

This is an author produced version of a paper presented at the
17th Nordic Teletraffic Seminar (NTS 17), Fornebu, Norway,

25-27 August, 2004.
This paper may not include the final

 publisher proof-corrections or pagination.

Citation for the published paper:
M. Andersson, M. Kihl, A. Robertsson, B. Wittenmark, 2004,

"Admission Control of the Apache Web Server",
Seventeenth Nordic Teletraffic Seminar, NTS 17, Fornebu, Norway,

25-27 August 2004.
ISBN: 82-423-0595-1. Publisher: Fornebu : Telenor.

http://www.telecom.lth.se/panda/personnel/personal_pages/mikael.andersson/index.html
http://www.telecom.lth.se/panda/personnel/personal_pages/maria.kihl/
http://www.control.lth.se/~andersro/
http://www.control.lth.se/~bjorn/

Admission Control of the Apache
Web Server

M. Andersson, M. Kihl, A. Robertsson and B. Wittenmark.

Abstract

Web sites are exposed to high rates of incoming requests. The servers may become
overloaded during temporary traffic peaks when more requests arrive than the server is
designed for. An admission control mechanism rejects some requests whenever the arriving
traffic is too high and thereby maintains an acceptable load in the system. This paper presents
how admission control mechanisms can be designed with a combination of queueing theory
and control theory. In this paper we model an Apache web server as a G/G/1-system and then
design a PI-controller, commonly used in automatic control, for the server. The controller
has been implemented as a module inside the Apache source code. Measurements from the
laboratory setup show how robust the implemented controller is, and how it correspond to
the results from the theoretical analysis.

I. INTRODUCTION

One problem with web servers is that they are sensitive to overload. The servers may
become overloaded during temporary traffic peaks when more requests arrive than the server
is designed for. Because overload usually occurs rather seldom, it is not economical to
overprovision the servers for these traffic peaks, instead admission control mechanisms can
be implemented in the servers. The admission control mechanism rejects some requests
whenever the arriving traffic is too high and thereby maintains an acceptable load in the
system. Traditionally, server utilization or queue lengths have been the variables mostly used
in admission control schemes. For web servers, the main objective of the control scheme
is to protect it from overload. As long as the average server utilization or queue length is
below a certain level, the response times are low. One well-known controller in automatic
control is the PID-controller, which enables a stable control for many types of systems (see,
for example Åström, [1]). In order to get the system to behave well it is necessary to decide
proper control parameters. Therefore, before designing the PID-controller, the system must
be analyzed so that its dynamics during overload are known. This means that the system must
be described with a control theoretic method. If the model is linear, it is easily analyzed
with linear control theoretic methods. However, a queueing system is both nonlinear and
stochastic. The main problem is that nonlinear models are much harder to analyze with
control theoretic methods. Very few papers have investigated admission control mechanisms
for server systems with control theoretic methods. Abdelzaher ([2], [3]) modeled the web
server as a static gain to find optimal controller parameters for a PI-controller. A scheduling
algorithm for an Apache [4] web server was designed using system identification methods
and linear control theory by Lu et al [5]. Bhatti [6] developed a queue length control with

Maria Kihl and Mikael Andersson are with the Department of Communication System, Lund Institute of
Technology, Box 118, SE-221 00 Lund, Sweden, {maria|mike}@telecom.lth.se, Anders Robertsson
and Björn Wittenmark are with the Department of Automatic Control, Lund Institute of Technology, Box 118,
SE-221 00 Lund, Sweden, {andersro|bjorn}@control.lth.se

priorities. By optimizing a reward function, a static control was found by Carlström [7]. An
on-off load control mechanism regulating the admittance of client sessions was developed by
Cherkasova [8]. Bhoj [10] used a PI-controller in an admission control mechanism for a web
server. However, no analysis is presented on how to design the controller parameters. Papers
analyzing queueing systems with control theoretic methods usually describe the system with
linear deterministic models. Stidham Jr [11] argues that deterministic models cannot be used
when analyzing queueing systems. Until now, no papers have designed admission control
mechanisms for server systems using nonlinear control theory. In this paper we implement
an admission control mechanism for the Apache web server. Measurements in the laboratory
setup show how robust the implemented controller is, and that it corresponds to the results
from the theoretical analysis. Section 2 shows how this can be applied on a web server. In
section 3, we describe a nonlinear control theoretic model of an admission control mechanism
for a web server. We give an analysis of the closed loop system in section 4. The control
theoretic model is used to design and implement an admission control mechanism for the
Apache web server. The measurements are shown in section 5, section 6 discusses the results
and section 7 concludes the work.

II. INVESTIGATED SYSTEM

The system we have investigated in this work, is a web server with an admission control
mechanism. The web server is Apache, described below.

A. Web servers

A web server like Apache, contains software that offers access to documents stored on
the server. Clients can browse the documents in a web browser. The documents can be for
example static Hypertext Markup Language (HTML) files, image files or various script files,
such as Common Gateway Interface (CGI), Java scripts or Perl files. The communication
between clients and server is based on HTTP [12]. An HTTP transaction consists of three
steps: TCP connection setup, HTTP layer processing and network processing. The TCP
connection setup is performed through a threeway handshake, where the client and the server
exchange TCP SYN, TCP SYN/ACK and TCP ACK messages. Once the connection has been
established, a document request can be issued with an HTTP GET message to the server.
The server then replies with an HTTP GET REPLY message. Finally, the TCP connection
is closed by TCP FIN and TCP ACK messages in both directions. Apache, which is a well-
known web server and widely used, is multi-threaded. This means that a request is handled
by its own thread or process throughout the life cycle of the request.

B. Admission control

Since continuous control is not possible in computer systems, time is divided into control
intervals of length h seconds. At the end of interval k, that is when the time is kh, the
controller calculates the desired admittance rate for interval [kh, kh + h], denoted u(kh),
from the measured average server utilization during the interval, ρ(kh), and the reference
value ρref . There are three main parts in our admission control architecture, see Figure 1:

Gate. The Gate module gets notified whenever the web server gets an incoming request.
It takes a decision whether to admit the request and then notifies the web server of the

gate system

controller monitor

σλ u

x

u

xref

Fig. 1. An admission control mechanism

result. In this paper we use the token bucket algorithm to reject those requests that cannot
be admitted. New tokens are generated at a rate ofu(kh) tokens per second during time
interval [kh, kh+ h]. If there is an available token upon the arrival of a request, the request
consumes the token and enters the web server. If there are no available tokens, the request is
rejected. When a request is rejected, the TCP socket to the client is closed. Rejected requests
are assumed to leave the system without retrials.

Monitor. The Monitor thread constantly samples the server utilization every control interval.
The server utilization is calculated as one minus the fraction of time an idle process has
been able to run during the last control interval. The idle process’ priority level is set to
the lowest possible, which means that it only runs whenever there is no request requiring
CPU work. This way of measuring the load on the CPU results in a quantization effect in
server utilization. The reason to this is that the operating system where the admission control
mechanism runs has a certain time resolution in function calls regarding process uptimes.
This means that the control interval cannot be chosen arbitrary. It has to be long enough not
to be affected by the time resolution effects, and short enough so that the controller responds
quickly.

Controller. The Controller is a PI-controller. The Controller’s output is forwarded to the
Gate module. The Controller design is discussed more extensively in section 4.

III. C ONTROL THEORETICMODEL

We use the discrete-time control theoretic model of web server developed by Kihl et
al. [14]. We assume that the system can be modeled as a GI/G/1-system with an admission
control mechanism. Kihl et al. showed that the queueing model is a good model for admission
control purposes. The input to the system is the actual admittance rate,ū, whereas the output
is the server utilization,ρ. The model is aflow or liquid model in discrete-time. The model
is an averaging model in the sense that we are not considering the specific timing of different
events, arrivals, or departures from the queue. We assume that the sampling period,h, is
sufficiently long to guarantee that the quantization effects around the sampling times are
small. The model is shown in Figure 2. The system consists of an arrival generator, a
departure generator, a controller, a queue and a monitor.

There are two stochastic traffic generators in the model. Thearrival generator feeds
the system with new requests. The number of new requests during intervalkh is denoted

α(kh). α(kh) is an integrated stochastic process over one sampling period with a distribution
obtained from the underlying interarrival time distribution. If, for example, the arrival process
is Poisson with meanλ, thenα(kh) is Poisson distributed with meanλh. The departure
generator decides the maximum number of departures during intervalkh, denotedσmax(kh).
σmax(kh) is also a stochastic process with a distribution given by the underlying service
time distribution. If, for example, the service times are exponentially distributed with mean
1/µ, then σmax(kh) is Poisson distributed with meanµh. It is assumed thatα(kh) and
σmax(kh) are independent from between sampling instants and uncorrelated to each other.
The gate is constructed as a saturation block that limitsu(kh) to be

ū(kh) =




0 u(kh) < 0
u(kh) 0 ≤ u(kh) ≤ α(kh)
α(kh) u(kh) > α(kh)

The queue is represented by its statex(kh), which corresponds to the number of requests
in the system at the end of intervalkh. The difference equation for the queue is given by

x(kh + h) = f(x(kh) + ū(kh) − σmax(kh))

where the limit function,f(w), equals zero ifw <0 andw otherwise. The limit function
assures thatx(kh + h) ≥ 0. When the limit function is disregarded then the queue is a
discrete-time integrator.

The monitor must estimate the server utilization since this is not directly measurable in
the model. The server utilization during intervalkh, ρ(kh), is estimated as

ρ(kh) = min(
ū(kh) + x(kh)
σmax(kh)

, 1)

The objective of thecontroller is to minimize the difference between the server utilization
during intervalkh, ρ(kh), and the reference value,ρ ref . The control law is given by the
transfer function,Gc(z).

IV. STABILITY ANALYSIS OF CLOSED LOOP SYSTEM

In this section we will consider the stability properties of the controlled server node,
when using a PI-controller for admission control. First we will consider an approach based
on a linear queue model and compare with the admission control parameters derived from
nonlinear analysis. The analysis is based on the Tsypkin/Jury-Lee stability criterion (discrete-
time versions of the Popov criterion) [15]. In the analysis only the dominating’queue-
limitation’ ϕ will be considered. See Section VI for comments on the saturation.

A. Linear design (neglecting saturations)

Neglecting the nonlinearities in Figure 2 (assumingϕ(z) = z, i.e., linear and no saturation)
and using a standard PI-controllerGc(z) = K(1 + 1

Ti
· h

z−1) will result in the closed loop
dynamics

Gc =
Gc(1 +Gq)Gm

1 +Gc(1 +Gq)Gm

=
z ·K/σ (z − 1 + h/Ti)

z · (z2 + (K/σ − 2)z + (1 −K/σ +Kh/(σTi))

(1)

Fig. 2. Discrete-time model with controller saturation and saturationϕ for positive queue lengths.

whereGq andGm represent the queue and monitor dynamics, respectively. To match the
characteristic polynomial

z · (z2 + (K/σ − 2)z + (1 −K/σ +Kh/(σTi)) (2)

with a desired characteristic polynomial

z · (z2 + a1z + a2) (3)

we get the control parameters

K = (2 + a1)σ, Ti = h (2 + a1)/(1 + a1 + a2)

Using the parameters of the PI-controller it is thus possible to make an arbitrary pole-
placement, except for the polez = 0, which corresponds to a time delay. A simplified linear
analysis will thus predict stability for the closed loop for all coefficients{a1, a2} belonging
to the stability triangle

{ a2 < 1, a2 > 1 + a1, a2 > 1 − a1 }, (4)

see [1].

B. Model with queue limitation

Consider the admission control scheme in Figure 3 where we have introduced the states
{x1, x2, x3} corresponding to the queue length, the (delayed) utilizationρ and the integrator
state in the PI-controller, respectively.

x

lambda

fi

ρref

ρ(kh)

∑∑∑ −
−

1/σ

σ

1/z

1/z

ϕ(·)

Gc(z)
u(kh)

A B

−1 Gz

−yz

yz

uz

φ

Fig. 3. Decomposition into a linear block (Gz) and a nonlinear block (φ) under negative feedback.

The state space model will be

x1(kh+ h) = ϕ (u+ x1(kh) − σ)

x2(kh+ h) =
1
σ

(u+ x1(kh))

x3(kh+ h) = Kh/Ti(ρref − x2(kh)) + x3(kh)

(5)

where u = K(ρref −x2)+x3 and ϕ(·) is the saturation function in Figure 3. By introducing
the forward shift operator and leaving out the time arguments, we get

q x1 = ϕ (K(ρref − x2) + x3 + x1 − σ) (6)

q x2 =
1
σ

(K(ρref − x2) + x3 + x1) (7)

q x3 = Kh/Ti (ρref − x2) + x3 (8)

The equilibrium for the system (6–8) satisfies qx = x.
From (8) we get

x3 = Kh/Ti (ρref − x2) + x3 ⇒ xo
2 = ρref

Inserting this in (6) and (7) we get

xo
1 = ϕ(xo

3 + xo
1 − σ)

xo
2 = ρref =

1
σ

(xo
3 + xo

1)

⇒
xo

1 = ϕ (σ(ρref − 1))

(9)

As ρref ∈ [0, 1] and using the fact that ϕ(z) = 0, ∀z ≤ 0 we get



xo
1 = 0

xo
2 = ρref

xo
3 = σxo

2 = σρref

(10)

y y

ϕ
φ

σ(1 − ρref)

Fig. 4. φ(y) = ϕ(y − σ(1 − ρref)) where σ > 0 and ρref ∈ [0, 1].

By introducing the change of variables


z1 = x1 − 0 x1 = z1
z2 = x2 − ρref or x2 = z2 + ρref

z3 = x3 − σρref x3 = z3 + σρref

we get

q z1 = q x1 − 0 =ϕ (−Kz2 + z3 + z1 − σ)

q z2 = q x2 − ρref =
1
σ

(−Kz2 + z3 + σρref + z1) − ρref

q z3 = q x3 − σρref = −Kh/Ti z2 + z3 + σρref − σρref

Rewriting this as a linear system in negative feedback with the nonlinear function φ : y →
ϕ(y − σ(1 − ρref)), we get

qz = Azz +Bzuz = Azz +Bzφ(−y)
y = Czz

q



z1
z2
z3


 =




0 0 0
1/σ −K/σ 1/σ
0 −Kh/Ti 1






z1
z2
z3


 +




1
0
0


φ(−y)

y =
[−1 K −1

]


z1
z2
z3




Note that for ρref ∈ [0, 1] the function φ(·) will belong to the same cone as ϕ(·), namely
[α, β] = [0, 1], see Figure 4. The incremental variation will also have the same maximal
value (=1).

The transfer function Gz = Guz→yz(z) from cut B to cut A in Figure 3 will be

Gz = Cz(zI −Az)−1Bz

=
−z · (z − 1)

z · (z2 + (−1 +K/σ) z +K (h− Ti) /(σTi))
(11)

For the forthcoming stability analysis we determine for which control parameters the linear
subsystem Gz is stable.

The poles of (11) are stable for the area depicted in Figure 5 for the normalized parameters
K/σ and h/Ti.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

a
1

a 2

−0.4 −0.2 0 0.2 0.4
−60

−40

−20

0

20

40

60

K/σ

h/
T

i

Fig. 5. (Upper:) The internal of the triangle corresponds to the stability area for the characteristic polynomial
z · (z2 + a1z + a2) of Gz . (Lower:) Corresponding stabilizing control parameters {K/σ, h/Ti}.

C. Stability analysis for discrete-time nonlinear system

To determine the stability for the nonlinear system in (11) we can use the Tsypkin criterion
or the Jury-Lee criterion which are the discrete-time counterparts of the Popov criterion for
continuous time systems [16].

Sufficient conditions for stability are that Gz has all its poles within the unit circle |z| < 1
and that there exists a (positive) constant η such that

Re[(1 + η(1 − z−1))Gz(z)] +
1
k
≥ 0 for z = eiω, ω ≥ 0 (12)

where the nonlinearity φ belongs to the cone [0, k = 1].
In the upper left plot of Figure 6 we have the stability triangle for the characteristic

polynomial of Eq.(2). By choosing coefficients for the characteristic polynomial (2) in the
upper left triangle (A1) we will get controller parameters {K, T i} which also will give a
stable transfer function Gz . The corresponding poles are plotted in the lower diagram of
Figure 6. Figure 6 shows a graphical representation of the Tsypkin condition (12) for
this set of control parameters. The dashed non-intersecting line in Figure 6 corresponds to
the existence of a positive parameter η satisfying Eq.(12). Thus, absolute stability for the
nonlinear system also is guaranteed for this choice of parameters.

Remark: The Tsypkin criterion guarantees stability for any cone bounded nonlinearity in
[0, 1] and we can thus expect to have some robustness in addition to stability in our case.

V. EXPERIMENTS

The admission control mechanism was implemented in the Apache web server. Apache
is made up of a core package and several modules that handle different operations, such
as Common Gateway Interface (CGI) execution, logging, caching etc. A new module was
created that contains the admission control mechanisms. The new module was then hooked
into the core of Apache, so that it was called every time a request was made to the
web server. The module could then either reject or admit the request according to the
control mechanism. The admission control mechanism was written in C and tested on a
Windows platform. We tested the system by running tests on it and collecting performance

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

a
1

a 2

Stability region of characteristic polynomial z2+a
1
z+a

2

A1

−3 −2 −1 0 1 2 3

−0.5

0

0.5

pole location

−5 0 5 10
−5

0

5

10
Tsypkin plot

Re(G(z))

R
e(

1−
1/

z)
G

(z
)

Fig. 6. (Upper left:) The large triangle is the stability area a linear model would predict. However, from this
parameter set, nonlinear analysis guarantees only stability for parameters {a1, a2} in the upper left triangle (A1,
′∗′). (Lower left:) Pole location corresponding to {a1, a2}∈ A1. (Right:) Set of Tsypkin plots which all satisfy
the frequency condition (12) for Gz = Gz(K, Ti), where (K, Ti) correspond to pole locations to the left

metrics such as the server utilization distribution and step responses. We also compared the
measurements with simulations. The queueing model was represented by a discrete-event
simulation program implemented in C, and the control theoretic models were implemented
with the Matlab Simulink package. The traffic generators in the discrete-time model were
built as Matlab programs. They generate arrivals and departures according to the given
statistical distributions.

A. Setup

Our measurements used one server computer and one computer representing the clients
connected through a 100 Mbits/s Ethernet switch. The server was a PC Pentium III 1700 MHz
with 512 MB RAM running Windows 2000 as operating system. The computer representing
the clients was a PC Pentium II 400 MHz with 256 MB RAM running RedHat Linux 7.3.
Apache 2.0.45 was installed in the server. We used the default configuration of Apache. The
client computer was installed with an HTTP load generator, which was a modified version of
S-Client [17]. We modified the S-Client code to use Poissonian arrivals instead of the original
deterministic ones. The client program was programmed to request dynamically generated
HTML files from the server. The CGI script was written in Perl. It generates a number of
random numbers, adds them together and returns the summation. The average request rate
was set to 100 requests per second in all experiments except for the measurements in Figure
7. In all experiments, the control interval was set to one second.

B. Validation of the Model

We have validated that the open system, that is without control feedback, is accurate in
terms of average server utilization. The average server utilization for varying arrival rates
are shown in Figure 7. For a single-server queue, the server utilization is proportional to
the arrival rate, and the slope of the server utilization curve is given by the average service
time. The measurements in Figure 7 gives an estimation of the average service time in the
web server, 1/µ=0.0225.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

S
er

ve
r

ut
ili

za
tio

n

requests/second

Fig. 7. Average server utilization for the open system.

C. Controller parameters

Control parameters for the PI-controller are chosen from the stability area A1 in Figure 6.
In the simulations and experiments below we use {K,T i}={20, 2.8}. The parameter setting
is also compared to {K,Ti}={20, 0.1}, found outside the stability area.

D. Performance metrics

An admission control mechanism has two control objectives. First, it should keep the
control variable at a reference value, i.e. the error, e = y ref−y, should be as small as possible.
Second, it should react rapidly to changes in the system, i.e. the so-called settling time
should be short. Therefore, we test the mechanism in two ways. First, we show the steady-
state distribution of the control variable, by plottting the estimated distribution function. The
distribution function is estimated from measurements during 1000 seconds with the specific
parameter setting. Second, we plot the step response during 60 seconds when starting with
an empty system.

E. Distribution function

Figure 8 shows the estimated distribution function for the PI-controller. Both good and
bad parameter settings were used. An ideal admission control mechanism would show a
distribution function that is zero until the wanted load, and is one thereafter. In this case, the
load was kept at 0.8, and the parameter setting, {K, Ti}={20, 2.8}, chosen from results in
a controller that behaves very well in this sense. The parameter setting, {K,T i}={20, 0.1},
as can be seen, perform worse. Also, as comparison, results from simulations of the M/D/1
system and the M/M/1 system are given in Figure 8, when using {K,T i}={20, 2.8}.

F. Step response

Figure 9 shows the behaviour of the web server during the transient period. The measure-
ments were made on an empty system that was exposed to 100 requests per second. The
good parameter setting, {K,T i}={20, 2.8}, exhibits a short settling time with a relatively
steady server utilization. The bad parameter setting, {K,T i}={20, 0.1} has its poles outside
the unit circle and behaves badly, the load oscillates and is never stable. Comparisons to
M/D/1 and M/M/1 simulations, also in Figure 9, show that the model is accurate.

VI. DISCUSSION

The analysis in Section IV-C gives sufficient conditions and a region for control parameters
which guarantee stability of the nonlinear closed loop as well as for the simplified linear
model. We are of course not restricted to choose parameters from only this region as the
main objective is that the nonlinear system should be stable. However, we can conclude that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(u

til
is

at
io

n
<

=
 x

)

x

(20, 2.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(u

til
is

at
io

n
<

=
 x

)

x

(20, 2.8)

(20, 0.1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(u

til
is

at
io

n
<

=
 x

)

x

(20, 2.8)

(20, 0.1)

M/M/1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(u

til
is

at
io

n
<

=
 x

)

x

(20, 2.8)

(20, 0.1)

M/M/1

M/D/1

Fig. 8. Server utilization distribution of measurements from the real system together with simulations of the
M/M/1 and the M/D/1 system.

• Pole-placement based on a linear model is OK in a restricted area (region A1 in Figure
6).

• There are choices of parameters that gives stable closed loop poles, but where the linear
analysis would indicate an unstable closed loop systems.

During simulation studies the dominant nonlinear effect has come from the queue non-
linearity ϕ. The saturation due to limited arrival rate can be handled with a standard imple-
mentation of an anti-reset windup scheme, see [18].

VII. CONCLUSION

Traditionally, queuing theory has been used when investigating server systems. However,
within queuing theory there are few mathematical tools for design and stability analysis of,
for instance, admission control mechanisms. Therefore, these mechanisms have mostly been
developed with empirical methods. In this paper, we have designed load control mechanisms
for a web server system with control theoretic methods and analyzed its stability properties.
The controller structure considered is a PI-controller and a region for stabilizing control
parameters is presented.

The designs have been experimentally verified with simulations and experiments on an
Apache web server system.

VIII. ACKNOWLEDGMENTS

This work has partially been supported by the Swedish Research Council through the
Multi Project Grant 621-2001-3020 and contract 621-2001-3053.

REFERENCES

[1] K. Åström and B. Wittenmark, Computer-controlled systems, theory and design. Prentice Hall Internation
Editions, 1997, third Edition.

[2] T. Abdelzaher and C. Lu, “Modeling and performance control of internet servers,” in Proceedings of the 39th
IEEE Conference on Decision and Control, 2000, pp. 2234–2239.

[3] K. S. T.F. Abdelzaher and N. Bhatti, “Performance guarantees for web server end-systems: a control theoretic
approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 1, pp. 80–96, January 2002.

[4] “Apache web server,” http://www.apache.org.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

S
er

ve
r

ut
ili

sa
tio

n
(%

)

Time (s)

(a) Good Parameters

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

S
er

ve
r

ut
ili

sa
tio

n
(%

)

Time (s)

(b) Bad Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

S
er

ve
r

ut
ili

sa
tio

n
(%

)

Time (s)

(c) M/D/1 Simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

S
er

ve
r

ut
ili

sa
tio

n
(%

)

Time (s)

(d) M/M/1 Simulation

Fig. 9. (a) Example of a realisation with good parameters. (b) Example of a realisation with bad parameters. (c)
Simulation of M/D/1-system with good parameters. (d) Simulation of M/M/1-system with good parameters.

[5] J. S. C. Lu, T.F. Abdelzaher and S. So, “A feedback control approach for guaranteeing relative delays in
web servers,” in Proceedings of the 7th IEEE Real-Time Technology and Applications Symposium, 2001, pp.
51–62.

[6] N. Bhatti and R. Friedrich, “Web server support for tiered services,” IEEE Network, pp. 64–71, Sept/Oct 1999.
[7] R. R. J. Carlström, “Application-aware admission control and scheduling in web servers,” in Proc. Infocom,

2002.
[8] P. P. L. Cherkasova, “Predictive admission control strategy for overloaded commerical web servers,” in Proc.

8th International IEEE Symposium on modeling, analysis and simulation of computer and telecommunication
systems, 2000, pp. 500–507.

[9] P. G. T. Voigt, “Adaptive resource-based web server admission control,” in Proc. 7th International Symposium
on Computers and Communications, 2002.

[10] S. R. P. Bhoj and S. Singhal, “Web2k: Bringing qos to web servers,” HP Labs Technical report, HPL-2000-61,
2000.

[11] S. S. Jr., “Optimal control of admission to a queueing system,” IEEE Transactions on Automatic Control,
vol. 30, no. 8, pp. 705–713, August 1985.

[12] W. Stallings, Data & Computer Communications. Prentice Hall, 2000, sixth Edition.
[13] T. Voigt, “Overload behaviour and protection of event-driven web servers,” in In proceedings of the

International Workshop on Web Engineering, May 2002, pisa, Italy.
[14] B. W. M. Kihl, A. Robertsson, “Performance modelling and control of server systems using non-linear control

theory,” in Proc. 18th International Teletraffic Congress, 2003.
[15] Y. Z. Tsypkin, “Frequency criteria for the absolute stability of nonlinear sampled-data systems,” Automation

and Remote Control, vol. 25, no. 3, pp. 261–267, 1964.
[16] M. Larsen and P. V. Kokotovic, “A brief look at the tsypkin criterion: from analysis to design,” Int. J. of

Adaptive Control and Signal Processing, vol. 15, no. 2, pp. 121–128, 2001.
[17] G. Banga and P. Druschel, “Measuring the capacity of a web server,” in USENIX Symposium on Internet

Technologies and Systems, December 1997, pp. 61–71.
[18] M. K. A. Robertsson, B. Wittenmark, “Analysis and design of admission control in web-server systems,” in

Proc. of ACC03, 2003.

