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Abstract

The time domain version of the optical theorem is discussed. The theorem is
derived from the optical theorem in the frequency domain by the Parseval’s
relation. It expresses the sum of the scattered and absorbed energies in terms
of the scattered farfield in the forward direction. From the theorem, causality,
and reciprocity a number of results concerning the scattered and absorbed en-
ergies from a plane pulse that is scattered from bounded objects are obtained.
Some of these results are verified by numerical calculations.

1 Introduction

Consider a plane wave pulse with a length of half a nanosecond that is scattered
from the three perfectly conducting objects in figure 1. It is a very hard numerical
problem to obtain the scattered field with good accuracy since the geometry of the
objects are complicated and since the multiple scattering effects cannot be neglected.
Nevertheless, the scattered energy can be obtained within ten minutes on a 300 MHz
PC or Mac, with a simple numerical program based on Mie scattering. The key to
this numerical simplification is the optical theorem in the time domain. From that
theorem one can prove that the scattered energy for the case in figure 1 is three
times the energy that is scattered from one perfectly conducting sphere of radius
one meter.

The optical theorem in the frequency domain is well studied, cf [7]. The theorem
relates the total scattering cross section to the scattering amplitude in the forward
direction. Less attention has been paid to the time domain version of the optical
theorem, cf [2] and [5]. It relates the sum of the scattered and absorbed energies
to the farfield amplitude in the forward direction. The paper [5] presented results
that can be extracted from the time domain optical theorem. In the current paper
some of these results are reviewed and some new results concerning reciprocity and
polarization are presented. Also, new concepts such as the domain of dependence of
a scattering object, equivalent and independent scattering objects, and independent
pulses are introduced.

The incident plane wave propagates in the positive z−direction. The correspond-
ing electric field is given by

Ei(z, t) = E0(t − z/c0), (1.1)

where the vector Ei(z, t) lies in the xy-plane since the wave is transverse. It is
assumed that the incident pulse has finite length, which implies that E0(t) is zero
outside some time interval t0 < t < t1. The leading edge of the pulse then arrives at
z = 0 when t = t0 and the trailing edge when t = t1. It is possible to have t1 = ∞
if E0(t) goes to zero when t → ∞.
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Figure 1: Scattering of a plane incident pulse with length t1 − t0 < (π/3 −√
3/2)/c0 ≈ 0.6 ns from three perfectly conducting objects. The two lower objects

have cavities shaped like circular cones. The optical theorem implies that the three
objects are equivalent and independent for the incident pulse. The scattered energy
is then equal to 3Wsphere, where Wsphere is the scattered energy for the uppermost
sphere with the other two objects not present.

2 The scattered field

The scattered field from an incident plane pulse can be expressed in terms of the
induced charge and current densities in the scattering region by the Jefimenko’s
equation, cf [4]. Thus

Es(r, t) =
1

4πε0

∫
V

(
ρ(r′, tr)

|r − r′|2 r̂u +
ρ̇(r′, tr)

c0|r − r′| r̂u −
J̇(r′, tr)

c2
0|r − r′|

)
dv′, (2.1)

where r̂u = (r − r′)/|r − r′|,

tr = t − |r − r′|
c0

(2.2)

is the retarded time, and where the dot denotes time derivative. The far zone is
defined as the region where the scattered field can be approximated by

Es(r, t) =
F (r̂, t − r/c0)

r
, (2.3)

where F is the farfield amplitude and r = |r|. The continuity equation implies that

ρ̇(r, tr) = −∇′ · J(r′, tr) + ∇′tr · J̇(r′, tr) = −∇′ · J(r′, tr) +
1

c0

r̂u · J̇(r′, tr) (2.4)
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Figure 2: Two spheres that are equivalent for an incident pulse of length less than
6 ns. The permittivity in the shaded regions is εr = 16 and everywhere else there is
vacuum.

where ∇′ = (d/dx′, d/dy′, d/dz′). From Jefimenko’s equation, the continuity equa-
tion, and Gauss law it is seen that

F (r̂, t − r/c0) = −µ0

4π

∫
V

J̇(r′, tr) − r̂
(
J̇(r′, tr) · r̂

)
dv′. (2.5)

When the scattered farfield amplitude is integrated in time one obtains

∞∫

−∞

F (r̂, t − r/c0)dt = 0, (2.6)

where it has been assumed that there are no currents in the object before, and after
a long time after, the pulse impinges. Thus the following general result holds for
the farfield amplitude:

The time mean value of the farfield amplitude is zero, in all spatial directions,
regardless of the time-dependence of the incident plane wave.

This result is utilized in the definition of independent incident pulses below.

3 The optical theorem

The optical theorem can be derived in the frequency domain, cf [7], [1], and [3],
and in the time domain, cf [2] and [5]. It is also possible to use the Parseval’s
relation to transform the theorem from the time domain to the frequency domain,
and vice versa. In this section the frequency domain theorem is presented and the
time domain version is derived from it by the Parseval’s relation.
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3.1 The optical theorem in the frequency domain

Let Ẽ0(ω) and F̃ (r̂, ω) be the Fourier transforms of the incident field and the farfield,
respectively. Thus

Ẽ0(ω) =

∫ ∞

−∞
E0(t)e

iωtdt

F̃ (r̂, ω) =

∫ ∞

−∞
F (r̂, t)eiωtdt.

(3.1)

The sum of the scattered power, Ps, and the absorbed power, Pa, is given by

P (ω) = Ps(ω) + Pa(ω) =
1

2
Re {s(ω)} (3.2)

where s(ω) is the sum of the scattered and absorbed complex powers. The frequency
domain optical theorem implies that

s(ω) = − 4π

kη0

iẼ0
∗
(ω) · F̃ (ẑ, ω), (3.3)

where k is the wavenumber, η0 is the wave impedance in vacuum, and where the
asterisk denotes complex conjugate. Thus it is sufficient to know the farfield am-
plitude in the forward direction to obtain the sum of the scattered and absorbed
powers.

3.2 The optical theorem in the time domain

In the time domain the scattered energy is given by

Ws =
1

η0

∞∫

−∞

∫∫
|F (r̂, t′)|2dΩdt′ (3.4)

where dΩ = sin θdθdφ and where the surface integration is over the unit sphere. The
absorbed energy is given by

Wa = −
∞∫

−∞

∫∫

S

(E(r, t′) × H(r, t′)) · n̂dSdt′ (3.5)

where the surface S is a closed surface that circumscribes the scattering objects, n̂
is the outward directed unit normal vector to that surface, and E, H are the total
electric and magnetic fields.

Let f(t) and g(t) be two square integrable functions with Fourier transforms
f̃(ω) and g̃(ω). The Parseval’s relation then reads

∫ ∞

−∞
f(t)g∗(t)dt =

1

2π

∫ ∞

−∞
f̃(ω)g̃∗(ω)dω, (3.6)
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Since s(ω) is the spectrum of the sum of the scattered and the absorbed powers, it
is seen that the sum of the scattered energy, Ws, and absorbed energy, Wa, is given
by

W = Ws + Wa =
1

2π

∫ ∞

−∞
s(ω)dω = − 2

µ0

∫ ∞

−∞
Ẽ

∗
0(ω) · i

ω
F̃ (ẑ, ω)dω. (3.7)

The Parseval’s relation is applicable and gives

W = Ws + Wa = −4π

µ0

∫ t1

t0

E0(t
′) ·

∫ t′

t0

F (ẑ, t′′)dt′′dt′. (3.8)

This is the time domain version of the optical theorem. Many of the results presented
in this paper are derived from the following observation:

The sum of the scattered and absorbed energies is uniquely determined by the
farfield amplitude in the forward direction during the time interval [t0, t1].

4 Implications

There are a number of fundamental results that can be derived from the time domain
version of the optical theorem. Some of these were presented in [5] and they are
here complemented by new results

4.1 Scattering from several objects

Consider a case where an incident plane pulse of length t1 − t0 is scattered from
a region with N objects. The objects are defined as energy independent for that
incident pulse if

W =
N∑

i=1

Wi, (4.1)

where Wi is the sum of the scattered and absorbed energies for object i with the
other objects not present. This is the case if the multiply scattered waves are delayed
at least a time t1 − t0 relative the wavefront of the incident field. An example of
scattering from independent objects is depicted in figure 1. In that case the total
scattered energy is the sum of the three energies for each of the three objects with
the other two not present.

4.2 Domain of dependence and equivalent objects

The part of a scattering object that for a given pulse can contribute to the sum of the
scattered and absorbed energies defines the domain of dependence for the energy for
that pulse. For a non-dispersive scattering object the domain is given by all points for
which the shortest travel time for any ray that passes through that point is delayed
less than the length of the incident pulse, i.e. less than t1− t0, compared to the wave
front of the incident field. Two objects that have identical domain of dependence are
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Figure 3: The integral in Eq. (5.1) as a function of the time tc for the spheres in
figure 2. The incident wave is given in figure 4.

equivalent in the sense that they have the same sum of the scattered and absorbed
energies. As an example the three perfectly conducting objects in figure 1 are
equivalent for an incident pulse with pulse length t1 − t0 < (π/3 −

√
3/2)/c0 ≈ 0.6

ns.

5 Geometry and incident wave

A plane wave impinges on a bounded region where one or more scattering objects
are situated, cf figure 1. Outside the scattering region it is assumed to be vacuum.

Figure 2 shows two objects that are equivalent for the incident pulse in figure
4. The permittivity in the shaded regions is εr = 16, and everywhere else there is
vacuum. The equivalence is checked numerically in figure 3 where the integral

−4π

µ0

∫ tc

t0

E0(t
′) ·

∫ t′

t0

F (ẑ, t′′)dt′′dt′ (5.1)

is given as function of tc for each of the two objects when the incident pulse given
in figure 4 impinges. When tc > t1 ≈ 8 ns the values of the integrals are seen to be
constant. According to Eq. (3.8) the values of the integrals are then equal to the
scattered energy. The farfield amplitude for the two objects is given in figure 5. It is
seen that the farfield amplitudes for the two objects deviate after the incident pulse
has passed but the scattered energies are the same.
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Figure 4: The function E0(t) = (T − t)/t0 exp(−(t − T )2/t20), where T = 5 ns
and t0 = 1 ns, as a function of t. The corresponding incident wave Ei(z, t) =
x̂E0(t − z/c0) is used for the figures 3 and 5.

5.1 Independent pulses

Assume an incident field that consists of two pulses as

Ei(z, t) = E1(t − z/c0) + E2(t − z/c0). (5.2)

The field is scattered from one or several objects and gives rise to a farfield amplitude
F 1(r̂, t) + F 2(r̂, t). The pulses are defined as energy independent if

W = W1 + W2. (5.3)

Here W1 is the sum of the scattered and absorbed energies if only the first pulse is
present and W2 is the sum of the scattered and absorbed energies if only the second
pulse is present.

If the first pulse, E1(t − z/c0), has support in the interval t0 < t < t1 and the
second pulse, E2(t − z/c0), has support in the interval t2 < t < t3, where t2 > t1,
then a sufficient condition for the pulses to be energy independent is that the farfield
amplitude in the forward direction of the first pulse has died out before the second
pulse arrives. In that case causality ensures that

W = −4π

µ0

∫ t1

t0

E1(t
′) ·

∫ t′

t0

F 1(ẑ, t′′)dt′′dt′

− 4π

µ0

∫ t3

t2

E2(t
′) ·

∫ t′

t2

F 2(ẑ, t′′)dt′′dt′ − 4π

µ0

∫ t3

t2

E2(t
′)dt′ ·

∫ tp

t0

F 1(ẑ, t′)dt′,

(5.4)
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Figure 5: The farfield amplitudes in the forward direction, F (ẑ, t) = x̂ · F (ẑ, t),
for the two spheres given in figure 2 and with the incident pulse in figure 4

where tp < t2 is the time after which F 1(ẑ, t) is approximately zero. The last integral
is zero due to Eq. (2.6) and thus

W = −4π

µ0

∫ t1

t0

E1(t
′) ·

∫ t′

t0

F 1(ẑ, t′′)dt′′dt′

− 4π

µ0

∫ t3

t2

E2(t
′) ·

∫ t′

t2

F 2(ẑ, t′′)dt′′dt′ = W1 + W2.

(5.5)

There are of course cases when two pulses are independent even if the farfield am-
plitude of one incident field overlaps with the other incident field. A simple example
is two linearly polarized incident waves with polarization along x̂ and ŷ, respec-
tively, that impinges on an object that is symmetric with respect to the xz− and
yz−planes.

5.2 Scattering of a discontinuous pulse.

A case when the optical theorem is invaluable to the calculation of the scattered
energy is when the incident pulse has a discontinuity at the trailing edge. Assume
that one can calculate the scattered farfield F (ẑ, t) from a pulse

Ei(z, t) = x̂E0(t − z/c0), (5.6)
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where E0(t) is a continuous function with support for t0 < t < t1. Then consider
the discontinuous incident pulse Ei

disc(z, t) = x̂Edisc(t − z/c0), where

Edisc(t) =

{
E0(t) t < tc < t1

0 t ≥ tc
, (5.7)

that gives rise to the farfield amplitude F disc(ẑ, t). Causality ensures that for times
t < tc the farfield F (ẑ, t) is identical to the farfield F disc(ẑ, t). Thus the sum of the
scattered and absorbed energies for the discontinuous pulse Ei

disc(z, t) is obtained
from the scattered farfield F (ẑ, t).

The procedure to calculate the sum of the scattered and absorbed energies for
the discontinuous incident wave Ei

disc is as follows. First calculate the scattered
farfield amplitude F (ẑ, t) for the continuous incident wave Ei. Calculate the inte-
gral in Eq. (3.7) with F (ẑ, t) as the farfield amplitude and Ei

disc as incident field.
The obtained value is the sum of the scattered and absorbed energies for the discon-
tinuous incident wave. As an example, consider scattering from one of the objects
in figure 2. Let the incident field be discontinuous at t = tc = 6 ns such that it is
equal to the field in figure 4 for t < 6 ns and zero for t ≥ 6 ns. The scattered energy
for the discontinuous pulse is then given by figure 3 as the value for t = tc = 6 ns,
i.e. approximately 9.5 · 10−12 Nm.

5.3 Reciprocity

The following definition of a reciprocal medium is given in [6]:
In the time domain a medium is defined to be reciprocal at a point r in a region

V if and only if ∫∫
Sr

{(
Ea ⊗ Hb

)
(t) +

(
Ha ⊗ Eb

)
(t)

}
· n̂dS = 0 (5.8)

holds for all times t, for all electromagnetic fields {Ea, Ba} and
{
Eb, Bb

}
, and for

every closed surface Sr ⊂ V around the point r. The medium in a volume V is
reciprocal in V if and only if it is reciprocal at all points in V .

Here H is the magnetic field and B is the magnetic flux density. The operator
⊗ is defined by

(
Ea ⊗ Hb

)
(t) =

∫ ∞

−∞
Ea(t − t′) × Hb(t′)dt′. (5.9)

Let the fields {Ea, Ba} be the total fields from an incident plane wave pulse, trav-
eling in the positive z−direction, e.g.

Eia(z, t) = x̂E0 (t − z/c0) , (5.10)

and let
{
Eb, Bb

}
be the total fields when the incident plane wave pulse travels in

the negative z−direction, i.e. when

Eib(z, t) = x̂E0 (t + z/c0) . (5.11)
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If the scattering object is reciprocal it follows that

x̂ · F a(ẑ, t) = x̂ · F b(−ẑ, t) (5.12)

for all times. Here F a(ẑ, t) and F b(−ẑ, t) are the farfield amplitudes in the forward
direction of the field Ea and the field Eb, respectively. The derivation of Eq. (5.12)
is given in the appendix. The sum of the scattered and absorbed energies is given
by Eq. (3.8). From Eq. (5.12) it is then seen that

W a = −4π

µ0

∫ t1

t0

E0(t
′)x̂ ·

∫ t′

t0

F a(ẑ, t′′)dt′′dt′

= −4π

µ0

∫ t1

t0

E0(t
′)x̂ ·

∫ t′

t0

F b(−ẑ, t′′)dt′′dt′ = W b,

(5.13)

where W a and W b are the sum of the scattered and absorbed energies for the incident
pulses Eia and Eib, respectively. Thus the incident waves Eia(z, t) and Eib(z, t) give
the same sum of the scattered and absorbed energies. This is illustrated in figure 6.

5.4 Polarization

Consider a linearly polarized plane wave that is scattered from an object that is
bounded in space and is made of linear materials. If the incident wave is polarized
in the direction (x̂ cos φ + ŷ sin φ), i.e.

Ei
1(z, t) = (x̂ cos φ + ŷ sin φ)E0 (t − z/c0) , (5.14)

the sum of the scattered and absorbed energies is denoted W (φ). Notice that
W (φ) = W (π + φ) since the object’s material is linear. It is assumed that E0(t) has
support for t0 < t < t1, where it is possible to have t1 = ∞. The optical theorem
implies that if W (φ) is known for 0 ≤ φ ≤ π/2 then W (φ) is known for all φ. To
see this, consider the incident wave with a polarization perpendicular to Ei

1, i.e.

Ei
2(z, t) = ẑ × Ei

1(z, t) = (−x̂ sin φ + ŷ cos φ)E0 (t − z/c0) . (5.15)

The sum of the scattered and absorbed energies for this wave is W (φ + π/2). Then
introduce a scattering matrix that relates the farfield amplitude to the incident plane
wave. In the case of an incident wave propagating in the z−direction the farfield
amplitude in the forward direction, F (ẑ, t) = x̂Fx(ẑ, t) + ŷFy(ẑ, t), is given by

(
Fx(ẑ, t)
Fy(ẑ, t)

)
=

(
Sxx(t) Sxy(t)
Syx(t) Syy(t)

)
∗

(
x̂ · Ei(0, t)
ŷ · Ei(0, t)

)
= S(t) ∗

(
x̂ · Ei(0, t)
ŷ · Ei(0, t)

)
, (5.16)

where Ei(z, t) = x̂Ei
x(z, t) + ŷEi

y(z, t) is the incident field. The asterisk ∗ denotes
convolution in time. The scattering matrix S(t) is the impulse response and is
independent of the incident field. In the case of the incident wave in Eq. (5.14) it is
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a) b)

Figure 6: Due to reciprocity the sum of the absorbed and scattered energies are
the same in a) and b). The scattering object is reciprocal but otherwise arbitrary.

seen that the sum of the scattered and absorbed energies is given by

W (φ) = −µ0

4π

∫ t1

t0

E0(t
′)

∫ t′

t0

(cos φx̂ · F 1(ẑ, t′′) + sin φŷ · F 1(ẑ, t′′)) dt′′dt′

= −µ0

4π

∫ t1

t0

E0(t
′)

∫ t′

t0

(
[Sxx ∗ E0](t

′′) cos2 φ + [Syy ∗ E0](t
′′) sin2 φ

+[(Sxy + Syx) ∗ E0](t
′′) cos φ sin φ) dt′′dt′.

(5.17)

Thus

W (φ) + W (φ ± π/2) = −µ0

4π

∫ t1

t0

E0(t
′)

∫ t′

t0

([Sxx ∗ E0](t
′′) + [Syy ∗ E0](t

′′)) dt′′dt′,

(5.18)
which is independent of the angle φ. It follows that if W (φ) is known for 0 ≤ φ ≤ π/2
it is known for all φ.

6 Conclusions

A number of time domain results concerning the scattered and absorbed energies for
an incident plane pulse can be derived from the time domain optical theorem. In that
sense it contains more physics than its frequency domain counterpart. In the paper
the concepts of independent scattering objects and equivalent objects are introduced,
and it is shown that these concepts are valuable to the calculation of scattered
energies. Thus, for a group of independent scattering objects one may ignore the
multiple scattering in the calculation of the scattered energy. Furthermore, the
scattered energy from a complicated scattering object can be obtained from the
scattered farfield amplitude from a simpler equivalent object. In a current project
it is examined if the optical theorem in combination with the finite difference time
domain method can be used to calculate the scattered energy in an efficient way.
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Appendix A A reciprocity theorem

Consider a scattering object made of a reciprocal material. In that case the equation
(5.8) holds for all times t, for all electromagnetic fields {Ea, Ba} and

{
Eb, Bb

}
, and

for every closed surface Sr ⊂ V around the point r
Let the two fields Ea(r, t), Ha(r, t) and Eb(r, t), Hb(r, t) be the total electric

and magnetic fields from the two incident fields

Eia(z, t) = x̂E0 (t − z/c0) , H ia(z, t) =
1

η0

ŷE0 (t − z/c0)

Eib(z, t) = x̂E0 (t + z/c0) , H ib(z, t) = − 1

η0

ŷE0 (t + z/c0)
(A.1)

Here E0(t) is zero except for a finite time interval that for simplicity is chosen to
be 0 < t < t1 and the origin is located inside the scattering object. The scattered
electric and magnetic fields are in the far zone given by

Esa(r, t) =
F a(r̂, t − r/c0)

r
, Hsa(r, t) =

1

η0

r̂ × F a(r̂, t − r/c0)

r

Esb(r, t) =
F b(r̂, t − r/c0)

r
, Hsb(r, t) =

1

η0

r̂ × F b(r̂, t − r/c0)

r

(A.2)

Since the scattered field has finite energy the farfield amplitudes have to go to zero
when t − r/c0 gets large. Thus F a(r̂, t) and F b(r̂, t) are zero for t < 0, due to
causality, and negligible for t > T , for some T . Consider the surface S to be a
sphere, denoted SR, with radius R and with center at the origin. The radius R is
large enough so that the surface of the sphere is in the far zone. The identity (5.8)
implies∫∫

SR

{(
Ea ⊗ Hb

)
(t) +

(
Ha ⊗ Eb

)
(t)

}
· r̂dS = I1 + I2 + I3 = 0 (A.3)

where

I1 =

∫∫

SR

{(
Eia ⊗ H ib

)
(t) +

(
H ia ⊗ Eib

)
(t)

}
· r̂dS

I2 =

∫∫

SR

{(
Eia ⊗ Hsb

)
(t) +

(
H ia ⊗ Esb

)
(t)

+
(
Esa ⊗ H ib

)
(t) +

(
Hsa ⊗ Eib

)
(t)

}
· r̂dS

I3 =

∫∫

SR

{(
Esa ⊗ Hsb

)
(t) +

(
Hsa ⊗ Esb

)
(t)

}
· r̂dS

(A.4)

It is first proven that I1 = I3 = 0. Do the substitution θ′ = π − θ and φ′ = 2π − φ
in the surface integral of I1. After some manipulations it follows that

I1 = −
∫∫

SR

{(
Eia ⊗ H ib

)
(t) +

(
H ia ⊗ Eib

)
(t)

}
· r̂dS = −I1 (A.5)
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and hence I1 = 0. To see that I3 = 0 one observes that on the surface SR

Esa ⊗ Hsb =
1

η0R2
F a ⊗ (r̂ × F b) =

1

η0R2
r̂

(
F a � F b

)

Hsa ⊗ Esb =
1

η0R2
(r̂ × F a) ⊗ F b = − 1

η0R2
r̂

(
F a � F b

) (A.6)

where � denotes the convolution of a scalar product, cf Eq. (5.9). It follows that
I3 = 0. The remaining integral I2 is given by

I2(t) =
1

η0R

∫∫

SR

(x̂ × (r̂ × (K1(r̂, z, t) − K2(r̂, z, t)))

+ŷ × (K1(r̂, z, t) + K2(r̂, z, t))) · r̂dS

(A.7)

where

K1(r̂, z, t) =

∞∫

−∞

F b(r̂, t′ − R/c0)E0(t − t′ − z/c0)dt′

K2(r̂, z, t) =

∞∫

−∞

F a(r̂, t′ − R/c0)E0(t − t′ + z/c0)dt′

(A.8)

Since F (r̂, t) is approximately zero for all times except 0 < t < T , the integrals
reduce to

K1(r̂, z, t) =

T∫

0

F b(r̂, t′)E0(t − t′ − R/c0 − z/c0)dt′

K2(r̂, z, t) =

T∫

0

F a(r̂, t′)E0(t − t′ − R/c0 + z/c0)dt′

(A.9)

Now E0(t) is zero except when 0 < t < t1. Consider the time interval 0 < t < T and
choose the radius of the sphere large enough to satisfy R 
 c0T . In that case the
integrand in K1(r̂, z, t) is non-zero only for r̂ = −ẑ and −R < z < −R + c0T and
the integrand in K2(r̂, z, t) is non-zero only for r̂ = ẑ and R − c0T < z < R. After
a substitution θ′ = π− θ in the part of I2(t) that contains K1(r̂, z, t) it follows that
for sufficiently small T/R the integral I2(t) is given by

I2(t) =
2π

R

T∫

0

R∫

R−c0T

E0(t − t′ − (R − z)/c0)
(
ẑ · (ŷ ×

(
F a(ẑ, t′) − F b(−ẑ, t′)

)

−x̂ ·
(
F a(ẑ, t′) − F b(−ẑ, t′)

))
dzdt′

=
4π

R

T∫

0

R∫

R−c0T

E0(t − t′ − (R − z)/c0)x̂ ·
(
F b(ẑ, t′) − F a(−ẑ, t′)

)
dzdt′

(A.10)
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Since I1(t) = I3(t) = 0 it follows that I2(t) = 0 for all times, and in particular for
0 < t < T . From Eq. (A.10) it follows that this can only be fulfilled if

x̂ · F a(ẑ, t) = x̂ · F b(−ẑ, t) (A.11)

for all times t.
In addition to the result in Eq. (A.11) there is a reciprocity result also for the

case when the incident fields are given by

Eia(z, t) = x̂E0 (t − z/c0) , H ia(z, t) =
1

η0

ŷE0 (t − z/c0)

Eib(z, t) = ŷE0 (t + z/c0) , H ib(z, t) =
1

η0

x̂E0 (t + z/c0)
(A.12)

In that case it is straightforward to see that I1 = I3 = 0 and that

I2(t) =
2π

R
i

T∫

0

R∫

R−c0T

E0(t − t′ − (R − z)/c0)
(
ẑ · (F a(ẑ, t′) × x̂ − ŷ × F b(−ẑ, t′)

)

−
(
ŷ · F a(ẑ, t′) − x̂ · F b(−ẑ, t′))

)
dzdt′

=
4π

R

T∫

0

R∫

R−c0T

E0(t − t′ − (R − z)/c0)
(
x̂ · F b(−ẑ, t′) − ŷ · F a(ẑ, t′)

)
dzdt′

(A.13)

Since I2(t) = 0 for all times it follows that for all times

ŷ · F a(ẑ, t) = x̂ · F b(−ẑ, t) (A.14)
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