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Abstract

The time-domain version of the optical theorem is discussed. The theorem
relates the sum of the scattered and absorbed energies, for a plane pulse that
is scattered from a bounded obstacle, to the far-field amplitude in the forward
direction. Several fundamental results concerning the scattered and absorbed
energies that follow from the theorem are discussed.

1 Introduction

The history of the optical theorem extends over more than a century, cf [8]. It is
used in all areas of physics where waves are involved and one can find derivations of
it in elementary textbooks in quantum mechanics, acoustics and electromagnetics,
cf [1], [4] and [7]. In the frequency domain the theorem gives a relation between the
sum of the scattered and absorbed powers and the far-field amplitude in the forward
direction, for a plane wave that is scattered from a bounded object. The theorem
gives a fast way to calculate the sum of the scattered and absorbed powers, but even
more important is that it can be used as a test for analytic and numerical methods.
The test is that the optical theorem and the brute force method of integrating the
power flow densities over a closed surface that circumscribes the scattering object,
should give the same value of the sum of the scattered and absorbed powers.

The time-domain version of the optical theorem is less known than its frequency-
domain counterpart. It relates the sum of the scattered and absorbed energies to
the far-field amplitude for a transient plane wave that is scattered from a bounded
object. One would think that the time-domain optical theorem is discussed in a
number of papers and books. However, only two papers were found on this matter
in the most common data bases. They are written by A. T. de Hoop, where the
first one [2] presents the electromagnetic case and the second one [3] the acoustic
case. There is a vast literature where the optical theorem is discussed and it is not
unlikely that there are other places where the time-domain theorem is analyzed.

In the papers by de Hoop the incident wave is a transient wave with semi-
infinite extent. If instead the transient wave is a pulse with finite width the theorem
exposes some fundamental relations for the scattered energy. The relations might
be regarded as curiosities but are nevertheless fundamental and quite interesting.
Some of them were presented in [5], and they are further discussed in this paper.
In addition two other relations are presented. The first one is based on the time-
domain optical theorem and reciprocity and the other one is an energy relation for
linearly polarized plane waves.

There are several connections from this paper to Staffan’s research. Thus in
subsection 3.1 scattering from several objects is discussed. This is an area to which
Staffan and his coworker Bo Peterson gave important contributions in the mid-
seventies. They developed a method to obtain the transition matrix (T-matrix) for
two or more objects if the T-matrix for each object was known, cf [9], [12] and [10]. A
similar method was developed for layered objects, cf [11], and this links to subsection
3.2. It was mentioned above that the optical theorem offers a condition that can be
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used as a test for numerical methods. In the T-matrix method this condition reads
T †T = −ReT , where T is the T-matrix and † denotes Hermite conjugate. This
condition was invaluable for all, including the author of this paper, that wrote codes
for different types of T-matrices in Staffan’s research group during the seventies
and eighties. Finally, in subsection 3.5 the connection between the optical theorem,
reciprocity and Staffan’s sailboat is established.

In appendix A a non-rigorous derivation of the time-domain optical theorem is
given. The derivation starts from the assumption that there is an extinction of the
incident field behind the scattering object and that the corresponding reduction of
the energy in the incident field equals the sum of the scattered and absorbed energies.
For more rigorous proofs the papers by de Hoop are recommended. In appendix B
it is shown that the transformation from the time-domain optical theorem to the
frequency-domain theorem can be done by the Parseval’s relation.

2 The optical theorem in time domain

Assume a bounded scattering object with volume V . The electromagnetic properties
of the object are arbitrary. The volume outside the object is denoted V ′ and for
simplicity it is assumed to be vacuum there. Hence the wave speed in the object is
less than or equal to the wave speed in V ′. The incident wave is an electromagnetic
plane wave pulse that propagates in the positive z−direction

Ei(z, t) = E0 (t− z/c0) , (2.1)

where c0 is the speed of light in vacuum. The vector Ei(z, t) lies in the xy-plane
since the wave is transverse. It is assumed that the incident pulse has finite length,
which implies that E0(t) is zero outside some time interval t0 < t < t1. The leading
edge of the pulse then arrives at z = 0 when t = t0 and the trailing edge when
t = t1. Outside the object the total field is decomposed into the incident field and
the scattered field as

E(r, t) = Ei(z, t) + Es(r, t). (2.2)

In the far zone the scattered field is a spherical wave [4]

Es(r, t) =
F (r̂, t− r/c0)

r
as r → ∞, (2.3)

where the far-field amplitude F (r̂, t−r/c0) is a transverse field moving in the radial
direction with speed c0. Causality implies that in the forward direction no signal
can arrive prior to the incident pulse and thus F (ẑ, t) = 0 for times t < t0.

The optical theorem in the time domain states that when the incident field has
passed the scattering object, the sum of the scattered and absorbed energies is
obtained from

WT = Ws(t) + Wa(t) = −4π

µ0

∫ t1

t0

E0(t
′) ·

∫ t′

t0

F (ẑ, t′′)dt′′dt′. (2.4)
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Figure 1: Scattering of a plane wave pulse from two objects. If the difference
between the shortest travel time for a trip a → b → c → d, or a → c → b → d, and
the travel time for the trip A → B is larger than the length of the pulse, i.e. t1 − t0,
then WT = WT1 +WT2 where WT1 is the sum of the scattered and absorbed energies
for object V1 with object V2 not present, and vice versa for WT2.

Here Ws(t) is the scattered energy and Wa(t) is the energy absorbed in the object.
The sum of the scattered and absorbed energies WT = Ws(t)+Wa(t) is independent
of time although each of the two terms can be time dependent. ¿From Eq. (2.4) it
is seen that the sum of the scattered and absorbed energies is determined by the
far-field amplitude in the forward direction, F (ẑ, t), during the time interval [t0, t1].

3 Implications of the theorem

In this section some fundamental results that follow from causality and the opti-
cal theorem are discussed. The results presented in subsections 3.1–3.4 have been
discussed in [5], where they also were verified numerically. Those results have no
correspondence in the frequency domain since they are based on the assumption
that the incident pulses are of finite length. The results in the two last subsections
3.5 and 3.6 have not been presented before. They are valid also in the frequency
domain since they do not relay on an assumption that the incident pulse has support
in a finite time interval.

3.1 Scattering from several objects

Let the incident field be the plane wave pulse given by Eq. (2.1), where E0(t) = 0
for t < t0 and t > t1. Consider two scattering objects with volumes V1 and V2, as
in Figure 1, that are separated in the xy-plane. The objects give rise to a scattered
field Es. The sum of the scattered and absorbed energies for the two objects is WT .
If the objects are close to each other then, in general,

WT �= WT1 + WT2, (3.1)

where WT1 is the sum of the scattered and absorbed energies from object 1 when
object 2 is not present, and vice versa for WT2. The inequality is due to multiple
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z
c0(t1 − t0)

Figure 2: A point like object is at the origin. The relation (3.2) holds if the other
object is entirely in the shaded region.

scattering. If the pulse is short enough then the inequality in Eq. 3.1 is turned into
an equality. This occurs if the length t1 − t0 of the incident pulse is shorter than the
difference between the travel time for the shortest trip a → b → c → d (or a → c →
b → d) and the travel time for the straight line A → B in Figure 1. Every multiple
scattered wave is then delayed at least a time t1− t0 compared to the incident wave.
In the time interval t0 < t < t1 the scattering amplitude F (ẑ, t) is consequently
independent of the multiple scattered waves and reads F (ẑ, t) = F 1(ẑ, t)+F 2(ẑ, t),
where F i, i = 1, 2 is the scattering amplitude from object i if only that object is
present. Thus from Eq. (2.4)

WT = WT1 + WT2. (3.2)

Notice that it is not because multiple scattering effects are small that the equality
holds. It is straightforward to generalize the relation in Eq. 3.2 to an arbitrary
number of scattering objects.

Example: Consider two scattering objects where one is point like. If the point like
object is located at the origin the other one has to be outside the two paraboloidal
surfaces defined by z = (x2 + y2 − c2

0(t1 − t0)
2)/(2c0(t1 − t0)) and z = −(x2 + y2 −

c2
0(t1 − t0)

2)/(2c0(t1 − t0)), see Fig. 2, in order for Eq. (3.2) to be valid.

3.2 Scattering from layered objects

The same arguments that were used in scattering from several objects can be used
for a layered object with an inner volume V2 and an enclosing layer V1, as in Figure
3. The incident field has finite length such that E0(t) = 0 when t < t0 and t > t1.
Assume that the layer V1 is thick enough and its wave speed is small enough to
ensure that the shortest travel time for the trip a → b → c in Figure 3 is at least a
time t1 − t0 longer than the travel time for the straight line A → B. In that case
the reflections from the inner volume give no contribution to the far-field amplitude
F (ẑ, t) for times t0 < t < t1, or phrased differently, F (ẑ, t) is independent of the
inner volume V2 for t0 < t < t1 . According to Eq. 2.4 the sum of the scattered and
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Figure 3: Scattering of a plane wave pulse from a layered object. If the difference
between the shortest travel time for a trip a → b → c and the travel time for the
trip A → B is larger than the length of the pulse, i.e. t1 − t0, then the sum of the
scattered and absorbed energies WT is independent of the inner object V2.

absorbed energies is then independent of the inner object. The conclusion is that
for a short enough incident plane wave pulse, only the outermost layer of a layered
object contributes to the sum of the scattered and absorbed energies.

3.3 Scattering of discontinuous pulses

It is very hard to numerically calculate the scattered field from bounded objects
when the incident pulse is discontinuous. The numerical methods that are avail-
able for scattering problems are limited to certain frequency bands. Thus there are
methods that can be applied for low frequencies, e.g. finite element methods, the
method of moments, the T-matrix method, or Mie scattering. For higher frequen-
cies approximate methods such as the geometrical theory of diffraction, geometrical
optics, or physical optics methods can be used. Often the frequency bands for these
methods do not overlap and this is a problem since the frequency spectrum of a
discontinuous pulse ranges from very low to very high frequencies. The frequency
bands where the scattered field is inaccurately calculated make the Fourier trans-
formation to the time domain inaccurate. Purely time-domain methods suffer from
similar problems. In this section it is shown that even though the scattered field
can not be calculated for discontinuous incident pulses, the sum of the scattered and
absorbed energies can be obtained with high accuracy.

Consider the incident pulse

Ei(z, t) = E0 (t− z/c0) , (3.3)

where E0(t) is a smooth function that is approximately zero for t < t0 and t > t1.
It is assumed that the corresponding far-field amplitude, F (r̂, t), can be accurately
calculated for any t. It is then possible to accurately calculate the integral

−4π

µ0

∫ t

t0

E0(t
′) ·

∫ t′

t0

F (ẑ, t′′)dt′′dt′ (3.4)
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for any t. Then consider an incident pulse as in Eq. (3.3) but with discontinuous
time-dependence

E1(t) =

{
E0(t) t0 < t < tm < t1

0 t > tm
(3.5)

The corresponding far-field amplitude is denoted F 1(r̂, t). The sum of the scattered
and absorbed energies for this pulse is

WT1 = Wa1(t) + Ws1(t) = −4π

µ0

∫ tm

t0

E1(t
′) ·

∫ t′

t0

F 1(ẑ, t
′′)dt′′dt′. (3.6)

Causality implies that

F 1(ẑ, t) = F (ẑ, t) t < tm, (3.7)

since the incident pulses E0(t) and E1(t) are identical for t < tm. Hence

WT1 = −4π

µ0

∫ tm

t0

E0(t
′) ·

∫ t′

t0

F (ẑ, t′′)dt′′dt′. (3.8)

Thus the sum of the scattered and absorbed energies for the discontinuous pulse
E1(t) can be obtained from the far field of the continuous pulse E0(t). Simsalabim,
the time-domain optical theorem has turned a numerical nightmare into a piece of
cake (well, at least into a simpler numerical problem).

3.3.1 Quasi-static approximation

If the pulse in Eq. (3.3) is slowly varying the scattered energy from the discontinuous
pulse in Eq. (3.5) can be obtained by a quasi-static calculation that corresponds to
a time-domain version of Rayleigh scattering. For simplicity only the case when the
scattering objects are lossless is discussed. Since the electric field changes slowly for
t < tm the electromagnetic energy absorbed in the scattering object is approximately
given by the quasi-static expression, cf. [4],

Wa1(t) =
1

2
p · Ei(0, t), t < tm, (3.9)

where it is assumed that the origin is located inside the object. The vector p is the
induced dipole moment of the object, and the absorbed energy is then equal to the
potential energy of an induced dipole p in a homogeneous electric field. The dipole
moment can be obtained by solving the boundary value problem of a dielectric object
in a static homogeneous electric field. When the incident wave is slowly varying for
t < tm, the scattered energy becomes very small and can be neglected compared to
Wa(t) for t < tm. At t = tm the incident pulse E0(t) is shut off and the absorbed
energy radiates and transforms into scattered energy. Thus the final value of the
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scattered energy from a slowly varying incident pulse with a discontinuity at t = tm
is approximately given by

Ws1 = Wa1(tm) =
1

2
p · Ei(0, tm). (3.10)

As an example it is seen that the induced dipole moment for a homogeneous
dielectric sphere with radius a in an electric field Ei(0, tm) is given by

p = 4πa3ε0
εr − 1

εr + 2
Ei(0, tm). (3.11)

The corresponding scattered energy is given by

Ws1 = 2πa3ε0
εr − 1

εr + 2
|Ei(0, tm)|2 (3.12)

An expression that can be numerically evaluated by paper and pen in a minute.

3.4 Scattering from dispersive objects

Simple linear dispersive materials are in the time domain characterized by the elec-
tric and magnetic susceptibility kernels, χe(t) and χm(t). Consider the case where
the material of the scattering object is characterized by the constitutive relations,
cf [4], 



B(r, t) = µH(r, t) + µ0

t∫
−∞

χm(t− t′)H(r, t′)dt′

D(r, t) = εE(r, t) + ε0

t∫
−∞

χe(t− t′)E(r, t′)dt′.

(3.13)

From the optical theorem it follows that the sum of the scattered and absorbed
energies only depends on χm(t) and χe(t) in the time interval 0 < t < t1 − t0.

3.5 Reciprocity

The following definition of a reciprocal medium is given in [6]:
In the time domain a medium is defined to be reciprocal at a point r in a region

V if and only if ∫∫
Sr

{(
Ea ⊗ Hb

)
(t) +

(
Ha ⊗ Eb

)
(t)

}
· n̂dS = 0 (3.14)

holds for all times t, for all electromagnetic fields {Ea,Ba} and
{
Eb,Bb

}
, and for

every closed surface Sr ⊂ V around the point r. The medium in a volume V is
reciprocal in V if and only if it is reciprocal at all points in V .
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The operator ⊗ is defined by

(
Ea ⊗ Hb

)
(t) =

∫ ∞

−∞
Ea(t− t′) × Hb(t′)dt′ (3.15)

Let the fields {Ea,Ba} be the total fields from an incident plane wave pulse traveling
in the positive z−direction, i.e.

Eia(z, t) = x̂E0 (t− z/c0) , (3.16)

and let
{
Eb,Bb

}
be the total fields when the incident plane wave pulse travels in

the negative z−direction, i.e. when

Eib(z, t) = x̂E0 (t + z/c0) . (3.17)

If the scattering object is reciprocal it follows that

x̂ · F a(ẑ, t) = x̂ · F b(−ẑ, t) (3.18)

for all times. Here F a(ẑ, t) and F b(−ẑ, t) are the far-field amplitudes in the forward
direction of the field Ea and the field Eb, respectively. The derivation of Eq. (3.18)
relies on Eq. (3.14) and causality. The sum of the scattered and absorbed energies
is given by Eq. (2.4). From Eq. (3.18) it is then seen that

W a
T =

∫ t1

t0

E0(t
′)x̂ ·

∫ t′

t0

F a(ẑ, t′′)dt′′dt′ =

∫ t1

t0

E0(t
′)x̂ ·

∫ t′

t0

F b(−ẑ, t′′)dt′′dt′ = W b
T ,

(3.19)

where W a
T and W b

T are the sum of the scattered and absorbed energies for the incident
pulses Eia and Eib, respectively. Thus the incident waves Eia(z, t) and Eib(z, t) give
the same sum of the scattered and absorbed energies. This is illustrated in Fig. 4.

3.6 Polarization

Consider a linearly polarized plane wave that is scattered from a bounded object
with linear constitutive relations. If the incident wave is polarized in the direction
(x̂ cosφ + ŷ sinφ), i.e.

Ei
1(z, t) = (x̂ cosφ + ŷ sinφ)E0 (t− z/c0) , (3.20)

the sum of the scattered and absorbed energies is denoted W (φ). It is assumed that
E0(t) has support for t0 < t < t1, where is possible to have t1 = ∞. If the incident
wave instead has a polarization perpendicular to Ei

1, e.g.

Ei
2(z, t) = ẑ × Ei

2(z, t) = (−x̂ sinφ + ŷ cosφ)E0 (t− z/c0) , (3.21)

the sum of the scattered and absorbed energies is W (φ+π/2). The optical theorem
implies that the sum W (φ) +W (φ+ π/2) is independent of the angle φ. To see this
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Staffan’s boat z

Eib

Eia

Figure 4: Launching of Staffan’s sailboat an early morning in May. Since the boat
is reciprocal the sum of the scattered and absorbed energies for the incident plane
wave Eia(z, t) equals the sum of the scattered and absorbed energies for the incident
plane wave Eib(z, t). The influence on the fields from the surroundings, including
all of the assisting graduate students, is neglected.

it is convenient to introduce a scattering matrix that relates the far-field amplitude
to the incident plane wave. In the case of an incident wave propagating in the
z−direction the far-field amplitude in the forward direction, F (ẑ, t) = x̂Fx(ẑ, t) +
ŷFy(ẑ, t), is given by(

Fx(ẑ, t)
Fy(ẑ, t)

)
=

(
Sxx(t) Sxy(t)
Syx(t) Syy(t)

)
∗

(
x̂ · Ei(z, t)
ŷ · Ei(z, t)

)
= S(t) ∗

(
x̂ · Ei(z, t)
ŷ · Ei(z, t)

)
(3.22)

where Ei = x̂Ei
x(r̂ t)+ ŷEi

y(r̂, t) is the incident field. The asterisk ∗ denotes convo-
lution in time. The scattering matrix S(t) is independent of the incident field. Its
matrix elements are non-classical functions, but if E0(t) in Eqs. (3.20) and (3.21)
is a smooth classical function then the matrix elements of [S ∗ E0](t) are smooth
classical functions. In the case of the incident wave in Eq. (3.20) it is seen that the
sum of the scattered and absorbed energies is given by

W (φ) = −µ0

4π

∫ t1

t0

E0(t
′)

∫ t′

t0

(cosφx̂ · F 1(ẑ, t
′′) + sinφŷ · F 1(ẑ, t

′′)) dt′′dt′

= −µ0

4π

∫ t1

t0

E0(t
′)

∫ t′

t0

(
[Sxx ∗ E0](t

′′) cos2 φ + [Syy ∗ E0](t
′′) sin2 φ

+[(Sxy + Syx) ∗ E0](t
′′) cosφ sinφ) dt′′dt′.

(3.23)

Thus

W (φ) + W (φ± π/2) = −µ0

4π

∫ t1

t0

E0(t
′)

∫ t′

t0

([Sxx ∗ E0](t
′′) + [Syy ∗ E0](t

′′)) dt′′dt′

(3.24)

which is a independent of the angle φ.
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Ei

ẑ

r

Es

ˆ

Figure 5: The scattering object (black region), the incident wave and the scattered
wave. The wave front of the scattered wave is the circle and the incident pulse is
between the two straight vertical lines. The shaded region is the region of extinction
of the incident field, i.e. the region that contributes to the integral in Eq. (A.4). The
figure to the right shows a case when the wave speed inside the scattering object is
larger than for the surrounding medium.

Appendix A Derivation of the theorem

Most of the techniques that are used to derive the optical theorem in the frequency
domain can be generalized to the time-domain. In [2] a derivation of the time-domain
version of the optical theorem is given in detail for the electromagnetic case. The
proof is based upon a surface integral representation of the scattered field. ¿From
the proof it is clearly seen that the theorem holds regardless of the electromagnetic
properties of the scattering object. In this appendix a simpler, but less general and
rigorous, derivation is given. In the derivation it is not assumed that the medium
surrounding the scattering object is vacuum. Thus the wave speed in the scattering
object is not restricted to be less than the wave speed of the surrounding volume.

The general expression of the sum of the electric and magnetic energies in a
volume V0 is given by

We(t) + Wm(t) =
1

2

∫
V0

ε|E(r, t)|2 + µ|H(r, t)|2dv. (A.1)

Assume that time is large enough for the incident field to have passed the object and
be in the far zone. The absorbed energy in the volume of the scattering object, V , is
the difference between the energy of the incident field, Wi, and the electromagnetic
energy in the region outside the object, i.e. V ′, at time t, thus

Wa(t) = Wi −
1

2

∫
V ′

ε|Ei(r, t) + Es(r, t)|2 + µ|H i(r, t) + Hs(r, t)|2dv

= −Ws(t) −
∫

V ′
εEi(r, t) · Es(r, t) + µH i(r, t) · Hs(r, t)dv

(A.2)

where

Ws(t) =
1

2

∫
V ′

εEs(r, t) · Es(r, t) + µHs(r, t) · Hs(r, t)dv (A.3)
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is the energy stored in the scattered field, or equivalently, the scattered energy. Thus

Ws(t) + Wa(t) = −
∫

V ′
εEi(r, t) · Es(r, t) + µH i(r, t) · Hs(r, t)dv (A.4)

In the last integral the domain of integration is reduced to the intersection of the
supports of Ei and Es, as depicted in figure 5. For the plane incident wave the

magnetic field is related to the electric field by H i =
√

ε
µ
ẑ × Ei and since the

intersection is in the far zone Hs =
√

ε
µ
r̂ × Es. Introduce cylindrical coordinates

ρ, φ, z and use the far-field expression for Es. The integral is then reduced to

Ws(t) + Wa(t) = −4πε

c(t−t0)∫
c(t−t1)

E0(t− z/c) ·
∞∫

0

ρ√
ρ2 + z2

F (ẑ, t−
√

ρ2 + z2/c)dρdz

= −4πεc

c(t−t0)∫
c(t−t1)

E0(t− z/c) ·
t−z/c∫
−∞

F (ẑ, t′′)dt′′dz.

(A.5)

Now F (t′′) is zero for t′′ < tf and then the substitution t′ = t− z/c transforms the
integral to

Ws(t) + Wa(t) = −4π

µ

∫ t1

t0

E0(t
′) ·

∫ t′

tf

F (ẑ, t′′)dt′′dt′, (A.6)

which is the optical theorem in the time-domain1. Notice that the sum Ws(t)+Wa(t)
is independent of time although each of the two terms can be time-dependent.

Appendix B Transformation to frequency domain

It is possible to transform the time-domain optical theorem to the frequency-domain
theorem, and vice versa, by Parseval’s relation. In this appendix it is shown how
the transformation from time domain to frequency domain is done.

If f(t) and g(t) are two square integrable functions with Fourier transforms f̃(ω)
and g̃(ω) then Parseval’s relation reads∫ ∞

−∞
f(t)g∗(t)dt =

∫ ∞

−∞
f̃(ω)g̃∗(ω)dω (B.1)

1There is a minor discrepancy between the formula (A.6) and the corresponding formula in [2].
In [2] the lower integration limit in the second integral in Eq. (A.6) is t0 instead of tf , which
seems to be valid only if the wave speed of the object is less than the wave speed for the medium
surrounding the object.
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where the asterisk denotes complex conjugate. Before Parseval’s relation is applied
to Eq. (2.4) it is appropriate to do an integration by parts of the right hand side of
the equation. Thus

WT =
4π

µ0

t1∫
t0


 t∫

t0

E0(t
′)dt′ −

t1∫
t0

E0(t
′)dt′


 · F (ẑ, t)dt

=
4π

µ0

∞∫
−∞


 t∫

t0

E0(t
′)dt′ −

t1∫
t0

E0(t
′)dt′


 · F (ẑ, t)dt

(B.2)

where the integration limits were set to −∞ and ∞ since the integrand is zero for
t < t0 and t > t1. A reasonable assumption is that E0(t) is square integrable. Then

if t1 is assumed to be finite one can prove that
t∫

−∞
E0(t

′)dt′ −
t1∫

−∞
E0(t

′)dt′ and F (t)

are square integrable and Parseval’s relation is applicable. The Fourier transform of
t∫

−∞
E0(t

′)dt′ −
t1∫

−∞
E0(t

′)dt′ is i/ωẼ0(ω) where

Ẽ0(ω) =

∞∫
−∞

E0(t)e
iωtdω (B.3)

is the Fourier transform of E0(t). Thus Parseval’s relation gives

WT = −
∞∫

−∞

4πi

µ0ω
Ẽ

∗
0(ω) · F̃ (ẑ, ω)dω (B.4)

where F̃ (ẑ, ω) is the Fourier transform of F (ẑ, t). The interpretation of Eq. (B.4) is

that −4πi/(µ0ω)Ẽ
∗
0(ω) · F̃ (ẑ, ω) is the energy spectrum of the sum of the scattered

and absorbed energies. To obtain the sum of the time average scattered and absorbed
powers for an incident time-harmonic wave Ei(z, ω) = E0(ω)eiωz/c0 one takes the
real part of the energy spectrum and multiplies with one half. This gives the well-
known formula for the optical theorem in the frequency domain

Ws + Wa = − 2π

µ0ω
Re

{
iẼ

∗
0(ω) · F̃ (ẑ, ω)

}
. (B.5)
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