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Abstract

Time-varying wave propagation and time-harmonic wave propagation in bi-
isotropic materials are reviewed and the connection between the formulations
is established via the temporal Fourier transform. An alternative method
to determine the dispersive properties of a bi-isotropic slab from sinusoidal
scattering data at normal incidence is presented. A numerical example (real-
istic, synthetic scattering data) is given to illustrate the theory. Furthermore,
experimental data is presented and used to generate the permittivity, perme-
ability, and chirality parameters of a specific man-made chiral slab in the range
3.5–18 GHz. On the basis of the results of inversion, the question whether the
passivity concept is too austere is raised.

1 Introduction

In recent years, owing to many potential areas of application, in particular for mi-
crowaves and millimeter waves, the interaction of electromagnetic waves and bi-
isotropic or isotropic chiral media has attracted much attention. For reviews and
references, see, e.g., Engheta and Jaggard [7] or Lakhtakia [13]. Several new books
on the subject with the emphasis on microwave applications are also available, see,
e.g., Lakhtakia et al. [14] and Lindell et al. [16], and an electronic forum of discussion
(CHIRAL-L) has been established as well.

The characteristic property of the isotropic chiral medium is the chirality, which
twists and distorts the plane of polarization of an originally linearly polarized plane
wave. In the optical regime, this rotatory effect is known as optical activity, and the
epithet electromagnetic activity has been suggested in the general electromagnetic
case [14, 16]. The physical origin of electromagnetic activity is resonance phenomena
in the handed micro structure of the bi-isotropic medium. Therefore, chirality is
believed to be highly dispersive property, i.e., it depends anomalously on frequency.

A linear, homogeneous, isotropic, and temporally dispersive chiral medium is
characterized by three time-dependent susceptibility functions. In general, these
functions are unknown to the engineer. The present paper concerns the inverse
problem of determining the susceptibility functions as functions of frequency in a
band at normal incidence.

Inverse problems for bi-isotropic media have been discussed before. Existing
experimental techniques are reviewed in [3, 6]. Excellent examples of reconstructions
of the susceptibility kernels of both reciprocal and non-reciprocal media on the basis
on synthetic scattering data have been reported by Kristensson and Rikte [10, 22].
In these references, time-domain methods have been employed. Frequency-domain
methods have been used also. Cloete and Smith [5] have presented an algorithm
for the inversion of time-harmonic scattering data at normal incidence using the
Weir parameters [27]. More results on time-harmonic measurements using free-
space or wave-guide environments and parameter reconstruction can be found in,
e.g., [2, 4, 8, 17, 20, 23–26] and in references given therein. In [24], the Kramers–
Kronig relations, i.e., causality aspects, were investigated. In the present article, an
inverse algorithm close to the one used in [5, 25] is applied to experimental data.
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The proposed method does not utilize the propagation factors of the left- and
right-hand circularly polarized eigenwaves as in [5]. Instead, the matrix approach
in [10, 22] is referred to. Explicitly, the chirality parameter is obtained in the first
step of the algorithm from transmission data, whereby the problem essentially is
brought back to the isotropic case.

The plan of the present paper is as follows: In Section 2, the direct scatter-
ing problem at normal incidence is discussed, both in the time-domain and the
frequency-domain. In Section 3, the inverse scattering problem in the frequency-
domain is addressed. The proposed inverse algorithm is tested in a numerical exam-
ple with realistic synthetic scattering data in Section 4. In Section 5, experimental
scattering data for a specific man-made isotropic chiral slab is presented and the re-
sult of inversion based on this set of data is presented also. The results are discussed
in Section 6 and conclusions are drawn in Section 7.

2 Basic equations

In this section, propagation of TEM-waves in linear, homogeneous, isotropic, recip-
rocal, temporally dispersive, and dissipative chiral slabs is discussed briefly. The
steady-state results are well-known, see, for instance, Bassiri et al. [1]. A general
time-domain analysis, that bears a close resemblance to time-harmonic technique,
can be found in Rikte [21]. The connection between the formulations is established
by temporal Fourier transformation. In Section 2.1, the basic time-domain results
are presented. In Section 2.2, the corresponding time-harmonic results are given.

2.1 Time-domain results

Time is denoted by t and the radius vector by r = exx + eyy + ezz. The two-
dimensional dyadics I = exex + eyey and J = ez × I = eyex − exey are employed
also. For simplicity, the slab is assumed to be embedded in vacuum. Medium
quantities associated with vacuum are endowed with the subscript 0:



ε0 = the permittivity of vacuum,

µ0 = the permeability of vacuum,

c0 = 1/
√
ε0µ0 = the speed of light in vacuum,

η0 =
√
µ0/ε0 = the intrinsic impedance of vacuum.

It is well known that a linear, homogeneous, isotropic chiral slab z ∈ (0, d)
supports transverse electric and magnetic (TEM) waves, i.e., solutions to the source-
free Maxwell equations {

∇× E(r, t) = −∂tB(r, t),

∇× H(r, t) = ∂tD(r, t)
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of the form {
E(r, t) = exEx(z, t) + eyEy(z, t),

H(r, t) = exHx(z, t) + eyHy(z, t).

As usual, the electric and magnetic fields at (r, t) are denoted by E(r, t) and H(r, t),
respectively, whereas the corresponding flux densities are D(r, t) and B(r, t). A
general scattering relation for the bi-isotropic slab is obtained by considering exci-
tation both from the left and the right. The incident electric fields at the left and
right edges are denoted by Ei

left(t) and Ei
right(t), respectively. The corresponding

scattered electric fields are denoted by Er(t) and Et(t).
In order to solve the Maxwell equations, the constitutive relations of the bi-

isotropic medium must be specified. In this paper, the chiral medium is assumed to
be linear, homogeneous, isotropic, reciprocal, temporally dispersive, and dissipative;
therefore, the pertinent constitutive relations are{

D(r, t) = εopt
r ε0 {E(r, t) + (χe ∗ E)(r, t)} + c−1(χc ∗ H)(r, t),

B(r, t) = −c−1(χc ∗ E)(r, t) + µopt
r µ0 {H(r, t) + (χm ∗ H)(r, t)} ,

where the asterisk (∗) denotes temporal convolution, e.g.,

(χe ∗ E)(r, t) =

∫ t

−∞
χe(t− t′)E(r, t′) dt′.

For further details, the reader is referred to Karlsson and Kristensson [9].
Observe that several other sets of constitutive relations can be found in the

literature, e.g., Post’s constitutive relations, where the electric flux density and the
magnetic field are expressed in terms of the electric field and the magnetic flux
density. Owing to the unique solubility of Volterra equations of the second kind, all
these sets of constitutive relations are equivalent, see Kristensson and Rikte [11].

The permittivity and the permeability operators of the medium have both been
decomposed in dispersive (memory) and nondispersive (direct) parts. The latter
model the fast processes in the material [12]. The former are temporal convolution
operators, and generate soft reflections even if the incident fields have finite jump
discontinuities. The direct terms cause hard reflections, unless the real number

ηopt
r :=

√
µopt

r /εopt
r

equals unity. If equality holds, the medium is said to be optically impedance
matched. Because the medium is dissipative and reciprocal, the chirality opera-
tor lacks a direct term, see Karlsson and Kristensson [9].

The integral kernels χe(t), χm(t), and χc(t) are the electric susceptibility kernel,
the magnetic susceptibility kernel, and the chirality kernel, respectively. Tradition-
ally, the chirality kernel is also denoted by K(t) [11]. Assuming the susceptibility
kernels are integrable, the Riemann-Lebesgue lemma implies that

lim
ω→∞

∫ ∞

0

eiωtχe(t) dt = 0
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and analogously for χm(t) and χc(t). Accordingly, in the optical limit, the medium
becomes achiral with relative permittivity εopt

r and relative permeability µopt
r . The

quantity c present in the constitutive relations is the wave front speed defined by

c = c0/n
opt,

where the number

nopt :=

√
εopt
r µopt

r

is interpreted as the index of refraction at high frequencies. Similarly, the quantity
ηopt

r defined above is interpreted as a relative intrinsic impedance in the optical limit.
The constitutive relations presented above are now slightly manipulated. Specifi-

cally, new integral operators representing intrinsic impedance and index of refraction
are introduced as

η(1 + Z∗) and nopt(1 +N∗),

respectively, where the optical intrinsic impedance is

η = η0η
opt
r .

The integral kernels N(t) and Z(t) are defined as the uniquely determined solutions
to the nonlinear Volterra equations{

2N(t) + (N ∗N)(t) = χe(t) + χm(t) + (χe ∗ χm)(t),

2Z(t) + (Z ∗ Z)(t) = χres
e (t) + χm(t) + (χres

e ∗ χm)(t)

of the second kind with inverses{
χe(t) = N(t) + Zres(t) + (Zres ∗N)(t),

χm(t) = N(t) + Z(t) + (N ∗ Z)(t).

The resolvent kernel χres
e (t) of the integral kernel χe(t) is defined as the unique

solution to the linear Volterra integral equation of the second kind

χe(t) + χres
e (t) + (χe ∗ χres

e )(t) = 0

and the kernel Zres(t) is defined analogously. The constitutive relations of the bi-
isotropic medium can now be written in the form{

η(1 + Z∗)D = c−1(1 +N∗)E + c−1χc ∗ η(1 + Z∗)H ,

B = −c−1χc ∗ E + c−1(1 +N∗)η(1 + Z∗)H .
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Figure 1: The synthetic reflection coefficient R(ω) at normal incidence for an
isotropic chiral slab in the frequency-band 2–18 GHz. ω = 2πf .

In compact matrix form — recall that the incident and scattered fields are two-
dimensional — and with the space- and time-dependence suppressed, the solution
to the scattering problem is [21](

Et

Er

)
=

(
0 R∞I

R∞I 0

)
·
(

Ei
left

Ei
right

)
+ (1 −R2

∞)
(
1 −R2

∞δ2 d
c
∗ P2

)−1

(
δ d

c
∗ P+ −R∞δ2 d

c
∗ P+ · P−

−R∞δ2 d
c
∗ P+ · P− δ d

c
∗ P−

)
·
(

Ei
left

Ei
right

)
,

where

R∞ = (η(1 + Z∗) + η0)
−1 (η(1 + Z∗) − η0)

is the reflection operator for the corresponding semi-infinite medium,

P± = exp
(d
c

d

dt

(
− IN ∓ Jχc

)
∗

)
I

are the wave propagators of the slab for right-going and left-going waves, respec-
tively, δa := δ (t− a) is the time-delayed Dirac measure, and the asterisk is used to
denote both convolution and dyadic dot product.

The propagators P± are dyadic integral operators (with respect to time) inter-
preted as series expansions of the exponentials [21]. Observe that the wave propa-
gators can be factored as

P± =

{
PPc,

PP−1
c ,
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Figure 2: The synthetic transmission coefficients Tco(ω) and Tcross(ω) at normal
incidence for an isotropic chiral slab in the frequency-band 2–18 GHz.

where the scalar (isotropic) propagator P is

P = exp
(
− d

c

d

dt
N ∗

)
and where the propagator of revolution

Pc = exp
(
− d

c

d

dt
Jχc ∗

)
I = I cos

(
− d

c

d

dt
χc ∗

)
+ J sin

(
− d

c

d

dt
χc ∗

)
.

Note also the identity

P+ · P− = IP2,

which explains the absence of cross-reflection at normal incidence.
Recalling the geometric series shows that the integral operator(

1 −R2
∞δ2 d

c
∗ P2

)−1

present in the scattering relation represents multiple propagation through the slab.
Similarly, the operator

1 −R2
∞ = (1 −R∞)(1 + R∞)

is interpreted as a product of transmission operators. Mathematically, the above
scattering relation has been obtained by using the wave-splitting concept. For fur-
ther details on this time-domain problem, the reader is referred to [21].
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Figure 3: The permittivity ε(ω) and permeability µ(ω) for the isotropic chiral slab
as a function of frequency f . These functions have been calculated from synthetic
scattering data at normal incidence given in Figures 1 and 2. The medium is passive,
since the imaginary parts of these properties are nonnegative.

2.2 Frequency-domain results

The spectral density of the electric field at the point r at the angular frequency ω
is denoted by

E(r, ω) :=

∫ ∞

−∞
eiωtE(r, t) dt.

The spectral densities of other electromagnetic quantities are denoted analogously.
As a consequence of this convention, the time dependence e−iωt at fixed frequency
is understood.

The characterization{
D(r, ω) = ε0ε(ω)E(r, ω) + c−1

0 iξ(ω)H(r, ω),

B(r, ω) = −c−1
0 iξ(ω)E(r, ω) + µ0µ(ω)H(r, ω)

(2.1)

of the isotropic chiral medium is employed. These constitutive relations are used
in [16] but with another time-convention (eiωt). We say that the medium is dissipa-
tive (passive, lossy) at r if, cf. [16],

Re {∇ · S(r, ω)} ≤ 0 for all non-zero, non-static fields, (E(r, ω),H(r, ω)), (2.2)

where S(r, ω) = E(r, ω) × H∗(r, ω)/2 is the complex Poynting vector at r at
angular frequency ω. Furthermore, we say that the medium is active at r if

Re {∇ · S(r, ω)} > 0 for some non-zero, non-static fields, (E(r, ω),H(r, ω)).
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Figure 4: The chirality parameter ξ(ω) for an isotropic chiral slab as a function of
frequency f . The chirality parameter depends solely on the synthetic transmission
data presented in Figure 2.

Notice that this partition in terms of passive and active materials is exhaustive. We
consider the lossless materials as a limit case of the passive materials: a medium is
said to be lossless at r if

Re {∇ · S(r, ω)} = 0 for all non-zero, non-static fields, (E(r, ω),H(r, ω)).

One can show that the homogeneous medium given by the constitutive relations (2.1)
is passive if and only if [16]


Im ε(ω) ≥ 0,

Imµ(ω) ≥ 0,

|Im ξ(ω)| ≤
√

Im ε(ω) Imµ(ω)

(2.3)

for all ω �= 0. Moreover, the medium is lossless if the relative permittivity ε(ω),
the relative permeability µ(ω), and the chirality parameter ξ(ω) all are real for all
ω �= 0. The relation between these parameters and the time-domain constitutive
parameters is readily obtained by Fourier transformation:


ε(ω) = εopt

r

(
1 + χe(ω)

)
= εopt

r

1 +N(ω)

1 + Z(ω)
,

µ(ω) = µopt
r

(
1 + χm(ω)

)
= µopt

r

(
1 +N(ω)

)(
1 + Z(ω)

)
,

ξ(ω) = −iχc(ω)nopt.

(2.4)

In the light of the results of Section 2.1, the time-harmonic constitutive relations
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Figure 5: The properties R∞(ω), 1 +N(ω), and 1 +Z(ω) in the synthetic case as
functions of frequency f .

can be written in the form{
η
(
1 + Z(ω)

)
D(r, ω) = c−1

(
1 +N(ω)

)
E(r, ω) + c−1χc(ω)η

(
1 + Z(ω)

)
H(r, ω),

B(r, ω) = −c−1χc(ω)E(r, ω) + c−1
(
1 +N(ω)

)
η
(
1 + Z(ω)

)
H(r, ω).

Similarly, the scattering relation at normal incidence for the bi-isotropic slab (0, d)
reads(

Et(ω)
Er(ω)

)
=

(
0 R∞(ω)I

R∞(ω)I 0

)
·
(

Ei
left(ω)

Ei
right(ω)

)
+

1 −R2
∞(ω)

1 −R2
∞(ω)P 2(ω)(

P+(ω) −R∞(ω)P+(ω) · P−(ω)
−R∞(ω)P+(ω) · P−(ω) P−(ω)

)
·
(

Ei
left(ω)

Ei
right(ω)

)
,

where

R∞(ω) =
η
(
1 + Z(ω)

)
− η0

η
(
1 + Z(ω)

)
+ η0

(2.5)

is the reflection coefficient of the corresponding half-space, whereas

P±(ω) = exp

(
iω
d

c

(
I(1 +N(ω)) ± Jχc(ω)

)
·
)
I =

{
P (ω)Pc(ω),

P (ω)P−1
c (ω),

(2.6)

P (ω) = exp

(
iω
d

c

(
1 +N(ω)

))
, (2.7)
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(
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c
χc(ω)

)
and exp

(
iω d

c
N(ω)

)
in the complex plane in the synthetic case. Since neither of these curves embraces
the origin, the principal branch of the logarithm generates correct values of χc(ω)
and N(ω).

and

Pc(ω) = eiω d
c
χc(ω)J·I = I cos

(
iω
d

c
χc(ω)

)
+ J sin

(
iω
d

c
χc(ω)

)
(2.8)

are the propagation factors of the slab. These are the analogues to the wave prop-
agators defined in Section 2.1. Note that the time-delay d/c has been included in
the propagation factors P±(ω) and P (ω).

From equation (2.8), it follows that the real part of ξ(ω) = −iχc(ω)nopt is the
origin of ORP (optical rotatory power), whereas the imaginary part causes the CD
distortion (circular dichroism). Thus, the transmitted wave is generally elliptically
polarized.

The results presented in this Section are in agreement with equations (69)–(71)
in the investigation by Bassiri et al. [1], obtained by considering the right- and
left-hand circularly polarized eigenwaves. The propagation factors of the circularly
polarized waves

P±(ω) = exp

(
iω
d

c

(
1 +N(ω) ± iχc(ω)

))

arise when Euler’s formulae are applied to equation (2.8):

P±(ω) = P±(ω)
(I − iJ)

2
+ P∓(ω)

(I + iJ)

2
.
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Figure 7: The reflection coefficient R(ω) at normal incidence for a man-made
isotropic chiral slab in the frequency band 3.5–18 GHz. The Weir parameter (the
reflection coefficient for the half-space) R∞(ω) is presented also.

3 Inverse scattering in the frequency domain

In this section, the inverse scattering problem in the frequency domain is analyzed.
This problem is to compute the constitutive parameters ε(ω), µ(ω), and ξ(ω) from
scattering data. The scattering relation obtained in the previous section shows that
two-sided excitation of the isotropic chiral slab is superfluous.

If Ei
right(ω) := 0 and Ei(ω) := Ei

left(ω), the scattering relation reads

{
Er(ω) = R(ω)Ei(ω),

Et(ω) = T(ω) · Ei(ω).
(3.1)

The reflection coefficientR(ω) and the transmission dyadic T(ω) are easily computed
from time-harmonic scattering data, Er(ω) and Et(ω), and the known excitation
Ei(ω). Due to axial symmetry of the medium, one has

T(ω) ≡ ITco(ω) + JTcross(ω).

Comparison with results in the previous section yields the explicit expressions

R(ω) =

(
1 −

(
1 −R2

∞(ω)
)
P 2(ω)

1 −R2
∞(ω)P 2(ω)

)
R∞(ω),

T(ω) =

(
1 −R2

∞(ω)
)
P (ω)

1 −R2
∞(ω)P 2(ω)

Pc(ω)

(3.2)

for the reflection coefficient and the transmission matrix.
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Figure 8: The transmission coefficients Tco(ω) and Tco(ω) at normal incidence for
a man-made isotropic chiral slab in the frequency band 3.5–18 GHz.

The first step in the proposed inverse algorithm is to compute the chiral para-
meter χc(ω). To this end, define a scalar transmission coefficient as

IT (ω) := P−1
c (ω) · T(ω).

This is equivalent to

T (ω) = Tco(ω) cos

(
−iωd

c
χc(ω)

)
− Tcross(ω) sin

(
−iωd

c
χc(ω)

)
,

0 = Tco(ω) sin

(
−iωd

c
χc(ω)

)
+ Tcross(ω) cos

(
−iωd

c
χc(ω)

)
.

(3.3)

The second of these identities determines χc(ω), and once this property is known,
T (ω) is obtained by the first. Consequently, the scattering relation (3.2) reduces to


R(ω) =

(
1 − P (ω)T (ω)

)
R∞(ω),

T (ω) =

(
1 −R2

∞(ω)
)
P (ω)

1 −R2
∞(ω)P 2(ω)

.
(3.4)

In the achiral case, Tcross(ω) = 0 and T (ω) = Tco(ω) is precisely the transmission
coefficient. Applying Euler’s formulae to the second identity (3.3) yields the tran-
scendental equation

e2ω d
c
χc(ω) = Tquotient(ω), (3.5)

where the right hand side is

Tquotient(ω) =
Tco(ω) − iTcross(ω)

Tco(ω) + iTcross(ω)
= Q

(
iTcross(ω)

Tco(ω)

)
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Figure 9: The relative permittivity ε(ω) and permeability µ(ω) for a man-made
isotropic chiral slab as a function of frequency f . These functions have been cal-
culated from scattering data at normal incidence given in Figures 7 and 8. For a
passive medium, the imaginary parts of these properties are nonnegative.

and Q(x) = (1−x)/(1+x) is the frequently encountered quotient function [15]. For
a small chirality parameter, Tquotient(ω) ≈ 1. A solution to this equation is

2ω
d

c
χc(ω) = Superlog

(
Tquotient(ω)

)
,

where the function Superlog coincides with the principle branch of the logarithm at
low frequencies, and, furthermore, in order to preserve the continuity of χc(ω), is
designed to add ±2πi to the result when the curve Tquotient(ω) cuts the negative real
axis. It should be observed that the proposed method may fail if the sampling in
frequency is not dense enough or if low-frequency data is not available. The result
can be checked in the high-frequency limit by the Riemann-Lebesgue lemma: χc(ω)
approaches 0 as ω tends to infinity.

In the second step, P (ω) and R∞(ω) are determined from T (ω) and R(ω). An-
other way to state the scattering relation (3.4) is{

R(ω) =
(
1 − P (ω)T (ω)

)
R∞(ω),

T (ω) =
(
1 −R∞(ω)R(ω)

)
P (ω).

Eliminating P (ω) in the first equation and R∞(ω) in the second equation yield the
polynomial equations of the second degree{

R2
∞(ω)R(ω) −R∞(ω)

(
1 +R2(ω) − T 2(ω)

)
+R(ω) = 0,

P 2(ω)T (ω) − P (ω)
(
1 + T 2(ω) −R2(ω)

)
+ T (ω) = 0,
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Figure 10: The chirality parameter ξ(ω) for a man-made isotropic chiral slab as a
function of frequency f . The chirality parameter depends solely on the transmission
data presented in Figure 8.

which have the solutions

R∞(ω) =

1 +R2(ω) − T 2(ω) −
√

(1 +R2(ω) − T 2(ω))2 − 4R2(ω)

2R(ω)
,

P (ω) =
1 + T 2(ω) −R2(ω) −

√
(1 + T 2(ω) −R2(ω))2 − 4T 2(ω)

2T (ω)
.

In particular, for the nonreflective (R(ω)=0) isotropic chiral medium, one obtains
P (ω) = T (ω), which is the correct root. For the semi-infinite medium, T (ω) ≡ 0,
and one obtains R∞(ω) = R(ω), which also is the correct root. Note also that since

IT 2(ω) = T(ω) · T(ω)t = I
(
T 2

co(ω) + T 2
cross(ω)

)
,

R∞(ω) is independent of χc(ω) and depends on scattering data only. Once R∞(ω)
is known, the dispersive factor 1 + Z(ω) of the intrinsic impedance is obtained
from (2.5):

1 + Z(ω) =
1

ηopt
r

1 +R∞(ω)

1 −R∞(ω)
.

In the third step, the property N(ω) is recovered from equation (2.7):

eiω d
c
N(ω) = P (ω)e−iω d

c .

The technique of reconstruction is similar to the one used to obtain the chirality
parameter K(ω); it is assumed that the solution is given by

iω
d

c
N(ω) = Superlog

(
P (ω)e−iω d

c

)
.
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Figure 11: The properties 1+N(ω) and 1+Z(ω) for a man-made isotropic chiral
slab as functions of frequency f .

By the Riemann-Lebesgue lemma, N(ω) approaches 0 as ω tends to infinity.
In the fourth and final step, the relative permittivity ε(ω), the relative perme-

ability µ(ω), and the chirality parameter ξ(ω) are obtained from equation (2.4)
by straightforward multiplication. By inverse Fourier transformation, the time-
dependent susceptibility functions can be obtained as well.

4 Numerical results

Codes implemented in the MATLAB environment have been developed both for the
direct scattering problem and the inverse scattering problem. In this section the
inversion algorithm presented above is tested numerically.

The constitutive parameters of a realistic multiple-resonance isotropic chiral
medium as functions of frequency are given in Figures 3 and 4. Furthermore,
εopt
r = 3.2 and µopt

r = 1. The MTWC-code has been used to generate the syn-
thetic scattering data at normal incidence [18, 19]. Reflection and transmission data
are presented in Figures 1 and 2. The results of the inversion are also shown in
Figures 3 and 4 represented by markers. Since the chirality parameter ξ(ω) is small,
it is not surprising that the relative error is larger in the reconstruction of this prop-
erty than in the recovery of the permittivity ε(ω) and the permeability µ(ω). The
properties R∞(ω), 1 + N(ω), and 1 + Z(ω) as functions of frequency are found in
Figure 5. The traces of the exponentials exp

(
2ω d

c
χc(ω)

)
and exp

(
iω d

c
N(ω)

)
in the

complex plane are shown in Figure 6. Note that these curves do not enter the left
half-plane; therefore, the principal branch of the logarithm generates the correct
values of χc(ω) and N(ω) throughout the frequency-band.



16

1.5

1.0

0.5

0.0

-0.5

 

3.02.52.01.51.00.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2
 

  
 

 

Im
ag

in
ar

y
p
ar

t
of

ex
p

(2
ω
d
/c
χ

c
(ω

))

Im
agin

ary
p
art

of
ex

p
(ω
d
/cN

(ω
))

Real parts

f = 3.75 GHz

f = 3.75 GHz

f = 18 GHz

f = 18 GHz exp (2ωd/cχc(ω))
exp (ωd/cN(ω))

Figure 12: The behavior of the exponentials exp
(
2ω d

c
χc(ω)

)
and exp

(
iω d

c
N(ω)

)
in the complex plane in the experimental case. The principal branch of the logarithm
generates correct values of χc(ω) and N(ω).

5 Inversion based on experimental measurements

In this section we present scattering data at normal incidence from a specific man-
made chiral slab. Data and results of inversion are presented in Figures 7–12. The
experimental setup is depicted in Figure 14.

Free-space measurements are made using a vectorial network analyzer HP 8510C
from 3.5 to 18 GHz. Elliptic reflectors are used to focus the beam on the slab, in order
to obtain a plane wave at the position of the object and to reduce the interference
effects between the measurement and the surrounding environment. To cover this
wide frequency range, we are using two kind of elliptic reflectors (one for 3.5 to
8 GHz and one from 8 to 18 GHz). The electromagnetic field is generated using
three different horn antennas (3.5–8 GHz, 8–12 GHz and 12–18 GHz). The horns
are located at the first focus of the elliptic reflectors while the sample is located at
the second one. In order to bypass the use of an anechoic protection, measurements
are performed using the time-domain option of the analyzer. After a calibration
of the device, measurements are first made in the frequency domain. The internal
Fourier-transform features of the analyzer allows one to obtain the time-domain
response. This signal is filtered in order to eliminate the multiple reflections due
to the environment. Then, an inverse Fourier transform gives the response of the
object in the frequency domain.

The sample is a square plate of size 300 × 300 mm, larger than the spot. The
thickness of the slab is d=15 mm. Reflection and transmission coefficients measure-
ments are performed. In a classic way, reference signals are obtained with a metallic
plate and no sample at the measurement platform. We are also able to measure
bistatic reflection, transmission and radiation patterns. The bench is driven by
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Figure 13: The reflectance |R(ω)|2, the transmittance |Tco(ω)|2 + |Tcross(ω)|2,
and the loss function 1− |R(ω)|2 − |Tco(ω)|2 − |Tcross(ω)|2 at normal incidence for a
man-made isotropic chiral slab in the frequency band 3.5–18 GHz.

two stepping motors that allow rotation of the receiving antennas and the sample
support (see Figure 14).

The main drawback of this measurement procedure is due to the calibration
method. Indeed, the reflection and transmission measurements are most accurate for
the amplitude of the fields, but the simple calibration does not allow good precision
on the phase measurements. The lack of precision must be related to the positioning
of the sample or the antennas; the shift in this positioning induces a shift in the
experimental phase. Consequently, the errors in the phase are greater with free
space techniques than with guided waves methods. A solution could be to improve
the calibration of the bench in order to decrease the phase measurement errors.

The sample consists of identical left-handed, one-turn helices uniformly and ran-
domly embedded in an isotropic host medium, characterized by εopt

r = 3.2 and
µopt

r = 1. The dimensions of the helices are: radius=1.65 mm, pitch=2.0 mm, wire
gauge=0.3 mm. The number of helices per unit volume is 3.1. These data have been
used to generate the synthetic data in Section 4.

Experimental scattering data is presented in Figures 7 and 8. In Figure 13, the
reflectance |R(ω)|2 and the transmittance |Tco(ω)|2 + |Tcross(ω)|2 are shown, and the
function 1− |R(ω)|2 − |Tco(ω)|2 − |Tcross(ω)|2 that represents the losses in the slab is
presented also. The result of the inversion of scattering data is shown in Figures 9
and 10. Note that the chirality parameter is very similar to the one in the numerical
example. Note also that several resonance peaks are present in the permittivity and
the permeability. Furthermore, note that the imaginary parts of the permittivity and
permeability are negative for high and for low frequencies, modeling a nondissipative
(active) medium. The properties 1 +N(ω) and 1 + Z(ω) as functions of frequency
are found in Figure 11 and the reflection coefficient for the corresponding half-space,
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R∞(ω), is depicted in Figure 7. The trace of the exponentials exp
(
2ω d

c
χc(ω)

)
and

exp
(
iω d

c
N(ω)

)
in the complex plane are shown in Figure 12.

6 Discussion

We have developed independent codes both for the direct scattering problem and
the inverse scattering problem. Applying the inverse code on synthetic scattering
data reproduces the material parameters; therefore, we expect the numerical codes
to be correct. Applying the inverse code on experimental data in the range 3.5–18
GHz shows that several resonance phenomena occur in the chiral medium. Some of
these are possible to foresee on theoretical grounds: the synthetic scattering data
presented in this paper is a result of such an attempt.

In particular, we notice that the passivity condition (2.3) is violated. This con-
dition was also violated in [25, 26]. However, Figure 13 indicates that, basically,
scattering data are sound.

Several explanations for this are possible. One is that it is difficult to obtain
reliable scattering data in these bands as explained in Section 5. Another expla-
nation is that there are physical (thermodynamical) mechanisms involved that we
have not considered or that the underlying model (2.1) is not complete and has to
be modified. The assumption that the chiral composite material is homogeneous is
also debatable as was pointed out in [26].

On the basis of the results presented in this paper and in [25, 26], the passivity
condition (2.3) seems to be too austere. Figure 13 shows that the chiral material
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generates presumably sound scattering data at normal incidence although it is not
passive according to definition (2.2). On the other hand there may be other exci-
tations — pathological or nonpathological — that generate “unsound” scattering
data. This is not a contradiction but merely reflects the definition of passivity (2.2).

Finally, we notice that the index of refraction, which is the relevant material
property at wave propagation, principally look sound (compare the results for syn-
thetic and experimental data). This is in concordance with a sentence in [3]. Plotting
the refractive indices of the RCP and LCP eigenwaves shows that these quantities
principally look sound also. For instance, their imaginary parts are positive giving
rise to solutions that are exponentially decaying in the direction of propagation.
However, the fact that the solutions are exponentially decaying is not connected to
passivity in the sense of definition (2.2).

7 Conclusion

We have been developed an alternative rigorous method for obtaining the consti-
tutive parameters of an isotropic chiral medium from scattering data at normal
incidence. Furthermore, measurements on a man-made slab have been presented
as well as reconstructions of the permittivity, the permeability, and the chirality
parameters of the medium. On the basis of the results of reconstruction, the ques-
tion whether the passivity concept (2.2) is useful has been raised. By restricting the
function space in (2.2) strongly, it can be argued that the reconstructed permittivity
and permeability, and chirality functions do not violate a condition corresponding
to (2.2). We will discuss this matter in a more general case in a forthcoming article.
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