmission kernel the result is

0, T=0{G+K}+«T+0{G+K+(F-L)«x(R+RxT)} (5.2)
T(d,t)=0

(F(d,+0) + L(d, +0))

d
2c¢T(z,+0) = / {F? - L* - 20,(G +K)} (¢, +0) d2’

The attenuation factor a(z,d) is defined in (3.2). The domain of definition for these
equations is {(z,t) 1t > 0,0 < z < d and t # 2(d — z)/c}.

If the medium is reciprocal, i.e., L(z,t) = 0, equation (5.1) shows that the cross-
polarized reflection kernel Ry(z,t) = 0. The reason for this is that the imbedding
equation (5.1) then has only diagonal entries and no off-diagonal terms (this assumes
unique solubility of the equation). The reflection kernel then simplifies to R(z,t) =
Ry(z,t)I. As a consequence of this, the cross-polarized part of the reflected electric
field from the finite or semi-infinite reciprocal bi-isotropic slab will be zero even if the
slab is inhomogeneous. This result holds for any susceptibility kernels G, F' and K
and is therefore a general result. If also F'(z,t) = 0, then R = 0, irrespective of the
susceptibility kernel G(z,t). This reflects the ill-posedness of the inverse scattering
problem, since infinitely many dispersive profiles give the same reflection kernel
R(z,t), i.e., the same reflected field regardless of the incident field. Transmission
data can be used to resolve this non-uniqueness.

6 The Green Functions

In the previous section the scattering problem was analyzed using imbedding argu-
ments. In this section an independent approach—the Green function equations—is



applied. The Green functions give the internal fields due to a delta function excita-
tion. They are defined by

{ E*(z,t+z/c) = Q(0,2) ET(0,t) + (G™(2,-) * Q(0,2) ET(0,-)) ()
E~(z,t+z/c) = (G (2,-) * Q(0, 2) E*(0,-)) (t)

where due to axial symmetry

+ Gi‘:(&t) —G;t(z,t)
GHzt) = <G§E<z,t) Gli(z,t))

By continuity of the split vector fields, the Green functions are related to the physical
reflection and transmission kernels, i.e., the boundary conditions are

G*(0,t)=0 G*t(d,t) = T,n(t)
G (0,t) =Rpn(t)’ G (d,t)=0

Analogous to the imbedding equations for the scattering kernels of the subsec-
tion problem, the Green functions satisfy a system of integro-differential equations.
These equations, linear in G, are for the matrix function G*

0,GT = -9, {G+K}+«G" -3, {G+K+ (F-L)«xG™} (6.1)
G*(0,t)=0

2cGT(z,+0) = / {F* - L* - 20,(G + K)} (¢, +0) dz'
0

and for the matrix function G~

c0,G™ —20,G™ =2G(z,0)G™ + 0, {F + L}

+ 0 {(F+L)«G"} +0,{G-K} «G"~ (6.2)
G (d,t)=0
G (z,+0) = —(F(z,40) + L(z, +0)) /2

G (2,2(d — 2)/¢) = 2220 D)

5 (F(d,+0) + L(d, +0))

As in the imbedding formulation, the domain of definition in both these cases is
{(z,) :t>0,0< z<dand t+#2(d—z)/c}.

The explicit relation between the imbedding kernels R and T and Green func-
tions is

{ GT(d,t) = G*(z,t) + T(2,t) + (T(z,-) * GF(2,")) (1)
G (2,t) =R(z,t) + (R(z, ) x GY(z, )) (1)

since all matrices commute.



7 The direct and inverse problems

In this section the direct and inverse scattering problems are addressed. All analysis
in the preceding sections holds for a stratified slab, i.e., the susceptibility kernels vary
with the depth z. In this section, however, the slab is assumed to be homogeneous.
The inverse problem is therefore a reconstruction of functions depending only on
the time ¢, i.e., to find the susceptibility kernels G(t), F(t), K(t) and L(t).

In the direct problem, the susceptibility functions G(t), K(t), F(t) and L(t) are
known, and the scattering kernels R, () and Tpj(t) are sought. With these kernels
the scattered fields can be calculated for any excitation, see (4.1). The internal
fields can be calculated with the Green functions G*(z,t). These direct problems
have been addressed in two previous papers, see Refs. [8,9]. Even though this paper
emphasizes the inverse problem the solution of the direct scattering problem is used
to reconstruct the dispersive profile.

In the inverse problem the kernels R, (¢) and Ty, (¢) and the matrix Q(0, d) are
assumed to be known. These scattering kernels are obtained from the scattered fields
by deconvolving (4.1). The unknowns in the inverse problem are four susceptibility
kernels G(t), K(t), F(t) and L(t). Karlsson [4,5] has shown that the forward algo-
rithm can be used to solve the inverse problem for an isotropic dispersive medium.
This method is a constructive method and does not use optimization. An outline of
a generalization of this method is given below. To avoid bias in the solution of the
inverse scattering problem, the imbedding equations are used to generate synthetic
scattering data Ry, (t) and Tpon(¢). The inverse scattering problem is then solved
using the Green function formulations.

The method of Karlsson can be extended and used to solve the inverse scattering
problem for a dispersive bi-isotropic medium. The outline of this extended Karls-
son’s method is:

Time step 0: Since Q(0, d) is assumed to be known through the transmission data,
the initial values G(0) and K (0) are known, and the other initial values easily follow
from

F(0) + L(0) = —2R,,1(0)
G/(0) + K'(0) = S (F(0) ~ L(0)*) ~ Ty (0)
F(0) + T/(0) = ~2(R},(0) + G(O)R(0)

These initial values are easily found from the results above, see (5.1) and (5.2) or
(6.1) and ().

Time step J: Suppose that G'(j), K'(j), F'(j) and L'(j)* are known for time
j < J. Analysis of the discretized version of the Green functions equations®, (6.1)
and (), for the direct scattering problem using the trapezoidal rule implies that

Ton(J) = AT (N)G'(J) + BT (NK'(J) + CH()F'(J) + DY (J)L'(J) + E*(J)
R,(J) = A~G/(J) + B K'(J) + C"F/(J) + DL'(J) + E~(J)

LG (j) = L G(jAL) ete.

5The same conclusion can be made from (5.1) and (5.2) if the imbedding equations are used to
solve the inverse scattering problem.



The coefficient matrices A=, B™, C~ and D™ are constant matrices and their explicit
values are easily found. The matrices A*, BT, C*, D*, E* and E~ depend only
on G'(j), K'(j), F'(j) and L'(j) for time j < J, and vary, as indicated, with J. All
matrices in this expression have the form as in (4.2) and therefore they all commute.

Thus, by running the forward program five times (four times in the reciprocal
case) for different sets of G'(J), K'(J), F'(J), L'(J) at time J, a linear system of
equations in the unknown coefficient matrices is obtained. After calculating these
matrices, a linear system of equations in G'(J), K'(J), F'(J) and L'(J) is achieved.
This system of equations can be solved since T, (.J) and Ry, (/) are known. Finally,
the Green functions G* at all grid points for j = J are computed by running the
forward program once again. The procedure is then repeated for the next time step
J+ 1.

Two explicit examples in the next section illustrate the numerical performance
of this algorithm.

8 Numerical results

In the following explicit examples, all frequencies (i.e., all numerical values) are
given in units of ¢/d and time ¢ in units of d/c.

Example 1

In this first example, a reciprocal multi-frequency Lorentz medium is presented. The
susceptibility kernels are

G(t) = 0.5¢ "% sin 5t 4 0.25¢ =" sin 10¢
F(t) = 0.5e""* sin 5t + 0.2¢7* sin 10¢
K(t) = 0.01e " cos 10t

L(t)=0

Since the medium is reciprocal (L(t) = 0), there is no cross coupling in the reflected
field (R2"() = 0). The susceptibility kernels are shown in Figures 1 and 2. Notice
that the chirality of the medium, modeled by K(t), is two orders of magnitude
smaller than the kernel G(¢) + F(t). This reduction of magnitude in the chirality
kernel is believed to model realistic data. The reflection and transmission data for
this medium are shown in Figure 3. The scattering data are continuous functions
of t, since F'(0) = L(0) = 0. The reconstructions of the susceptibility kernels are
shown in Figures 1 and 2. In these reconstructions 64 data points per round trip
(t = 2) are used.
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Figure 1: The susceptibility kernels G(¢) + F'(t) and G(t) — F(t) for the reciprocal
Lorentz medium in Example 1 and their reconstructions. The time scale is given in

units of d/c, and the vertical axis in units of ¢/d.
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Figure 2: The susceptibility kernel K (¢) for the reciprocal Lorentz medium (L(t) =
0) in Example 1 and its reconstruction. The time scale is given in units of d/c, and

the vertical axis in units of ¢/d.
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Figure 3: The reflection kernel R (¢) and the transmission kernels TP"(¢) and
TP"(t) for the reciprocal Lorentz medium (R5"(t) = 0) in Example 1. The time
scale is given in units of d/c, and the vertical axis in units of ¢/d.
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Figure 4: The susceptibility kernels G(t) + F(t) and G(t) — F(t) for the Debye-
Lorentz medium in Example 2 and their reconstructions. The time scale is given in
units of d/c, and the vertical axis in units of ¢/d.



11

2 —_—
B LoD 2
A t ~+  Reconstructions
— 1
~ ~
y o §
A X
: Nl
- .1
- 210"
-2
210" T T T T T T
0 1 2 3 4 5 6
t

Figure 5: The susceptibility kernels L(t) + K(t) and L(t) — K (t) for the Debye-
Lorentz medium in Example 2 and their reconstructions. The time scale is given in
units of d/c, and the vertical axis in units of ¢/d.
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Figure 6: The reflection kernels RP"(#) and RY"(¢) for the Debye-Lorentz medium
in Example 2. The time scale is given in units of d/c, and the vertical axis in units
of ¢/d. Notice the finite jump discontinuity in RP"(¢) and R5"(¢) at one round trip

t=2.
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Figure 7: The transmission kernels TP"(¢) and TP"(t) for the Debye-Lorentz
medium in Example 2. The time scale is given in units of d/c, and the vertical
axis in units of ¢/d.

Example 2

The second example is a non-reciprocal multi-frequency Debye-Lorentz medium.
These susceptibility kernels are

G(t) = 0.5¢7°%" + 0.25¢ %% gin 10¢
F(t) = 0.5¢7 %% + 0.2 %" sin 10t
K(t) = 0.01e " cos 10¢

L(t) = 0.0le"" cos 10t

The susceptibility kernels are depicted in Figures 4 and 5. The reflection and
transmission data for this medium are shown in Figures 6 and 7. As in Example 1,
the chirality of the medium is two orders of magnitude smaller than the kernel
G(t) + F(t). Notice that the reflection kernels R (¢) and RS"(¢) have finite jump
discontinuities at one round trip (¢ = 2), since F'(0), L(0) # 0. The reconstructions
of the susceptibility kernels are shown in Figures 4 and 5. In these reconstructions
64 data points per round trip (¢t = 2) are used.

Both these numerical experiments show that excellent reconstructions of the
susceptibility kernels G(t), F'(t), K(t) and L(t) are obtained.
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