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Abstract

The modeling of non-reflecting one-dimensional dispersive media is discussed.
The media are temporal dispersive with a spatially varying impedance. It is
shown that the effects from the variation of the impedance can be matched
by the temporal dispersive effects so that the media do not reflect any field
regardless of the shape of the incident transient field. The problem of finding
reflectionless media is formulated as an inverse problem where the constitutive
relation is to be determined as a function of depth given a reflection kernel
which is zero. A time domain Green functions technique is used to solve the
inverse problem.

1 Introduction

Problems concerning non-reflecting layers have been paid much attention during
the last decade. Often the aim is to find layers for which the reflection coefficient
is minimized in certain frequency bands. Especially this is the case in many radar
applications where there is a perfectly conducting wall behind the layer. These
frequency selective layers are often constructed using different patches distributed
on the surface, cf. [2, 11, 13]. There are also attempts to use chiral media as low-
reflecting materials, cf. [5]. The frequency selective layers give small reflections in
one frequency band but may give large reflections at other frequencies. Thus a
transient wave containing a wide spectrum of frequencies can be highly reflected
from such a layer. In quantum mechanical scattering, inverse scattering methods
have been used to construct non-reflecting potentials, cf. [8] and [12]. The idea to
use inverse scattering methods to design media with certain scattering properties
will be adopted in this paper.

This paper concerns the design of a dispersive half-space which is reflectionless
for all frequencies, or equivalently, reflectionless for any incident pulse. The problem
is formulated as the inverse problem of finding the constitutive relation as a function
of depth, given that the reflection data are known to be zero for all times. In general
this problem has non-unique solutions. However, it may be reduced to a problem
which is uniquely solvable, by assuming some of the parameters in the constitutive
relation to be known. In the case of a non-dispersive medium it is well-known that
it is sufficient to keep the impedance constant throughout the medium in order to
get a non reflecting medium. This is true even if the medium is of finite length, as
long as the medium is impedance matched to the surrounding media. For media
with temporal dispersion it is no longer possible to obtain a reflectionless medium
by keeping the impedance constant. The reason for this is that the polarization
of a dispersive medium depends on the history of the waves that have propagated
through the medium. As the polarization diminish with time the medium send out
energy and even if the wave front experiences a constant impedance the medium
will scatter energy.

The technique which is used in the search for reflectionless media is based upon
an inverse scattering method in the time domain, referred to as the Green functions
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technique. The Green functions technique was originally developed for problems
concerning one-dimensional direct and inverse scattering from non-dispersive media,
cf. [10]. Recently it has also been applied to different types of dispersive media [9].
In the Green functions technique Green operators are introduced which map the
incident wave to the internal fields in the medium. The operators are represented
in terms of kernels, which satisfy a system of first order hyperbolic equations. Most
inverse scattering problems are ill-posed and hence scattering data that are con-
taminated with noise cause large errors in the solution. In the present case the
ill-posedness never shows up in the numerical solution, since the scattering data are
prescribed and exactly known rather than obtained from measurements. The errors
in the solution of the inverse problem are then only due to discretization errors and
round-off effects due to the finite precision used by the computer. In practice these
errors can be made very small.

In the next section the constitutive relation for a dispersive medium is given
in the time domain. In the third section a wave splitting is introduced and the
wave equation is rewritten in terms of the split fields. The fourth section contains
a presentation of the Green functions technique for dispersive media. In section
5 the inverse problem of finding non-reflecting media is stated and the solution is
discussed in some specific cases. Two necessary conditions for a solution to exist are
also given in this section. The numerical section, section 6, contains two examples
of non-reflecting media. The dispersive models in the examples are based upon
the Debye model, which is appropriate for liquids, and the Lorentz model, which is
appropriate for solid materials.

2 Formulation of the problem

A general linear isotropic dispersive media is described by the following constitutive
relation, cf. [4], [1] and [6],{

D(z, t) = ε0(εr(z)E(z, t) +
∫ t

−∞
χe(z, t− t′)E(z, t′) dt′)

B(z, t) = µ0(µr(z)H(z, t) +
∫ t

−∞
χm(z, t− t′)H(z, t′) dt′),

(2.1)

where D(z, t) is the displacement field, E(z, t) is the electric field, B(z, t) is the
magnetic induction and H(z, t) is the magnetic field. The medium thus has a non-
constant relative permittivity, εr(z), and a non-constant relative permeability, µr(z).
The medium is furthermore dispersive and the dispersion is in the time domain
modelled by the electric and magnetic susceptibility kernels, χe(z, t) and χm(z, t).
A more general model for linear dispersive isotropic media would include biisotropic
effects, but that will not be considered in this paper.

The dispersive medium occupies the semi-infinite region z > 0. The other half-
space, z < 0, is a non-dispersive medium with a constant permittivity εr and per-
meability µr such that εr/µr = εr(0)/µr(0), i.e. the two half-spaces are impedance
matched at z = 0. A transient wave propagating in the positive z−direction im-
pinges at z = 0 on the dispersive half-space at time t = 0. The aim of the present
paper is to find different z−dependent constitutive relations for the medium such
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that the reflected field from the medium vanishes for any incident field. In order
to clarify the basic idea of the technique used in the paper, only the constitutive
relation with χm ≡ 0 will be considered in the analysis. From now on the index of
the electric susceptibility kernel will be omitted, i.e. χ(z, t) ≡ χe(z, t).

3 The wave equation and wave splitting

In this section the wave equation for the medium described by the constitutive rela-
tion in Eq. (2.1) will be presented and written as a system of first order hyperbolic
equations. A wave splitting technique will be introduced, where the total electric
field is split into two parts corresponding to waves traveling in the positive and neg-
ative z-direction. This wave splitting technique is the basis for the Green functions
technique presented in the next section.

Since the incident wave is a plane wave at normal incidence it can, without loss
of generality, be considered to be linearly polarized in the x−direction i.e. E(z, t) =
E(z, t)x̂. The corresponding magnetic field is then directed in the y−direction, i.e.
H(z, t) = H(z, t)ŷ. In the region z > 0 the constitutive relation in Eq. (2.1), with
χm(z, t) ≡ 0, and the Maxwell equations lead to

∂zE(z, t) = −µ0µr(z)∂tH(z, t)

∂zH(z, t) = −ε0 (εr(z)∂tE(z, t) + [χ(z, ·) ∗ ∂tE(z, ·)](t)) . (3.1)

The conventional short hand notation for convolution

[f ∗ g](t) =

∫ t

0

f(t− t′)g(t′) dt′

introduced in Eq. (3.1) will be used throughout the rest of the paper. Notice that
the lower integration limit in Eq. (3.1) is zero, since there is no electric field in the
half space for negative times. The Maxwell equations can be written in a matrix
notation as

∂z

(
E
H

)
= −

(
0 µ0µr

ε0εr + ε0χ∗ 0

)
∂t

(
E
H

)
= A

(
E
H

)
. (3.2)

This system of first order partial differential equations (PDE) are equivalent to the
wave equation for the electric field(

∂2
z −

1

c(z)2
∂2
t

)
E(z, t)− µr(z)

c20

[
χ(z, ·) ∗ ∂2

tE(z, ·)
]
(t) = 0,

where c0 = (ε0µ0)
− 1

2 is the speed of light in vacuum and c(z) = (ε0εr(z)µ0µr(z))
− 1

2

is the wavefront speed in the medium.
A wave splitting is now done according to the principal part, ∂2

z − c(z)−2∂2
t , of

the wave equation. The following change of basis is introduced:

E±(z, t) =
1

2
{E(z, t)± Z(z)H(z, t)} ,
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where Z(z) is the wave impedance

Z(z) =

√
µ0µr(z)

ε0εr(z)
.

In a non-dispersive region with constant permittivity, the split fields E+ and E− are
left (negative z direction) and right (positive z direction) moving waves, respectively.
In a matrix form the change of basis reads(

E+

E−

)
=

1

2

(
1 Z(z)
1 −Z(z)

) (
E
H

)
= P

(
E
H

)
.

Thus the split fields E+ and E− satisfy the following relations

E+ + E− = E

E− − E+ = Z(z)H.

It is also seen that in a non-dispersive medium the matrix P diagonalizes the matrix
A in Eq. (3.2). The Maxwell equations may now be written in terms of the new
basis E± as a system of first order hyperbolic equations

∂z

(
E+

E−

)
= ((∂zP)P−1 + PAP−1)

(
E+

E−

)
=

(
α β
γ δ

) (
E+

E−

)
. (3.3)

The elements α, β, γ and δ read


α = − 1

c(z)
∂t +

1

2
∂z lnZ(z)− c(z)

2c20
χ ∗ ∂t

β = −1

2
∂z lnZ(z)− c(z)

2c20
χ ∗ ∂t

γ = −1

2
∂z lnZ(z) +

c(z)

2c20
χ ∗ ∂t

δ =
1

2
∂z lnZ(z) +

1

c(z)
∂t +

c(z)

2c20
χ ∗ ∂t.

4 The Green operators

From arguments based upon invariance under time translation and causality the
following representation of the internal split fields are seen to hold, cf. [10] and [9],

E+(z, t+ τ(z)) = G+E+(0, t) = a(z)E+(0, t) + [G+(z, ·) ∗ E+(0, ·)](t)
E−(z, t+ τ(z)) = G−E+(0, t) = [G−(z, ·) ∗ E+(0, ·)](t). (4.1)

Here τ(z) =
∫ z

0
1/c(z′) dz′ is the travel-time for the wave-front and a(z) is the

attenuation of the wave-front. In these representations wave-front time is used, i.e.,
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t = 0 at a point z is the time the wave front reaches that point. The operators G±
are referred to as the Green operators and the kernels G±(z, t) as the Green kernels.
The representations in Eq. (4.1) imply the boundary values of the Green kernels

G+(0, t) = 0

G−(0, t) = R(t),

where R(t) is the reflection kernel of the medium. Thus G−(0, t) ≡ 0 for a medium
which is non-reflecting for any incident field E+(0, t). A set of first order hyperbolic
equations can be obtained for the Green kernels, cf. [10] and [7]. Differentiation
with respect to z of the representations in Eq. (4.1) gives(

∂zE
+

∂zE
−

)
(z, t+ τ(z)) + ∂zτ(z)

(
∂tE

+

∂tE
−

)
(z, t+ τ(z)) = (4.2)

=

(
∂za(z)
0

)
E+(0, t) +

[(
∂zG

+(z, ·)
∂zG

−(z, ·)

)
∗ E+(0, ·)

]
(t).

The z−derivatives of E± are eliminated by utilizing the dynamics in Eq. (3.3).
Furthermore, E±(z, t + τ) and ∂tE

±(z, t + τ) are expressed in terms of E+(0, t)
using Eq. (4.1). The only field appearing in the resulting equations is E+(0, t) and
since this is an arbitrary incident field the equations and initial condition for the
Green kernels follow

∂zG
+(z, t) =

1

2
(∂z lnZ(z)) (G+(z, t)−G−(z, t))− c(z)

2c20
(a(z)∂tχ(z, t)+

+∂t
[
χ(z, ·) ∗ (G+(z, ·) +G−(z, ·))

]
(t)

)
(4.3)

∂zG
−(z, t)− 2

c(z)
∂tG

−(z, t) = −1

2
(∂z lnZ(z)) (G+(z, t)−G−(z, t)) +

+
c(z)

2c20

(
a(z)∂tχ(z, t) + ∂t

[
χ(z, ·) ∗ (G+(z, ·) +G−(z, ·))

]
(t)

)
(4.4)

G−(z, 0) =
1

4
a(z)

(
c(z)∂z lnZ(z)−

(
c(z)

c0

)2

χ(z, 0)

)
. (4.5)

Also the equation for the attenuation a(z) follows from Eq. (4.2)

∂za(z) + a(z)

(
c

2c20
χ(z, 0)− 1

2
∂z lnZ(z)

)
= 0.

Since a(0) = 1 it is seen that

a(z) =

√
Z(z)

Z(0)
exp

{
− 1

2c20

∫ z

0

c(z′)χ(z′, 0) dz′
}
.
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5 Non-reflecting media

In order to find non-reflecting media, Eqs. (4.3) and (4.4) are to be solved for εr(z),
µr(z) and χ(z, t) using the initial condition in Eq. (4.5) and the boundary conditions{

G+(0, t) = 0
G−(0, t) = 0.

(5.1)

This problem has non-unique solutions, since a function of both z and t and two
functions of z are to be determined from one function G−(0, t).

5.1 Non-dispersive media

First consider the simple case of a non-dispersive medium, i.e. when χ(z, t) ≡ 0. All
media which have constant impedance, Z(z) = const., for −∞ < z < ∞ are then
reflectionless. This well-known fact follows immediately from Eqs. (4.3) and (4.4),
since the source term in these equations as well as the initial condition, Eq. (4.5),
vanish.

An interesting question is if there are any solutions to the non-dispersive problem
for which the impedance is non-constant. This question is a special case of the
uniqueness problem for the inverse problem. It is plausible that the inverse problem
of finding the impedance profile from the reflection kernel is unique and the numerical
scheme indicates that this is the case. However, the authors have not seen any
general uniqueness proof.

5.2 Dispersive media

In the case of dispersive media the inverse problem is non-unique. In order to
formulate an inverse problem which has the potential of being uniquely solvable, the
functions to be determined have to be reduced to a single function of one argument.
The price to be paid for this is that a corresponding physical solution may not
exist. There are four natural choices of function to be determined, the impedance
Z(z), the phase velocity c(z), the susceptibility kernel χ(z, t) with a given time
dependence, and the susceptibility kernel with a given z−dependence. The last
choice is not a good one since χ(z, t) has to satisfy certain conditions in order for
the medium to satisfy energy conservation, cf. [6]. Moreover, even a χ(z, t) that
satisfies these conditions might be unphysical. The first three choices are assumed
to be applicable. Of course one may use the permittivity, εr(z), and the permeability,
µr(z), as independent functions instead of the impedance, Z(z), and phase velocity,
c(z).

It is hard to find sufficient conditions for a solution to exist for the inverse
problem of finding a reflectionless half-space. However, necessary conditions are
easier to find and below two such conditions are discussed. The first condition says
that the impedance has to be an increasing function of z at z = 0 if the susceptibility
kernel is non-zero at z = 0, i.e. if χ(0, t) �≡ 0. The second condition is that the
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initial condition of the Green kernel G− has to be a C∞ function, i.e. infinitely
differentiable, with respect to the z−coordinate.

The condition that the impedance is an increasing function of z at z = 0 follows
from energy conservation. In [6] it was shown that the susceptibility kernel χ(z, t)
for a passive medium has to satisfy

χ(z, 0) ≥ 0, (5.2)

and if χ(z, 0) = 0 then

χt(z, 0) ≥ |χt(z, t)|, t > 0. (5.3)

Assume first that χ(0, 0) �= 0. From Eqs. (4.5) and (5.2) it follows that

∂z lnZ(z)|z=0 =
c(0)

c20
χ(0, 0) > 0.

Thus the z−derivative of the impedance is a positive quantity at z = 0. Next
consider the case χ(0, 0) = 0. From the initial condition, Eq. (4.5), it is seen that
∂z lnZ(z)|z=0 = 0 By letting t = 0 and z = 0 in Eq. (4.4) it follows that

G−t (0, 0) =
c(0)

2
G−z (0, 0)−

(
c(0)

2c0

)2

χt(0, 0).

It has then been used that G+(0, 0) = G−(0, 0) = 0 and a(0) = 1. From Eq. (4.5)

G−z (0, 0) =
1

4

(
c(0)∂zz lnZ(z)|z=0 −

(
c(0)

c0

)2

χz(0, 0)

)
.

Since G−t (0, 0) = 0 for a non-reflecting medium it then follows that

∂zz lnZ(z)|z=0 =
1

c20
(c(0)χz(0, 0) + 2χt(0, 0)) .

But when χ(0, 0) = 0 then χz(0, 0) ≥ 0 according to Eq. (5.2) and since χ(0, t)
is assumed not to be identically zero it follows that χt(0, 0) > 0 according to Eq.
(5.3). The result is that ∂zz lnZ(z)|z=0 > 0 and since ∂z lnZ(z)|z=0 = 0 it follows
that ∂zzZ(z)|z=0 > 0. Hence also in this case the impedance must be an increasing
function of z at z = 0.

Another necessary condition for a solution to exist is that G−(z, 0) has to be a
C∞ function on the interval z > 0. This condition results from the initial condition,
Eq. (4.5), and propagation of singularity arguments, which say that a discontinuity
in the p:th z-derivative of G−(z, 0) will propagate along the characteristic of Eq.
(4.4) and give rise to a discontinuity in the p :th derivative of G−(0, t). Thus for a
non-reflecting medium G−(z, 0) has to be a C∞ function on the interval z > 0, since
G(0, t) ≡ 0 is a C∞ function of time. This condition is satisfied if εr(z), µr(z) and
χ(z, 0) are C∞ functions of z.
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5.3 Non-magnetic dispersive media

Most materials are non-magnetic, i.e. they have µr(z) = 1. In the previous sub-
section it was seen that the impedance has to be an increasing function of z at the
boundary of the half-space in order for the medium to be non-reflecting. In the case
of a non-magnetic medium it follows that the permittivity has to be a decreasing
function of z at z = 0. Thus the following fundamental necessary condition can be
stated.

A non-magnetic dispersive medium with χ(z, t) �≡ 0 and/or εr(z) �≡ 0
can not be reflectionless for a transient wave incident from vacuum.

In other words, a non-reflecting non-magnetic medium has to have εr > 1 for
z < 0.

6 Numerical examples

In this section two different types of non-reflecting media are presented. Both media
are non-magnetic, which implies that the half-space z < 0 is a dielectric medium
with εr > 1. In both examples εr = 2 for z < 0. A given susceptibility kernel for the
medium is assumed and the permittivity as a function of z is to be determined. The
permittivity profile can be constructed down to any depth, but in the examples only
the profile for the first 10 centimeters of the medium are shown. The equations for
the Green kernels were discretized by the trapezoidal rule, cf. [10]. The convergence
of the numerical algorithm is then quadratic. In the first example the dispersive
medium is a Debye medium and the susceptibility kernel in Eq. (2.1) is given by

χ(t) = α exp(− t
τ
).

This model is relevant for polar liquids, cf. [1]. The parameters α and τ are in the
example independent of z and their values are α = 5 · 108 s−1 and τ = 10−9 s. Given
these values of α and τ the Green functions equations (4.3) and (4.4) were solved
for εr(z) using the initial condition in Eq. (4.5) and the homogeneous boundary
conditions Eq. (5.1). The resulting permittivity is given in figure 1. In this example
500 timesteps were used in the discretization.

In the second example a Lorentz medium is considered. Normally this model
is used when frequencies above the microwave region are involved. The dispersion
then is a result of resonances of the atoms, cf. [1]. However there are media which
are of Lorentz type even at low frequencies, e.g. gyrotropic media. The simplest
case of a Lorentz medium has the following susceptibilty kernel:

χ(t) = ω2
p

sin νt

ν
e−γt. (6.1)

Here ωp is the plasma frequency and the frequency ν can be expressed in terms of

the internal resonant frequency ω0 and the damping constant γ as ν =
√
ω2

0 − γ2.
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Figure 1: The relative permittivity as a function of depth for a reflectionless Debye
medium with α = 5 · 108 s−1 and τ = 10−9 s

Also in the second example the susceptibilty kernel is independent of z. The values
of the parameters in the susceptibility kernel are in this example ωp = 5 · 109 s−1,
ω0 = 2 · 1010 s−1 and γ = 5 · 109 s−1.

The numerical solution of Eqs. (4.3) and (4.4) gives the permittivity in figure 3
for a non-reflecting medium. The oscillating behavior of the permittivity is expected,
since the variation of the permittivity is to compensate the oscillatory behavior of
the susceptibility kernel. In the discretization of the equations 500 gridpoints were
used. To see that the permittivity profile in figure 2 really results in a reflectionless
medium the constitutive relation for the constructed material was used in the solu-
tion of the direct scattering problem. The resulting reflection kernel was compared
to the reflection kernel for a non-dispersive medium with the permittivity profile in
figure 2. As seen from figure 3 the reflection kernel for the reflectionless medium is
negligible, and thus enough number of gridpoints were used in the construction of
the permittivity profile.

7 Conclusions

The present paper gives an example of media-design using inverse scattering meth-
ods. A nice feature is that clean data can be used in the solution of the inverse
problem. The inverse problem is then well posed and well conditioned. The in-
tention with the paper is to present a method for designing media with prescribed
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Figure 2: The relative permittivity as a function of depth for a reflectionless Lorentz
medium with ωp = 5 · 109 s−1, ω0 = 2 · 109 s−1 and γ = 5 · 109 s−1

reflection properties. At this stage there have been no considerations of applications
of the results. There are a number of similar problems that can be looked upon with
the present technique. One obvious extension of the present project is to consider
reflectionless media with high losses. This is a classic problem with obvious appli-
cations that has been extensively studied. The new ingredients that the present
technique can add is a time domain treatment and the use of dispersive media. An-
other area where the present technique might be of interest is the construction of
damping materials in elastodynamics, cf. [3].
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