

This is an author produced version of a conference paper presented at the
International Teletraffic Congress - ITC-16, Edinburgh International

Conference Centre, United Kingdom, 7-11 June, 1999. This paper has
been peer-reviewed but may not include the final publisher proof-

corrections or pagination.

Citation for the published paper:
Maria Kihl, Niklas Widell and Christian Nyberg (1999). Load balancing
strategies for TINA networks. In: Teletraffic engineering in a competitive
world : proceedings of the International Teletraffic Congress - ITC-16,

Edinburgh International Conference Centre, United Kingdom, 7-11 June,
1999. ISBN: 0-444-50268-8. Publisher: Elsevier

Load balancing algorithms for TINA networks

Maria Kihl, Niklas Widell and Christian Nyberg

Department of Communication Systems, Lund Institute of Technology,
BOX 118, 221 00 Lund, Sweden

TINA is an open, object oriented, distributed telecom architecture, with many concepts taken directly
from the latest computer research. In TINA, instances of the same object type can be placed on different
physical nodes. Therefore, the network performance can be improved by introducing load balancing
algorithms. These algorithms should distribute the traffic between the object instances in such way that
the overall throughput and setup time are improved. We discuss and examine a number of simple
distributed load balancing algorithms, that do not require any extra load information exchange between
the nodes. The results show that it is difficult to find an algorithm that behave well for all traffic
situations. The main problem is that the algorithms have not enough information about the load situation
on the different nodes, since no load information is exchanged between the nodes. This problem can be
solved by adding the feasibility of load status information to the TINA protocols.

1. Introduction

The trend in modern telecommunication systems is to provide a whole array of services, such as
Freephone and Video conferences. To support these services, computers are integrated in the networks,
adding for example central databases and allowing more complex service logic to be implemented. The
Intelligent Network (IN) is an attempt to create a set of reusable components that can be connected to
perform a new service. IN uses special nodes, called Service Control Points (SCPs), that are capable of
executing complex services. If a service cannot be performed locally in the switch, it is passed on to the
SCP. However, INs are not flawless. For instance, SCPs are potential bottlenecks and management of
the network is difficult. Further, there is little vendor independence, which is an important factor in
today’s deregulated telecom market.

To solve these problems, the Telecommunication Information Networking Architecture (TINA) is
being developed. TINA is an open, object oriented, distributed telecom architecture, with many concepts
taken directly from the latest computer research. TINA is intended to be a good platform for service
development in a rapidly expanding telecom environment. TINA is developed by a consortium which
includes network operators and telecommunication and computer equipment suppliers. It is based on the
Common Object Request Broker Architecture (CORBA), developed by the Object Management Group
(OMG), that is a standard for object distribution and communication in computer networks. Services that
may be provided by a TINA system include voice-based services, interactive multi-media services,
information services and management services.

In TINA, instances of the same object type can be placed on several nodes. Since the traffic thereby
must be distributed among the object instances, good load balancing algorithms could increase the
network performance. The main objectives of a load balancing algorithm is to improve the throughput
and lower the setup times by distributing more traffic to lightly loaded nodes than to nodes with a high
load.

Several papers have discussed load balancing and load sharing in computer networks. However, none
of these papers examine load balancing in TINA networks. Kremien and Kramer [6] discussed load

sharing algorithms for distributed systems. Kunz [7] examined how the network nodes should exchange
load status information to be used in load balancing schemes. Jordan and Varaiya [8] investigated call
admission control policies for communication networks that support several services. Here, it is assumed
that the control scheme knows the status of all network resources. Ramakrishnanet. al. [9] defined a
optimization problem for how to assign a number of tasks to a number of processors in order to
minimize, for example, the maximum completion time.

This paper extends the work by Kihlet. al. [14][15] and it is partly based on the Master Thesis by
Widell [18]. We discuss and examine feasible load balancing algorithms for TINA. The algorithms do
not require any load status communication between the nodes, since they only consider the number of
rejected signals. The investigations show that the algorithms behave differently depending on the traffic
situation. Therefore, we also have a discussion about alternative algorithms that require some load status
communication between nodes. Such an algorithm should have a good behaviour during all traffic
situations.

2. TINA

The TINA architecture provides a set of concepts and principles to be applied in the development of
software for telecommunication systems (see Chapman and Montessi [1]). TINA is very comprehensive.
In order to be a fully distributed architecture, TINA contains a number of domains. The objects in two
different domains are logically separated from each other. One domain is theretailer domain, which is
intended to contain components necessary to create a “market place” for services provided in theservice
provider domain. Theuser domain contains the users of services and items closely related to the user.

Further, there are in TINA three types of sessions, that perform a set of activities during a specific
period in time. TheAccess session deals withauthentication and authorization of users, support of users’
preferences, support for mobility and control of service interactions.TheService session provides users
with an environment to support the execution of a service. Finally, theCommunication session supports
the activities needed to establish the communication between users.

Theservice component (SC)is an abstraction that encapsulates data and processing.It consists of a
number of computational objects and provides a set of capabilities that can be used by other objects
through two types of interfaces; thestream interface and theoperational interface. The stream interface
connects communication endpoints producing or consuming information flows, for example video or
voice bitstreams. The operational interface deals with operations and requests from one object to
another.

The TINA-consortium has defined a set of generic service components. Here follows a list of the
more important ones:

• Communication Session Manager (CSM): The computational counterpart of the Communication
session.

• Service Session Manager (SSM): Supports the capabilities that are shared among the users in a Serv-
ice session.

• User Session Manager (USM): The software representation of a user in the retailer domain.
• Initial Agent (IA) and User Agent (UA): Act on behalf of a user within the network.
• Provider Agent (PA): Is the user’s point of contact with the provider.
• User Application (UAP): Represents in the user domain the application that the end-user needs to

use a service.
• Terminal CSM (TCSM): Supports the Communication Session in the user domain.
• Service Factory (SF): Creates instances of SSMs and USMs.
• Generic Session End Point (GSEP): Connects the UAP and the USM.

A TINA application consists of computational objects that interact with each other. One feature in
TINA is that an object does not have to know on which node another object is implemented. Instead,
logical addresses are used in the communication. To accomplish this, TINA has a Distributed Processing
Environment (DPE) that is used for the communication between objects (see Graubmann et al. [2]). The
DPE knows on what nodes the objects are placed on. This means that from the computational objects’
point of view, there is no difference between local and remote communication.

The DPE supports a number of services that are available for all applications. Here follows some
examples of these services:

• Trading service: Helps computational objects to find appropriate objects to interact with.
• Notification service: Sends broadcasted messages, that may be picked up by any listening computa-

tional object.
• Performance monitoring service: Allows operators to monitor network performance.

3. A TINA service

Minetti and Utsunomiya [3] describe a simple TINA service in which two end-users exchange data
via stream interfaces on the users’ application objects (for example, an ordinary telephone call). In this
paper the same service is used in the investigations. This section contains a description of how the
service is modelled in the investigations. In the model only the setup of the service is considered.

The service uses ten different service components belonging to the user domain and the provider
domain. The user domain components are Provider Agent (PA), User Application (UAP), Generic
Session End Point (GSEP) and Terminal Communication Session Manager (TCSM). The components
in the provider domain are User Agent (UA), Initial Agent (IA), User Session Manager (USM), Service
Session Manager (SSM), Communication Session Manager (CSM) and Service Factory (SF).

In the investigations a simplified SC model is used. First, the SCs in the user domain are modelled as
one SC called USER. The reason for this is that the user domain components will probably be placed on
the same physical node close to the users. Second, the IA and PA are modelled as one SC called AGENT.
The other SCs are called the same as before, that is USM, SSM, CSM and SF.

The setup of a call (that is, the setup of the stream interface) consists of a number of signals being
exchanged between the objects. Sometimes, the objects have to use a so called DPE service, for example
the trader service. Table 1 contains the number of signals and DPE service requests that is needed to
setup a call.

4. Network model

The network consists of K nodes that communicate via a signalling network. We assume that the
network is very fast which means that the switching times are negligible. The network supports the
service described in Section 3. Each node handles a number of SCs. The communication between the
SCs is performed via a DPE that is placed on each node. A particular SC type can be placed on several
nodes. In TINA, the computational objects in a service component can be placed on different nodes.
However, we assume that all objects in an SC are placed on the same node. Further, SCs do not migrate
in the network, since we assume that a steady state concerning the placement of SCs has been reached.
Figure 1 shows a network with three nodes and three types of SCs.

New service requests arrive at the network in a Poisson stream. The requests are evenly distributed
among the USER objects. When a USER object receives a service request, the setup sequence starts. The
setup sequence consists of a number of signals that are sent between the SCs (see Section 3). Each signal
generates a job that must be processed on the node on which the receiving SC is placed. After the
processing, the next signal in the setup sequence is transmitted.

The nodes are modelled as single server systems with infinite FIFO job queues. We assume that they
have unlimited memory capacity. The jobs belonging to the SCs on a node are executed concurrently
with a simple time-sharing algorithm. The execution time for a job depends on what kind of SC it
belongs to. If the SC uses a DPE service, the execution time is multiplied with a certain factor.

The transmission times are modelled as an added execution time in the sending and receiving nodes.
These times represent the packing and unpacking of protocols. We assume that the DPE is intelligent
enough to be able to separate between local and remote communication. Therefore, the transmission
time is zero if a signal is sent between two SCs that are placed on the same node. Note that the SCs
themselves have no knowledge about the physical addresses. Only the DPE knows on which network
node a particular SC is placed.

Each node has an internal overload control scheme for protecting themselves. The objective of the
internal overload control scheme is to keep the load on the node at a target load, ρt . The scheme
measures the average load on the node during intervals of length τ seconds. If the measured load is above
the target load, only a certain fraction of the incoming signals is accepted. The acceptance probability
during interval k, p(k), is calculated as follows. Let the measured load during interval k-1 be ρ(k-1). If
ρ(k-1) > ρt then p(k)=p(k-1)-step, else p(k)=p(k-1)+step. p(k) can never be less than zero or greater than
one.

One problem with an internal control is that it is not very efficient (see Kihl [15] or Houck et. al. [11]).
In order to achieve a high network throughput, calls should be rejected as early as possible. If a call is
rejected late, much processing capacity is wasted. Therefore, in order to improve the internal control
scheme a call can be rejected only the first time it uses a service component. If a call has had one
accepted signal to a particular SC, all other signals to this SC are accepted. In this way, the overall
network throughput is improved. However, there will still be much rejection in the network, since a call
consists of signals to several different SCs. To achieve a maximum throughput, a global control scheme
which tries to optimise the overall network performance should be implemented. We have decided not
to implement such a control scheme, since this scheme would interfere with the load balancing
algorithms that are the main concern of this article.

5. Load balancing algorithms

In TINA networks, multiple instances of a service component can be placed on different nodes. One
result of this is the feasibility of load balancing. If one node suffers from heavy traffic, the other nodes
can help this node by sending the signals elsewhere. The main objectives of a load balancing algorithm
are to improve the throughput and the setup time in the network.

Since load balancing has not yet been considered during the TINA development, it is not certain how
much a load balancing algorithm might know about the network. Therefore, we have investigated a
number of simple load balancing algorithms. We have decided to place the load balancing mechanism

Table 1
Signalling model

USER AGENT USM SSM CSM SF

Number of normal
signals

10 9 11 7 2 5

Number of DPE
service requests

0 4 0 1 0 0

Figure 1. Network with three nodes and three SC types

in the DPE on each node, since it is only the DPE that has knowledge about the other nodes. The DPE
uses the algorithm to find an appropriate SC instance. The algorithm is used only the first time a signal
is sent to a particular SC type during the setup sequence. The next time a signal in the same setup
sequence is sent to this SC, the same SC instance is used.

The algorithms use measurements to decide the current load status of the nodes. These measurements
are performed during time intervals, called control intervals, of lengthτ seconds. At the end of each
control interval, the load status is updated. The algorithms are described below.

5.1 Random
In this algorithm, an SC is chosen randomly, with the same probability for each node that contains

instances of the particular SC type. This algorithm is of course very simple to implement in the network,
and can be considered as a “default” algorithm.

5.2 Shortest queue
In this algorithm, the DPE selects the SC instance that is placed on the node with the shortest job

queue. The shortest queue algorithm can be considered as an optimal algorithm concerning the setup
time. However, it would be very difficult to implement this algorithm in a real network, since the DPE
will not have this knowledge about other nodes. Therefore, this algorithm is only used for comparison
with the other three strategies.

5.3 Acceptance probabilities
In this algorithm, each node uses two metrics:Ntot(i) andNrej(i), whereNtot(i) stands for the number

of signals sent to nodei andNrej(i) stands for the number of signals sent to nodei that has been rejected.
At the end of the control intervals, each node estimates the acceptance probabilities for the other nodes.
Let A(i) denote the estimated acceptance probability for nodei. A(i) is estimated as

The node chooses an SC instance on nodei with the probabilityP(i). P(i) is given by

whereV is the set of nodes that contain the particular SC type.
In order to delete the effects due to statistical fluctuations,P(i) is low pass filtered. IfPk(i) is the

SC 3
SC 2

Node 2

SC 2

DPE

Node 3

Signalling network

SC 3SC 2

DPE

Node 1

SC 2SC 1

DPE

SC 3

A i()
Ntot i() N–

rej
i()

Ntot i()
--=

P i() A i()
A i()

i V∈
∑
---------------------=

estimated probability in thekth interval, the low pass filtered probability,P*(i), is calculated as

wherePk-1
*(i) is the low pass filtered probability from the previous interval.

5.4 Load status values
In this algorithm, each node uses a metricL(i), which denotes the load status of nodei. The load status

is updated at the end of the control intervals. The update is performed as follows. If there have been any
rejected messages from nodei, L(i) is decreased with one. Otherwise,L(i) is increased with one. L(i) can
never be less thanLmin and more thanLmax.

The node chooses an SC instance on nodei with the probabilityP(i). P(i) is given by

whereV is the set of nodes that contain the particular SC type.

6. Investigations

The load balancing algorithms were examined in a number of simulation cases. The main objective
of the investigations was to find better load balancing algorithms than the Random algorithm. Therefore,
all results should be compared with the results for the Random algorithm. The parameters used in the
simulations are shown in Table 2.

6.1 Execution times
It is of course very hard to estimate appropriate execution times for the SCs, since there are no TINA

systems in operation today. The execution times depend on the amount of work related to each signal.
If the signal requires a DPE service, even more execution time is needed. We have decided to use the
following execution times. Signals belonging to USER, AGENT, USM and SSM objects have an
execution time of 1 ms. Signals belonging to CSM objects require 4 ms, since we assume that the CSM
perform more complex tasks than the previous objects. Further, signals belonging to SF objects require
an execution time of 2 ms. If the SC uses a DPE service, the execution time of this signal is multiplied
with five. Further, the transmission times are modelled as extra execution times in the sending and
receiving nodes. This extra execution time is 0.25 ms both for the sending and receiving node.

Table 2
Parameter settings

Value

Number of nodes,K 10

Control interval length,τ 1 second

Parameter in control scheme,step 0.05

Parameter in low pass filter, α 0.2

Minimum load status value,Lmin 1

Maximum load status value,Lmax 30

P∗ i() α Pk i()⋅ 1 α–() Pk 1–
∗ i()⋅+=

P i() L i()
L i()

i V∈
∑
---------------------=

6.2 Service component distributions
Since there can be several instances of each SC in a TINA network, the instances must be distributed

among the nodes in some way. We used two SC distributions, onebalanced distribution in which the
load was evenly shared among the nodes and onefocused distribution in which node 6 received more
load than the other nodes.

If nodes containing the USER component become overloaded, calls will be rejected before they enter
the network. This means that they are rejected before the load balancing can have any effect. Therefore,
nodes 1-5 only contain the USER component. Table 3 shows the SC types on each node.

6.3 Traffic profiles
Two basic traffic profiles were used in the simulations. The first profile isLow traffic, in which the

arrival rate is so low that no nodes are overloaded in the network.This means that all calls that arrive at
the network are accepted. The second profile isHigh traffic, in which the arrival rate is high enough to
cause overload in one or several nodes. This means that some calls will be rejected.

In the balanced distribution, the load is evenly shared among the nodes. This means that a network
using this distribution can have a higher arrival rate before it becomes overloaded than a network using
the focused distribution. Therefore, the actual arrival rates for Low and High traffic depend on the SC
distribution. The arrival rates are shown in Table 4.

6.4 Simulation cases
The load balancing algorithms described in Section 5 were examined for all combinations of

algorithms and traffic profiles. Each case was simulated with both the balanced and focused SC
distributions.

7. Results and discussion

This section contains the results from the simulations. Since the confidence intervals are small for all
results, we have decided not to shown these. The resulting throughputs and setup times must be
considered together, since a low throughput usually results in a low setup time for the calls that are
finished without being rejected. Therefore, an algorithm with a low setup time is not always the best
algorithm.

Table 3
Service component distributions

USER AGENT USM SSM CSM SF

Balanced distribution 1-5 6-8 6-8 9 and 10 9 and 10 9 and 10

Focused distribution 1-5 6-8 6-8 6 and 9 6 and 10 6 and 10

Table 4
Arrival rates (calls/second)

Balanced distribution Focused distribution

Traffic profile Low High Low High

Arrival rate 29 67 25 60

7.1 Results with the balanced SC distribution
The results for the balanced SC distribution are shown in Table 5. During Low traffic, all cases have

100% throughput. However, the Shortest queue algorithm has the lowest setup times. During High
traffic, the algorithm with Acceptance probabilities and the Random algorithm behave similarly. The
Shortest queue algorithm has low setup times, though the throughput is lower as well.

During High traffic, the algorithm with Load status values behaves strangely. The throughput is
rather low, which usually result in shorter setup times as well. However, the setup times are much higher
than for the other algorithms. The reason for this is that, compared to the other algorithms, the calls are
rejected later in the setup phase. This results in more wasted capacity which means lower throughput and
longer setup times for the calls that are finished. This means that the algorithm with load status values
cannot be considered good when the SC distribution is balanced, since it behave worse than the Random
algorithm.

7.2 Results with the focused SC distribution
The results for the focused SC distribution are shown in Table 6. Here, the difference between the

algorithm with Acceptance probabilities and the algorithm with Load status values is seen more clearly.
In the case with High traffic, the node with a high load will get a small load status value in the other
nodes. The nodes with a low load will get high load status values, since they never reject any messages.
Thereby, these nodes will receive relatively more traffic and this helps the node with high load (node 6).
In the algorithm with Acceptance probabilities, the acceptance probabilities are compared for each node.
Since, node 6 has about 90% acceptance probability, and the nodes have about 100% acceptance
probability, there is not much difference, which means that the traffic will be distributed rather evenly
among the nodes. Therefore, the algorithm with Acceptance probabilities and the Random algorithm
have a similar behaviour during high traffic. During low traffic, all three algorithm behave similarly.
This because the nodes reject very few messages, which means that the algorithms will distribute the
traffic evenly among the nodes.

Further, the Shortest queue algorithm minimises the setup time, however it cannot maintain a high
throughput in the case with high traffic. This is probably due to the fact that it is not certain that a node
with a short queue has a low load. During low traffic the Shortest queue algorithm is definitely the best
algorithm since it has both the highest throughput and the lowest setup time.

Table 5
Results for the balanced SC distribution

Low Traffic High traffic

Throughput
Setup time
(sec)

Throughput
Setup time
(sec)

Random 100% 0.13 75% 0.31

Shortest queue 100% 0.11 70% 0.20

Acc. prob. 100% 0.13 75% 0.31

Load status 100% 0.12 70% 0.48

8. Alternative load balancing algorithms

As can be seen in the results it is feasible to improve the network performance in TINA by
introducing simple load balancing algorithm. The algorithms we have suggested need no extra
communication between the nodes, since they only consider the rejected messages from other nodes.
However, one problem with these types of algorithms is that the nodes have no complete knowledge
about the traffic situation (see, for example Kihl and Nyberg [13]). If for example, a node has not sent
any messages to a specific node for a long time, it has no knowledge about the load situation on that
specific node. Therefore, it is very difficult to develop a load balancing algorithm that behave well for
all load situations if we assume that the nodes cannot exchange any load status information.

However, the main problem with these simple algorithms is that they only work when there is
overload in the network. If there is a normal load situation in the network, that is no overload, there are
no rejected messages to use in the load balancing algorithms. This means that the traffic is distributed
evenly among the nodes. However, also during normal load situations it would be feasible to improve
the setup times by sending relatively more traffic to lightly loaded nodes. This requires that the nodes
exchange load information, which means that it is necessary to add the feasibility of load status
communication to the protocols used in TINA. One simple way to implement this is to use a load status
field in all messages. This is already implemented in the Automatic Congestion Control (ACC) used in
telephone networks (see ITU-T [16]). Here, the node adds its load status to all messages it sends to the
other nodes. In ACC this load status is defined to be zero, one or two, where zero means that there is no
overload and two means that it is severe overload. Of course, it is better to use more load status values,
for example 0-10 (Northcote and Rumsewicz [12]). The other nodes could use this load status value to
update the parameters in a load balancing algorithm.

9. Conclusions

In TINA, instances of the same service component can be placed on different physical nodes.
Therefore, the network performance can be improved by introducing load balancing algorithms. These
algorithms should distribute the traffic among the SC instances in such way that the overall throughput
and setup time are improved.

We have examined four simple load balancing algorithms. The first algorithm randomly distributes
the traffic, with the same probability for all instances. The second one sends a call to the node with the
shortest job buffer. The third and fourth algorithms use the number of rejected messages to decide an

Table 6
Results for the focused SC distribution

Low Traffic High traffic

Throughput
Setup time
(sec)

Throughput
Setup time
(sec)

Random 97% 0.14 45% 0.26

Shortest queue 100% 0.11 67% 0.18

Acc. prob. 98% 0.14 49% 0.25

Load status 98% 0.14 76% 0.30

appropriate traffic distribution. All algorithms except the second one can easily be implemented in a
TINA network, since they do not require any extra communication between the nodes.

The results show that it is difficult to find a simple algorithm that behave well for all traffic situations.
The main problem is that the algorithms have not enough information about the load situation on the
different nodes, since no load information is exchanged between the nodes. This problem can be solved
by adding the feasibility of load status information to the TINA protocols.

References

1. M. Chapman and S. Montesi, “Overall Concepts and Principles of TINA”, TINA Consortium, 1995.
2. P. Graubmann, W. Hwang, M. Kudela, K. MacKinnon, N. Mercouroff and N. Watanabe,

“Engineering Modelling Concepts (DPE Architecture)”, TINA Consortium, December 1994
3. R. Minetti and E. Utsunomiya, “The TINA Service Architecture”, Proceedings of the TINA

Workshop at TINA’96 Conference, Heidelberg, Germany, 1996
4. R. Minerva, “TINA Service Architecture: some Issues in Service Control”, Proceedings of the

TINA’95 Conference, Melbourne, Australia, 1995.
5. L. Kristiansen, “TINA Service Architecture”, version 5.0, TINA Consortium, 1997.
6. O. Kremien and J. Kramer, ”Methodical Analysis of Adaptive Load Sharing Algorithms”,IEEE

Trans. on Parallel and Distributed Systems, Vol. 3, No. 6, Nov. 1992.
7. T. Kunz, “The Influence of Different Workload Descriptions on a Heuristic Load Balancing

Scheme”,IEEE Trans. on Software Engineering, Vol.17, No.7, July 1991.
8. S. Jordan and P. Varaiya, “Control of Multiple Service, Multiple Resource Communication

Networks”, Proceedings of Infocom’91, Bal Harbour, Florida, USA, 1991.
9. S. Ramakrishnan, I. Cho and L.A. Dunning, “A Close Look at Task Assignment in Distributed

Systems”, Proceedings of Infocom’91, Bal Harbour, Florida, 1991.
10.A. Parhar and M.P Rumsewicz, “A Preliminary Investigation of Performance Issues Associated with

Freephone Service in a TINA consistent network”, Proceedings of the TINA’95 Conference,
Melbourne, Australia, 1995.

11.D.J. Houck, K.S Meier-Hellstern, F. Saheban and R.A. Skoog, “Failure and Congestion Propagation
Through Signalling Controls”, Proceedings of the 14th International Teletraffic Congress, Juan-les-
Pines, France, 1994.

12.B. Northcote and M. Rumsewicz, “An Investigation of Tandem Overload Control Issues”,
Proceedings of the International Conference on Communications, Seattle, USA, 1995.

13.M. Kihl and C. Nyberg, “Investigation of overload control algorithms for SCPs in the Intelligent
Network”, IEE Proceedings, Vol. 144, No. 6, Dec 1997, pages 419-424.

14.M. Kihl, C. Nyberg, H. Warne and P. Wollinger, “Performance Simulation of a TINA Network”,
Proceedings of Globecom’97, Phoenix, Arizona, USA, 1997.

15.M. Kihl, “On Overload Control in TINA Networks”, Proceedings of the 6th IEE Conference on
Telecommunications, Edinburgh, United Kingdom, 1998.

16. ITU-T, Recommendation Q.723 “Specifications of Signalling System Number 7”.
17. ITU-T, Recommendation X.900, “Basic Reference Model for Open Distributed Processing (RM-

ODP)”, 1993.
18.N. Widell, “STINA - Performance Simulation of TINA Networks”, Master Thesis, Dep. of

Communication Systems, Lund Institute of Technology, Sweden, 1998.

