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Reinforcement Learning
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Lund University Cognitive Science

Kungshuset, Lundag̊ard
S-222 22 Lund, Sweden

1 Introduction

A reinforcement learning system is typically described as a black box which
receives two types of input, the current state, S, and the current reinforcement,
R. From these two inputs, the system has to figure out a policy that determines
what action to perform in each state to maximize the received reinforcement
in the future (Sutton & Barto, 1998). The future expected reinforcement can
be estimated either by using the sum of all future reinforcement or with an
exponentially decaying time horizon. It is also possible to only take into account
the reinforcement received at the next goal action which results in finite horizon
algorithms (e. g. Balkenius & Morén, 1999). Learning is viewed as the formation
of assocations between states and actions and are represented by numerical
values that are changed during learning.

In most basic reinforcement learning algorithm, the policy for each state is
learned individually without regard for the similarity between different states. It
would obviously be valuable if actions learned in one state could be generalized
to other similar states. Such generalization can be introduced into a reinforce-
ment learning algorithm in several ways. One possibility is to code the similarity
between states by similar state vectors. Such methods have been proposed by
Sutton (1996), who used a tile representation or the underlying state space
and Balkenius (1996), who used a multi-resolution representation. As alterna-
tive is to learn the underlying state representation during exploration based on
the closeness of different states (Dayan, 1993). In both cases, learning becomes
faster since each learning instance will be generalized to many similar states.

In many cases, it makes sense to divide the state input into two parts, one
that code for the situation or context and one that codes for the part of the
state that controls the action (cf. Balkenius & Hulth, 1999, Houghes & Drogoul,
2001). If such a combined representation is used together with the reinforcement
algorithms described above, learning will generalize not only to similar states
but also to similar contexts. The role of state and context will thus be symmetric.
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In a series of experiment with rats, Bouton (1991) has showed that the way
animals generalize learned behavior has one additional, and very important,
feature. Although a learned response is generalized to similar stimuli in much
the way that this is handled by reinforcement learning algorithms, learning when
the generalization fails is very different and depends on the context.

In Bouton’s experiment, and others like it, rats where trained to produce a
response R1 when stimulus S1 was presented in context A. The animals where
subsequently moved to a new context B and tested there with stimulus S1. The
learning in A generalized to B and they performed the same response R1 in the
second context. Now, the animals where asked to refrain from response R1 in
B using an extinction procedure. When they had learned not to produce R1 in
B they where moved back to the initial context A. They now performed the
initially learned response R1 again. The animals where also tested in a third
context C in which they also produced the initially learned response R1 when
S1 was presented.

This suggests that animals adhere to a generalization strategy where any
learned association is first maximally generalized to new contexts and later
made more specific by excluding contexts where the learned responses fail. Here,
we want to show how a popular reinforcement learning algorithm, Q-learning
(Watkins & Dayan, 1992), can be adapted to this framework by incorporating a
second set of inputs that code for the context together with a new update rule
that takes the contextual inputs into account.

In the algorithm, the two inputs for state and context are handled in an
asymmetric way where the state vector is handled as usual, but the context
input only influences the output through its modulation of the learned associ-
ations. In Balkenius & Morén (2000) and Morén (2002) it was shown how the
context could modulate learning in a classical conditioning situation, that is,
a learning task where the value of state has to be estimated without regard
of the possible actions. Below, we investigate how the context can influence
reinforcement learning and test it in a number of computer simulations.

2 Contextual Reinforcement Learning

To develop a context sensitive reinforcement learning algorithm, we will start
from ordinary Q-learning (Watkins & Dayan, 1992). Let st be the current state
and at the selected action at st. The result of performing action at in state st

is st+1. The algorithm attempts to estimate a function Q(s, a) which can be
seen as the associative strength between state s and action a. The Q-function
is updated as

Q(st, at)← Q(st, at) + α∆Qt,

where,

∆Qt =
[

rt+1 + γ max
a

Q(st+1, at+1)−Q(st, at)
]

.
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In the simplest implementation of the algorithm, s and a are discrete and Q(s, a)
is represented by a table with entries Q(s, a) = qs,a that are changed by the
update rule. The value α is the learning rate and γ is the temporal discount
factor (See Sutton & Barto, 1998)

To allow better generalization or to have a more compact representation of
the Q-function, different forms of function approximators can be used instead
of a table. For example, it is common to use an artificial neural network, such as
the backpropagation network to approximate Q(s, a). Here we will use a simple
linear approximator to show the general ideas.

Let each state be represented by a state vector s = 〈s0, s1, . . . , sn〉 and let
{a0, a1, . . . , am} be a discrete set of actions. The Q-function is estimated as,

Q(s, aj) =

n
∑

i=0

siwij ,

and the update rule translates into

w
(t+1)
ij = w

(t)
ij + αsiaj∆Qt.

where aj = 1 for the selected action j. That is, each weight is updated according
to the error in the Q-function multiplied with the value of the state component
si. This means that only components of the state that contributed to the selected
action will be updated.

It is clear that the linear approximator will generalize learning to states that
are similar to each other. We will not dwell on the properties of this simple
formulation here however, but instead go on to see how the context can be used
in the learning rule. Let the context be described by a vector c = 〈c0, c1, . . . , cp〉.
According to the experiment by Bouton (1991) described above, initial learning
should only depend on the state (or stimulus) while relearning when expected
reinforcement is not received should depend on the context (and presumably also
the state). Taking this into account, we can reformulate the linear estimator
in the following way by including additional weights uijk which relates each
association wij to the context ck:

Q(c, s, aj) =

n
∑

i=0

siwijIij ,

where,

Iij =

p
∏

k=0

(1− ckuijk).

In neural network terms, Iij can be seen as shunting inhibition from the
context of the association from the state to the action (Fig. ??). We now need
to consider how the learning rule should be changed to reflect the new context
sensitive estimator.
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Figure 1: The approximation of Q(c, s, aj) as an artificial neural network with shunt-

ing inhibition from the context nodes ck to the association between a state node si and

an action node aj.

When all uijk = 0, the algorithm work exactly as before which implies that
the original equation can still be used for the case when ∆Qt > 0. This will
result in initial learning that is totally independent of the context. On the other
hand, when ∆Qt < 0, instead of changing the weights wij , we increase the
inhibition from the current context according to

u
(t+1)
ijk = u

(t)
ijk − βsiajck∆Qt.

In other words, the inhibition from the current context will increase to the
association between the current state and the selected action when the actual
reinforcement is lower that the expected reinforcement. This captures the basic
intuition of Bouton’s experiment, but has one problem. Once the weights wij

has reached their maximal values, all learning will take place in uijk. Also, if the
appropriate action within a fixed context changes, it may become necessary to
decrease the values of uijk. The solution to these problems is to allow changes in
both directions of both wij and uijk, but to modulate it with the sign of ∆Qt.

The simplest scheme is to use two learning rate constants α+ and β+, which
are used when ∆Qt > 0, and two constants α− and β−, which are used when
∆Qt < 0, and to update both wij and uijk at each time step. This results in
the reinforcement learning algorithm summarized in box 1.
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Initialize wij = 0 and uijk = 0
Repeat for each epoch
. Initialize s
. Repeat
. . Choose a from s using policiy derived from Q

. . Take action a, observe r and s′

. . Calculate ∆Qt

. . if ∆Qt > 0 then

. . . w
(t+1)
ij = w

(t)
ij + α+∆Qt

. . . u
(t+1)
ijk = u

(t)
ijk − β+siajck∆Qt

. . else

. . . w
(t+1)
ij = w

(t)
ij + α−∆Qt

. . . u
(t+1)
ijk = u

(t)
ijk − β−siajck∆Qt

. until s is the goal state

3 Experiments

The contextual reinforcement learning algorithm was tested on a number of cog-
nitive learning problems to investigate its ability to include context in learning.
First we tested the algorithm on a version of Bouton’s experiment. A cogni-
tively more interesting version of this experiment is called task switching and
it was investigated next. We also tried the algorithm on a the Wisconsin Card
Sorting Test which is standard diagnostic test for frontal brain injury. Finally,
the algorithm was tested on a classical context sensitive categorization task.

3.1 Contextual Control

We tested the algorithm in a simple classical conditioning test where only a
single state (or stimulus) s and a single action (or response) a was available.
The learning rates where α+ = 0.2, α− = 0, β+ = 0, and β− = 0.2, that is,
learning was maximally asymmetric. Since classical conditioning was tested, the
reinforcement followed the stimulus rather than the response as is the case for
reinforcement learning proper.

This response was first acquired with the context vector cA = 〈1, 0, 0〉 by
following any presentation of the stimulus with reinforcement 20 times. Q(c, s, a)
was here treated as the probability of responding.

When the response was consistently produced when the stimulus was present,
the context vector was changed to cB = 〈0, 1, 0〉. As expected, the response did
not change by this manipulation. Now the reinforcement was withheld, and the
response extinguished during 20 trials, that is, Q(cB, s, a) approached 0. We also
tested the system in the original context cA where the response now reappeared.

Finally, we tested the system with a novel context vector cC = 〈0, 0, 1〉. Again
the response consistently followed the presentation of the stimulus. The result
shows that learning by the algorithm parallel the generalization of animals by
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first generalizing learned behavior to all contexts and by only making learning
context specific after relearning.

3.2 Task Switching

In a task switching experiment, the participants have to learn to respond to
the same stimuli in two different ways depending to the current context or
instruction. For example, in an experiment reported by Cepeda, Cepeda, &
Kramer (2000), subjects were shown one of four stimuli on a screen: 1, 3, 111
or 333. Two responses were available: 1 and 3, and the context was either the
question “How many?” or the question “What digit?” It is clear that the correct
responses to the four stimuli changes when the context changes.

We tested the ability of the algorithm to learn this context sensitive mapping.
The learning rates where again α+ = 0.2, α− = 0, β+ = 0, and β− = 0.2.
The first question was represented by the context cHow many? = 〈1, 0〉 and the
second by the context cWhat digit? = 〈0, 1〉. The four stimuli where coded by
a four component stimulus vector, with each component representing one of
the stimuli. The system was presented with stimuli and contexts in random
order and was allowed to try out the different responses according to its current
policy. After 29 trials, the system reached a success rate of 100%. This shows
that the algorithm can learn two different stimulus–response mappings that can
be shifted as the task (or context) demands.

In Balkenius & Björne (2001), we hypothesized that the problems children
diagnosed with ADHD have in this task is due to their inability to switch and
maintain the context when the task changes. The simulations reported here
extends our previous result by showing how the task could be learned by the
context sensitive reinforcement learning algorithm.

3.3 The Wisconsin Card Sorting Test

The Wisconsin card sorting task (WCST) is a test developed in order to evaluate
the test subject’s ability to shift cognitive strategies in response to changing en-
vironmental conditions. It is widely used to investigate deficits in executive func-
tions. In some respects it bears a resemblance to the task-switching paradigm
described above.

The WCST requires the test subject to sort two identical card decks of a
total of 120 cards into four stacks on the basis of the number, shape and color
of geometric objects printed on the cards. Feedback is provided by the examiner
after each match to allow the subject to figure out the correct classification rule.
When the subject has successfully sorted ten cards, the experimenter switches
the sorting rule without warning. Normal test subjects, above the age of twelve,
easily learn to switch to a new rule six times during the course of the experiment
while subjects with lesions in the prefrontal cortex are impaired at the task.

In the test of the algorithm on the WCST, the stimulus vector contained
twelve components that represented the features of the shown card. Color, num-
ber and shape were represented by four features each. There were three contexts
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Figure 2: Average rule changes per 120 cards in the Wisconsin Card Sorting Test.

Average of 30 runs.

coding for the sorting rule. shape, color or number, and four actions correspond-
ing to which of the four stacks where the card should be placed. The learning
rate was set to 0.1 for α+ and β− and to 0 for the other constants. The con-
text was selected at random and if the current sort is incorrect, another context
would be used for the next card.

The average rule changes per 120 cards was recorded as a measure of per-
formance (Fig. ??). After five training periods, or 600 cards, the average per-
formance of the algorithm is comparable to that of an average person.

3.4 Categorization in Context

In our final experiment we reproduced the context effects in a classical catego-
rization experiment (Labov, 1973). In this experiment, subjects were presented
pictures of containers as shown in Fig. ?? and were asked to categorize the ob-
jects. In some instances, either flowers or potatoes were placed in the containers.
When flowers were present, the object was more likely to be categorised as a
bowl than when the object was presented on its own, and when it contained
flowers, it was more likely to be categorized as a vase.

To see whether the algorithm would reproduce this result we coded the shape
of the containers in a single dimension roughly corresponding to height/width.
The shape along this dimension was subsequently coded in a distributed fashion
in 46 stimulus nodes using a gaussian activation covering five nodes around the
node for the current object shape. The learning rates were set to α+ = 0.1 and
β− = 0.2 and 0 for the other constants. There were three contexts coding for
‘flowers’, ‘potatoes’ and ‘nothing’ respectively, and two outputs corresponding
to the categories ‘bowl’ and ‘vase’.

A subset of 66 example stimuli where selected for the training and the system
was tested on the full set of 126 examples after three epochs. If the experiment
was run for longer than three epochs, overfitting would occur. The results are
shown in Fig. ??. The decision border between the two categories is shifted as
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Figure 3: Generalization curves for the two categories ‘vase’ and ‘bowl’ as functions

of the shape of the stimulus and the context. The decision border between the categories

moves when the context changes.

expected when the context indicates that the object is bowl or a vase.

4 Discussion

We have described how a standard reinforcement learning algorithm can be
changed to include a second contextual input that is used to modulate the
learning in the original algorithm. The new algorithm takes the context into ac-
count during relearning when the previously learned actions are no longer valid.
The algorithm was tested on a number of cognitive experiment and shown to
reproduce the learning in both a task switching test and in the Wisconsin Card
Sorting Test. In addition, the algorithm was able to learn a context sensitive
categorization of objects in the Labov experiment.

There are several areas where the model could be investigated further. One
important area for further study is the relation between stimulus and context
generalization that has only very briefly been touched upon here. How does the
context influence the generalization of an action to similar states and how does
the learning history influence this?

It is also interesting to relate the concept of a context to that of a goal. When
a sequential policy has been learned, a goal representation as part of the context
can be used to select actions that are consistent with that goal. On a smaller
scale, part of the context could be used to code preconditions for an action that
would be automatically exploited by the algorithm to exclude actions where the
precondition is not met.

As a cognitive model, context is closely related to working memory, a rela-
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tion that will be further investigated in the future. We will also compare the new
algorithm with other learning methods to evaluate to what extend the asym-
metric use of state and context enhances learning. The learning method will
also be formally analyzed.
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