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Abstract

The instantaneous response models the rapid part of the interaction between
electromagnetic fields and materials. From a physical point of view the in-
stantaneous response is non-observable and from a mathematical point of view
it constitutes the principal part of the Maxwell equations. In this paper, it
is shown that the instantaneous response is not uniquely determined from a
given set of values of the constitutive map. The given values only give an
upper bound on the size of the instantaneous response. A numerical example
illustrates the non-uniqueness of the instantaneous response.

1 Introduction

Electromagnetic interaction with material is diverse. It ranges from the linear,
isotropic, and non-dispersive interaction with diluted gases to the highly nonlinear
behavior of iron. The material interacts with the electromagnetic field through
the dynamics of the microscopic charges of the material, i.e., the charges of the
atoms and the molecules. At a macroscopic level, the electromagnetic interaction
with material is modeled by constitutive relations. The constitutive relations are
based on a continuum model of the material, i.e., the interaction at a microscopic
level is replaced by a set of effective material parameters [9, 20, 25]. The spatial
distribution of the microscopic charges and the dynamics of the microscopic charges
offer phenomena such as direction dependence and memory effects of the constitutive
relations [9, 20, 21].

The mathematical models of the interaction have been thoroughly investigated,
see e.g., Refs. 5,8,14,20,23,25,27,33 for a general discussion about electromagnetic
modeling. In [9, 28], the connection between the microscopic Maxwell equations and
the macroscopic Maxwell equations is analyzed, see also [22]. General time-domain
constitutive relations are given in [21], see also [15]. Optical and magnetic properties
are e.g., discussed in [6] and [7], respectively. An analysis of the interaction between
electromagnetic and elastodynamic properties is given in [11, 12].

The constitutive relations of a material are determined either from direct mea-
surements or from a priori knowledge of the microscopic structure of the material. In
general, this offers an accurate description of the interaction in a specific frequency
and amplitude range. The set of constitutive relations can be used for an electro-
magnetic application as long as the fields of the application are restricted to the
same frequency and amplitude range. In time-domain formulations, e.g., FDTD, it
is necessary to extend the definition of the constitutive relations to all frequencies.
The constitutive relations can be extended outside their range of validity as long as
the solubility of the Maxwell equations is not affected, see also Figure 2.

The instantaneous (or high-frequency or optical) response models the rapid part
of the interaction between electromagnetic fields and materials. It is given by the
high-frequency asymptote of the Laplace-domain constitutive map or equivalently as
the small time approximation of the time-domain constitutive map. From a math-
ematical as well as a computational point of view, the instantaneous response is of
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considerable importance. Together with the curl operators it constitutes the prin-
cipal part of the Maxwell equations and hence controls much of the mathematical
properties of the solution, e.g., existence, uniqueness, and continuity [13, 24]. The
instantaneous response is also of considerable importance in numerical approxima-
tions, e.g., in stability conditions of finite difference schemes (FDTD) [31, 32], see
also [30], where computational errors due to an erroneous instantaneous response
for pulse propagation in a dispersive slab is analyzed. Due to the theoretical as well
as the practical importance of the instantaneous response, it is vital to study the
uniqueness of the instantaneous response, i.e., how the instantaneous response is
determined by the values of the constitutive map.

In this paper, a set of constitutive relations is constructed to show that the
instantaneous response is non-unique. Moreover, Nevanlinna-Pick theory [1, 10] is
used to show that given values of the constitutive relations only give an upper bound
on the size of the instantaneous response [30].

To start, it is conjecture that the instantaneous response is undetermined from a
physical point of view, i.e., it is not possible to measure the instantaneous response
of the material. The non-observability of the instantaneous response follows from the
break down of the macroscopic Maxwell equations for sufficiently high frequencies,
i.e., the continuum model of a material is only accurate up to a specific frequency,
typically somewhere between visual light and X-rays [20]. Above this frequency the
macroscopic Maxwell equations do not give an accurate description of electromag-
netic phenomena. At a microscopic level, the electromagnetic interaction is much
more accurately modeled with theories such as quantum electrodynamics [34]. It
is hence necessary to define the instantaneous response by extrapolation from the
range of validity of the constitutive relations. However, physical arguments can be
used to argue that the instantaneous response approach its vacuum value for very
high frequencies [25]. Moreover, the special theory of relativity states that the speed
of electromagnetic waves in any medium cannot exceed the vacuum speed [20]. This
predicts that it should always be possible to let the instantaneous response reduce
to the vacuum value.

In typical engineering applications of electromagnetics the instantaneous re-
sponse is not restricted to the material properties at very high frequencies. The
instantaneous response is instead determined by extrapolation from the values of
the constitutive relations in the frequency band of the application, see also Figure 1.

It is well known that the constitutive map is analytic [2] and it is also well
known that an analytic function is determined from its values in a neighborhood
of a point [2, 17]. Hence, in principle, the instantaneous response is determined
from the low-frequency values of the constitutive map. However, this analytical
continuation is ill-posed, i.e., small errors of the constitutive map can give large
errors of the instantaneous response.

The outline of this paper is as follows. In Section 2, the Maxwell equations, the
notation, and some basic properties of the constitutive map are introduced. The
extension of the constitutive map to the time domain from the frequency domain
is discussed in Section 3. An explicit construction to show the non-uniqueness of
the instantaneous response is given in Section 4. Nevanlinna-Pick theory is used
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in Section 5 to give an upper bound on the size of the instantaneous response.
In Section 6, a numerical example is used to illustrate the non-uniqueness of the
instantaneous response. In Section 7 some conclusions are given.

2 The Maxwell equations and constitutive rela-

tions

The electromagnetic phenomena are described by the electric and magnetic fields,
i.e., the electric field intensity E, the magnetic field intensity H , the electric flux
density D, and the magnetic flux density B. The electromagnetic fields originate
from the (electric) current density J and the charge density �. In many problems
it is convenient to include a magnetic current [4]. The electromagnetic fields are
related through the Maxwell equations. The constitutive relations in this paper are
general bi-anisotropic. For the analysis of wave propagation in these materials it is
natural to use a six-vector formalism [19, 26]. The field intensities, flux densities,
and current densities are

e =

(
ε
1/2
0 E

µ
1/2
0 H

)
, d =

(
ε
−1/2
0 D

µ
−1/2
0 B

)
and j =

(
µ

1/2
0 J
0

)
, (2.1)

respectively. Observe that the electromagnetic fields in (2.1) are scaled by the
free-space permittivity, ε0, and the free-space permeability, µ0, such that the field
intensities and flux densities have the unit (Energy/Volume)1/2. With this notation,
the Maxwell equations are written

∂td −∇× Je = −j where J =

(
0 1
−1 0

)
. (2.2)

The geometrical and the field structure of the (combined) field intensity are distin-
guished by the use of vector notation, e.g., the scalar product E· and the vector
product E×, for the geometrical part and matrix notation, e.g., the transpose eT

and the hermit transpose eH, for the field part. As an example, the squared absolute
value of the field intensity is

|e|2 = eH · e =
(
ε
1/2
0 E∗ µ

1/2
0 H∗

)
·
(

ε
1/2
0 E

µ
1/2
0 H

)

= ε0E
∗ · E + µ0H

∗ · H = ε0|E|2 + µ0|H|2,
(2.3)

where ∗ denotes the complex conjugate, see Ref. [19] for details about this notation.
The Laplace domain is frequently used in the analysis. The Laplace transformed

wave-field quantities are denoted with a hat, i.e.,

ê(x, s) =

∫ ∞

0−
e−ste(x, t) dt, and e(x, t) =

1

2π

∫ ∞

−∞
e(η+iω)tê(x, η + iω) dω. (2.4)
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where the Laplace transform parameter s is restricted to a right half plane defined by
s = η+iω with η ≥ 0. Before we can transform the Maxwell equations to the Laplace
domain, the history (e(x, t) for t < 0) of the field has to be removed. The history
part of is reinterpreted and included as a current term in the Maxwell equations. The
assumptions for a linear dispersion law are: causal, spatially pointwise, continuous,
linear, and time invariant [8, 11, 12, 21]. A map e → d satisfying the requirements
above has a representation in the form of a temporal convolution. In the Laplace
domain, the convolution corresponds to the well-known matrix representation

d̂(x, s) = ε(x, s)ê(x, s), (2.5)

where ε is a 2×2 matrix with complex-valued dyadic entries. Causality is guaranteed
by the requirement that the elements of ε(x, s) are analytic functions of s for Re s >
η0 for some η0 > −∞. Furthermore, the matrix elements are real-valued if the
Laplace parameter is real valued. The Maxwell equations are written

sε(x, s)ê −∇× Jê = −̂(x, s) (2.6)

in the Laplace domain.
A material is passive if the material does not produce energy. From the Poynting

theorem [8, 14, 20, 25], we get the following sufficient condition for passivity. The
constitutive map ε is passive if [19]

Re sε(x, s) ≥ 0 for s ∈ C+ = {s = η + iω : η > 0, ω ∈ R}. (2.7)

This inequality is a shorthand notation for a non-negative definite symmetric part
of the constitutive map, i.e., Re{uH ·sε(x, s)u} ≥ 0 for all u ∈ C

3×C
3 and s ∈ C+.

Passivity (2.7) enters as a natural restriction for most materials, i.e., given values
of the constitutive map are assumed to satisfy (2.7). In the problem to extend the
definition of the constitutive map to the time domain, the passivity (2.7) enters as a
stability requirement. The passivity ensures that the time-domain solution does not
grow too fast as time evolves, i.e., errors that are introduced by the extrapolation
of the constitutive map remains sufficiently small.

The constitutive relations are decomposed into an instantaneously reacting part
and a non-instantaneous part. The instantaneous (or optical, or high frequency)
response models the rapid part of the interaction between the electromagnetic fields
and the material. In the Laplace-domain, the instantaneous response corresponds
to the high frequency behavior, i.e.,

ε(x, s) = ε∞(x) + O(s−1) as C+ � s → ∞. (2.8)

Observe that the passivity implies that the instantaneous response is symmetric
positive semidefinite, i.e., Im ε∞ = 0 and ε∞ ≥ 0, see Refs 15, 19. Here, Im ε∞ = 0
is a shorthand notation for Im{uH · ε∞u} = 0 for all u ∈ C

3 × C
3. To ensure a

well-posed form of the Maxwell equations, the instantaneous response is assumed to
be symmetric positive definite, i.e.,

Im ε∞ = 0 and ε∞ ≥ εinf > 0 (2.9)
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ω
ωmax ωmeas ωcont

ε∞

0

Measured values
Mathematical model

Re ε(iω)

Im ε(iω)
ωmin

Region of interest

Figure 1: Illustration of the range of validity of the constitutive relations. The
measured values of the constitutive map ε are given up to frequency ωmeas, the
mathematical model is used for frequencies in the interval [ωmin, ωmax], and ωcont is
the upper limit for the use of a continuum model of the medium, respectively.

for some positive constant εinf .
The passivity is used in the convergence proof of the approximate constitutive

relations in Section 4.2. The estimates are based on the following inequality. Let
ε(s) be a passive constitutive map with the hermitian instantaneous response ε∞,
i.e., (2.7), (2.8), and (2.9). Then the symmetric part of sε is bounded from below
by the symmetric part of sε∞, i.e.,

Re{sε(s)} ≥ ε∞ Re s for all s ∈ C+ (2.10)

or equivalently Re{uH · sε(s)u} ≥ uH ·ε∞u Re s for all u ∈ C
3 ×C

3 and s ∈ C+. To
show this estimate the identity Re{sε(s)} = Re{s(ε(s) − ε∞)} + Re{sε∞} is used.
The first term on the right hand side is estimated by the minimum principle for
harmonic functions [2, 17] together with the fact that the real-valued part of the high-
frequency response vanishes at the boundary, i.e., Re{iωε∞}=0 since Im ε∞ = 0.
This gives

Re{s(ε(s) − ε∞)} ≥ inf
ω∈R

Re{iω(ε(iω) − ε∞)} = inf
ω∈R

Re{iωε(iω)} = 0 (2.11)

for all s ∈ C+. The estimate (2.10) follows from Re{sε∞} = ε∞ Re s for all sym-
metric ε∞ together with (2.11).

3 Frequency and time-domain data

In this paper, we consider an electromagnetic problem in the frequency range [ωmin, ωmax].
The values of the constitutive map are given in the same frequency range, i.e.,

ε(iω) for ω ∈ [ωmin, ωmax] (3.1)

are provided, see Figure 1. The electromagnetic problem can either be solved in
the frequency domain or in the time domain, see Figure 2. In the frequency-domain
solution, it is sufficient to use the values of ε in the given frequency range. However,
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Time-domain
solver

Frequency-domain
solver

Frequency-domain 
solution of the 
electromagnetic problem

Extrapolate the constitutive 
relations to all frequencies

Transform to the 
frequency domain Time-domain solution

of the electromagnetic
problem 

Constitutive relations
for frequencies 

Constitutive relations
for all frequencies ωmin< ω< ωmax

Figure 2: An electromagnetic problem can either be solved in the frequency domain
or in the time domain. In the time-domain solution, the definition of the constitutive
relations are first extended to all frequencies, or equivalently to the time domain.
A time-domain algorithm followed by an inverse Fourier transform gives the desired
frequency-domain solution of the original problem. In this paper, we study how the
constitutive relations can be extrapolated such that the time-domain approach can
be used to give the frequency-domain solution.

in the time-domain approach it is necessary to extend the definition of ε to all
frequencies, i.e., the time-domain map d = ε[e]. Here, we study how the map ε(iω)
can be continued outside the frequency range [ωmin, ωmax]. In this paper we focus
on the high-frequency value of ε, i.e.,

ε∞ = lim
ω→∞

ε(iω). (3.2)

The basic assumptions of the linear dispersion law above are not sufficient to give
a well-defined extension of the constitutive map. The assumption of passivity and
a positive definite instantaneous response is used to get a well-defined extension of
the constitutive map.

4 Non-uniqueness of the instantaneous response

By an explicit construction below, it is shown that the instantaneous response is
non-unique. Let the original constitutive relations be given by a bi-anisotropic
model with an instantaneous response ε∞. This model is assumed to be accurate
in the frequency range [ωmin, ωmax]. The goal is to construct an approximate set of
constitutive relations that has the high-frequency response ε′

∞ < ε∞ and give good
approximations of the original fields, see Figure 2.

In Section 4.1, an approximate model ε′ is constructed such that the error of
ε′(iω) is small in the frequency range [ωmin, ωmax]. In Section 4.2, the error of the
fields associated with the ε′ are shown to be small in both the time and frequency
domain.
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ω

ε∞

0

Region of interest

ωmaxωmin

ε(iω)

ω0

ε′(iω)

ε∞
′

Im-part

Re-part

Figure 3: Illustration of the approximation of the constitutive relations. The
original constitutive map ε(iω) with the instantaneous response ε∞ is approximated
by the constitutive map ε′(iω) with the instantaneous response ε′

∞ < ε∞. The
error of the approximation approaches zero in the region of interest [0, ωmax] as the
approximation parameter ω0 → ∞.

4.1 Operator approximation

In this section an approximate set of constitutive relations, ε′, is constructed such
that the material model agrees well with the original one in the frequency range
[ωmin, ωmax] and that the high-frequency response is ε′

∞ < ε∞. An admissible ap-
proximate constitutive map ε′ is given by

ε′(s) = ε(s) +

(
ω2

0

s2 + νs + ω2
0

− 1

)
(ε∞ − ε′

∞) (4.1)

where ε′
∞ is the new high-frequency response and ν ≥ 0 and ω0 are model para-

meters, see Figure 3. Observe that this is a mathematical construction, i.e., it is
not required that the values of ε′(iω) correspond to an actual material outside the
interval [ωmin, ωmax]. The model is passive if 0 < ε′

∞ < ε∞, i.e.,

Re sε′ ≥ Re

{
sε′

∞ +
sω2

0

s2 + νs + ω2
0

(ε∞ − ε′
∞)

}
≥ ε′

∞ Re s (4.2)

where we have used the inequality (2.10) based on the analytic properties of passive
constitutive maps. The ‘error’ in the approximation is

sup
ω∈[ωmin,ωmax]

|ε′(iω) − ε(iω)| = sup
ω∈[ωmin,ωmax]

∣∣∣∣ −ω2 + iνω

−ω2 + iνω + ω2
0

∣∣∣∣ sup
x∈R3

|ε′
∞ − ε∞|

≤ ω2
max + νωmax

ω2
0 − ω2

max

sup
x∈R3

|ε′
∞ − ε∞| → 0 as ω0 → ∞,

(4.3)

where |ε| = sup|u|=1 |uH · εu|.
In the next section, we show that the approximation (4.1) also is sufficient to get

good approximations of the solution of the Maxwell equations.
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4.2 Convergence estimates

The approximation (4.1) is only meaningful if the fields e′ associated with the ap-
proximate constitutive map ε′ constitute a good approximation of the set of fields e
associated with the original constitutive map ε. For notational simplicity, we con-
sider an electromagnetic problem in R

3 with quiescent initial fields, i.e., e(x, t) = 0
for t ≤ 0. The current is assumed to be compactly supported and square integrable.
Moreover, it is convenient to let the medium reduce to free space outside a suffi-
ciently large sphere. Observe that this last requirement is no real restriction since
we are only interested in time-domain results for fixed times, i.e., 0 ≤ t ≤ T .

The original fields e(x, t) solve the Maxwell equations

∂tε[e] −∇× Je = −j(x, t) for x ∈ R
3 and t ≥ 0 (4.4)

together with the initial conditions e(x, t) = 0 for t ≤ 0. The corresponding approx-
imate fields e′(x, t) solve the Maxwell equations with the approximate constitutive
map, i.e.,

∂tε
′[e′] −∇× Je′ = −j(x, t) for x ∈ R

3 and t ≥ 0 (4.5)

together with the initial conditions e′(x, t) = 0 for t ≤ 0. We are interested in the
error of the approximate fields

e′(x, t) − e(x, t) for x ∈ R
3 and 0 ≤ t ≤ T. (4.6)

We use the Laplace-domain representation to get an error estimate of the ap-
proximate fields. Let ê(x, s) be the solution of the Maxwell equations together with
the constitutive map ε, i.e., ê solves

sε(x, s)ê −∇× Jê = −̂(x, s) for x ∈ R
3 (4.7)

together with the radiation conditions

x/|x| ×
(√

ε0Ê(x, s) + x/|x| × √
µ0Ĥ(x, s)

)
= o(|x|−1) as |x| → 0. (4.8)

The approximate field satisfies

sε′(x, s)ê′ −∇× Jê′ = −̂(x, s) for x ∈ R
3 (4.9)

together with similar radiation conditions. The error ê′ − ê satisfies

sε′(x, s)(ê′ − ê) −∇× J(ê′ − ê) = −s(ε′(x, s) − ε(x, s))ê for x ∈ R
3. (4.10)

We start with an energy estimate on the original fields (4.4). Multiply (4.7) from
the left with êH· to get

sêH · εê − êH · ∇ × Jê = −êH · ̂. (4.11)

Integrate over R
3 and estimate the terms. The first term is estimated with (2.10),

i.e.,
Re sêH · εê ≥ ηêH · ε∞ê ≥ ηεinf|ê|2, (4.12)
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ω

Re ψ̂τ (iω)

Im ψ̂τ (iω)
-0.75

-0.5

-0.25

0.25

0.5

0.75

1

τ

ψτ (t)

t

Figure 4: Example of the mollifier used in the definition of the smoothed
fields (4.17) and (4.18).

where η = Re s is positive and εinf = infx∈R3 inf |u|=1 uH · ε∞u. The second term
vanishes due to the radiation condition and the third term is estimated with the
Cauchy-Schwartz’ inequality, ‖êH · ̂‖ ≤ ‖ê‖ ‖̂‖. This gives

ηεinf‖ê‖2 ≤ ‖ê‖ ‖̂‖ or equivalently ‖ê‖ ≤ ‖̂‖
ηεinf

(4.13)

where ‖·‖ denotes the L2-norm in R
3, i.e., ‖̂‖ =

∫
R3 |̂(x)|2 dV. The above estimate

is repeated for the error equation (4.10). In this estimate the source term is given
by s(ε − ε′)ê. The error ê′ − ê is estimated as

‖ê′ − ê‖ ≤ ‖s(ε′ − ε)ê‖
ηε′inf

(4.14)

where ε′inf = infx∈R3 inf |u|=1 uH · ε′
∞u. The bound (4.13) on the original fields and

the definition of the approximate constitutive map (4.1) on the constitutive map are
used to get the estimate

‖ê′ − ê‖ ≤ |s(s2 + νs)| ‖̂‖
|s2 + νs + ω2

0| η2εinfε′inf

sup
x∈R3

|ε′
∞ − ε∞| (4.15)

This estimate shows that the Laplace-domain error fields approach zero for fixed
values of the Laplace parameter s as the approximation constant ω0 increases, i.e.,

‖ê′(·, s) − ê(·, s)‖ → 0 as ω0 → ∞. (4.16)

In general, the approximate fields do not approach the original fields in the
time domain, due to the lack of approximation in the high-frequency part of the
constitutive relations, i.e., the wave-front sets of the solutions do not agree. However,
the approximation was only designed to be valid in the frequency range [ωmin, ωmax].
This frequency range is transformed to the time domain by a smoothing procedure.
Introduce a set of smoothed fields as

eτ (x, t) =

∫ t

0

e(x, t − t′)ψτ (t
′) dt′ = (e ∗ ψτ )(x, t) (4.17)
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and similarly for the approximate fields e′
τ . The weight function ψτ (t) = τ−1ψ(t/τ)

is a smooth and positive function with unit integral that is supported in [0, τ ], i.e., a
mollifier, see Figure 4. The smoothed fields have the Laplace-domain representation

eτ (x, t) =
1

2π

∫
R

e(η+iω)tê(x, η + iω)ψ̂τ (η + iω) dω for η ≥ 0. (4.18)

The Laplace transformed version of the weight function ψ̂(s) is analytic for Re s >
s0 > −∞ and decays faster than every polynomial in s, i.e., there are numbers CM

such that

|ψ̂τ (s)| ≤ CM(1 + |τs|)−M for s ∈ C+, τ > 0, and M = 0, 1, . . . (4.19)

Observe that the weight function approaches the Dirac delta distribution δ(t) for
small times τ , i.e., ψτ (t) → δ(t) as τ → 0, and hence the frequency filtered fields
resemble the original fields for small values of τ if the fields are sufficiently smooth.
The smoothing time τ is obviously related to the frequency band [ωmin, ωmax] of the
problem. With an averaging of N mollifiers per wavelength, the smoothing time is
τ ≈ 2πω−1

maxN
−1. In the numerical example in Section 6, we use N = 15.

We use the above estimates to show convergence of the constitutive approxima-
tion in the time domain, i.e.,∫ T

0

∫
R3

|e′
τ (x, t) − eτ (x, t)|2 dV dt → 0 as ω0 → ∞ (4.20)

for fixed τ and T . In fact, the integral is estimated as∫ T

0

e2ηte−2ηt‖e′
τ (·, t) − eτ (·, t)‖2 dt ≤ e2ηT

∫ ∞

0

e−2ηt‖e′
τ (·, t) − eτ (·, t)‖2 dt

=
2eηT

2π

∫
R

‖ê′(·, η + iω) − ê(·, η + iω)‖2 |ψ̂τ (η + iω)|2 dω

≤
(

CCMeηT

νω2
0η

2εinfε′infτ
3/2

sup
ω∈R

‖̂(·, η + iω)‖ sup
x∈R3

|ε′
∞ − ε∞|

)2

(4.21)

The first inequality is trivial, the second step is the Parseval’s relation [2]. The final
step is based on estimate (4.15) together with the supremum type estimate

∫
R

∣∣∣∣ s(s2 + νs)CM

(s2 + νs + ω2
0) (1 + |τs|)M

∣∣∣∣
2

s=η+iω

dω

≤ C2
M

infω∈R |s2 + νs + ω2
0|2s=η+iω

∫
R

∣∣∣∣ s(s2 + νs)

(1 + |τs|)M

∣∣∣∣
2

s=η+iω

dω ≤
(

CMC

νω2
0τ

3/2

)2

where the M in (4.19) is such that M ≥ 4 and the constant C only depends on
ν and M . The estimate (4.21) is valid for all η > 0 and all T ≥ 0. The choice
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η = 2/T eliminates the exponential growth rate in estimate (4.21). This gives the
time-domain convergence estimate

(∫ T

0

‖e′
τ (·, t) − eτ (·, t)‖2 dt

)1/2

≤ C4Ce2T 2

4νω2
0εinfε′infτ

3/2
sup
ω∈R

‖̂(·, iω)‖ sup
x∈R3

|ε∞ − ε′
∞|. (4.22)

This shows that the approximate solution approach the the original solution for all
bounded times T and all fixed smoothing times τ as the approximation parameter
ω0 increases to infinity.

4.3 Frequency-domain convergence

The estimate (4.22) deteriorates as T → ∞ and it is not possible to use a classi-
cal inverse Fourier transform to obtain frequency-domain estimates. However, the
growth rate O(T 2) is not severe and the theory of temperate distributions [29] can
be used to get a weak frequency-domain convergence. Estimate (4.13) and an anal-
ogous estimate for the approximate fields together with a similar estimate as (4.21)
show that eτ (x, t) and e′

τ (x, t) are tempered distributions. The approximate fields
e′

τ (x, t) converge to the original fields eτ (x, t) in the sense of distributions, i.e.,∫ ∞

0

∫
R3

|e′
τ (x, t) − eτ (x, t)|2φ(t) dV dt → 0 as ω0 → ∞ for all φ ∈ S. (4.23)

The Schwartz class S consists of all functions φ(ω) such that supω∈R
|ωα∂β

ωf(ω)| < ∞
for all α and β. The Fourier transform is well-defined for tempered distributions and
hence the approximate fields converge to the original fields in the frequency domain
in the sense of distributions, i.e.,∫

R

∫
R3

|ê′
τ (x, iω) − êτ (x, iω)|2φ(ω) dV dω → 0 as ω0 → ∞ for all φ ∈ S. (4.24)

Observe that estimate (4.22) is not sharp. In many cases, it is possible to show
that the fields decay as time evolves, e.g., if the current are compactly supported
both in time and space, a time-domain estimate gives ‖eτ (·, T )‖ = O(1) as T → ∞.
Moreover, if the fields radiate in R

3, it has been shown that the energy of non-
static fields in any bounded region decay as T → ∞, see Ref. 3. Also observe
that a similar convergence estimate holds for the approximate fields in the case of
sufficiently smooth currents, e.g., if ‖̂(·, s)‖ = O(|s|−4).

The construction above shows that it is possible to construct arbitrarily good
approximations of a constitutive relation with a prescribed instantaneous response
as long as the size of the instantaneous response decreases. The requirement to
decrease the instantaneous response can be interpreted as a requirement to increase
the wave-front speed. See also Ref. 18, where a similar construction is used for the
acoustic wave equation.
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5 Upper bound on the instantaneous response

In Section 4, it was shown that it is possible to construct an approximate constitutive
map such that the error of the corresponding approximate fields is small. In the
construction (4.1), the instantaneous response decreased. In the isotropic case this
corresponds to an increased wave-front speed and hence information is allowed to
travel faster. The convergence for the approximate fields follows from the passivity of
the approximate model. In this section, the possibility to construct an approximate
constitutive map such that the instantaneous response in increased. In the isotropic
case, the wave-front speed of the approximate problem is hence decreased and so
is the maximal speed of information. It is shown that in a passive approximation
which is exact in a set of complex valued frequencies the instantaneous response is
bounded from above.

For the convergence estimate, it was essential that the constitutive maps were
passive. To generalize the approximation in Section 4, we consider an approximation
based on Nevanlinna-Pick theory [1, 10], see also Ref. 16 for a general discussion
about bounded analytical functions.

We start with a short review of the Nevanlinna-Pick theory. A function f is
in the Nevanlinna class if Re f(s) ≥ 0 and f(s) is analytic for Re s > 0, i.e.,
f : C+ → C+. The Nevanlinna-Pick problem concerns the construction of a function
f in the Nevanlinna class with prescribed values at a given set of points. For our
purpose it is sufficient to consider the following version: Construct a function f in
the Nevanlinna class such that

f(si) = fi for i = 1, 2, . . . n (5.1)

where si and fi, i = 1, 2, . . . , n are given complex-valued numbers such that Re si > 0
and Re fi ≥ 0, respectively, see also Figure 5. The interpolation problem is soluble
if and only if the Nevanlinna matrix

N =

[
fi + f ∗

j

si + s∗j
; i, j = 1, 2, . . . , n

]
(5.2)

is non-negative definite, see Theorem 3.3.3 in Ref. 1. Moreover, if the matrix is
singular, the function f(s) is unique and equal to a real-valued rational function.

The Nevanlinna-Pick theory can be used to construct an approximate constitu-
tive map that is identical to the original map for the frequencies si, i = 1, 2, . . . , n.
The Nevanlinna-Pick theory ensures that the approximate map remains passive. We
use the Nevanlinna-Pick problem to get some insight into the instantaneous response
of the constitutive map. Let ε be a passive constitutive map, i.e., Re sε(s) ≥ 0. We
construct an approximate passive constitutive map ε′ such that

ε′(si) = ε(si) for Re si > 0, i = 1, 2, . . . , n. (5.3)

For the construction of ε′, we consider a set of functions fk(s) in the Nevanlinna
class. The functions fk(s; uk), k = 1, 2, . . . are defined by

fk(s; uk) = uH

k · sε(s)uk with uk ∈ C
3 × C

3 and |uk| = 1. (5.4)
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Im s

Re s
×
s1

s2

s3

s4

s5

Im f(s)

Re f(s)
f1

f2

f3

f4

f5

×

×

×

×
×

×

×

×

×

Figure 5: Example of the Nevanlinna-Pick interpolation problem. A function f(s),
analytic in C+, is constructed such that f(si) = fi and Re f(s) ≥ 0 for s ∈ C+.

These functions are in the Nevanlinna class and for sufficiently many column matri-
ces u the map ε(s) is uniquely determined by the values of fk(s; uk), e.g.,

u1 =




1
0
0
0
0
0




, u2 =




0
1
0
0
0
0




, u3 =
1√
2




1
1
0
0
0
0




, and u4 =
1√
2




1
i
0
0
0
0




(5.5)

determines the four elements ε1,1, ε2,2, ε2,1, and ε1,2. The general bi-anisotropic
model is determined by 36 column matrices. Let us construct a constitutive map
ε′(s) with the prescribed instantaneous response ε′

∞, i.e.,

lim
s→∞

ε′(s) = ε′
∞ and ε′(si) = ε(si) for i = 1, 2, . . . , n (5.6)

with Re si > 0.
The Nevanlinna-Pick theory is used to show that the instantaneous response of

the approximate constitutive map is bounded from above. To bound the approx-
imate instantaneous response, we first observe that Re{sε′(s) − sε′

∞} ≥ 0 for all
s ∈ C+, see (2.10). Moreover, the Nevanlinna-Pick problem gives a necessary and
sufficient condition for this inequality. From the interpolation (5.6), we get the
following elements in the Nevanlinna matrix

N
(k)
i,j =

uH
k · (siε(si) − siε

′
∞)uk + (uH

k · (sjε(sj) − sjε
′
∞)uk)

∗

si + s∗j

=
uH

k · siε(si)uk + (uH
k · sjε(sj)uk)

∗

si + s∗j
− uH

k · ε′
∞uk

for i, j = 1, 2, . . . , n where the requirement Im ε′
∞ = 0 is used. To satisfy the non-

negative requirement we get an upper bound on the high-frequency response, i.e.,
N(k) ≥ 0 implies

uH

k · ε′
∞uk ≤ inf

yi∈C

1

|
∑n

i=1 yi|2
n∑

i,j=1

y∗
i

uH
k · siε(si)uk + (uH

k · sjε(sj)uk)
∗

si + s∗j
yj. (5.7)
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ε = 1ε = ε(s)

x
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ε = 1

0
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1

2
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t, ω

(a) (b)

|Êi(iω)|

Figure 6: The slab geometry. (a) An electromagnetic field, in vacuum impinges
at a dielectric slab from the left. (b) The temporal and spectral behavior of the
incident field.

From (5.7), we conclude that there is an upper bound on the approximate instan-
taneous response, i.e., it is not possible to find a passive constitutive map with an
arbitrary large instantaneous response with prescribed values.

6 Numerical illustration of the non-unique instan-

taneous response

As a numerical example of the non-uniqueness of the instantaneous response, we
consider a scattering problem in one spatial dimension. An incident plane wave Ei

in free space impinges at an isotropic and dielectric slab, see Figure 6a. The slab is
modeled by the Debye-Lorentz type model [19, 20]

ε(s) = 2 +
17

7 + s
+

4

s2 + 0.5s + 4
+

400

s2 + 4s + 132
(6.1)

and the free-space region by ε = 1. For notational simplicity, we let ε0 = µ0 = 1. The
incident wave field is given by Ei(t) = 1.5(t − 5)e−0.4(t−5)2 for t ≥ 0 and Ei(t) = 0
for t < 0. The amplitude spectra of the wave field is essentially confined to the
frequency range [0, 4], see Figure 6b.

We consider two approximate models of the slab. The first approximate model
is constructed in agreement with the procedure in Section 4, i.e., we add a Lorentz
state with a high resonance frequency and subtract the low frequency value from
the instantaneous response. With the resonance frequency ω0, we get the first ap-
proximate constitutive map

ε′(s) = ε(s) +
ω2

0

s2 + 2s + ω2
0

− 1. (6.2)

This approximation is passive and the error is supω∈[0,4] |ε′(iω) − ε(iω)| = 0.07 for
ω0 = 17, see Figure 7a. The wave-front speed of the approximate model is higher
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t
ε′′∞

ε′∞

ε∞

x

1

1

(b)

ω

(a)

ε′(iω)

ε′′(iω)

ε(iω)

10 20 30 40

-10

-5

5

ε∞
ε′∞

ε′′∞

Figure 7: The permittivity profiles of (6.1), (6.2), and (6.3) with ω0 = 17. (a) The
real and imaginary valued parts of the permittivity are given by the black and gray
graphs, respectively. Observe that the imaginary valued part of (6.3) is positive,
the medium is active, for a band of frequencies around ω = 17. The frequency
spectra of the incident pulse is illustrated by the shaded pulse. Observe that the
pulse is essentially confined to the frequencies |ω| < 4, see Figure 6b. (b) The wave-
front characteristics of the different models. The wave-front speed of the first and
second approximation is higher and lower than the wave-front speed of the original
approximation, respectively.

then the original wave-front speed, i.e., c′∞ = ε′∞
−1/2 = 1 > c∞ = ε

−1/2
∞ = 2−1/2, see

Figure 7b.
To illustrate the difficulties with active models, we consider a second approxi-

mation of the constitutive map. We construct the approximate constitutive map
by subtraction of a high-frequency Lorentz state and addition of the low-frequency
value to the instantaneous response, i.e.,

ε′′(s) = ε(s) − ω2

s2 + 2s + ω2
+ 1, (6.3)

see Figure 7a. The error of this second approximation is identical to the error of the
first approximation. However, the second approximation is not passive, i.e., there
are s ∈ C+ such that Re sε′′(s) < 0. Moreover, the wave-front speed of the second
approximation is lower then the wave-front speed of the first approximation, i.e.,
c′′∞ = 3−1/2 < c∞ = 2−1/2, see Figure 7b.

We use a finite-difference scheme (FDTD) to determine the fields. For a plane
wave normally impinging on the slab, the Maxwell equations reduce to the equations

ε∞∂tE + ∂xH + ∂tP1 + ∂tP2 + ∂tP3 + ∂tP4 = 0 and ∂tH + ∂xE = 0. (6.4)

The Debye state P1, and the Lorentz states Pk, k = 2, 3, 4, are updated with the
equations

∂tP1 + 7P1 = 17E, ∂2
t P2 +

1

2
∂tP2 + 22P2 = 4E

∂2
t P3 + 4∂tP3 + 133P3 = 400E, and ∂2

t P4 + 2∂tP4 + ω2
0P4 = αE,

(6.5)
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Figure 8: The scattered fields in the slab problem. (a) shows the electric fields
at x = −1/2 for the constitutive maps (6.1), (6.2), and (6.3). The fields of the
first approximation approximate the original fields well (the error is of the order
0.1% as seen in (b)) whereas the fields of the second approximation give a bad
approximation due to the exponential growth rate of the fields. Observe that the
field values are cut for values larger than 1 and, hence, the exponential growth rate
of the second approximation E ′′ is not shown in the figure. (b) shows the error of
the first approximation as a function of the resonance frequency ω0. Observe that
the error decays as ω−2

0 as predicted (4.22).

respectively. The parameters ε∞ and α are given by ε∞ = 2, 1, 3 and α = 0, ω2
0,−ω2

0

for the original, first approximate, and second approximate fields, respectively. The
initial values of the fields are quiescent, i.e., E(x, 0) = H(x, 0) = P1(x, 0) =
Pk(x, 0) = ∂tPk(x, 0) = 0 for k = 2, 3, 4. At the boundary, we use the right-
and left-going wave constituents [19]

E(−1, t) + H(−1, t)

2
= Ei(t) and

E(2, t) − H(2, t)

2
= 0, (6.6)

respectively. In the numerical solution, the Maxwell equations (6.4) and the state
equations (6.5) were discretized by central differences on a equidistant grid, i.e., a
leap-frog scheme was used [31]. The spatial region was discretized by 300 grid points,
i.e., ∆x = 0.01. The temporal step size was half of the spatial grid size ∆t = ∆x/2.

The result of the simulation is depicted in Figure 8. In Figure 8a, the original
field E, the first approximate field E ′, and the second approximate field E ′′ are shown
at the point x = −1/2 for the resonance frequency ω0 = 17. It is not possible to
distinguish the first approximate field from the original field in the figure (the error is
of the order 0.001). The second approximate field does only approximate the original
field for short times. As time evolves the amplitude of the second approximate field
increases exponentially and so does the error of the approximation. The failure
of the second approximation can be understood from the lack of passivity in this
approximation. And since active (non-passive) medium models allow the field values
to increase in time the approximation deteriorate. It is also interesting to compare
the wave-front speed of the different approximate models. The wave-front speed,
c∞ = ε

−1/2
∞ , is the speed of the wave-front set of the solution. It is also the maximal

speed that the solution can propagate. Observe that the first approximate field has
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a higher wave-front speed then the wave-front speed of the original field whereas
the wave-front speed of the second approximation is lower, see Figure 7. The error
of the first approximation is depicted in Figure 8b as a function of the resonance
frequency ω0. The error decays as ω−2

0 as predicted in and (4.22), see also (4.3) .
Observe that wave fields are well resolved on the grid. The center frequency of

the incident wave field, ω = 2, corresponds to the free-space wave length λ = π.
The highest Lorentz state has the resonance frequency ω0 = 17 with the equivalent
wave length 0.37. A second simulation with 3000 grid points was also performed
to verify the numerical results. Observe that the fields depicted in Figure 8 are
not smoothed. The smoothed (4.17) fields with smoothing time τ = 2π/4/15 ≈
0.1 have been computed and their graphs are not distinguishable from the graphs
depicted in Figure 8. In an attempt to eliminate the exponential growth of the
second approximate fields a smoothing time t = 1.0 was tested. However, due to the
exponential growth rate of the fields, the smoothing in not sufficient to eliminate
the exponential growth rate.

7 Conclusions and discussion

In this paper, the uniqueness of the instantaneous response has been analyzed. It has
been shown that the instantaneous response is non-unique from a modeling point
of view. The constructed constitutive map is accurate in the region of interest.
Outside this region, where the model is erroneous, the corresponding field values are
bounded due to passivity.

Nevanlinna-Pick theory gives an upper bound on the size of the instantaneous
response. It is interesting to compare this upper bound with the requirements from
the special theory of relativity. In the special theory of relativity [20] the speed of
electromagnetic waves in matter is bounded by the speed of electromagnetic waves
in vacuum, i.e., the special theory of relativity predicts that it should be possible to
bound the instantaneous response from below with the vacuum response. Physical
arguments are also often used to conclude that the instantaneous response reduces
to the vacuum response in the high-frequency limit [25].

A generalization of the analysis to non-linear medium models is presently con-
sidered.
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