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Abstract

The concept of non-radiating sources is introduced to transmission lines in
the time-domain analysis. A method is presented to construct localized volt-
age and current sources which do not produce any fields outside the source
domain. These sources cannot therefore be detected by measurements made
outside the source region. The importance of such sources for the uniqueness
of the inverse source problem is pointed out, and energy conditions for the
uniqueness are discussed. The analysis can be advantageously used in the
design and optimization of the EMC properties of transmission lines.

1 Introduction

Direct problems in electromagnetics have unique solutions, which means that two
different fields are necessarily generated by two different sources. However, the in-
verse problem is not unique without additional constraints. In other words, two
different sources may radiate the same electromagnetic field outside the source re-
gion. One consequence of this non-uniqueness property of the inverse source problem
is that non-radiating (NR) sources exist. Non-radiating sources are such which do
not generate any electric or magnetic fields outside their support.

The inverse source problem in acoustics and electromagnetics has been studied
by various authors [1, 3, 4, 7]. These articles treat currents and their radiation in free
space from the NR point of view, and give conditions that the source distributions
have to satisfy in order not to radiate electromagnetic energy. The construction of
a non-radiating source distribution starts with choice of any function that vanishes
outside a finite domain. Applying the wave operator to this function gives a certain
source function. Because the resulting source function is a solution of the inhomo-
geneous wave equation, it is an NR source because the field it corresponds to is zero
outside the source domain.

One of the strong results of the non-radiating source studies is the following: a
time-harmonic electric current distribution J(r, ω), does not radiate electromagnetic
fields outside its support if

k ×
∫

J(r, ω)eik·r dV = 0 (1.1)

for ω = c|k|. The integral behaves well because the integration domain is the support
of the current distribution which is a finite domain. In fact, equation (1.1) is a
necessary and sufficient condition for a dynamic current to be non-radiating. In other
words, the NR condition is that certain components vanish of the transverse part
of the spatial Fourier transform of the current density; namely those components
for which |k| = ω/c, where c = 1/

√
µε is the radiation velocity in the medium

permeating the space [3]. To give one example of a single-frequency current function
satisfying this criterion, take J(r) = urJ(r), which is a spherically symmetric vector
function. This current source does not radiate in a homogeneous environment, as is
well known.
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The question of possible electron models that would be stable in the sense that
the dynamics of the charges would not lose energy through radiation puzzled physi-
cists like Sommerfeld, Herglotz, and Ehrenfest early in the beginning of this century.
The famous result by Schott [6] is that a rotating spherical shell of charge is non-
radiating if the radius of the shell b satisfies the following condition:

b =
ncT

2

where n is integer and T is the period of the charge motion. This result by Schott
does not require that the rotation orbit be circular; as a matter of fact, it does
not even have to be planar. Goedecke has generalized these results to more gen-
eral rotating and spinning charge distributions [5]. This reference gives examples of
various localized NR sources that can be asymmetric and non-spherical, and that
could also include a spinning current contribution in addition to the orbital move-
ment of the charge. The non-radiating character of these charge constellations is
connected to a quantized condition for the orbital and spinning motions, which re-
sult leads to the temptation to hypothesize that all stable particles in nature would
be “merely non-radiating charge-current distributions whose mechanical properties
are electromagnetic in origin,” although Goedecke in [5] seems to be very careful in
propagating this suggestion.

The previous results of non-radiating sources in the literature have dealt with
waves in unbounded homogeneous space. In the present article, we concentrate
on the problem of non-radiating sources in transmission lines. The analysis allows
arbitrary time-dependence of the fields and sources. The sources in the transmission-
line problem are enforced voltages and currents, which can be either distributed or
lumped sources. The construction procedure of NR transmission-line sources will
be presented. Also power conditions are discussed because the energy balance is
obviously different for non-radiating sources from ordinary transmission-line con-
figurations where the line is used to transmit energy from the source to the load.
We might see application of the NR-source transmission-line theory in, for example,
electromagnetic compatibility and interference problems. Disturbances quite often
become coupled to transmission lines through unshielded parts of the line. Hence, to
minimize the effect of these undesired foreign signals, one may try to design the crit-
ical contact area in such a way that the disturbance would appear as a non-radiating
source, when looking from the transmission line.

2 General principle of non-radiating sources

In a very general form the concept of non-radiating sources can be introduced as
follows [8, Section 6.1]. Consider a linear problem

Lf = g,

where L is a linear operator containing differentiation, g is the cause (source) and
f the effect (field). In addition, linear and homogeneous boundary conditions

Bf = 0
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are assumed, which make the solution unique so that the problem

Lf0 = 0, Bf0 = 0

has only the null solution f0 ≡ 0.
The simple way to construct a non-radiating source is the following. If h is a

function of bounded support in space, i.e., h = 0 outside a certain bounded region
in space, the source gh = Lh is non-radiating. This is because the corresponding
field fh satisfies

L(fh − h) = 0, B(fh − h) = 0,

assuming Bh = 0, i.e., the boundary of the problem is outside the support of h.
From uniqueness we now have

fh − h = 0 ⇒ fh = h,

which means that fh = 0 outside the support of h. Thus, the source gh = Lh does
not create (radiate) a field outside the support of h.

3 Application to transmission lines

In the time-domain transmission-line theory, the field f is a combination of the
voltage U(z, t) and current I(z, t) functions, the source g is a combination of the
distributed series voltage u(z, t) and shunt current i(z, t) functions and the linear
operator L is defined by the transmission-line equations

Lf =

[(
1 0
0 1

)
∂z +

(
0 L
C 0

)
∂t +

(
0 R
G 0

)] (
U
I

)
(z, t) =

(
u
i

)
(z, t).

(3.1)
Here, ∂z and ∂t denote differentiation with respect to z and t and the line parameters
L, C, R, G (inductance, capacitance, series resistance, and leakage conductance,
per unit length) may be functions of the position coordinate z but not the time t.
The circuit that obeys Equation (3.1) is shown in Figure 1.

3.1 Construction of non-radiating voltage–current combina-
tions

After having written down the operator L for transmission-line dynamics (Equa-
tion 3.1), the non-radiating voltage and current sources can be constructed using
the principle presented in the previous section. Denote the function h by

h =

(
Uh

Ih

)
(z, t),

and the non-radiating source can be expressed as

gh =

(
uh

ih

)
(z, t) = Lh =

(
∂z R + L∂t

G + C∂t ∂z

) (
Uh

Ih

)
(z, t),
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+ +

− −

U(z, t)

I(z, t)

U(z + dz, t)

I(z + dz, t)R(z) L(z)

C(z)G(z)

u(z, t)

i(z, t)

Figure 1: The transmission line with series voltage and shunt current sources u(z, t)
and i(z, t), and the transmission-line parameters L, C, R, G. The dynamics of this
circuit obeys Equation 3.1.

or, more explicitly, as{
uh(z, t) = ∂zUh(z, t) + (R + L∂t)Ih(z, t),

ih(z, t) = ∂zIh(z, t) + (G + C∂t)Uh(z, t).
(3.2)

Let us consider some basic examples for NR voltage–current distributions.

3.2 Simple non-radiating sources

Let us assume that the non-radiating source is limited to an interval in space, z1 <
z < z2, and in time, t1 < t < t2. More specifically, let us assume that there is only
one nonzero function Uh(z, t) defined by:

Uh(z, t) = U0P (z1, z, z2)P (t1, t, t2), Ih(z, t) = 0.

Here, the function P (a, x, b) denotes the pulse function, which equals unity when
a < x < b and zero otherwise, and U0 is a constant. Because the derivative of the
pulse function is a combination of two delta functions, we have for the non-radiating
source functions{

uh(z, t) = U0[δ(z − z1) − δ(z − z2)]P (t1, t, t2),

ih(z, t) = U0P (z1, z, z2)[GP (t1, t, t2) + C(δ(t − t1) − δ(t − t2))].

The source is composed of two series voltage generators plus distributed shunt cur-
rent generators according to Figure 2. The voltage generators are of opposite po-
larity, ±U0 at the points z = z1 and z = z2. These are turned on at t = t1 and
off at t = t2. The current generators are distributed along the interval [z1, z2], and
flashing on with amplitude CU0 at the moment t = t1 and another time with the
amplitude −CU0 at the moment t = t2. For a lossy transmission line, we also have
a current generator distribution GU0.
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U0

z1 z2

U0

Figure 2: Non-radiating source in the interval z1 < z < z2 does not produce
fields outside the interval. It cannot be detected by observing voltages and currents
outside the interval. See the text for the strength of the current sources.

To understand that this combination of sources does not generate any fields
propagating along the line, it is enough to note that during the time interval [t1, t2],
there exists a potential difference only within the space interval [z1, z2]. This will
lead to leakage current, which is compensated by the continuous current source GU0.
The transient that is excited at t = t1 as the voltage generators are turned on is equal
and opposite to the effect of the simultaneous current flash with amplitude CU0, and
therefore no signal can be measured outside the region at any time. Similarly, this
happens at the time t = t2, with oppositely directed sources.

The complementary non-radiating source constellation can be constructed with
the following choice of the Uh and Ih-functions:

Uh(z, t) = 0, Ih(z, t) = I0P (z1, z, z2)P (t1, t, t2).

whence we have{
uh(z, t) = I0P (z1, z, z2)[RP (t1, t, t2) + L(δ(t − t1) − δ(t − t2))],

ih(z, t) = I0[δ(z − z1) − δ(z − z2)]P (t1, t, t2).

This source is illustrated in Figure 3. Two opposite shunt current sources at the
points z = z1 and z = z2 create a circulating current which is limited within the
region between these two points. For a lossy line, distributed series voltage genera-
tors RI0 supply the voltage lost in the series resistance. And similarly to the earlier
case, to extinguish the effect of the transients at t = t1 and t = t2, voltage flashes
have to be included with amplitudes LI0 at these moments. These voltage sources
are distributed continuously along the interval.

3.3 Voltage and current sources

In the previous examples, the non-radiating sources consisted of both voltages and
currents. We can also design a non-radiating source which only consists of voltage
functions. In the above example, we did not use the function Ih(z, t) at all, and the
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I 0

z1 z2

I 0

Figure 3: The non-radiating source combination complementary to that in Figure 2.
See the text for the strength of the voltage sources.

result was a combination of voltage and current sources. With a suitable choice for
Ih(z, t), the current source ih(z, t) can be required to vanish. With this requirement,
we find the following condition from Equation (3.2)

Ih(z, t) = −(G + C∂t)

z∫
z1

Uh(z
′, t) dz′

for the current function. Denoting the integral of the voltage by M(z, t):

M(z, t) =

z∫
z1

Uh(z
′, t) dz′

we have from (3.2){
uh(z, t) = ∂zzM(z, t) − (R + L∂t)(G + C∂t)M(z, t)

ih(z, t) = 0

which is an expression for a non-radiating purely-voltage-type source. The function
M(z, t) is an arbitrary function with compact support in space: M(z, t) ≡ 0 for
z < z1 and z > z2. This is sufficient to guarantee that the Ih and Uh functions, too,
vanish outside the support.

Similarly, we can write an expression for an NR source of purely-current-type, by
requiring uh(z, t) ≡ 0 from Equation (3.2), and using the condition for the current
function. The result is{

uh(z, t) = 0

ih(z, t) = ∂zzN(z, t) − (R + L∂t)(G + C∂t)N(z, t)

where again, N(z, t) is an arbitrary function with bounded support in space.
As an example of a non-radiating voltage-only source, choose the following func-

tion:
M(z, t) = sin2(kz)P (0, z, π/k) sin(ωt). (3.3)
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This is a monochromatic function, vibrating with the angular frequency ω. In time
it is therefore not bounded but spatially it is restricted by the pulse function within
a finite interval. The z-dependence has been intentionally chosen in a manner such
that the function and its first derivative are continuous, with the goal of finding a
“soft” source function. The source function contains second-order derivatives of the
test function in this case.

The source function is

uh(z, t) =
[
(2k2 cos 2kz − RG sin2 kz + ω2LC sin2 kz) sin ωt

− (RC + LG)ω sin2 kz cos ωt
]
P (0, z, π/k)

and it is illustrated in Figure 4. The transmission-line parameters in this example
are chosen to be those of a 75 Ω coaxial cable with 1 cm diameter and dielectric
insulator of relative permittivity εr = 2.5 and loss tangent tan δ = 0.001. The
conductor is assumed to be copper with conductivity σ = 5.7 · 107 S/m. Microwave
engineering formulas [2, Section 9.3] give the following transmission-line parameters
for this cable at 1 GHz frequency:

C ≈ 7.9ε0, L ≈ 0.32µ0, G ≈ 4.4 · 10−4 S/m, R ≈ 2.2 Ω/m

where ε0 ≈ 8.854 · 10−12 As/Vm and µ0 = 4π · 10−7 Vs/Am are the free-space per-
mittivity and permeability, respectively. The width L = π/k of the source function
is chosen to be 30 cm. Note that this length does not need to have any connection
to the frequency of the wave nor to its free-space wavelength. L is only the width of
the support of the non-radiating source function and it is determined by the manner
the source is excited.

In the numerical calculation of Figure 4, the pulse function is approximated by
a combination of hyperbolic tangent functions:

P (x1, x, x2) ≈
1

2
{tanh[a(x − x1)] − tanh[a(x − x2)]}

where the parameter a adjusts the steepness of the step. In the calculations the
value a = 200 was used.

4 Power conditions

4.1 Lossless transmission line

It was pointed out earlier that the existence of non-radiating sources is tantamount
to the non-uniqueness of the inverse source problem. To ensure uniqueness for this
inverse source problem, certain conditions for the source must be imposed. In fact,
the existence of a non-radiating source implies that no energy is given by the source
to propagate along the transmission line. Thus, if part of the source gives energy to
the line, another part must absorb the energy, or all supplied energy shall have to
be dissipated into losses in the source region. Therefore, one may suggest that non-
radiating sources that are at the same time non-absorbing cannot be excited in a
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Figure 4: The non-radiating voltage source resulting with the choice of the test
function (3.3), for the 75 Ω coaxial cable (see text for parameters).

lossless transmission line. In other words, enforcing the condition that no absorption
of energy by the source is allowed, uniqueness for the inverse source problem can be
certified in a lossless line with R = 0 and G = 0.

The power absorbed per unit length of the line can be expressed as

∂zP (z, t) = −∂z(UI) = −I∂zU − U∂zI

= RI2 + GU2 + ∂t(LI2/2) + ∂t(CU2/2) − uI − iU.

The last two terms denote the absorption due to the sources. If such an absorption
is not allowed, these terms should not give a positive number, i.e., the condition

Q(z, t) = u(z, t)I(z, t) + i(z, t)U(z, t) ≥ 0

should be valid for all points z and all times t.
Let us consider this condition for the non-radiating source (Equation 3.2):

Qh(z, t) =

(
Uh

Ih

)T (
0 1
1 0

) (
uh

ih

)

=

(
Uh

Ih

)T (
G + C∂t ∂z

∂z R + L∂t

) (
Uh

Ih

)

= ∂z(UhIh) +
1

2
∂t(CU2

h + LI2
h) + GU2

h + RI2
h

≥ 0.

(4.1)

For the previous example with Ih(z, t) = 0, Uh(z, t) = U0P (z1, z, z2)P (t1, t, t2),
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we have

Qh(z, t) =
1

2
∂t(CU2

h) + GU2
h

= U2
0

(
C[δ(t − t1) − δ(t − t2)] + GP (t1, t, t2)

)
P (t1, t, t2)P

2(z1, z, z2)

= U2
0

(
C[δ(t − t1) − δ(t − t2)] + GP (t1, t, t2)

)
P (t1, t, t2)P (z1, z, z2).

It is seen that the condition Qh(z, t) ≥ 0 is not satisfied at t = t2, because at this
moment power is absorbed by the sources.

4.2 Lossy transmission line

In the case of lossy transmission line (G �= 0, R �= 0), uniqueness of the inverse
source problem does not follow from the requirement that the source not absorb
energy. If the energy supplied by an NR source is absorbed by the losses within the
source region, no power, and hence no fields, can be detected outside. This can be
illustrated with a simple example.

Take Ih(z, t) = 0 and Uh(z, t) = U0H(t, 0)e−Gt/CP (z1, z, z2) where the step func-
tion H(t, t1) is zero for t < t1 and unity for t ≥ t1. Now, using (3.2), we have for
the sources {

uh(z, t) = U0H(t, 0)e−Gt/C
[
δ(z − z1) − δ(z − z2)

]
ih(z, t) = CU0δ(t)P (z1, z, z2)

and for the power (per unit length) supplied by the source:

Qh(z, t) = CU2
0 P 2(z1, z, z2)δ(t)H(t, 0)e−Gt/C

= CU2
0 P (z1, z, z2)δ(t)

which is positive at the starting moment t = 0 and zero after that. There is no
absorption by the source; however, it is non-radiating.

5 Discussion and conclusion

Non-uniqueness of sources in electromagnetic field problems is the topic of the
present paper. Two different current distributions, confined within a certain do-
main, may produce exactly the same radiation fields at every point outside this
domain. From the linearity of Maxwell equations, it is then obvious that the differ-
ence of these two current distributions is a non-radiating source with respect to the
external region. A corollary of this is that the problem of determining the source
currents from externally measured fields is difficult. In fact, the inverse source prob-
lem is ill-posed. Some additional a priori information is needed about the source
if one wants to have a unique solution for this problem. Moreover, the problem
of inverse scattering is related to the inverse source problem and the existence of
non-radiating sources. In inverse scattering problems, one measures radiated fields
that are generated by incident waves, and from this information one likes to infer
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information about the scatterer. This problem has large similarities to the inverse
source problem due to the presence of equivalent induced sources in the scatterer.

The aim of the present paper has been to present a method to construct non-
radiating source distributions for transmission-line problems. The inverse source
problem does not seem to have been studied previously in transmission-line theory.
An application of the partial differential operator L of Equation (3.1) on a localized
function yields source functions that are bounded in space and which do not generate
any voltage and current waves traveling along the transmission line. These sources
cannot be detected with any voltage or current measurements on the transmission
line, external to the source region.

With simple generating functions, such NR sources could be created that can
be intuitively understood as being non-radiating. Two basic examples of such type
with both voltage and current sources were discussed. The idea behind these source
combinations was that the current (voltage) was confined within the source region by
a certain source, and to extinguish the transients resulting from the onset and offset
of this source, voltage (current) flashes of opposite polarity have to be added. Power
conditions were also discussed because energy balance leads to certain requirements
for the character of non-radiating sources. If no power is flowing out of the source
region, the power emitted by the source either has to be absorbed by another part of
the same source, or be dissipated in the losses of the transmission line. This would
suggest that a non-absorbing and non-radiating source cannot exist in a lossless
transmission line.

The paper also presents a way of constructing NR sources that consist of only
voltage functions, or only current functions. In practical applications, this type of
source description may be more useful. The forced voltage-only source could be
thought as a slot in the wall of a waveguide which an external plane wave is illu-
minating. The amplitude can be controlled by the width of the opening. A pure
current source would be the result of surface currents induced on an unshielded
microstrip line under a similar exposure to an incident field. The present analysis
of non-radiating transmission line sources is hopefully useful for EMC applications,
eliminating interference, and the design of microwave equipment in difficult electro-
magnetic environments.
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