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Abstract

One-dimensional propagation of transient EM-waves in periodic media is stud-
ied. The media are periodic in the direction of propagation and can be of finite
or infinite length. Wave propagators, that map a transient field from one point
in the medium to another, are introduced. A number of useful relations for
the propagators are presented. Some of these relations are used in the de-
termination of explicit expressions for the short time behavior of a transient
wave as it propagates in a periodic medium. The theory is exemplified by
several numerical examples.

1 Introduction

The wave propagator is a concept that has been used for different wave propagation
problems, mainly in the frequency domain [4]. In this paper the propagator is
a time-domain operator which propagates a pulse from one point to another in
a one-dimensional medium. The approach is based upon results that have been
developed during the last 15 years in time-domain invariant imbedding theory, wave
splitting methods and the Green functions approach, cf [2] and [10]. The time
domain propagators are in this paper applied to periodic media. Wave propagation
in these media has been studied in the frequency domain, eg with Flouquet theory
and related methods. A review of frequency domain methods for periodic media is
found in [3]. Often the determination of pass bands and stop bands for a periodic
medium is the main objective of a frequency domain analysis. In a time domain
analysis other aspects of wave propagation can be considered and a time domain
analysis then serves as a complement rather than an alternative to frequency domain
methods.

The algorithm for transient wave propagation in a semi-infinite periodic medium
are easily obtained by utilizing basic proparties of the propagators. Once the prop-
agator for one period is known, the propagator for an arbitrary number of periods is
known. Also in the case of a medium with a finite number of periods the periodicity
can be utilized. It turns out that if the propagator for a medium consisting of one
period is known then the propagator for a medium with an arbitrary number of
slabs can be constructed in an efficient way. The short time behavior of a wave that
propagates in a periodic half-space is also analyzed in the paper. From the definition
of the propagator it is seen that the precursor for a periodic medium resembles the
first precursor of a homogeneous dispersive medium.

The outline of the paper is as follows: In section 2 the basic equations are pre-
sented and the concept of wave splitting is introduced. In section 3 the propagators
are presented and in section 4 equations for the corresponding propagator kernels
are stated. The periodic half space is analyzed in section 5 and the theory for short
time behavior of the transient wave, the precursor, is presented in the same sec-
tion. The finite periodic slab is analyzed in section 6. Finally, in section 7 several
numerical examples are presented.
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2 The wave equation and wave splitting

One dimensional wave propagation of electromagnetic waves is considered in a linear
isotropic non-magnetic medium. The medium can be dissipative and dispersive. If
E is a transverse component of the electric field, the wave equation has the following
general form

∂2
zE(z, t)− 1

c2
0

(
ε(z)∂2

tE(z, t) + F [E]
)

= 0 (2.1)

Here c0 is the speed of light in vacuum, ε(z) is the permittivity and F [E] is the
linear functional

F [E] =

∫ t

−∞
χ(z, t− τ)∂2

τE(z, τ)dτ

= χ(z, 0)∂tE(z, t) + (∂tχ(z, 0))E(z, t) +

∫ t

−∞

(
∂2
t χ(z, t− τ)

)
E(τ)dτ

The kernel χ(t) is the susceptibility kernel that relates the displacement field to the
electric field by

D(z, t) = ε0ε(z)E(z, t) + ε0

∫ t

−∞
χ(t− t′)E(t′)dt′

In a matrix form the wave equation reads

∂z

(
E
∂zE

)
=


 0 1

1

c2
0

(
ε(z)∂2

t + F [·]
)

0


 (

E
∂zE

)
= A

(
E
∂zE

)

The wave splitting is defined as the following change of basis(
E+

E−

)
=

1

2

(
1 −c(z)∂−1

t

1 c(z)∂−1
t

) (
E
∂zE

)
= P

(
E
∂zE

)
(2.2)

where

∂−1
t E(z, t) =

∫ t

−∞
E(z, t′)dt′

The wave equation, expressed in terms of the split fields E±, now takes the form

∂z

(
E+

E−

)
= (∂zP )P−1

(
E+

E−

)
+ PAP−1

(
E+

E−

)

where

P−1 =


 1 1

− 1

c(z)
∂t

1

c(z)
∂t




Thus

∂z

(
E+

E−

)
=

(
α β
γ δ

) (
E+

E−

)
(2.3)
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α = − 1

c(z)
∂t −

c(z)

2c2
0

∂−1
t F [·] +

1

2c(z)
∂zc(z) (2.4)

β = −c(z)

2c2
0

∂−1
t F [·]− 1

2c(z)
∂zc(z) (2.5)

γ =
c(z)

2c2
0

∂−1
t F [·]− 1

2c(z)
∂zc(z) (2.6)

δ =
1

c(z)
∂t +

c(z)

2c2
0

∂−1
t F [·] +

1

2c(z)
∂zc(z) (2.7)

It is seen that

∂−1
t F [E] =

∫ t

−∞
χ(z, t− τ)∂τE(z, τ)dτ

In a homogeneous non-dispersive medium, i.e., where c(z) is constant and F [E] ≡
0, the system of equations for E± is diagonal. Then E+ is a right moving wave and
E− is a left moving wave. The wave splitting is not unique and there are other
possible splittings, cf [5]. However, a necessary condition for a splitting is that the
principal part of the hyperbolic wave operator is split as in Eq. (2.2).

3 The wave propagators

The propagators are the key for the time-domain analysis of wave propagation in
a periodic medium. From the definition of the propagators a number of relations,
which are useful for a periodic medium, can be derived.

Consider a one-dimensional medium occupying the interval 0 < z < L. To the
left (z < 0) and to the right (z > L) of the medium there is vacuum. The medium
can be semi-infinite, i.e., L may be infinite. It is assumed that the phase velocity is
continuously differentiable and that the susceptibility kernel χ(z, t) is a continuous
function of z in the region 0 ≤ z ≤ L. There are ways to handle discontinuities in
the phase velocity and its derivative, cf [9], but for simplicity it is not considered in
this paper. An incident wave impinges at z = 0 from the left at time t = 0. In the
slab the total field and its time derivative are zero for negative times. For positive
times the total field is the sum of the split fields, i.e.,

E(z, t) = E+(z, t) + E−(z, t)

The wave propagators G± map the field E+ at a point z0 where 0 ≤ z0 ≤ L to a
point z1 where 0 ≤ z1 ≤ L. They are defined as

E+(z1, t + �(z0, z1)) = G+(z0, z1)E
+(z0, t) (3.1)

E−(z1, t + �(z0, z1)) = G−(z0, z1)E
+(z0, t) (3.2)

where �(z0, z1) is the travel time for the wave front from z0 to z1, i.e.,

�(z0, z1) =

∫ z1

z0

1

c(z)
dz (3.3)
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Normally it is assumed that z1 > z0, so that the wave is propagated forward in time
and space. However, the definitions are valid also for z1 < z0.

The propagators can be shown from arguments based upon causality and invari-
ance under time translation to have the representations

E+(z1, t + �(z0, z1)) = a(z0, z1)E
+(z0, t) + [G+(z0, z1, ·) ∗ E+(z0, ·)](t) (3.4)

E−(z1, t + �(z0, z1)) = [G−(z0, z1, ·) ∗ E+(z0, ·)](t) (3.5)

The shorthand notation for convolution

[G+(z0, z1, ·) ∗ E+(z0, ·)](t) =

∫ t

0

G+(z0, z1, t− t′)E+(z0, t
′)dt′

is adopted in these expressions. It should be noticed that wave front time is used in
the representations (3.4) and (3.5). This means that at every point z, time is put
to zero when the wave front passes. The lower integration limit in the convolution
is zero, since there is no field in the slab for negative times and the upper limit is
t due to causality. The factor a(z0, z1) is the attenuation of the wave front when it
travels from z0 to z1. The explicit expression for this factor reads

a(z0, z1) =

√
c(z1)

c(z0)
exp

(
− 1

2c2
0

∫ z1

z0

c(z)χ(z, 0) dz

)
(3.6)

The expression is derived in the appendix.
The following rule is implied from the definition of the propagators, Eqs. (3.1)

and (3.2),
G±(z, z′′) = G±(z′, z′′)G+(z, z′) (3.7)

The kernels G± then obey

G+(z, z′′, t) = a(z, z′)G+(z′, z′′, t) + a(z′, z′′)G+(z, z′, t) (3.8)

+ [G+(z, z′, ·) ∗G+(z′, z′′, ·)](t)
G−(z, z′′, t) = a(z, z′)G−(z′, z′′, t) + [G−(z′, z′′, ·) ∗G+(z, z′, ·)](t) (3.9)

It is also seen from Eq. (3.7) that G+(z′, z) is the inverse operator of G+(z, z′), i.e.,
G+(z, z′)G+(z′, z)E+(z, t) = E+(z, t). The kernel G+(z′, z, t) is then the resolvent of
the propagator kernel G+(z, z′, t), i.e.,

a(z, z′)G+(z′, z, t) + a(z′, z)G+(z, z′, t) + [G+(z, z′, ·) ∗G+(z′, z, ·)](t) = 0

From the definition of the propagators G±(z0, z1), z0 < z1, it follows that they are
independent of the half-space z < z0.

The boundary values of the propagator kernels G±(z, z′, t) are related to the
Green kernels used in the Green functions technique, cf [10], and to the reflection
and transmission kernels used in the invariant imbedding technique, cf [8], in the
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following manner:

G±(0, z, t) = the Green kernels used in the Green functions (3.10)

technique (3.11)

G+(z, L, t) = T (z, t) = the transmission kernel for the imbedded (3.12)

subslab [z, L]

G−(z, z, t) = R(z, t) = the reflection kernel for the imbedded (3.13)

subslab [z, L]

G+(0, L, t) = T (t) = the transmission kernel for the slab (3.14)

G−(0, 0, t) = R(t) = the reflection kernel for the slab (3.15)

As a special case of Eq. (3.9) it is seen that for z′′ = z′

G−(z, z′) = R(z′, t) +
[
R(z′, ·) ∗G+(z, z′, ·)

]
(t) (3.16)

4 Equations for the propagator kernels

In this section four partial differential equations are presented for the two propagator
kernels G+(z, z′, t) and G−(z, z′, t). The derivation of these equations are found in
the appendix. The variables η and ζ are introduced as two internal points in the
slab, such that 0 ≤ η ≤ ζ ≤ L. The space and time derivatives of the material
parameters are denoted by subindices, thus ∂tχ(t) = χt(t) and ∂zc(z) = cz(z). The
first two equations are obtained by differentiating the representations in Eqs. (3.4)
and (3.5) with respect to ζ. By using the dynamics for the split fields, Eq. (2.3),
two equations are obtained as

∂ζG
+(η, ζ, t) =

cζ(ζ)

2c(ζ)
(G+(η, ζ, t)−G−(η, ζ, t)) (4.1)

− c(ζ)

2c2
0

(
a(η, ζ)χt(ζ, t) + χ(ζ, 0)(G+(η, ζ, t) + G−(η, ζ, t))

+[χt(ζ, ·) ∗ (G+(η, ζ, ·) + G−(η, ζ, ·))](t)
)

∂ζG
−(η, ζ, t) − 2

c(ζ)
∂tG

−(η, ζ, t) =
cζ(ζ)

2c(ζ)

(
G−(η, ζ, t)−G+(η, ζ, t)

)
(4.2)

+
c(ζ)

2c2
0

(
a(η, ζ)χt(ζ, t) + χ(ζ, 0)(G+(η, ζ, t) + G−(η, ζ, t))

+[χt(ζ, ·) ∗ (G+(η, ζ, ·) + G−(η, ζ, ·))](t)
)

The initial condition for the kernel G− reads

G−(η, ζ, 0) =
1

4
a(η, ζ)

(
cζ(ζ)−

(
c(ζ)

c0

)2

χ(ζ, 0)

)
(4.3)
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The two equations (4.1) and (4.2) together with the initial condition above and the
boundary condition for G+, which is presented in the next two sections, form a
complete set of equations for the propagator kernels G±(η, ζ).

The alternative set if equations are obtained by differentiating Eqs. (3.4) and
(3.5) with respect to η and using the dynamics, Eq. (2.3),

∂ηG
+(η, ζ, t) =

cη(η)

2c(η)

(
a(η, ζ)R(η, t)−G+(η, ζ, t) + [G+(η, ζ, ·) ∗R(η, ·)](t)

)
(4.4)

+
c(η)

2c2
0

(
χ(η, 0)(a(η, ζ)R(η, t) + G+(η, ζ, t) + [G+(η, ζ, ·) ∗R(η, ·)](t))

+ a(η, ζ)χt(η, t) +
[
χt(η, ·) ∗ (a(η, ζ)R(η, ·) + G+(η, ζ, ·))

]
(t)

+[χt(η, ·) ∗G+(η, ζ, ·) ∗R(η, ·)](t)
)

∂ηG
−(η, ζ, t) =

cη(η)

2c(η)

(
[G−(η, ζ, ·) ∗R(η, ·)](t)−G−(η, ζ, t)

)
(4.5)

+
c(η)

2c2
0

(
χ(η, 0)([G−(η, ζ, ·) ∗R(η, ·)](t) + G−(η, ζ, t))

+
[
χt(η, ·) ∗ (G−(η, ζ, ·) + [G−(η, ζ, ·) ∗R(η, ·)](·))

]
(t)

)
As pointed out in the previous section R(η, t) = G−(η, η, t) is the reflection kernel
for the imbedded slab [η, L]. Thus R(η, t) is needed in order to solve Eqs. (4.4) and
(4.5). The equation for R(η, t) is obtained by adding Eq. (4.2) to Eq. (4.5) and
then let η = ζ

2Rη(η, t)−
4

c(η)
Rt (η, t) =

cη(η)

c(η)
[R(η, ·) ∗R(η, ·)](t) (4.6)

+
c(η)

c2
0

(χt(η, t) + 2χ(η, 0)R(η, t) + χ(η, 0)[R(η, ·) ∗R(η, ·)](t)

+2[χt ∗R](η, t) + [χt ∗R ∗R](η, t))

The initial condition for R(η, t) is obtained from Eq. (4.3)

R(η, 0) =
1

4

(
cη(η)−

(
c(η)

c0

)2

χ(η, 0)

)

In order to solve Eq. (4.4), given the reflection kernel, a boundary condition for G+

is needed this is presented in the next two sections. The initial condition for G−,
which is needed for the solution of Eq. (4.2), is given by Eq. (4.3).

It is worth noticing that when ζ = L G+(η, L, t) is the transmission kernel for
the imbedded slab (η, L) and Eq. (4.4) is the same equation as the one used for the
transmission kernel in the invariant imbedding technique, cf [8]

In order to solve Eqs. (4.1), (4.2), (4.4)-(4.6) boundary conditions for the kernels
are needed. These conditions are discussed in the next two sections.
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5 The periodic half-space

Consider that the medium introduced in the previous section is periodic and semi-
infinite. The medium is partitioned into identical subslabs Si, i = 1, 2, ... of length
q, with interfaces at zi = iq, i = 0, 1, 2.... The phase velocity and the susceptibility
kernel χ(z, t) are periodic functions of z so that c(z) = c(z + q) and χ(z, t) =
χ(z + q, t) when z ≥ 0.

From Eq. (3.7) it is seen that for a semi-infinite periodic medium

G+(0, zj) = (G+(0, z1))
j (5.1)

and furthermore for zj ≤ z ≤ zj+1

G+(0, z) = G+(zj, z)G+(0, zj)

G−(0, z) = G−(z, z)G+(0, z)

It is in this case enough to determine the propagators G± in the first subslab 0 ≤
z ≤ q, in order to determine the field at any point in the semi-infinite half space.
There are two different ways to numerically determine G± for one period. The
two are comparable in efficiency. The first one is to solve Eqs. (4.1) and (4.2) as
in [10]. The other way is to determine the kernels G+ and R in the first subslab, and
then construct G− from Eq. (3.16). To obtain G+ and R it is appropriate to first
determine the reflection kernel R(z, t) for 0 ≤ z ≤ q from Eq. (4.6). The boundary
condition for the reflection kernel is

R(q, t) = R(0, t)

due to the periodicity. The boundary condition means that the equation for R, Eq.
(4.6), breeds itself with the boundary condition. Once the reflection kernel is known,
the kernel G+(0, z, t) can be determined. This is done by solving Eq. (4.4) in the
interval 0 ≤ z ≤ q with the boundary condition

G+(q, q) = 0

The periodicity of the reflection kernel implies that the propagator G+(zi, zj) not
only is the propagator for the field E+(z, t) from zi to zj but also for the total field
E(z, t) as well as for the field E−(z, t). This is seen by

E+(zj, t + �(zi, zj)) = G+(zi, zj)E
+(zi, t)

E−(zj, t + �(zi, zj)) = G+(zi, zj)G−(zj, zj)E
+(zi, t)

E−(zi, t) = G−(zi, zi)E
+(zi, t)

Since G−(zi, zi) = G−(zj, zj) and E(z, t) = E+(z, t) + E−(z, t) it follows that

E−(zj, t + �(zi, zj)) = G+(zi, zj)G−(zi, zi)E
+(zi, t) = G+(zi, zj)E

−(zi, t)

E(zj, t + �(zi, zj)) = G+(zi, zj)E(zi, t)

The total field E(z, t) is understood to be a field which is generated by an incident
wave from the left. Since the propagator G+(zi, zj) is a propagator for the entire
field it must be independent of the splitting.
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6 The precursor in a semi-infinite slab

As a wave propagates in a semi-infinite periodic medium a precursor develops. Since
the precursor is the short time behavior of the wave, it consists of the high frequencies
of the wave. An expression for the precursor can be found from Eqs. (3.4) and
(3.5). First the homogeneous dispersive medium is analyzed. Since there is no
z−dependence in this case, it means that the period of the medium is infinitesimal.
Let q = dz be an infinitesimal piece of the medium and let N = z/dz. It then
follows from Eq. (5.1) that

G+(0, z) = (G+(0, dz))N

For small enough times the following Maclaurin expansion is a good approximation
to the propagator

G+ (0, z) ≈ ((a(0, dz)δ(t) + G+(0, dz, 0))∗)(N−1)(a(0, dz)δ(t) + G+(0, dz, 0))

= ((a(0, dz)δ(t) + dzG+
z (0, 0, 0))∗)(N−1)(a(0, dz)δ(t) + dzG+

z (0, 0, 0))

where Gz(0, 0, 0) = ∂zG(0, z, 0)|z=0 denotes the z−derivative of the Green function
at z = 0 and t = 0.

The asymptotic expression for the propagator for small t is found by using the
binomial expansion. The relation

(G+
z (0, 0, 0)∗)kG+

z (0, 0, 0) =
(G+

z (0, 0, 0)t)k

k!

and the limiting value

lim
N→∞

(
N

k

)
(dz)k = lim

N→∞

(Ndz)k

k!
=

zk

k!

for any fixed k are then used. It is seen that

G+(0, z) ≈ a(0, z)

(
δ(t) + zG+

z (0, 0, 0)
∞∑
k=0

(tzG+
z (0, 0, 0))k

(k + 1)!k!

)

= a(0, z)

(
δ(t) + zG+

z (0, 0, 0)
J1(2

√
−tzG+

z (0, 0, 0))√
−tzG+

z (0, 0, 0)

)

where J1 is the Bessel function of order one. This is the expression for the first
precursor (the Sommerfeld precursor). The expression is well known and is normally
derived by the stationary phase method, cf [6] and [11]. The value of G+

z (0, 0, 0) for
a homogeneous dispersive medium is easily obtained from Eqs. (4.1) and (4.3)

Gz(0, 0, 0) =
c(0)

8c2
0

(
χ(0)2

(
c(0)

c0

)2

− 4χt(0)

)
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Next consider a periodic medium with period q. As above the following expansion
is a good approximation to the wave propagator for small enough times

G+ (0, Nq) ≈ ((a(0, q)δ(t) + G+(0, q, 0))∗)(N−1)(a(0, q)δ(t) + G+(0, q, 0))

= a(0, Nq)

(
δ(t) +

G+(0, q, 0)

a(0, q)

N∑
k=1

(
N

k

)
(a−1(0, q)G+(0, q, 0)t)

k−1

(k − 1)!

)

As N →∞ then

G+(0, Nq)→ a(0, Nq)

(
δ(t) + NG+(0, q, 0)

J1(2
√
−a−1(0, q)tNG+(0, q, 0))√
−a(0, q)tNG+(0, q, 0)

)
(6.1)

Thus, far into the medium the precursor for the periodic medium resembles the
precursor for a homogeneous dispersive medium. The initial value of the kernel
G+(0, q, 0) is obtained from Eq. (4.1). The expression is

G+(0, q, 0) =
a(0, q)

8

∫ q

0

1

c(z)

(
(χ(z, 0))2

(
c(z)

c0

)4

−4

(
c(z)

c0

)2

χt(z, 0)−
(
cz(z)

c(z)

)2
)

dz (6.2)

If G+(0, q, 0) ≤ 0 then the argument of the Bessel function is real and the Green
kernel is oscillating. From Eq. (6.2) it is seen that this is always the case for a
non-dispersive medium. If G+(0, q, 0) > 0 the argument of the Bessel function is
imaginary and the Green kernel is exponentially growing for small times.

7 The finite periodic slab

The analysis and results presented in this section are similar to the ones presented
in [7] for a medium partitioned into several subslabs. In a periodic medium the
subslabs are identical and that leads to considerable simplifications.

Assume that the periodic medium is finite and consists of N identical subslabs.
Since the length of the medium is denoted L, it follows that q = L/N . It is clear
that the propagators G±(zi, zi+1) are now dependent on the index i. The algorithm
described in this section utilizes the propagators for a subslab imbedded in vacuum.
Once these propagators are known, the propagators for the entire slab can be formed.
Consider a subslab Si imbedded in vacuum. For a right moving wave incident at
the surface zi at time t = 0, the reflected and transmitted fields have the following
representations, cf Eqs. (3.4) and (3.5),

E+(zi+1, t + �) = T0E+(zi, t) = aE+(zi, t) + [T0(·) ∗ E+(zi, ·](t)
E−(zi, t) = R+

0 E
+(zi, t) = [R+

0 (·) ∗ E+(zi, ·)](t)

Here � = �(zi, zi+1) is the time it takes for the wave front to travel through a subslab,
and a = a(zi, zi+1) is the attenuation of the wavefront when it travels through a
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subslab, cf Eqs. (3.3) and (3.6). The reflection and transmission operators for an
incident left moving wave that impinges at zi+1 at time t = 0 are defined analogously

E−(zi, t + �) = T0E−(zi+1, t) = aE−(zi+1, t) + [T0(·) ∗ E−(zi+1, ·)](t)
E+(zi+1, t) = R−0 E−(zi+1, t) = [R−0 (·) ∗ E−(zi+1, ·)](t)

Notice that the transmission operators for incidence from the left and from the right
are identical since the medium is reciprocal. The reflection and transmission kernels
can be found by solving either the Green function equations, Eqs. (4.1) and (4.2),
or the invariant imbedding equations (4.4) and (4.6) for the region 0 ≤ z ≤ q. The
boundary conditions used for the Green function equations are

G+
0 (0, 0, t) = 0

G−0 (0, q, t) = 0

and for the imbedding equations

G+
0 (q, q, t) = 0

R+
0 (q, t) = 0

Going back to the entire slab, the split fields at a point zi+1 is related to the field
E+(zi) by Eqs. (3.4) and (3.5), i.e.,

E+(zi+1) = G+(zi, zi+1)E
+(zi)

E−(zi+1) = G−(zi, zi+1)E
+(zi)

The following representation also holds

G+(zi, zi+1)E
+(zi) = T0E+(zi) +R−0 E−(zi+1) (7.1)

where

E−(zi+1) = G−(zi+1, zi+1)E
+(zi+1) = G−(zi+1, zi+1)(T0E+(zi) +R−0 E−(zi+1)) (7.2)

This operator equation may be solved formally for E−(zi+1) giving

E−(zi+1) = (1− G−(zi+1, zi+1)R−0 )−1G−(zi+1, zi+1)T0E+(zi) (7.3)

Two expressions for the Green operators G±(zi, zi+1) have then been derived

G+(zi, zi+1) = T0 +R−0 (1− G−(zi+1, zi+1)R−0 )−1G−(zi+1, zi+1)T0 (7.4)

G−(zi, zi+1) = (1− G−(zi+1, zi+1)R−0 )−1G−(zi+1, zi+1)T0 (7.5)

The operator (1− G−(zi+1, zi+1)R−0 )−1 has the explicit representation

(1− G−(zi+1, zi+1)R−0 )−1E(t) = E(t) + [Ki+1(·) ∗ E(·)](t) (7.6)

The resolvent kernel Ki(t) satisfies the Volterra equation of the second kind

Ki(t)− [R(zi, ·) ∗R−0 (·)](t)− [R(zi, ·) ∗R−0 (·) ∗Ki(·)](t) = 0, (7.7)
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This is found by operating with (1 − G−(zi+1, zi+1)R−0 ) on Eq. (7.6) and us-
ing G−(z, z, t) = R(z, t), cf Eq. (3.13). The explicit expressions for the kernels
G±(zi, zi+1, t) follow from Eqs. (7.4) and (7.5)

G+(zi, zi+1, t) = T0(t) + a
(
[R−0 (·) ∗R(zi+1, ·)](t) (7.8)

+[R−0 (·) ∗Ki+1(·) ∗R(zi+1, ·)](t)
)

+ [R−0 (·) ∗R(zi+1, ·) ∗ T0(·)](t)
+ [R−0 (·) ∗Ki+1(·) ∗R(zi+1, ·) ∗ T0(·)](t)

G−(zi, zi+1, t) = a (R(zi+1, t) + [R(zi+1, ·) ∗Ki+1(·)](t)) (7.9)

+ [R(zi+1, ·) ∗ T0(·)](t) + [R(zi+1, ·) ∗Ki+1(·) ∗ T0(·)](t)
The transmitted field from an incident field E+(0, t) is obtained from Eqs. (3.8),

(3.9), (7.7)-(7.9). To exemplify this, the scheme for the determination of the re-
flection and transmission kernels for a medium which consists of N = 2n identical
symmetric subslabs is discussed. Since the subslabs are symmetric it follows that
R+

0 = R−0 = R0. As a first step, the reflection and transmission kernels R0 and T0

are calculated for the subslab imbedded in vacuum. In the last slab, SN , it is seen
that

G+(zN−1, zN , t) = T0(t)

R(zN−1, t) = R0(t)

Since R(zN−1, t) is known, the kernel KN−1 can be obtained from Eq. (7.7). The
kernels G±(zN−2, zN−1, t) are then obtained from Eqs. (7.8) and (7.9), whereupon
the kernel G+(zN−2, L, t) = T (zN−2, t) is obtained from Eq. (3.8). If one can obtain
the reflection kernel R(zN−2, zN−2, t) then one may view the medium as composed of
2n−1 subslabs of width 2z1 = 2q and where the reflection and transmission kernels for
each subslab imbedded in vacuum are known. To find the expression for R(zN−2, t),
it is first noticed that

E−(zN−2) = R(zN−2)E
+(zN−2) = T0E−(zN−1) +R0E

+(zN−2) (7.10)

where E−(zN−1) is found from Eq. (7.3). Thus

R(zN−2, t) = R0(t) + a2R(zN−1, t) + a2[KN−1(·) ∗R(zN−1, ·)](t)
+ 2a[T0(·) ∗R(zN−1, ·)](t) + [T0(·) ∗R(zN−1, ·) ∗ T0(·)](t)
+ 2a[R(zN−1, ·) ∗KN−1 ∗ T0(·)](t)
+ [T0(·) ∗KN−1(·) ∗R(zn−1, ·) ∗ T0(·)](t)

By doing the procedure above once more R(zN−4, t) and T (zN−4, t) are obtained.
Finally, after n − 1 iterations the reflection and transmission kernels for the entire
slab, R(t) and T (t), are obtained.

8 Numerical examples

In this section two examples of wave propagation in a periodic half space are pre-
sented. In the first example the medium is dielectric and non-dispersive. The
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Figure 1: The permittivity ε(z) = 1 + sin2 πz for the periodic dielectric medium.

permittivity is depicted in Figure 1 and is given by

ε(z) = 1 + sin2 πz

where the unit for z is meter. One period of the medium then has a length of one
meter. In Figure 2 the propagator kernel G+(0, z, t) is shown at z = 1, 4 and 8
meters. The maximum time t = 6.5 · 10−8 s corresponds to the time it takes for the
wavefront to travel 16 periods into the medium. The periodic behavior of the kernel
reflects the periodicity of the medium, which at these z-values induces a dominant
frequency in the kernel but almost no higher frequencies. In Figure 3 G+(0, z, t) is
shown at z = 64 and 128 meters. This far into the medium higher frequencies are
superimposed on the dominant frequency. Also it is seen that for short times the
precursor starts to build up. In Figure 4 G+(0, z, t) at z = 1024 meters is compared
to the asymptotic expression for the precursor given by Eq. (6.1). The precursor is
now clearly seen and the two curves agree well. The agreement improves with depth.
Notice that in this graph the maximum time is reduced to t = 8 · 10−9 s, which is
the time it takes for the wavefront to travel two periods into the medium. The CPU
time to produce the results in the figures is some seconds on a work station.

In the second example wave propagation in a dispersive periodic medium of
finite length is considered. The medium is a Lorentz medium, see e.g. [6], with the
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Figure 2: The propagator kernel G+(0, z, t) for the dielectric medium at z = 1 m
(solid curve), z = 4 m (dashed curve) and z = 8 m (dotted curve).

following susceptibility kernel

χ(z, t) = ω2
p

sinω0(z)t

ω0(z)
(8.1)

The plasma frequency has the constant value ωp = 4 × 108 rad/s and the resonant
frequency is given by

ω0 =
1

2
ωm(cos(2πz) + 2) (8.2)

where the unit for z is meter and ωm = 3.61×108 rad/s. Thus, also for this medium
one period is one meter long. The length of the medium is 512 periods, and on both
sides of the medium there is vacuum. The reflection kernel of the medium is shown
in Figure 5. In Figure 6 the transmission kernel and the asymptotic expression
for G+, Eq. (6.1), are compared. There is a small difference even for small times
since the asymptotic expression of G+ assumes a semi-infinite medium whereas the
transmission kernel is for a finite medium. In Figure 7 the kernel G+ is shown at
the midpoint z = 256 meter and it is compared with the asymptotic expression
in Eq. (6.1). In this case the two curves are very similar for short times. Since
time in this figure is less than the arrival time for the reflection from the back
of the medium, there is no difference between G+ for this medium and G+ for a
semi-infinite medium.
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Figure 3: The propagator kernel G+(0, z, t) for the dielectric medium at z = 64 m
(solid curve) and z = 128 m (dashed curve).

9 Conclusions

It has been shown that wave propagation in periodic media can be treated system-
atically in the time domain by utilizing properties of the propagators. An important
feature of the propagators is that they are independent of the fields. Thus, once the
propagators are known one may apply it to any incident pulse. Since it is not appro-
priate to study pulse propagation in the frequency domain, the current time-domain
method serves as a complement to existing frequency domain methods.

Possible extensions of the present work is to consider the periodic slab made out
of more complex materials, such as chiral, bianisotropic and anisotropic media. It
is also possible to study wave propagation in media which are not periodic but are
composed of subslabs arranged according to some pattern.

Appendix A

In this appendix a quite detailed derivation of Eq. (4.1) is given for the case F [E] ≡
0. It is straightforward to generalize the derivation to the case when F is not zero,
but since the equations then becomes lengthy this case is omitted here. Then the
derivation of the other three equations for the wave propagators, Eqs. (4.2), (4.4)
and (4.5) are indicated.
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Figure 4: The propagator kernel G+(0, z, t) for the dielectric medium at z = 1024
m (solid curve) and the asymptotic value of G+ given by Eq. (6.1) at the same z
value (dashed curve).

The first step in the derivation of Eq. (4.1) is to differentiate Eq. (3.4) wrt ζ.
The derivative of the right hand side reads

d

dζ
(a(η, ζ) E+(η, t) + [G+(η, ζ, ·) ∗ E+(η, ·)](t))

= aζ(η, ζ)E
+(η, t) + [G+

ζ (η, ζ, ·) ∗ E+(η, ·)](t)
The ζ−derivative of the left hand side reads

d

dζ
E+(ζ, t + �(η, ζ)) =

(
∂ζ +

1

c(ζ)
∂t

)
E+(ζ, t + �(η, ζ)) (A.1)

= (α(ζ) +
1

c(ζ)
∂t)E

+(ζ, t + �) + β(ζ)E−(ζ, t + �)

where the dynamics for E±, Eq. (2.3), has been used. The fields E±(ζ, t + �) are
expressed in terms of E+(η, t) by Eqs. (3.4) and (3.5). The explicit expressions for
the operators α and β are given by Eqs. (2.4) and (2.5). Using these expressions,
the ζ− derivative of Eq. (3.4) reads

cζ(ζ)

2c(ζ)

(
a(η, ζ)E+(η, t) + [G+(η, ζ, ·) ∗ E+(η, ·)](t)− [G−(η, ζ, ·) ∗ E+(η, ·)](t)

)
= aζ(η, ζ)E

+(η, t) + [G+
ζ (η, ζ, ·) ∗ E+(η, ·)](t)
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Figure 5: The reflection kernel for the Lorentz medium given by Eqs. (8.1) and
(8.2).

Since E+ is an arbitrary field the following equations are implied

aζ(η, ζ) =

(
cζ(ζ)

2c(ζ)
− c(ζ)

2c2
0

χ(ζ, 0)

)
a(η, ζ) (A.2)

G+
ζ (η, ζ, t) =

cζ(ζ)

2c(ζ)

(
G+(η, ζ, t)−G−(η, ζ, t)

)
(A.3)

The boundary condition for a(η, ζ) is a(η, η) = 1 and thus Eq. (A.2) is consistent
with Eq. (3.6). Since F [E] ≡ 0 it is seen that Eq. (A.3) is identical with Eq. (4.1).

Equation (4.2) is derived in the same manner as above. Thus Eq. (3.5) is
differentiated wrt ζ which, by utilizing the dynamics, gives

γ(ζ) (a(η, ζ)E+(η, t) + [G+(η, ζ, ·) ∗ E+(η, ·)](t) + δ(ζ)[G−(η, ζ, ·) ∗ E+(η, ·)](t)

+
1

c(ζ)

(
G−(η, ζ, 0)E+(η, t) + [G−t (η, ζ, ·) ∗ E+(η, ·)](t)

)
= [G−ζ (η, ζ, ·) ∗ E+(η, ·)](t)

Since E+ is an arbitrary incident field the Eq. (4.2) and the initial condition, Eq.
(4.3), follow.

The two remaining equations (4.4) and (4.5) are derived by differentiating Eqs.
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Figure 6: The transmission kernel (solid line) and the asymptotic Green kernel
given by Eq. (6.1) (dashed line) for the Lorentz medium given by Eqs. (8.1) and
(8.2).

(3.4) and (3.5) wrt η. The η−derivative of Eq.(3.4) can be written as

− 1

c(η)

(
a(η, ζ)E+

t (η, t) + G+(η, ζ, 0)E+(η, t) + [G+
t (η, ζ, ·) ∗ E+(η, ·)](t)

)
(A.4)

= aη(η, ζ)E
+(η, t) + a(η, ζ)

(
α(η)E+(η, t) + β(η)E−(η, t)

)
+ [G+

η (η, ζ, ·) ∗ E+(η, ·)](t) + [G+ ∗
(
α(η)E+(η, t) + β(η)E−(η, t)

)
](t)

This equation is expressed solely in terms of the field E+(η, t) if the relation

E−(η, t) = [R(η, ·) ∗ E+(η, ·)](t)
is used. Equation (4.4) now follow when the explicit expressions for the operators
α and β are inserted into Eq. (A.4)

Finally the derivation of Eq.(4.5) and the initial condition in Eq. (4.3) are
sketched. The η−derivative of Eq.(3.5) is written as

− 1

c(η)

(
G−(η, ζ, 0)E+(η, t) + [G−t (η, ζ, ·) ∗ E+(η, ·)](t)

)
= [G−η (η, ζ, ·) ∗ E+(η, ·)](t) + [G−(η, ζ, ·) ∗ (α(η)E+(η, ·) + β(ζ)E−(η, ·)](t)

In the last equation E−(η, t) is rewritten as E−(η, t) = [R(η, ·) ∗ E+(η, ·)](t). By
inserting the explicit expression, Eqs. (2.4) and (2.5), for the operators α and β,
Eq. (4.5) follows.
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Figure 7: The propagator kernel G+ and the asymptotic kernel in Eq. (6.1) at
z = 256 m, for the Lorentz medium given by Eqs. (8.1) and (8.2).
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