
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Overload control and performance evaluation in a Parlay/OSA environment

Andersson, Jens K

2004

Link to publication

Citation for published version (APA):
Andersson, J. K. (2004). Overload control and performance evaluation in a Parlay/OSA environment. [Licentiate
Thesis, Department of Electrical and Information Technology]. Lund Institute of Technology.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/4221b9c3-558f-4178-acbf-7e6cc841f08d

Department of Communication Systems
Lund Institute of Technology

Overload Control and Performance
Evaluation in a Parlay/OSA Environment

Jens K Andersson

ISSN 1101-3931

E-kop

ISRN LUTEDX/TETS--1067--SE+100P

 Jens Andersson

Printed in Sweden

Lund 2004

To Elisabeth

Contact Information:

Jens Andersson
Department of Communication Systems
Lund University
P.O. Box 118
SE-221 00 LUND
Sweden

Tel: +46 46 222 91 58
Fax: +46 46 14 58 23
E-mail: jens.andersson@telecom.lth.se
Web: http://www.telecom.lth.se/Personal/wiw/jensa

This thesis is submitted to Research Board FIME – Physics, Informatics, Mathematics and Elec-
trical Engineering – at Lund Institute of Technology (LTH), Lund University, in partial fulfil-
ment of the requirements for the degree of Licentiate in Engineering.

This work was partly funded by the Swedish agency for Innovative Systems (VINNOVA)

Abstract

To increase the pace of development and deployment of new services and
applications in telecommunication networks, new service architectures
have been proposed. Parlay/OSA is one of the proposals that has aroused
most attention. By providing network functionality via Application Pro-
gram Interfaces (APIs), Parlay/OSA facilitates creation of telecommunica-
tion services and applications for independent software developers. With
Parlay/OSA there is no longer any requirement for knowledge and techni-
cal skills of telecommunications when creating new applications. A Par-
lay/OSA environment introduces gateways, which provide the
applications with abstracted network functionality. A gateway translates
the requests for abstracted functionality to telecommunication protocols
and signalling. Parlay/OSA is a contract driven architecture where several
constraints coexist. To fulfil the constraints and to protect the gateways
from shutting down, overload control mechanisms are needed.

This thesis proposes and evaluates different overload control mecha-
nisms in a Parlay/OSA environment. The main objectives of the overload
control mechanisms are to protect the system and to maintain a high
throughput. Important issues that are discussed are measurement strate-
gies, overload control actions, and how different priorities and time con-
straints should be considered. Also, the proposed overload control
mechanisms consider some guiding principles from the specifications of
Parlay/OSA. In the scope of this thesis both distributed and single server
systems are investigated.

Acknowledgements

First of all I would like to thank my two supervisors, Dr. Maria Kihl and
Dr. Christian Nyberg for their contributions and support during my work
with this thesis. I would also like to thank Prof. Ulf Körner for having me
as a Ph.D. student at a very nice department. Thanks to all my colleagues
at the department for making it such a nice place to work at. I am also
very grateful to Appium AB and Daniel Söbirk. It has meant a lot for this
thesis to have some industrial cooperation.

I would also like to thank my mother and father for always encourag-
ing whatever I am doing. Another important person in my life is my
brother and friend Tobias, who forced me to study hard in early days by
letting me do his homework. Also thanks to all my friends, making my
life so much richer. Finally and most I would like to thank Elisabeth who
always supports me and makes my life outside work so enjoyable. I always
have a great time with you.

Introduction 1

1. Background . 5

2. Services and Applications . 7
Web Services . 8

3. Overload Control . 9
Load Balancing . 11
Admission Control . 11

4. Summary of Papers . 12

5. Further Research . 14

Paper I: Service Architectures for the Next Generation Networks: an
Overview and Some Performance Aspects 17

1. Introduction . 17

2. Service Architectures . 19
Intelligent Networks . 19
The Telecommunication Information Networking Architecture (TINA) . . . 21
Parlay . 22
Open Service Access (OSA) . 23

3. Performance Issues . 25

4. Conclusions . 26

Contents

 Contents

Paper II: Performance Analysis and Modelling of an OSA
Gateway 29

1. Introduction .29

2. Open Service Access (OSA) .30
Architecture . 30
Overload Control in OSA . 31

3. Simulation Model .32

4. Overload Control Mechanisms .33
Measurement Methods . 33
Rejecting Methods . 34

5. Results and Discussion .34
Comparisons of Measurement Methods . 35
Comparisons of Rejecting Methods . 35

6. Conclusions .35

Paper III: Performance Analysis and Overload Control of an Open
Service Access (OSA) Architecture 39

1. Introduction .40

2. Open Service Access (OSA) .41
An Example of a Service in OSA . 43
Overload Control in OSA . 43
Contract Writing . 44

3. Model .45

4. Priorities .46
The Utility Function . 46

5. Overload Control Mechanisms .47
Gate . 48
Controller . 49

6. Simulation Parameters .51

7. Results and Discussion .53

8. Conclusions .56

Paper IV: Overload Control of a Parlay X Application Server 59

1. Introduction .60

2. Load Balancing and Admission Control Methods 62
Load Balancing . 62

Admission Control . 63

3. Description of a Parlay/OSA and Parlay X Environment 63
The Architecture . 64
Communication from Application to Network . 65
Contracts . 66

4. The Application Server . 66
Load Control Mechanism . 68
Example of a MakeACall Request . 69

5. Objectives of This Paper . 70

6. Model of a Distributed Application Server System 70

7. Overload Control . 71
Rough Admission Control (Stage 1) . 72
Constraint Control (Stage 2) . 73
Load Balance (Stage 3) . 73
Admission Control (Stage 4) . 74

8. Simulation Parameters . 76

9. Results and Discussion . 77

10. Conclusions . 79

 Contents

Overload Control and Performance Evaluation in a Parlay/OSA Environment 1

Introduction

Recently, new service architectures have been developed to increase
the pace of development of new services and applications for
telecommunication networks. The main idea with the new proposals is
to provide abstracted network functionality via Application Program
Interfaces (APIs). Parlay and OSA are examples of service
architectures that open up an underlying network to independent
software developers via APIs. A Parlay/OSA architecture consists of
several processing entities. The applications use so-called Application
Servers (ASs) to communicate with a Parlay/OSA Gateway which
processes the conversion from the APIs to the network functionality. If
there are too many applications that want to make use of the gateway
or AS at the same time these processing nodes must be protected from
overload. It is too expensive to over dimension the capacity such that
overload situations never occur. Neither it is possible to give any
guarantees that overload will not occur with a certain capacity.

Overloaded nodes would correspond to long waiting times in the
best case and servers that goes down in the worst case. Another
important issue is that the new service architectures are based on
contracts where different Service Providers (SPs) might have different
amount of guaranteed accepted service calls per second, maximal
delays etc. Therefore, overload control mechanisms are needed in
order to maintain fairness and a sufficient Quality of Service (QoS).

Introduction

2 Overload Control and Performance Evaluation in a Parlay/OSA Environment

This thesis investigates overload control for an AS and for a Parlay/
OSA gateway. Overload control of a distributed system can be divided
into two parts, namely load balancing and admission control. Load
balancing algorithms are used to distribute the load such that all
processing entities are exposed to about the same load. If it is not
feasible to avoid overload with the load balancing algorithm,
admission control algorithms are used. Admission control algorithms
rejects some of the service requests during overloaded situations. The
decisions of which requests that should be rejected can be based on
different criteria. In this thesis for example algorithms for profit
optimization is investigated. This means that the service requests
generating most revenue are prioritized during overload situations.

The remainder of this thesis is organized as follows. In section 1 the
background of the development of service architectures is presented. It
is also discussed why overload control algorithms are needed.
Discussions about services and applications are found in section 2.
Especially so-called web services and future services are discussed.
Section 3 describes classical admission control and load balancing
algorithms. Advantages and drawbacks are also discussed. The papers
included in this thesis are summarised in section 4 and further research
is presented in section 5.

There are four research papers included in this thesis. The papers
appear after section 5 and the papers included are the following in the
order that follows:

Paper 1 - Extended version of Service Architectures for the Next
Generation Networks: An Overview and Some Performance Aspects
Maria Kihl and Jens Andersson
Published in proceedings of the TINA Workshop, Malaysia, 2002

Paper 2 - Performance Analysis and Modelling of an OSA Gateway
Jens Andersson, Christian Nyberg and Maria Kihl
Published in proceedings of the Personal Wireless Communication, Venice, Italy,
2003

Paper 3 - Performance Analysis and Overload Control of an Open
Service Access Architecture
Jens Andersson, Christian Nyberg and Maria Kihl
Published in proceedings of the SPIE conference on Performance and Control of the
Next Generation Communication Networks, Orlando, Florida, 2003

Overload Control and Performance Evaluation in a Parlay/OSA Environment 3

Paper 4 - Overload Control of a Parlay X Application Server
Jens Andersson, Maria Kihl and Daniel Söbirk
Published in the proceedings of the 2004 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, San Jose, 2004

The following research papers do not appear in the thesis

Paper 5 - Convergence-Analysis of the Internet and the Telecommu-
nication Architectures
Jens Andersson, Shabnam Aprin and Maria Kihl
Published in proceedings of the 16th Nordic Teletraffic Seminar, Helsinki, 2002

Paper 6 - Priorities and Overload Control in OSA
Jens Andersson, Maria Kihl and Christian Nyberg
Published in proceedings of the IEE Fourth International Conference on 3G, London,
UK, 2003

Introduction

4 Overload Control and Performance Evaluation in a Parlay/OSA Environment

1. Background

Overload Control and Performance Evaluation in a Parlay/OSA Environment 5

1. Background

Since the penetration of the Internet, the development of new services
in the communication area has accelerated. For a long time the only
widely spread way of instant real time communication over distances
has been telephony, but Internet provides alternative ways of
communication. The Internet is still not capable of delivering speech at
the same Quality of Service (QoS) as the telephony networks, but it is
getting closer. The Internet has grown very fast and turn over
enormous amounts of money. The development of the
telecommunication networks has been very slow for a long time. The
question that the telecommunication operators, among others, have
asked recently is how the Internet could reach such penetration. This is
a research area itself, and it cannot be answered shortly. A lot of factors
have contributed to the success of Internet, see [1].

One of the great opportunities with Internet is how it reaches out to
the users with all its content, applications and services. The most
common access point to the Internet is the Personal Computers (PCs).
Almost all computers are equipped with a web browser, and the
Graphical User Interface (GUI) makes the Internet easy to use.
Another factor that has had impact on the penetration of the Internet is
the many providers of services and applications. Skills in software
development is very common nowadays. Many software developers
correspond to faster development pace and a wider range of services
and applications.

The main service of the telecommunication networks have been to
establish a call between two parties and deliver speech between them.
The few extra services provided in the fixed telephone network, such
as connecting a third part to a call, are not known for their user-
friendliness. The mobile operators have been a bit faster to develop
new services and applications and above all the Mobile Terminals
(MTs) usually provides a better GUI for usage of their applications and
services. They have seen the possibility to increase the revenues. An
example of a successful service is the Small Message Service (SMS),
which have had a great penetration.

It is foreseen that if the 3G telephone networks should become
successful, it is necessary that attractive services and applications are
delivered. The first release of UMTS resembles the GSM/GPRS system,
only differing in the first radio access network stage where Universal

Introduction

6 Overload Control and Performance Evaluation in a Parlay/OSA Environment

Terrestrial Radio Access Network (UTRAN) was introduced. UTRAN
offers improvement of the bandwidth and the number of simultaneously
users. Customers are not interested in a new network if they do not see
any difference. The provided bandwidth must be utilized by innovative
services and applications.

Until recently the development of new applications and services in
the telecom networks has only been feasible for people inside the
network with deep knowledge of telecommunications. However, new
methods and service architectures have been developed to increase the
pace of development of new services in telecommunication networks.
The trend is to let software developers make use of the network
resources via Application Program Interfaces (APIs). Examples of
such architectures are OSA [2], Parlay [3] and JAIN [4]. The APIs are
provided by a gateway, and several Application Service Providers
(ASPs) use the same gateway. Parlay and OSA is more or less the same
specification and are often referenced to as Parlay/OSA. Also in this
thesis that notation will be used.

To protect the processing nodes in a service architecture, overload
control mechanisms must be applied. Research on overload control in
earlier service architectures is an old item. Former service architectures
are described in Paper 1 and references to research results considering
overload control in former service architectures can be found in the
Paper 2 and Paper 3. This thesis is focused on overload control in a
Parlay/OSA environment.

To summarize, the telephone operators want to increase their
revenue. Inspired by the ease to use, the development pace of new
services and turnover in the Internet, telecom operators have tried to
improve their service architectures. The new proposals need overload
control mechanisms to be able to maintain QoS when there are too
many applications that want to make use of the same network resource
at the same time.

2. Services and Applications

Overload Control and Performance Evaluation in a Parlay/OSA Environment 7

2. Services and Applications

The structure of service architectures has changed over time. Paper 1
included in this thesis gives a good overview of the development of the
service architectures. The definition of a service and an application and
the difference between them is sometimes diffuse. An application is the
Interface to the users. It is the application that facilitates for a user to
make use of a network. In this thesis a service means something
provided by the network. Example of a telecom service may be to
establish a call. An example of an application might be an application
initiated call, where two parties can be connected by clicking a link. Of
course an application does not have to use any telecom network
capability, but in this thesis it is only applications that do which are of
interest.

The feasibilities for creation of new applications and services differ
dependent of which telecommunication network that is considered.
Three main classifications of application and service creation
technologies can be identified. First, the Intelligent Network (IN)
concept that has been a successful architecture. Second the Parlay
concept which is foreseen to introduce a lot of new applications and
services. The third technology is the mobile terminal type, which is
used in mobile networks. The IN concept provides services from inside
a network. Therefore the IN concept provide complete security but is
complicated from development aspects. Parlay architectures provide
feasibilities for applications to reside outside a telecom network and to
make use of network resources like call control or user location. In this
way a much easier service creation environment is provided. The third
concept is so far only used in the mobile telecom networks, as it
requires a mobile terminal. The applications can be created for instant
execution on a mobile device. For instance J2ME (Java 2 Micro
Edition) [5] can be used for such creation. The mobile terminal type of
application will not be involved in further discussions of this thesis, it
can just be mentioned that these will co-exist with the services built on
IN technology and those built on Parlay technology. Applications
connecting the different service technologies are also likely.

However, experience show that also service developers that use
Parlay/OSA need knowledge of telecommunications. Thus, to simplify
the art of application development even more, the Parlay X Web
Services [6] have been introduced.

Introduction

8 Overload Control and Performance Evaluation in a Parlay/OSA Environment

2.1 Web Services

Web services is a concept often used in the Internet, see Menascé et al.
[7]. By using high level protocols based on the Extensible Markup
Language (XML), advanced service requests can be created. The
applications that make use of the Web Services can be written in for
example java or Visual Basic or it can be an XML script. With Parlay
X Web Services Service Providers (SPs) can provide advanced telecom
services to applications by use of a single Simple Object Access
Protocol (SOAP) request. Thereby the potential number of application
developers are increased.

The Parlay X Web Services specification [8], specifies a set of Web
Services. When an application wants to make use of a Parlay X Web
Service for example SOAP is used to specify what kind of service that
is called. Figure 1 shows an abstracted view of the relation between
Parlay X applications and regular Parlay/OSA applications. As seen in
the figure it is feasible for the Parlay X services to have instant
communication with the Network Elements, but this is rare and this
thesis is focused on communication via the Parlay/OSA gateway. So
when the SOAP messages are sent to the server hosting the Web
Services the server call the Parlay API to complete the service call.

SOAP is a protocol based on XML and often transported by Hyper
Text Transfer Protocol (HTTP), see Nielsen [9] et al. SOAP can be

Parlay/OSA Gateway

Network Elements

Parlay X Web Services

Parlay X Applications

Parlay/OSA
Applications

Parlay X APIs

Parlay APIs

Figure 1 The relation between Parlay X applications and regular Parlay
applications

3. Overload Control

Overload Control and Performance Evaluation in a Parlay/OSA Environment 9

used in combination with other protocols as well, but HTTP is
common in the context of Parlay X Web Services.

3. Overload Control

In the context of overload control not only the action to take during
overloaded situations should be considered, but also preventive
measures. Often overload control is divided into Load Balancing and
Admission Control. The Load Balancing algorithms try to share the
load in a distributed system such that the different entities are exposed
to about the same load. The aim with the admission control is to reject
requests for service in the cases when the load cannot be balanced such
that an overload situation can be avoided. Load balancing is only
interesting when a distributed system should be protected.

To achieve a well performing overload control one important issue
is the reliability of the load information. The methods of measuring the
load is dependent of the feasibilities in the system. Examples of some
common methods to measure current load are

• Queue length measurements; Based on the number of job in the
job buffers conclusions of current load and waiting times are made,
see Voigt et al. [10].

• Call count control; By counting the number of accepted requests
for service during a time interval, the current load is predicted.

• Response time measurements; When the service of a request results
in a response, the time can be measured. If the service time gets too
long, the system can be assumed to be overloaded. This method is
used in for example paper 4 in this thesis.

• CPU load measurements; A common method in the area of web
servers is to measure the CPU load when the overload control
mechanism is placed on the same entity as the web server. Cherkas-
ova et al. [11] presents an example of this.

Dependent on the design of the system, the different measurement
methods have different advantages. Performance of the Load
Balancing and Admission Control algorithms are also affected by the
design of the system. Examples of circumstances that have impact on
the performance of overload control mechanism are:

Introduction

10 Overload Control and Performance Evaluation in a Parlay/OSA Environment

• Delay of load information; The information about current load sta-
tus of the protected system can be delayed. For example there might
be an inertia in the system or the load status might be updated once
every time unit. The topic of old load information is treated by
Dahlin [12] and by Mitzenmacher [13].

• Messages of different priorities; Overload control mechanisms in an
environment with different priorities require methods to distin-
guish between requests to give special treatment. In Berger et al.
[14] priorities are taken into account.

• Distributed environments where different nodes have different
capabilities; If a system like a Parlay/OSA gateway is distributed, it
is likely that some of the Service Capability Servers cannot treat call
control messages and another cannot treat charging.

An overload control mechanism may appear in a lot of
configurations. Figure 2 shows two possibilities. In the left
configuration all sources (A, B and C) are connected to the same
overload control mechanism (X), which protects the system (1, 2 and
3). In the right configuration all sources (A, B and C) have their own
mechanism (X, Y and Z). The right configuration could for example be
applied to an environment including contracts where node A, B and C
have different constraints of number of accepted service requests. The
left configuration could for example be used by a system where node 1,
2 and 3 are extremely sensitive to overload, since the load control
mechanism X has total control of all incoming requests.

Figure 2 Examples of overload control mechanisms to protect a distributed
system. The X, Y and Z boxes correspond to overload control boxes.

1

2

3

A

B

C

X

Y

Z

A

B

C

1

2

3

X

3. Overload Control

Overload Control and Performance Evaluation in a Parlay/OSA Environment 11

3.1 Load Balancing

There exist several algorithms to deal with load balancing. Which
algorithm that is the best is totally dependent of circumstances like
those mentioned above. A rule of thumb is to keep it simple. Very often
advanced algorithms show slightly better performance to the price of
complicated implementation and advanced calculations that must be
performed. A short introduction to the most common load balancing
algorithms follows below.

Least load

The least load algorithm is simply to always send requests to the least
loaded node. This method requires a good method for load
measurements. In the configuration shown to the right in Figure 2 node
X, Y and Z might act in an oscillating way if the load information is
updated in time intervals.

Round Robin (RR)

Round Robin is a classical method where the requests are distributed
according to a repetitive pattern. In Figure 2 the pattern would look
like 12312312... A variant of RR is Weighted Round Robin (WRR)
used where for example the capacity of the nodes might differ. Assume
that node 1 has twice as much capacity as the other processing nodes,
then the pattern would look like 12131213...

Random selection

For each arriving request the load balancer chooses a node randomly.
Also the random selection method can be weighted such that the choice
of a certain node is more probable than another.

3.2 Admission Control

The admission control can be dealt with in several ways. Dependent of
the environment, different algorithms fit differently well. In the
architectures considered in this thesis, contracts about acceptance rate
and time constraints are common. Therefore, algorithms that can deal

Introduction

12 Overload Control and Performance Evaluation in a Parlay/OSA Environment

with guaranteed values are advantageous in these cases. A short
introduction to the most common admission control algorithms follow
below. Several variants of each algorithm are common, but the basic
ideas are presented in this section.

Percent blocking

A ratio of how many of the arriving messages that should be rejected is
set. The ratio is somehow connected to the load measurements. The
percent blocking algorithm is evaluated in Berger [15].

Call gapping

Time is divided into intervals. During each interval a certain number of
requests for service is accepted. If additional arrivals occur they are
rejected, see [15].

Token bucket

The token bucket algorithm is developed to reduce burstyness. Tokens
arrive at a bucket with a certain rate. A request is accepted if there are
tokens in the bucket at arrival. Each accepted request decrease the
number of tokens with one.

Leaky bucket

The leaky bucket algorithm totally eliminates the burstyness. Accepted
messages are stored in a finite queue. Each time interval the queue
sends a message according to FCFS scheduling algorithm. If the queue
is full on the arrival of a request, the request is rejected.

4. Summary of Papers

In this section follows short summaries of the papers included in this
thesis. The main research question that a paper investigates is
highlighted.

4. Summary of Papers

Overload Control and Performance Evaluation in a Parlay/OSA Environment 13

Paper I

The main purpose with this paper is to describe the development of the
service architectures. A description of Parlay and OSA and the creation
of them is given. It is also shown alternative solutions of how IN
services can be reached from Internet, but the paper points out the
advantages of Parlay/OSA and a standardized solution. Also some
performance aspects and potential bottlenecks are highlighted in a
Parlay/OSA architecture.

Paper II

This paper investigates different methods to measure the load in a non-
distributed OSA gateway. Admission control algorithms and their
cooperation with the measurement methods are also investigated. The
complete overload control mechanism is proposed to follow the
guidelines for overload control in the OSA standard. The proposed
overload control mechanism considers messages of one kind and with
one time constraint.

Paper III

In this paper priorities and time constraints for different service
requests are introduced. An overload control mechanism for Parlay/
OSA in line with the guidelines in the standards is presented. Paper III
proposes to use the shortest deadline first (SDF) scheduling algorithm
in the gateway to manage the time constraints. When SDF is used an
algorithm is proposed which predicts if overload will occur, and
acceptance or rejectance of requests from a certain priority is thereby
decided. The paper proposes how the priorities can be set to optimize
revenue for the operators. In this paper a non-distributed gateway is
assumed.

Paper IV

This last paper investigates overload control in a Parlay X web services
environment. An overload control mechanism is proposed to deal with
messages corresponding to an application providing application
initiated calls. Messages of three kinds with different priorities are
considered. The mechanism also support guaranteed values of

Introduction

14 Overload Control and Performance Evaluation in a Parlay/OSA Environment

minimum number of accepted calls per time unit. This paper considers
a distributed environment where robust algorithms are proposed for
overload control. The admission control algorithm tries to keep short
waiting times in the processing entities, but remain high utilization by
increasing waiting times to decision if a message should be rejected or
not.

5. Further Research

I will continue to investigate load balancing and admission control
mechanisms for web services, as investigated in paper 4. Both load
balancing and admission control can be optimized favourable to
different variables. It should be interesting with a deeper investigation
regarding optimal decisions for profit optimization.

Another topic that needs more research, which I also will pay
attention to is the contract writing. How should the contracts be written
for optimal performance and fairness. In Paper 4 we briefly express
how important the choice of time base used in the contracts is.

Reference

[1] Ericsson and Telia, Understanding Tele Communications 2, Stu-
dentlitteratur, 1998

[2] http://www.3gpp.org
[3] www.parlay.org
[4] www.java.sun.com/products/jain
[5] http://developers.sun.com/techtopics/mobility/j2me
[6] White paper, “Parlay APIs 4.0; Parlay X Web Service”, http://

www.parlay.org, December 2002
[7] D. A. Menascé and V. A. F. Almeida, “Capacity Planning for Web

Services”, Prentice Hall, 2002
[8] Parlay X Web Services, specification v1.0, http://www.parlay.org,

May 2003
[9] H. Nielsen, P. Leach and S Lawrence, “An HTTP Extension

Framework”, IESG Networking Group, RFC 2774 (Experimental),
February 2000

5. Further Research

Overload Control and Performance Evaluation in a Parlay/OSA Environment 15

[10]T Voigt and P Gunningsberg, “Adaptive Resource-based Web
Server admission Control”, ISCC seventh symposium on Comput-
ers and Communications, 2002

[11]L Cherkasova and P Phaal, “Session-Based Admission Control a
Mechanism for Peak Load Management or Commercial Web
Sites”, IEEE Transactions on Computers, vol. 51, 2002

[12]M Dahlin, “Interpreting Stale Load Information”, IEEE transac-
tions on parallel and distributed systems, vol. 11, no 10, 2000

[13]M. Mitzenmacher, “How useful is old information”, IEEE Trans-
actions on Parallel and Distributed Systems, vol. 11, 2000

[14]A. Berger and W Whitt, “Workload bounds in fluid models with
priorities”, Performance evaluation 41, 2000

[15]A. Berger, “Comparison of Call Gapping and Percent Blocking for
overload control in distributed switching systems in telecommuni-
cations networks”, IEEE Transactions on Communications, vol.
39, 1991

Introduction

16 Overload Control and Performance Evaluation in a Parlay/OSA Environment

Overload Control and Performance Evaluation in a Parlay/OSA Environment 17

PAPER I

Service Architectures for the Next Generation
Networks: an Overview and Some Performance
Aspects

Maria Kihl and Jens Andersson

Abstract

In the next generation networks, 3G-networks and so forth, it is
foreseen to be a convergence between the different networks. The
telecommunication networks will deploy a new kind of service
architecture. The new service architectures shall be developed to
enable access of a network’s capabilities from other networks. The
same applications should be able to be deployed in any
telecommunication network. This article contains an overview of the
former, current and proposals of future service architectures. Extra
attention is paid to describe Parlay and Open Service Access (OSA),
two of the most promising service architectures. Further, we discuss
some performance problems that may occur when implementing the
architectures in a real network.

1. Introduction

Today, both mobile networks and the Internet are widely used and the
number of applications is increasing. In many ways, both architectural
and the purpose they serve, the networks are converging. As the
different networks converge, the networks are expected to deliver

I

Service Architectures for the Next Generation Networks: an Overview and Some Performance Aspects

18 Overload Control and Performance Evaluation in a Parlay/OSA Environment

about the same services and applications. This, together with the fact
that there is an increasing demand for new services and applications,
has lead to an evolution towards so called open service architectures.
An open service architecture provide the applications with abstracted
network capabilities via standardized APIs. Therefore the pace of
development of new applications should increase as a much easier
service and application creation environment is provided. Another
benefit is that the open service architecture provide an application to be
deployed to any network supporting the same service architecture.
However, the open service architectures is not the only way to access
services from other networks or increase the pace of creation of new
services and applications. Alternative proposals exist and will be
presented later in this paper.

Several architectures to improve service creation have been
proposed by different organisations. TINA was one of the first
proposals, with the intention to provide building blocks to create new
services. Parlay, developed by the Parlay group [1], is an example of a
proposal of an open architecture. For example by using the Application
Program Interfaces (APIs) defined in Parlay, PSTN-services may be
reached and controlled from the Internet. Open Service Access (OSA)
is an architecture developed by the Third Generation Partnership
Project (3GPP) [2]. It is based on Parlay, but is developed especially
for 3G-networks. The purpose of OSA is to enable access to network
capabilities from the 3G-networks via APIs.

Many papers have described their solutions on how different
networks should be converged. Hubaux et al. [3] contains an overview
of different solutions to connecting Internet with PSTN. Moerdijk and
Klostermann [4] describe Parlay and OSA. Moiso and Sommantico [5]
discuss the architecture and advantages of OSA. Chapron and Chatras
[6] discuss the feasibility of accessing IN-services from a packet-
switched network. Licciardi et al. [7] contains a general discussion
about the advantages with open Application Interfaces (APIs) used in
both Parlay and OSA. Wang et al. [8] present a good overview of
which protocols that are used when two entities are communicating
both within an Intelligent Network and within an IP Network and also
between an IN and an IP network.

The purpose of this article is to describe the former, current and
proposals of future service architectures and how different networks
are proposed to communicate with each other. In particular we

2. Service Architectures

Overload Control and Performance Evaluation in a Parlay/OSA Environment

examine the feasibility of accessing services in a 3G-network from
Internet.

2. Service Architectures

In this chapter we present the service architectures IN, TINA, Parlay
and OSA. One of the advantages of Parlay and OSA is that these will
introduce the ability for applications residing outside a network to
make use of the network’s resources. Some alternative solutions are
presented of how IN services can be reached from the Internet, as an
example to show that it is feasible without Parlay and OSA.

As OSA is like a slightly modified Parlay architecture we have
chosen to only give a thorough description of OSA.

2.1 Intelligent Networks

The objective of the Intelligent Network (IN) is to provide value-added
services to the users in a PSTN. The IN is built on the simple idea of
separating the service logic from the switching nodes. In this way the
operators are offered a much more scalable service platform. Earlier it
had been necessary to implement a new application in all switching
nodes, but with IN and its centralized architecture the time for
deployment could be decreased.

Figure 1 shows an overview of the IN service architecture. The
nodes which hosts the applications are called Service Control Points
(SCPs) and the switching nodes that deals with the switching and the
call control are called Service Switching Points (SSPs). The Local
Exchanges (LEs) forwards the “requests” from the users until they
reach an SSP. The Service Management System (SMS) contains
functions that enable management of the IN system. Another important
entity in the IN architecture is the Service Creation Environment (SCE)
that contains service development tools which the operator uses for
creating new services and applications. If an application needs to work
with any kind of data there is a Service Data Point (SDP), which is a
database that holds information related to the services.

Typical IN services are local number portability, credit card calling,
toll-free numbers and so forth. When any of the supported services are
requested, the LE connected to the user recognizes this. The LE

Service Architectures for the Next Generation Networks: an Overview and Some Performance Aspects

20 Overload Control and Performance Evaluation in a Parlay/OSA Environment

contacts the nearest SSP, which opens up a dialogue with the SCP that
executes service logic corresponding to the requested service. The
communication between different nodes such as SCP and SSP is
performed via the Common Channel Signalling System No. 7 (SS7)
[9] which is a global standard defined by the ITU-T. The SS7 protocol
stack contains a couple of different protocols with different
advantages. In cases when IN service control is needed, the SSP can
trigger the SCP by use of the IN Application Part (INAP) protocol. If
an SSP communicates with another SSP they use the ISDN User Part
(ISUP).

A mobile version of IN has also been designed for GSM networks.
It is called Customized Applications for Mobile network Enhanced
Logic (CAMEL). The equivalent to INAP in IN is CAMEL
Application Part (CAP) in CAMEL. CAMEL is for example described
in Guelen and Hartman [10].

Accessing IN-services from IP-networks

There have been several proposals for how to access IN-services from
the Internet. Since long, much work has been performed on how to
access IN-services from a VoIP network. That VoIP is becoming more

Figure 1. Overview of the Intelligent Network Service Architecture

PSTN

LE LE
SSP SSP

SCP
SDP

SMSSCE

2. Service Architectures

Overload Control and Performance Evaluation in a Parlay/OSA Environment

and more common makes it an even more interesting topic. Thus, there
are a lot of documentation and many ideas on accessing the IN-services
from VoIP protocols SIP and H.323.

One common solution is a so-called soft switch which acts like a
gateway, communicating with the SCP in the IN, see Figure 2. This
soft switch must appear just like an ordinary SSP for the SCP although
it is using IP- based protocols instead of SS7. The service requests
arriving at a soft switch may be coded using higher layer IN-protocols,
like INAP or TCAP, but one or more of the lower layers will be
replaced with TCP/IP (see Ciang et al. [11]).

Similar solutions are described by, for example, Wang et al. [12]
that have a suggestion of a soft switch that can access IN-services from
a SIP network, denoted an Intelligent Services Gateway (ISG).
Dagiuklas and Galiotos [13] have a proposal of how to access the IN-
services from an H.323 network.

2.2 The Telecommunication Information Networking
Architecture (TINA)

The TINA consortium was created in 1993 and was aimed to define a
global architecture for telecommunication systems based on advanced
software technology. The TINA architecture consists of numerous
objects, each a typical part of a service. By using a couple of different
objects (building blocks) it is possible to create advanced telecom
services. In this way many more potential service developers could be

Figure 2. Accessing IN from an IP-network using a soft switching point.

PSTN

LE LE
SSP SSP

SCP
SDP

SCE/SMS

IP-network (Internet)

soft SSP

Service Architectures for the Next Generation Networks: an Overview and Some Performance Aspects

22 Overload Control and Performance Evaluation in a Parlay/OSA Environment

reached as the complexity of creating new services should decrease. In
the IN, expertise knowledge is required to create new services, as a
consequence of the advanced signals and protocols.

The TINA consortium was a very large consortium with many
companies involved, but unfortunately the project did not succeed in
the way it was planned. One of the reasons might have been that the
building blocks are too many and that it is still not possible for any
programmer to get the whole picture of which components that have to
be used to create a new service or in which order the objects should be
called. Another possible reason could be the aspects of real time
performance. The realization of a simple service as establishing a call
is very complicated and has a critical connection time, see Kihl [14].
However the TINA consortium was a good initiative which was a first
step toward the open service architectures.

2.3 Parlay

The Parlay group [1] is a consortium that was founded by British
Telecom, Microsoft, Nortel Networks, Siemens and DGM&S Telecom
in 1998. This group has focused on the creation of the Parlay
specification, which provide easier service and application
development than the IN. The specification specifies a set of standard
Application Program Interfaces (APIs) that will enable applications
residing outside the network to access and control resources inside the
network.

The major advantage and one of the reasons why the Parlay project
once was created is the ease of creating new applications. The Parlay
API specifications are open and technology-independent, so that a
wider range of Independent Software Vendors (ISVs) may develop and
offer advanced telecommunication services. An API is intended to be
simple in order to be applied in all different kinds of networks and can
be used from 3rd party application developers. In IN the operator is
responsible for the creation and operation of all the applications.
Further, Parlay offers better opportunities to test the software before it
get deployed.

The Parlay APIs consist of two categories of interfaces, Service and
Framework. The Service interfaces are the interfaces that offer
applications access to network capabilities such as call control and

2. Service Architectures

Overload Control and Performance Evaluation in a Parlay/OSA Environment

messaging. The Framework interfaces are the interfaces that take care
of the security and manageability.

The design and implementation of the API and applications using
this API supports a wide range of existing distribution middleware as
CORBA, DCOM and JAVA/RMI.

2.4 Open Service Access (OSA)

At first OSA was an acronym for Open Service Architecture, but it has
been re-termed to Open Service Access. OSA is based on the concept
of Parlay and is developed by the 3GPP. OSA differs from Parlay in a
way to better satisfy the needs for a 3G network. The concept is still
the same but APIs of no use are removed and new APIs are introduced.

Advantages

One of the reasons why OSA has been evolved is the opportunities
seen in the area of applications and wireless Personal Digital Assistants
(PDAs). It is foreseen that there will be a great demand for applications
and in order to respond to this demand the pace of the service and
application development has to speed up. Therefore the OSA has been
proposed, to make it easier to develop and test new services outside the
telecom domain. The number of feasible service providers has
increased because of the fact that OSA APIs offers the security and
integrity that the operators need to open up their networks to
independent software developers and service providers (see Lundqvist
[15]).

Architecture

OSA consists of three parts, namely the Application Servers (ASs), the
Framework and the Service Capability Servers (SCSs), see figure 3.
The ASs are the entities hosting the applications, the Framework
manage the security aspects and the SCSs provide the ASs with
Service Capability Features (SCFs). The SCFs can be seen as
abstracted network functionality.

Applications are, for example, application initiated call,
conferencing and location based applications. The ASs can both reside
inside and outside the network where the capabilities reside. An

Service Architectures for the Next Generation Networks: an Overview and Some Performance Aspects

24 Overload Control and Performance Evaluation in a Parlay/OSA Environment

application can be triggered in different ways. Examples of two
common ways are that either an application is triggered by the end-user

dialling a special number just like in an IN, or that the application is
initiated by some kind of HTTP request.

The Framework provides the applications with basic mechanisms,
like authentication before accessing the network functionalities or
discovery of the capabilities needed by an application. The Framework
SCFs include Trust & Security Manager, Discovery and Integrity
Management SCFs. It is due to these SCFs that OSA can offer the
security that is required of the operators. There is always exactly one
Framework in an OSA service architecture. The Framework together
with the SCSs constitute a so called OSA gateway. The gateway acts as
a mediation device offering a uniform and technology independent
interface.

The SCSs provide the applications with all the network
functionality required to construct services via SCFs. There may be
one or more SCSs in an OSA gateway. The SCSs communicate with
the network entities (HLRs, MSCs, SCPs etc.) needed to perform a
specific SCF. The Network SCFs includes the Call Control, User
Interaction, Mobility, Terminal Capabilities, Data Session Control,
Generic Messaging, Connectivity Manager, Account Management and
Charging SCFs. These different SCFs are the network capabilities that

Figure 3. Network architecture for OSA.

UMTS network

OSA GW

FW SCS SCS

PSTNInternet

ASAS AS

AS

2. Service Architectures

Overload Control and Performance Evaluation in a Parlay/OSA Environment

the service providers can use as building blocks to compose and create
new applications. An SCF can be compared to an object class with
some functions. For example, Call Control can be seen as a class
consisting of functions like “create call leg”, “delete call leg”, “connect
call legs” etc.

The applications developed can be executed on several networks
and terminals thanks to OSA that have standardized APIs towards the
ASs. A typical scenario that is foreseen is when a mobile user executes
an application located in the Internet. For example if an application
residing in the Internet makes use of the location of the mobile user, the
communication can look like in figure 4. First the user use GPRS to
reach the application. The application is then triggered by HTTP or
similar protocol. The application use an appropriate SCF to reach the
location of the mobile user and can return the appropriate information
via gprs.

Just like in Parlay, OSA uses an object-oriented technique, like
CORBA, which makes it possible to use different operating systems
and programming languages in ASs and SCSs.

3GPP has also introduced an interesting concept called Virtual
Home Environment (VHE) [16]. The idea of VHE is to consistently
present the same personalised features, User Interface customizing and
services to the user, independent of which terminal or network that is
present at the moment. More details about VHE and OSA can be found
in Moretti and Depaoli [17].

Figure 4. Mobile user accessing a location based application residing in Internet.

Internet

ASSCSHLR

WAP, HTTP etc.

WAP, HTTP etc.

OSA communication

Mobile network

M
ob

ile

te
rm

in
al

Service Architectures for the Next Generation Networks: an Overview and Some Performance Aspects

26 Overload Control and Performance Evaluation in a Parlay/OSA Environment

3. Performance Issues

One important issue when developing new service architectures is how
to ensure a good QoS for the users. When a user wants to run an
application, it is necessary that the delays are short. Therefore, it is
important that the potential performance bottlenecks are identified
before the architecture is deployed.

When studying Parlay and OSA, one potential bottleneck is easily
identified, namely the Gateway or actually the SCSs. Since the
Gateway is a centralized service control point it is sensitive to
overload. Therefore, overload control mechanisms should be
developed in order to maintain a good performance during all traffic
situations.

Further, the gateway will provide many types of services. These
services may have different priorities that must be taken into account.
The services may have so-called QoS contracts that must be kept. High
priority services, for example those that generate profits for the service
provider, should not be blocked in cases of overload.

Other potential bottlenecks are the ASs in Parlay/OSA. As it is here
the execution of the application will take place it must be controlled
how many applications that are executed at the same time. Both the
ASs and the SCSs may have distributed structure. Distributed systems
need load balancing to prevent overload from occurring with current
capacity.

So far, there has only been one published paper about performance
analysis of the service architectures described above. Melen et al. [18]
use a simple queuing network model to investigate a Parlay gateway
supporting multiple services. They develop a scheduling mechanism
for the gateway that ensures that each service obtains processing
capacity that is proportional to the offered load for that service.

4. Conclusions

The telephony networks and the Internet will become converged.
Customers want to reach the same applications independent of in what
network they are positioned or what terminal they use. Also, the
demand for new applications and advanced services is increasing as
these generate great revenues for the telecom network operators.

4. Conclusions

Overload Control and Performance Evaluation in a Parlay/OSA Environment

Therefore, new service architectures must be developed. Several
architectures have been proposed by different organisations to increase
the pace of service and application creation. In this article we have
described Parlay and OSA, two of the most promising service
architectures.

Since both Parlay and OSA are based on distributed processing and
open APIs, several performance problems may be identified.
Therefore, it will be necessary to develop performance models for
these architectures and then investigate how they behave during
various traffic scenarios.

References

[1] The PARLAY group home page, www.parlay.org
[2] The 3GPP home page, “www.3gpp.org”.
[3] J-P Hubaux, C Gbaguidi, S Koppenhoefer, J-Y Le Boudec, “The

impact of the Internet on telecommunication architectures”, Com-
puter Networks 31, 1999

[4] A Moerdijk, L Klostermann, “Opening the networks with PAR-
LAY/OSA APIs: standards and aspects behind the APIs”, http://
www.3gpp.org/.

[5] C Moiso, M D Sommantico, “Identifying strategies for migrating
Intelligence to 3G Networks to deliver next generation value-added
services”, http://exp.telecomitalialab.com/mobile_art04_p01.htm,
2001.

[6] J-E Chapron, B Chatras, “An analysis of the IN call model suitabil-
ity in the context of VoIP”, Computer Networks 35, 2001

[7] C-A Licciardi, G Canal, A Andretto, P Lago, “An architecture for
IN-internet hybrid services”, Computer Networks 35, 2001

[8] W. Wang, Y. Hao, C. Sun, M. Lu and S. Cheng, “ISA: A Stand
Alone Services Agent Supporting IN/IP Integration”, IEEE Intelli-
gent Network Workshop, 2001.

[9] “SS7 Tutorial”, www.pt.com, 2000-2001.
[10]E Guelen, J Hartmann, “Open service provisioning in GSM -What

do we gain with CAMEL, http://www.jens-hartmann.de/papers/
epmcc97.pdf, 1997.

[11]T-C Chiang, J Douglas, V Gurbani and W Montegomery, “IN
Services for Converged (Internet) Telephony”, June 2000

Service Architectures for the Next Generation Networks: an Overview and Some Performance Aspects

28 Overload Control and Performance Evaluation in a Parlay/OSA Environment

[12]W Wang, S Cheng, G Bochman, “Accessing Traditional Intelli-
gent Services From SIP Network”, Info-tech and Info-net, 2001

[13]T Dagiuklas, P Galiotos, “Architecture of an enhanced H.323
VoIP Gateway”, Communications, 2002

[14]M Kihl, Overload control strategies for distributed communication
networks, Phd thesis, Lund University, Department of Communi-
cation Systems

[15]A. Lundqvist, www.incomit.com, May 2001.
[16]3GPP Technical Specification 23.127 v. 3.0.0 “Virtual Home

Environment/ Open Service Architecture”, http://www.3gpp.org/
ftp/specs/march_00/23_series/23127_300.zip, march 2000

[17]L Moretti, R Depaoli, “OSA Enabled Global Application Roam-
ing”, Proc. of IEEE Intelligent Network Workshop, 2001.

[18]R. Melen, C. Moiso and S. Tognon, “Performance Evaluation of a
Parlay Gateway”, Presented at the International Conference on
Intelligence in Next Generation Networks, 2001.

Overload Control and Performance Evaluation in a Parlay/OSA Environment 29

PAPER II

Performance Analysis and Modelling of an OSA
Gateway

Jens Andersson, Christian Nyberg and Maria Kihl

Abstract

It is foreseen that you in the future should be able to use the same
applications independent of where you are positioned or which terminal
that is used. The open service architectures provide these opportunities.
Open Service Access (OSA) is an example of such an architecture and it is
part of the specification delivered by 3GPP. This paper explains the OSA
architecture and presents a model of an OSA gateway. Further, it discusses
and proposes some feasible overload control mechanisms for the gateway.
The behaviour of the mechanisms is investigated through simulation.

1. Introduction

During the last years there has been a change in service architectures
towards so called open service architectures. One of the first open service
architectures that was successfully developed is PARLAY specified by the
Parlay group. In Parlay a set of standard application interfaces (APIs) is
defined. These will enable applications residing outside the network to
access and control network resources.

Open Service Access (OSA) is the service architecture that is proposed
for the 3G networks. OSA is based on the concept of PARLAY, and is

II

Performance Analysis and Modelling of an OSA Gateway

30 Overload Control and Performance Evaluation in a Parlay/OSA Environment

developed by the 3GPP [1]. It is foreseen that there will be a great
demand of services and in order to respond to this demand the pace of the
development has to speed up.

One common problem for all service architectures is what actions to
take if the control nodes become overloaded. Overloaded nodes leads to
long waiting times for service. If the waiting times get too long, customers
will abandon the request for service and perhaps make a retry. These
abandoned requests consume valuable processing time. In the worst case,
an overloaded node will only be processing abandoned requests for
service. Thereby the need of an overload control mechanism is obvious.

Overload control has been around for some decades. In Wildling [2]
the protection of telephone exchanges is discussed. One paper on overload
control in IN is Kihl [3].

Very few papers have been published on load issues for open service
architectures. However, the performance of a Parlay gateway is analysed in
Melen [4].

In this paper, we investigate overload control mechanisms for the OSA
service architecture. We propose a queuing model for the most critical
nodes in the architecture and investigate different ways of measuring load
and rejecting customers.

The paper is organized as follows: in section 2 a description of OSA is
given. In 3 the simulation model is presented. The proposals for overload
control mechanisms can be found i section 4 followed by the results and
discussion in section 5. Finally we draw some conclusions in section 6.

2. Open Service Access (OSA)

From the beginning OSA was an acronym for Open Service Architecture,
but it has been re-termed to Open Service Access. OSA offers an increased
security and integrity enabling the operators to open up their networks to
independent software developers and service providers. Thereby the
number of feasible service providers has increased.

2.1 Architecture

OSA consists of three parts, the Application Servers (AS:s), the Service
Capability Servers (SCS:s), and the Framework. Figure 1 shows one
possible configuration of an OSA architecture. The part referred to as the

2. Open Service Access (OSA)

Overload Control and Performance Evaluation in a Parlay/OSA Environment 31

OSA gateway can be built on several physical entities. In Figure 1 the
Framework and both the SCS:s constitute the OSA gateway.

The AS:s host the applications. An application is usually triggered by
the dialling of a special number or by some kind of HTTP request. The
AS:s can be physically positioned inside or outside the network they are
communicating with. An example of a typical OSA application in a 3G
network is an “application initiated call” proposed in [5]. The sequence
diagram of this service is shown in Figure 2.

In an OSA architecture there can be one or several SCS:s, see Stretch
[6]. The SCS provides network functionality to the applications via one
or several SCF:s. An SCF consists of several narrow functions, which
together makes it possible to utilize the network capability. Examples of
SCF:s are Call Control, Mobility and Charging SCF. For example the
Call Control SCF provides functionality to establish different kinds of
calls to a mobile user.

The Framework can be seen as a separate SCS providing the
applications with basic mechanisms, like authentication before accessing
the network functionalities or the possibility to find out which SCF:s that
are provided by the SCS:s. It is important to notice that there is always
exactly one framework in an OSA gateway.

2.2 Overload Control in OSA

In an OSA architecture the AS:s and the SCS:s are especially sensitive to
overload. It is possible for both the AS:s and for the SCS:s to have
overload control.

The overload related functionality is managed by the Framework as
described in the specifications [7]. Information about the load condition

AS

AS

AS

SCF

SCF

SCS SCF

SCF

AS
Network

SCS

Framework

OSA gateway

Figure 1. The architectural picture of an OSA architecture

Performance Analysis and Modelling of an OSA Gateway

32 Overload Control and Performance Evaluation in a Parlay/OSA Environment

in the SCS:s and the AS:s can be exchanged between the AS:s and the
Framework. This gives the opportunity to control the load either from the
AS or from the Framework.

There are three load levels, 0, 1 and 2 corresponding to normal load,
overload and severe overload respectively. Nothing is said about how the
load levels should be set or what actions they should cause. The actions
should be defined in the load management policy, which is created via
contract writing.

3. Simulation Model

We have developed a model consisting of one AS and a gateway
containing one SCS and a Framework, Figure 3. The gateway can be
modelled as only the SCS, as framework requests are assumed to be rare.
In the AS the application described in Figure 2 is implemented. Of course
in a real system there will be many applications with different behaviour.
However, one is enough to create an overload situation and to evaluate the
behaviour of an OSA gateway. The arrivals of the application calls are
modelled as a Poisson process with the rate calls each second. The SCS
is modelled as a one server queue with capacity of serving 100 application
calls per second. The capacity of the AS is dimensioned so the overload
will appear in the SCS and thereby the AS can be seen as a delay.

In Figure 2 it is shown that each service has to execute in the network
twice. The first time is modelled as a delay of 10 ms and the second is
modelled as an exponentially distributed delay with mean 2 s. The other
service times are set as follows: If a message in the SCS results in a new
message the execution time is 2 ms, else 1 ms. Each delay in the AS in
Figure 3 is 1 ms.

Figure 2. Message sequence diagram for an application initiated call

Application___| |_________OSA Gateway (SCS)__________| |___UMTS Network

createCall
routeReq

CAP RequestReportBCSM

CAP EventReport
routeRes
routeReq

CAP RequestReportBCSM

CAP Eventreport
routeRes

deassignCall

λ

4. Overload Control Mechanisms

Overload Control and Performance Evaluation in a Parlay/OSA Environment 33

4. Overload Control Mechanisms

An overload control mechanism should measure the current load and
reject new calls if necessary. In our model the rejection mechanism is
positioned in front of the gateway.

When the gateway is overloaded the waiting times get too long. In [8]
a maximal delay of 100 ms is proposed and that value will be used here. If
a completed application call has had a mean delay in the OSA gateway
longer than 100 ms, it is said to be an expired call.

The main objectives for the overload control mechanism in this paper
are to maximize the throughput and minimize the number of expired
calls. To do this the number of calls in the gateway should fluctuate as
little as possible so that the server is kept busy as much of the time as
possible at the same time as the queue length should be kept short. The
current load is expressed by one of the three load levels according to the
specification, see section 2.2.

4.1 Measurement Methods

Two ways of measuring the load, A and B, are proposed below. In both
cases, the measured load at an arrival is compared to a threshold value
corresponding to the current load level. If the measured load is above the
threshold value at five consecutive arrivals or departures the load level is
increased (if smaller than 2). If it is below the threshold at five consecutive
arrivals or departures it is decreased (if it is larger than 0).

Method A measures the total number of application calls in the SCS,
network and AS. Method B measures the number of calls in just the SCS.
Calls in the network and AS will sooner or later come back to the SCS
and demand processing. Method A takes this into account, B does not.

To estimate the threshold values when A is used we set Ttot=E(total
time in system for an application call), Tscs=E(total time in the SCS) and

Delay

AS OSA GW(SCS) UMTS Network

Figure 3. The simulation model

Delay

Performance Analysis and Modelling of an OSA Gateway

34 Overload Control and Performance Evaluation in a Parlay/OSA Environment

xscs=E(service time in the SCS for each application call in ms). If is the
threshold it must satisfy

(EQ 1)

to satisfy the requirement so that calls not are expired.

When method B is used the threshold can be calculated as

 (EQ 2)

4.2 Rejecting Methods

This paper proposes two methods for rejecting calls, the static method
and the dynamic method. Both methods use Percent blocking [9] where
Rf=P(a call is rejected).

The static method works like this: when load level is 0, Rf is 0, when
load level is 1, Rf is set to 0.5 and when load level is 2, Rf is set to 1.

The dynamic method tries to stabilize the measured load just below
the threshold. When load level 1 is reached Rf is increased by 0,1. If load
level 1 remains after X seconds, Rf is increased one more time etc. If load
level 2 is reached, Rf is increased by 0.4 in the same way. If the load level is
0, Rf is decreased by 0,1 every X:th second. Of course Rf must always be
in the interval [0, 1].

In our simulations X is 25*E(total execution time in the SCS for one
application call).

5. Results and Discussion

The rejecting and measurement methods will be compared in this section.
The comparisons will be done with both constant and varying average

Table 1. Threshold parameters used in the simulations

Measurement
method

Static method
load level 1

Static method
load level 2

Dynamic method
load level 1

Dynamic method
load level 2

Method A 190 210 190 200

Method B 40 45 30 35

Â

Â
Tscs

Ttot
---------⋅ 100

xscs
---------= Â⇒

100 Ttot⋅
xscs Tscs⋅
-----------------------=

B̂

B̂
100
xscs
---------=

6. Conclusions

Overload Control and Performance Evaluation in a Parlay/OSA Environment 35

arrival rates, . The threshold values are chosen such that the fraction of
expired services never exceeds 0.5%. The used threshold values are shown
in Table 1.

5.1 Comparisons of Measurement Methods

In the steady state case when we let keep the same value during a
long interval method B gives a better throughput. We also conclude that
method A is more sensitive to changes of the threshold values. If the
thresholds are lowered to decrease the rate of expired calls there is a sharp
decrease of the throughput when method A is used.

However, steady state arrival rates are not very realistic. It seems more
probable that the value of is rather bursty and shifts at random times.
Figure 4 shows the simulation results when is randomly varying
between the discrete values 0, 50, 100 and 150 calls per second and the
times between changes of are exponentially distributed with mean 2.0
seconds. The upper plot shows how is varying over 200 seconds with
the mean 81.6 calls per second. In the plots it can be discerned that
method B is better than method A, because of the smaller variations in the
number of application calls in the SCS. The mean throughput values
corresponding to each of the graphs starting from the upper are 60.3,
57.6, 63.5 and 60.4 respectively.

5.2 Comparisons of Rejecting Methods

In the steady state case the throughputs are about the same irrespective of
which rejecting method that is used. However, when shifts it can be
discerned that the static method has a better behaviour from transients
point of view in Figure 4 When there is a change from = 0 to = 150 it
can be discerned how the dynamic method has a slow reaction.

This means that the static method fulfils the requirements just as well
as the dynamic method and it seems to have a better behaviour
concerning transients.

6. Conclusions

In the OSA architecture it has not been defined how to measure the load
or how to react on an overload situation. In this paper it is shown that the

λ

λ

λ
λ

λ
λ

λ

λ λ

Performance Analysis and Modelling of an OSA Gateway

36 Overload Control and Performance Evaluation in a Parlay/OSA Environment

throughput is larger when the number of calls in the SCS is used as a
measure of the load than when the total number of active calls are used as
a measure. We have also proposed two rejection methods of which the
static method seems to have the best behaviour.

References
[1] The 3GPP home page, "www.3gpp.org"

[2] Wildling, K., T. Karlstedt, “Call Handling and Control of Processor
Load in SPC-systems”, ITC 9, Torremolinos 1979

[3] Kihl, M, Nyberg, C, "Investigation of overload control algorithms
for SCPs in the intelligent network", Communications IEE Proceed-
ings, 1997

[4] Melen, R., Moiso, C., Tognon, S., “Performance evaluation of a Par-
lay gateway”, "http://exp.telecomitalialab.com/pdf/06-
MOISO4.pdf", 2001

[5] ETSI standard 201 915-4 v1.3.1 “OSA API; Part 4: Call Control
SCF”, july 2002

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150
λ

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

nu
m

be
r

in
 S

C
S

st
at

ic
 m

et
ho

d

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

nu
m

be
r

in
 S

C
S

dy

na
m

ic
 m

et
ho

d

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

nu
m

be
r

in
 S

C
S

st
at

ic
 m

et
ho

d

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

time

nu
m

be
r

in
 S

C
S

dy

na
m

ic
 m

et
ho

d

M
e

as
ur

em
en

t m
e

th
od

 A
M

ea
su

re
m

en
t m

et
ho

d
B

Figure 4. The number of services in the SCS is plotted as a function of time when
is varying as the top plot. In each plot different measurement method or rejecting
method is used

λ

6. Conclusions

Overload Control and Performance Evaluation in a Parlay/OSA Environment 37

[6] Stretch, R.M., “The OSA API and other related issues”, B T Technol
J. Vol. 19 No 1, Jan 2001

[7] ETSI standard 201 915-3 v1.3.1 “OSA API; Part 3: Framework”,
july 2002

[8] Eurescom Technical Information, “Non-functional aspects and
requirements related to Parlay/OSA products”, june 2002

[9] Berger, A.: "Comparsion of Call gapping and Percent blocking for
overload control in distributed switching systems and telecommuni-
cations networks", IEEE Transactions on Communications, vol. 39,
1991

Performance Analysis and Modelling of an OSA Gateway

38 Overload Control and Performance Evaluation in a Parlay/OSA Environment

Overload Control and Performance Evaluation in a Parlay/OSA Environment 39

PAPER III

Performance Analysis and Overload Control of an
Open Service Access (OSA) Architecture

Jens K. Andersson, Christian Nyberg and Maria Kihl

Abstract

The trend of the service architectures developed in telecommunications
today is that they should be open in the sense that they can communicate
over the borders of different networks. Instead of each network having
their own service architecture with their own applications, all networks
should be able to use the same applications. 3GPP, the organization
developing specifications for the 3G networks has specified the standard
Open Service Access (OSA), as a part of the 3G specification. OSA offers
different Application Program Interfaces that enable an application that
resides outside a network to use the resources of the network. This paper
analyses the performance of an OSA gateway. It is examined how the
overload control can be dealt with in a way to best satisfy the operators
and the 3’rd parties. There are some guiding principles in the
specifications, but a lot of decisions have to be made by the implementors
of application servers and OSA gateways. Proposals of different
requirements for an OSA architecture exist such as, minimum amount of
accepted calls per second and time constraint for the maximal total delay
for an application. Maximal and fair throughput have to be prioritized
from the 3’rd parties view, but profit is the main interest from the
operators point of view. Therefore this paper examines a priority based

III

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

40 Overload Control and Performance Evaluation in a Parlay/OSA Environment

proposal of an overload control mechanism taking these aspects and
requirements into account.

Keywords: Open Service Access, overload control, quality of service,
priorities

1. Introduction

During the last years there has been a change in the evolution of service
architectures. Until recently, each network has had its own service
architecture and only the operator has been able to create and introduce
new services. Today a couple of consortia are developing specifications for
service architectures which allow interactions between different networks.
Thus, an application in one network can use resources from other
networks. Service creation will also be much easier in the new
architectures. Earlier only experts could create and deploy new services, as
thorough knowledge of telecom protocols was required to be able to
create an application inside the network.

Open Service Access (OSA) is the service architecture that is proposed
for the 3G networks. OSA is developed by the 3GPP [1]. With OSA it
becomes easier to develop and test new services outside the telecom
domain. Since OSA offers an increased security and integrity, it is possible
for the operators to open up their networks to independent software
developers and service providers, see Rajagopulan [2].

One common problem for all service architectures is what actions to
take if the control nodes become overloaded. To over provision the nodes
so that they can cope with all load peaks is too expensive. If a node is
overloaded, long queues of jobs will be formed which leads to long
waiting times for service. If the waiting times get too long, customers will
abandon the request for service and perhaps make a retry. But the
abandoned requests also consume valuable processing time. In the worst
case, an overloaded node will only work with processing abandoned
requests for service.

This problem may be solved by introducing overload control
mechanisms in the network. The main idea is to, during overload
situations, reject some requests as early as possible, so that the accepted
requests receive a good service. To be able to do overload control one
needs a way of detecting when a node is overloaded and also a mechanism

2. Open Service Access (OSA)

Overload Control and Performance Evaluation in a Parlay/OSA Environment 41

that rejects requests when there is overload. There must also be a way of
determining how the load measure should be used to calculate the
parameters of the rejection mechanism.

Overload control of communication systems has been a research topic
for some decades in telephone networks. An early paper is Forys [3] in
which the protection of control processors in telephone exchanges is
discussed. Some papers on overload control in IN are Pham et al [4] and
Kihl et al [5] in which overload control algorithms are suggested and
investigated. The general performance of a Parlay gateway, which is
almost the same as an OSA gateway was analysed in Melen et al [6].
Overload control mechanisms for an OSA architecture are proposed and
investigated in Andersson et al [7].

In the context of overload control, most papers present methods on
how to reject new calls in such way that the callers are treated equally.
This is, of course, the fairest case from the users’ point of view, but the
operator’s main interest is probably revenue. Therefore, we believe that an
overload mechanism based on priorities should be interesting for the
service providers. The priority of an application should correspond to the
amount of revenue the application generates for the operator. Thus, other
variables have to be included in order to maintain the user-perceived
Quality of Service of the applications.

In this paper, we give a thorough description of OSA in section 2. We
propose a queuing model of an OSA architecture in section 3. In section 4
priorities are discussed. A priority based overload control mechanism is
proposed in section 5. In section 6 the simulation parameters are given
followed by results and discussions in section 7. Finally we draw some
conclusions in section 8.

2. Open Service Access (OSA)

OSA is a collection of open network Application Program Interfaces
(APIs) that enable third party vendors to develop and deploy, with the
minimum effort, applications that access the full functionality of the
underlying network while still preserving its integrity. By abstracting
service creation from telecommunication specific details, the development
process of new applications is shortened and the creation pace of new
applications can be increased.

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

42 Overload Control and Performance Evaluation in a Parlay/OSA Environment

An OSA architecture consists of three main parts, the Application
Servers (AS:s), the Service Capability Servers (SCS:s), and the
Framework. Figure 1 shows one of the possible configurations of an OSA
architecture. Each SCS hosts one or several Service Capability Features
(SCF:s), which are abstractions of the underlying network functionality.
The part referred to as the OSA gateway can be built on one or several
physical entities. In Figure 1 the Framework and both the SCS:s
constitute the OSA gateway.

The Application Servers (AS:s) host the applications. Each AS can host
one or several different applications and provide them with the ability to
communicate with the Network via the OSA Gateway. The AS:s can be
physically positioned inside or outside the network they are
communicating with. An AS positioned outside the network of an
operator is typically connected to the Internet. Usually an AS is triggered
by the dialling of a special number or by some kind of HTTP request.
Examples of applications are conferencing, location based applications
and so forth.

In an OSA architecture there can be one or several Service Capability
Servers (SCS:s). More about the implementing of SCS:s can be found in
Stretch [8]. The SCS provides the applications with network resources via
one or several SCF:s. An SCF consists of several narrow functions, which
together makes it possible to utilize the network capability. One example

Figure 1. An example of an OSA architecture with a detailed view of the OSA Gate-
way

AS

AS

AS
AS

SCS
SCF

SCF
SCS

SCF

SCF

Network

OSA Gateway

OSA
Gateway

HLR

CSE

Frame-
work

HLR: Home Location Register
CSE: CAMEL Service Environment
AS: Application Server
SCS: Service Capability Server
SCF: Service Capability Feature

2. Open Service Access (OSA)

Overload Control and Performance Evaluation in a Parlay/OSA Environment 43

is the Call Control SCF, which provides functionality to connect and
establish different kind of calls to a mobile user. Another example is the
Charging SCF, which provides functionality to charge the user for a
service.

The Framework is the most important part in the OSA architecture.
This part takes responsibility for all security aspects of OSA. For example
it provides the applications with functionality like authentication before
accessing the network functionality or discovery to find out which SCFs
that are provided by the SCSs. All the security and integrity
functionalities necessary to open up a network are provided by the
Framework. It is important to notice that there is always exactly one
Framework in an OSA architecture.

2.1 An Example of a Service in OSA

In the specification [9], a couple of OSA applications are proposed. One
example is an “application initiated call”. In this application for example a
customer accesses a Web page and selects a name on the page of a person
or organisation to talk to. The sequence diagram of this application is
shown in Figure 2. An application setup consists of a number of OSA
messages. First the application sends a createCall message to the OSA
Gateway to create objects for further communication. In the Gateway the
application call is translated into suitable protocols for communication
with for example an UMTS network. When the A party has answered, the
application is notified and then the call is routed to the B party.

2.2 Overload Control in OSA

In an OSA architecture there are especially two parts sensitive to overload,
the AS:s and the SCS:s. The most critical SCF seen from the aspect of
overload is the Call Control SCF which connects and initiates calls. The
overload related functionality is managed by the Framework. In the
specification [10], there is a description of the functionality that is
prepared. Information about the load condition in the SCS:s and the AS:s
can be exchanged which gives the opportunity to control the load either
from the application side or from the Gateway.

The load condition is described by three levels. Load level 0
corresponds to normal load, load level 1 corresponds to overload and load

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

44 Overload Control and Performance Evaluation in a Parlay/OSA Environment

level 2 corresponds to severe overload. Nothing is said about how the load
levels should be set or what actions they should cause, but corresponding
threshold values to load level 1 and 2 can be set. Different SCS:s can have
different threshold values for the load levels. The action an overload
situation should cause on a specific application is identified in the load
management policy, which is created via contract writing (see below).

It is possible for the Framework to subscribe on load information both
from an AS and an SCS. The subscription can be either load information
sent to the Framework at discrete times or load information sent on a load
level change.

2.3 Contract Writing

When a new application is introduced a contract is written with the OSA
gateway through the Framework. The contract contains rules and
restrictions that should be followed. Proposals of what a contract should
include can be read for example in Rajagopulan [2]. A typical contract
might include minimum throughput for an application and maximal
delay of an application call. Another variable that might be agreed on is
the charging criteria. The contracts should not only consist of constraints
for the applications according to the gateway. Also the constraints that the
application has to fulfil is agreed.

Figure 2. Message sequence diagram for an application initiated call.

Application___| |_____________OSA Gateway (SCS)______________| |_______UMTS Network

createCall
routeReq

CAP RequestReportBCSM

CAP EventReport

routeRes
routeReq

CAP RequestReportBCSM

CAP Eventreport

routeRes

deassignCall

3. Model

Overload Control and Performance Evaluation in a Parlay/OSA Environment 45

3. Model

We have modelled an OSA gateway built on a single physical entity in a
multi application environment. Our model consists of R applications, a
Gateway and a network, see Fig. 3. We do not have to specify how many
SCF:s there are in the gateway as they are positioned on the same physical
entity anyway.

Each G-box in Figure 3 corresponds to a generator of new application
calls to a specific application. We will assume that calls are generated
according to a Poisson process or according to an MMPP, but other
processes could of course be used in the simulation model. Each
application is assumed to be positioned at a non-overloaded AS which is
modelled as a delay with deterministic values, depending of which
message that should be executed.

An application, al, has a guaranteed rate of dl calls per second, and a
total execution time in the Gateway of seconds. Of course the
system must be stable when all applications face their guaranteed rate,
which implies that

(EQ 1)

Each application belongs to a priority, and has a time
constraint, . Each priority corresponds to a guaranteed rate
of application calls per second. A time constraint corresponds to the
maximum delay a message should experience each time it passes the
Gateway. In the example in Figure 2 the application call has to pass the
gateway five times and if the application call, when it is completed, has
had a total residence time in the gateway larger than , the call is said

xtot l()

dll 1=

R
∑ xtot l()⋅ 1<

pj j 1…M=(),

Tk k 1…N=(),

Tk

G

Delay

AS(s) OSA Gateway Network

Figure 3. An OSA Model.

Delay
G

5 Tk⋅

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

46 Overload Control and Performance Evaluation in a Parlay/OSA Environment

to be expired. The time constraints are set such that < <....< . The
set of applications with time constraint k is denoted A(Tk). The total
guaranteed rate of applications with time constraint k, is denoted λk. λk is
given by

The time constraints and priorities can be set independently of each other
for each application.

The gateway is modelled as a single server queue, in which one
message at a time is served. This means that all messages are stored in the
same queue when waiting for execution. The execution times in the
gateway are set to deterministic values, depending of which message that
should be executed. We denote with N(t) the number of messages in the
gateway with a remaining time less than t before their deadline expires.
Another variable that will be used in this article is xGW, which is an
estimation of the execution time of a random message in the gateway. We
will use different values for this variable, see Section 6

The network is assumed to be non-overloaded and is modelled as a
deterministic delay with stochastic elements from, for example, the phone
pick up time in Figure 2.

4. Priorities

The priorities should be set in such way that the utility is largest for the
priority 1 applications and decreasing by increasing priority levels, as we
want to maximize the utility. In this section we propose a utility function
that can be used for the settings of the priorities.

4.1 The Utility Function

First of all utility has to be defined. The utility should somehow
correspond to the use of spending processor time on an application. We
believe that revenue is the main interest for the operator or owner of the
OSA gateway, which means that revenue should have influence on the
utility. However, the revenue of an application cannot directly be used as a
measure of utility. Assume that a very resource consuming application
exists. Even if this application generates a good revenue it might happen

T1 T2 TN

λk dl

l A Tk()∈
∑=

5. Overload Control Mechanisms

Overload Control and Performance Evaluation in a Parlay/OSA Environment 47

that another application exists, which generates less revenue but has a
much shorter total execution time in the Gateway. Therefore, the total
revenue for the latter application during a minute may be higher than the
former. So we have to weight the revenue against the total execution time
in the gateway. The utility function of al is now described by the
following expression

(EQ 2)

where r(l) is the revenue. r(l) is the income the operator receives each time
an application call from al is served minus the cost of maintaining the
network functionality that the application use. In Eurescom Technical
Information [11] the players in a Parlay/OSA business environment are
discussed. The operator is only one of many players, so the income to the
operator per application call is not equivalent to the cost of an application
call for the customer as the receipts should be distributed among several
players. This means that the utility an application corresponds to is a
measure of how much revenue the operator will have through executing
applications of the same kind for one second.

Equation 2 gives a good estimation of the utility seen from the aspect
of revenue in the short run. But in the long run it should be an advantage
for the operator to have an extra goodwill parameter, G, that could be set
individually and be added to Equation 2. For example a completely new
application representing a new kind of service might lead to larger
revenue in the future if it is experienced well and then the development
pace of similar applications might increase. So if this goodwill parameter
is based on qualified market analysis this would probably increase the
revenue in the long run.

The priority of an application depends on the utility function. A
discrete number of priorities will be used, and thereby each priority level
will correspond to a utility interval.

5. Overload Control Mechanisms

We have developed an overload control mechanism for the gateway, see
Figure 4. It consists of a controller, a gate and a selector. The controller
makes appropriate measurements on the gateway. Also, it analyses the

U l() r l()
xtot l()
---------------=

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

48 Overload Control and Performance Evaluation in a Parlay/OSA Environment

measurement data and determines what action that has to be taken by the
gate, which regulates the acceptance of new application calls.

The objective of the overload control scheme is to keep all time
constraints for the accepted application calls. As different applications can
have different time constraints the selector has to decide in which order the
messages in the gateway should be served. The selector uses an Earliest
Deadline First (EDF) scheduling algorithm, see Lui et al [12]. The
controller performs measurements of the load status in the gateway to
check if it is possible for the selector to pick the messages in such order
that none of the time constraints is expired. If not, the controller orders
the gate to decrease the acceptance of new application calls. If the time
constraints can be kept the gate is told to increase the acceptance of new
application calls if possible.

5.1 Gate

When the gateway is overloaded, the gate starts to reject application calls.
Since each application is guaranteed a minimum rate of accepted
application calls per second, we have chosen to let the gate use a call
gapping method, see Berger [13], to reject application calls. The time is
divided into small intervals of a certain length, and then the first
application call in the interval is accepted. The interval lengths depend on
the guaranteed rate the application has. If, for example, an application is
guaranteed at least 10 calls per second, this corresponds to a time interval
of 0.1 seconds. During an overload situation (load level 1) the gate
introduces call gapping on the lowest priority applications. If this action is
not enough and the overload condition remains after X seconds, call

Controller

Gate
new application

Figure 4. Model of the overload control mechanism

se
le

ct
or

OSA

calls

messages from
accepted app.
calls

5. Overload Control Mechanisms

Overload Control and Performance Evaluation in a Parlay/OSA Environment 49

gapping is introduced on application calls of the next priority level, and so
on every X:th second until applications from all priority levels have their
calls rejected according to the call gapping method. The parameter X
should be set taking into account the capacity of the gateway. If a severe
overload condition (load level 2) appears all the priority levels are blocked
at once, only letting the guaranteed amount of application calls through.

5.2 Controller

For each arriving or departing message the controller checks if the time
constraints for the messages waiting in the queue may fail if the message is
admitted. The following condition should of course always be fulfilled:

(EQ 3)

If not fulfilled, application calls with time constraint will most
probably fail even if the gate starts to reject arriving application calls at
this stage.

Figure 5 can be used to easier explain the calculations that is performed
by the controller to decide the current load condition in the Gateway.
Each time constraint can be seen as an insertion point in the waiting
queue for an application of a certain time constraint. When a message is
inserted into the queue, this can be seen as some kind of time axis where
the messages proceeds along this time axis as the distance to their
deadline. When the execution of one message is completed the next
message at the front of the queue is executed.

While a message with time constraint T3 is waiting to get first in the
queue it is possible for new messages with time constraint T1 and T2 to
arrive at the queue with a closer deadline and thereby get a closer position
to service. This means that during the interval of length after the
arrival of a time constraint 3 message, all applications with time
constraint T1 or T2 will have a closer deadline. Then during another
interval of , arriving messages with time constraint T1 will have a
closer deadline. Therefore, the condition in Equation 3 can be improved
to also include the guaranteed rate of new application calls. This
condition can be expressed as

N Tk() xGW⋅ Tk 1 k N≤ ≤(),≤

Tk

T3 T2–

T2 T1–

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

50 Overload Control and Performance Evaluation in a Parlay/OSA Environment

(EQ 4)

If this condition is fulfilled and if the gate only let the guaranteed
application calls through, the messages currently in the queue will most
probably be served within their time constraints.

However, the controller should also check that the condition in (4) not
is violated in the future by admitting too many calls from applications
with less tough time constraints. Assume for example that an application
call with time constraint arrives at time . Let A be the set of all calls
with a deadline in the interval at this arrival. After
seconds all the calls in A will have a deadline that is less than seconds
in the future. But in the time interval messages with time
constraint and may have arrived to A and these messages will also
have a deadline that is less than seconds in the future.

If a burst of application calls with time constraint arrives and we
start to reject calls from all priority levels, then the maximal number of
messages that might be additional to an interval of length , until all
deadlines remain less than , can be expressed as

(EQ 5)

and the execution time of these should be added to the execution time of
all initial messages in the interval of length . Just as before we also have

N Tk() λ j

j 1=

k 1–

∑ Tk Tj–()⋅

+

xGW⋅ Tk< 1 k N≤ ≤

T3 t0

t0 T1– t0[,] T3 T1–

T1

t0 t0 T3 T1–+[,]

T2 T1

T1

T1T2T3 (T3-T1)

ti
m

e
ax

is

Figure 5. Abstraction of controller mechanism

time for
service

Ti

Tk

Tk

λ j

j k=

i 1–

∑ T⋅ λ j

j 1=

k 1–

∑+ Tj⋅
2 i N≤ ≤

i k>

T
Tk Tk Ti Tj–()<

Ti Tj–() Tk Ti Tj–()≥

=

Tk

6. Simulation Parameters

Overload Control and Performance Evaluation in a Parlay/OSA Environment 51

to include that new application calls might arrive during the execution of
the messages in the interval. This new condition can be described as

(EQ 6)

where is the same as in Equation 5. This constraint has to be fulfilled
for all possible combinations of and , where i > k.

If conditions (4) and (6) are fulfilled, the controller decides that the
system has a high probability to succeed without too many expired
deadlines. If any of the two conditions fail, the controller signals overload
to the gate. Too further decrease the number of expired deadlines and to
get a more calmly behaviour, the controller uses a marginal when
signalling for overload. This marginal is created by multiplying the right
hand of the conditions with a marginal factor, f<1. If any of the
conditions are violated when the right hand side is multiplied with f, the
controller signals overload (load level 1). If any of the conditions are
violated without the marginal factor, the controller signals severe overload
(load level 2) to the gate.

6. Simulation Parameters

In the simulations we have used 10 applications with different behaviour.
In our implementation we support two different time constraints and
three priorities for the applications. The different applications also differ
in execution times in the OSA Gateway, delays in the AS, delays in the
network and the number of times an application needs to pass the
gateway. Table 1 shows the configuration of the applications used in our
simulations. The sequence diagram of application 1, 2 and 3 is the same
as the example shown in Figure 2. The sequence diagrams of the other
applications are not shown, but their most important properties can be
seen in the table. The reason for that we have one exponentially
distributed and one deterministic service time in the network for
application 1, 2 and 3 is that these correspond to some kind of call
establishing look alike applications. Such applications have to execute
twice in the network. The first time is when the call is connected to the
callers phone. In this case a deterministic delay is used, since there is
probably some kind of auto phone pick up function for the caller. The

N Ti() N Ti Tk–()– λ j

j 1=

k 1–

∑ Tk Tj–()⋅

λ j

j k=

i 1–

∑ T⋅ λ j

j 1=

k 1–

∑+ Tj⋅+ +

xGW⋅ Tk
2 i N≤ ≤

i k>
<

T

Tk Ti

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

52 Overload Control and Performance Evaluation in a Parlay/OSA Environment

second execution correspond to the B party pick up time. This pick up
time is modelled to be exponentially distributed.

Priorities 1, 2, and 3 correspond to guaranteed rates, dl, of 10, 5, and
0.5 accepted calls per second, respectively.

The marginal factor f, used in the controller, is set to 0.9. To prevent
the system from oscillating, the load level is only changed if the controller
detects overload for five consecutive arrivals or departures. The parameter
X introduced in Section 5.1 is in our simulations set to 50ms.

During the simulations we have used different values of
depending of which features that are prioritized. We think that two
different values can be motivated. Either we use the upper quartile of the
execution times in the Gateway for all messages from all applications or
we use the largest execution time in the Gateway. The choices are referred
to as configuration 1 and configuration 2. The choice of to the upper
quartile is motivated as it seems not realistic that only applications using
messages with the largest execution times in the Gateway are used.
Thereby this will give a good estimation of the maximum mean of the
execution time for the messages in the queue, but with this choice we

Table 1. The configuration of the different applications.

App.
Execution times in
the OSA Gateway

Execution
times in
the AS

Execution
times in the
network

Priority Time
constraint

1 0.001, 0.002, 0.002,
0.002, 0.002, 0.001

0.001,
0.001, 0.001

0.008,
exp(2,0)

1 0.1

2 0.002, 0.003, 0.003,
0.003, 0.003, 0.002

0.002,
0.002, 0.002

0.01,
exp(0.01)

2 1.0

3 0.0001, 0.0002, 0.0002,
0.0002, 0.0002, 0.0001

0.001,
0.001, 0.001

0.01, exp(2.0) 3 0.1

4 0.0015, 0.0025, 0.0025,
0.0015

0.0015,
0.0015

0.0125 1 1.0

5 0.0001, 0.0002, 0.0002,
0.0001

0.0001,
0.0001

0.0008 2 0.1

6 0.001, 0.002, 0.002,
0.001

0.001, 0.001 0.008 3 1.0

7 0.002, 0.002 0.001, 0.001 0.018 1 0.1

8 0.003, 0.003 0.005, 0.005 0.008 2 1.0

9 0.0002, 0.0002 0.0001,
0.0001

0.0008 3 0.1

10 0.0015, 0.0015 0.0001,
0.0001

0.0035 3 1.0

xGW

xGW

7. Results and Discussion

Overload Control and Performance Evaluation in a Parlay/OSA Environment 53

cannot guarantee the rate of expired application calls. The choice of
to be the largest execution time among all applications is motivated as this
will result in a very limited amount of expired application calls. This
reasoning counts for all conditions where takes part in this article

7. Results and Discussion

In this section the overload control mechanism will be evaluated.
Simulation results are presented and the gain of the proposed overload
control mechanism is discussed.

We first consider arrivals according to a poisson process where the rate,
, is changed every 25:th second. At first is 10 calls/s, and is then

increased to 20, 25 and 50 calls/s. In Figure 6 the resulting rates of
completed application calls per second for each of the three priorities are
shown when configuration 1 is used. During the first 25 seconds no calls
are rejected, since the total number of arriving application calls is below
the capacity of the Gateway. However, after 25 seconds is almost equal
to the capacity of the Gateway and the priority 3 application calls are
slightly affected. After 50 seconds, the total arrival rate exceeds the
capacity of the Gateway and, therefore, application calls with the lowest
priority are rejected. After 75 seconds, calls from all priority levels are
rejected, but none of the priority levels have all their application calls
rejected. This is because of the guaranteed amount of application calls. In
the realization in Figure 6 about 5% of the served application calls were
so-called expired calls. However, most of the expired application calls
break their time constraints only with a few percent of their constraints.

If configuration 2 is used the outcome of a typical realization when
steady state is used is seen in Figure 7. In this realization 0% of the served
application calls are expired calls.

It is interesting to see what can be gained with a priority based
rejection mechanism as proposed. An estimation of how good the
outcome is can be performed by using the utility measure. Assume that
the applications of priority 1, priority 2 and priority 3 corresponds to
utility 3, 2 and 1 respectively. Then we can get a measure of the gain by
calculating how much time the processor has spent on the different
applications and take into account the utility of each application. The
revenue of a realization can then be defined as

xGW

xGW

λ λ

λ

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

54 Overload Control and Performance Evaluation in a Parlay/OSA Environment

 (EQ 7)

where s(l) is the number of served application calls from application l
during one simulation.

In the realization shown in Figure 6 we get a total revenue of 213
units. The same calculation for the gain of the realization shown in Figure
7 results in a total revenue of 214 units. To be able to do a comparison of
this result we have done the same simulation where we have used an
ordinary random rejection method where 50% of the application calls are
rejected during an overload (load level 1) situation, and where all
application calls except the guaranteed amount is rejected during an
severe overload (load level 2) situation. When this overload control
mechanism is used we get a total revenue of 199 units if the parameters
are set so that 3,5% of the served application calls are expired. Observe
that when this mechanism is used we cannot guarantee that the

s l() xtot l()⋅ U⋅ l()
l 1=

R

∑

Figure 6. The outcome of a realization when configuration 1 is used. The top graph
shows the mean of each application. There are three priority 1 applications, three
priority 2 applications, and four priority 3 applications

λ

0 10 20 30 40 50 60 70 80 90 100
0

50

λ

0 10 20 30 40 50 60 70 80 90 100
0

100

200

se
rv

ed
 p

rio
rit

y

1
ap

p.
 c

al
ls

/s

0 10 20 30 40 50 60 70 80 90 100
0

50

100

se
rv

ed
 p

rio
rit

y

2
ap

p.
 c

al
ls

/s

0 10 20 30 40 50 60 70 80 90 100
0

50

100

t im e

se
rv

ed
 p

rio
rit

y

3
ap

p.
 c

al
ls

/s

7. Results and Discussion

Overload Control and Performance Evaluation in a Parlay/OSA Environment 55

requirement of the guaranteed rates of accepted application calls per
second is fulfilled during an overload (load level 1) situation.

In the plots it is seen how configuration 2 rejects more application calls
than configuration 1 during an overload situation. It can also be discerned
that there are larger differences between the number of accepted calls
from different priorities when configuration 2 is used. When the random
rejection mechanism is used all applications have about the same amount
of application calls served per second. As a consequence of this we get less
revenue.

However, arrivals according to a Poisson Process is probably not so
realistic. Therefore we have also used an MMPP with six states to generate
arrivals. The states correspond to arrival rates 0, 10, 20, 30, 40 and 50
calls per second. The mean time in a state is two seconds and when we
leave a state, we enter one of the others with equal probability. Under
these circumstances and when configuration 1 is used the rate of expired
calls is about 0.15%. And when configuration 2 is used the rate of expired
calls is 0%. As we assume that the mean execution time is higher in
configuration 2 than in configuration 1 we cannot allow the same queue
length. Thereby the queue will become empty more often as a
consequence if it is filled by messages with short execution time, and
thereby the utilization is lower if configuration 2 is used.

Figure 7. The outcome of a realization when configuration 2 is used. The top graph
shows the mean of each application. There are three priority 1 applications, three
priority 2 applications and four priority 3 applications

λ

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0
λ

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0

1 0 0

se
rv

ed
 p

rio
rit

y

1
ap

p.
 c

al
ls

/s

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0

1 0 0

se
rv

ed
 p

rio
rit

y

2
ap

p.
 c

al
ls

/s

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0

1 0 0

t im e

se
rv

ed
 p

rio
rit

y

3
ap

p.
 c

al
ls

/s

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

56 Overload Control and Performance Evaluation in a Parlay/OSA Environment

If we do the same calculations of the gain as before, but with an
process of the arrivals according to MMPP we get a total revenue of about
2350 units when configuration 1 is used during a simulation of 1000
seconds. The same calculation for a configuration 2 simulation during
1000 seconds results in a total revenue of 2280 units. If we use the earlier
described random rejection mechanism, with the parameters set such that
the rate of expired calls is 0.1%, we get a total revenue of 2180 units.

Clearly we get a better gain when the priority based overload control is
used. The values of have different advantages. The choice of this
value should be made depending of how the contract is written and what
the arrival process look like. During an MMPP arrival process, which we
think is the most realistic, the use of the upper quartile results in a better
utilization and a higher gain than if we use the largest execution time,
which is an argument for configuration 1. But we also get a higher
fraction of broken deadlines, which is an argument for configuration 2.

8. Conclusions

We have modelled an overload control mechanism for an OSA gateway.
The Overload control mechanism that is proposed is designed to support
two probable requirements in an OSA architecture. It is able to guarantee
a minimum rate of accepted application calls per second dependent of
which priority an application correspond to. It is also designed to make
sure that application calls that are accepted will meet their time constraint
with a high probability. Further, discussions are held and a proposal is
presented of how the priorities can be set in order to maximize the
revenue for the owner of the Gateway.

The different parts in the overload control mechanism are build
independent of each other such that either the gate, the selector or the
controller can be exchanged without any affect on the other parts. Also
the utility function can be exchanged.

By simulations the overload control is evaluated and the appearance of
the wanted behaviour is verified. Also, we have shown that the total gain
of the served application calls is higher when using the priority based
rejection mechanism compared with a random rejection mechanism.

xGW

8. Conclusions

Overload Control and Performance Evaluation in a Parlay/OSA Environment 57

Acknowledgement

This work has partially been financed by the Swedish Research Council,
contract no 621-2001-3053.

References

[1] The 3GPP home page, "www.3gpp.org"

[2] R. Rajagopulan, “The impact of Open Service Access on Network
Services”, http://www.wmrc.com/businessbriefing/pdf/
wireless_2003/Technology/lucent.pdf, 2002.

[3] L. J. Forys, “Performance Analysis of a New Overload Strategy”, ITC
10, 1983

[4] X. H. Pham, R. Betts, “Congestion Control for Intelligent Net-
works”, 1992 International Zurich Seminar on Digital Communica-
tions, 1992

[5] M. Kihl, C. Nyberg, “Investigation of overload control algorithms
for SCPs in the intelligent network”, Communications IEE Proceed-
ings, vol. 144, 1997

[6] R. Melen, C. Moiso, S. Tognon, “Performance evaluation of an Par-
lay gateway”, http://exp.telecomitalialab.com/pdf/06-MOISO4.pdf,
2001

[7] J. Andersson, M. Kihl, C. Nyberg, “Performance analysis and model-
ling of an OSA gateway”, In the proceedings of PWC2003, 2003

[8] R. M. Stretch, “The OSA API and other related issues”, B T Technol
J., Vol. 19 No 1, 2001

[9] ETSI standard 201 915-4 v1.3.1, “Open Service Access (OSA);
Application Programming Interface (API); Part 4: Call Control
SCF”, 2002

[10] ETSI standard 201 915-3 v1.3.1, “Open Service Access (OSA);
Application Programming Interface (API); Part 3: Framework”,
2002

[11] Eurescom Technical Information, ”Parlay/OSA Business Models: An
Operator’s Perspective”, December 2002

Performance Analysis and Overload Control of an Open Service Access (OSA) Architecture

58 Overload Control and Performance Evaluation in a Parlay/OSA Environment

[12] C. Liu, J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment”, Journal of the Association
for Computing Machinery, Vol. 20 No. 1, 1973.

[13] A. Berger, “Comparison of Call gapping and Percent blocking for
overload control in distributed switching systems and telecommuni-
cations networks”, IEEE Transactions on Communications, vol. 39,
1991

Overload Control and Performance Evaluation in a Parlay/OSA Environment 59

PAPER IV

Overload Control of a Parlay X Application Server

Jens Andersson1, Maria Kihl1 and Daniel Söbirk2

1Department of Communication Systems
Lund Institute Of Technology, Sweden

Box 118 221 00 Lund
E-mail: {jens.andersson, maria.kihl}@telecom.lth.se

2Appium AB
daniel.sobirk@appium.com

Abstract

Parlay/OSA is a service architecture developed to increase the number of
potential application developers of telecommunication services. By
abstracting the telecommunication network resources into building
blocks, it is possible to create new applications without any deep
knowledge of telecommunications. To be able to reach even more
developers, Parlay X was introduced as an extension to Parlay/OSA to
provide applications that reside in the Internet the ability to use network
resources from a telecommunication network via so-called web services.
An application residing in the Internet can reach a network capability via
an entity called an application server, which converts the building blocks
to appropriate communication with the network. In this paper an
application server is modelled, its performance is investigated and a load
control mechanism is proposed. The load control mechanism is designed
to support constraints of different kinds as Parlay X is a contract driven
architecture. Simulations are used to evaluate the behaviour of the load
control mechanism.
Keywords: Application Server, overload control, load balancing,
admission control, service architecture, performance evaluation

IV

Overload Control of a Parlay X Application Server

60 Overload Control and Performance Evaluation in a Parlay/OSA Environment

1. Introduction

In the telecommunication networks used today, each network operator
have their own service architecture. The service architecture is built on the
Intelligent Network (IN) technology [1]. Since the IN technology was
introduced it has been easier to create and introduce new services and
applications. But thorough knowledge and skills regarding the
telecommunication signalling and protocols has been a requirement for a
service creator. The limitations of the telecommunication networks have
been highlighted by the explosive growth of the Internet. One of the main
reason of the growth is the large number of software developers. In the
Internet any software developer has the capability to create an application
reachable for any Internet user, a fact that has inspired the
telecommunication operators to think in new directions.

The first serious initiative of a service architecture that makes the
creation of new applications less complicated was Telecommunications
Information Networking Architecture (TINA) [2]. The main idea with
TINA was to provide developers with building blocks corresponding to
different telecom features. This initiative remains at the research level, and
no TINA architecture is implemented and used today.

However, the TINA initiative has lead to several new groups that has
tried to challenge complexity of creating new applications. Parlay [3] and
JAIN [4] are examples of groups that are developing Application Program
Interfaces (APIs) that allow applications to access network functionality.
In this way the telecom networks open up to IT developers, and
development of new and innovative applications is foreseen. As a
complement to the Parlay APIs, another group started to develop some
APIs that could be used to provide access to applications on top of a
Universal Mobile Telecommunications System (UMTS) network. The
group developing these APIs is called Open Service Access (OSA) and is
part of the 3GPP [5]. The Parlay/OSA APIs are standardized, both by
ETSI [6] and the 3GPP.

To reach even more IT developers the so called Parlay X web services
have been introduced, developed by the Parlay X working group within
Parlay. Parlay X involves more abstraction of the building blocks of
telecom capabilities and with this architecture it is possible for
applications that reside in the Internet to reach a telecom resource by a
single command via a so called Application Server (AS).

1. Introduction

Overload Control and Performance Evaluation in a Parlay/OSA Environment 61

An AS is connected to the Parlay/OSA environment and thereby acts
as a gateway between the applications and the network from the
applications point of view. The AS is a distributed system that performs
the mapping between Parlay X commands and Parlay/OSA commands.
That the AS is distributed means that it contains different processing
nodes, which may be involved during the service of a request.

In the context of service architectures a common problem is overload.
The congestion we are interested of in this article occurs when there are
too many applications that try to make use of the same AS at the same
time. To avoid congestion, load balancing algorithms have to be
combined with admission control. The strategy of load balancing is to
spread the load among the nodes. The admission control strategy is to
reject some of the requests if there is not enough capacity to serve all of
them in a sufficient way.

The load balancing and admission control methods are well known
concepts for congestion avoidance. In Kihl et al. [7] load balancing
algorithms for a TINA network are discussed. Berger [8] has a discussion
about different admission control methods and Pham et al. [9] gives an
example of an overload control mechanism for IN. Dahlin [10] discusses
what impact old information about the load status should have on the
decisions. An article that treats a distributed architecture is Bakshi et al.
[11].

This paper gives an overall description of the Parlay/OSA and Parlay X
service architecture. Extra attention is paid to describe the Application
Server and its functionality. We will also present an overload control
algorithm that is designed for a distributed Application Server with
messages of different priorities, which need different treatment. The
algorithm will also consider delayed information. Investigation of the
feasibility to minimize the constraints of hardware in the load balancing /
admission control entities is discussed. The performance of the algorithms
and methods is investigated with simulations.

In the next section a description of some overload control methods is
given. A description of a Parlay/OSA and Parlay X environment is
presented in the section after that. The application server in a Parlay X
architecture is then described. The objectives of this paper are presented
in the section after that, followed by the description of how we modelled
the AS and its surroundings. Then the load balancing algorithms and the
admission controlling algorithms are described. Simulation parameters

Overload Control of a Parlay X Application Server

62 Overload Control and Performance Evaluation in a Parlay/OSA Environment

are followed by results and discussions. Finally some conclusions are
presented in the last section.

2. Load Balancing and Admission Control
Methods

In this section the basics of load balancing and admission control are
explained. Some extra attention is paid to specific methods that are used
later in this paper.

2.1 Load Balancing

The purpose of a load balancing algorithm is to distribute the load in such
way that all processing nodes in a distributed environment is equally
loaded. In a distributed architecture with full information of the current
load (e.g. non-delayed information), the load balancing is trivial, but in
real systems with multiple traffic sources and where delays occur load
balancing is not trivial. Many complex algorithms have been developed
with different advantages.

However, very often it is shown that simple algorithms like Round
Robin (RR), see Stallings [12], is almost as good as much more advanced
and specialized algorithms. The method of RR is to remember how much
traffic that has been sent to a specific node and then let all nodes in the
system get the same amount. If the different nodes in a system have
different capacities the traffic flow should be weighted to the different
nodes. The algorithm is now called Weighted Round Robin (WRR). If we
denote the amount of the traffic that node i with capacity should get as

, then

(EQ 1)

can be used to calculate the amount of traffic.

Ci

Ai

Ai

Ci

Cj

j
∑
------------=

3. Description of a Parlay/OSA and Parlay X Environment

Overload Control and Performance Evaluation in a Parlay/OSA Environment 63

2.2 Admission Control

The purpose of admission control is to protect the system when there is
not enough capacity to serve all requests for service. Therefore some of the
requests have to be rejected, and this can be done according to different
algorithms. Example of an admission control algorithm is the token
bucket. A token bucket regulator has a flow of tokens per second to
bucket of size . The number of tokens in the bucket is denoted . If

 the arriving tokens to the bucket are rejected. When a request
arrives we check if . If this is the case is decreased by 1 and the
message is accepted, otherwise it is rejected. Figure 1 describes an
admission controller with a token bucket.

3. Description of a Parlay/OSA and Parlay
X Environment

The main advantage of introducing a Parlay/OSA environment is the
increased ease of creating new applications that may use the resources of a
telecommunication network. This is also the main reason why Parlay/
OSA has been developed. Example of a network resource can be setting

p

l N

N l=

N 1≥ N

AC

New token arriving with
pace pi

If bucket full new
token is rejected

If the arriving
message is accepted and

N i() 1≥

N i() N i() 1–=

Arriving messages

If the bucket is empty, the
message is rejected

Figure 1. Description of a token bucket admission controller

Overload Control of a Parlay X Application Server

64 Overload Control and Performance Evaluation in a Parlay/OSA Environment

up a call. Earlier, a developer was required to have great technical skills
and deep knowledge of telecommunication protocols to be able to
implement an application in a service architecture. With Parlay/OSA the
network capabilities are abstracted and reached by APIs. The API
introduces so called Service Capability Features (SCFs) and each resource
provided by the network is abstracted to an SCF. So in order to use a
certain network capability, an appropriate SCF has to be called. More
details about the SCFs can be found in [13].

3.1 The Architecture

The service architecture can be applied to any telecommunication
network, and it is not specified in which network the users should reside
to be able to use the architecture. One of the most discussed and
promising topologies is when the end user of an application is connected
to the Internet. This is the architecture that we will treat in this article. A
Parlay/OSA architecture connected to the Internet is often referred to as a
Parlay X architecture where the network resources are abstracted to so
called Parlay X Web Services, see [14].

The architecture of a typical Parlay/OSA environment connected to
the Internet can be seen in Figure 2. The main elements needed to
describe the architecture are Users, Service Providers (SPs), Application
Server (AS), Parlay/OSA Gateway and a Network.

• Users: The case we investigate is when the users of the applications
are connected to the Internet.

Figure 2. Architectural picture of an AS and Parlay/OSA environment

A
pp

lic
at

io
ns

Service
Providers

Pa
rl

ay
/O

SA
 G

W

N
et

w
or

k

U
S

E
R

S

H
T

T
P

SO
A

P

Pa
rl

ay
/O

SA
 A

P
I

AS

3. Description of a Parlay/OSA and Parlay X Environment

Overload Control and Performance Evaluation in a Parlay/OSA Environment 65

• SP: The SPs are hosting the applications. Either the SPs own the
applications or the owner of an application hire disk space at an SP.
In a Parlay X architecture the SPs can provide the application devel-
opers the capability to make use of a network resource via a request
using Simple Object Access Protocol (SOAP) transported by Hyper
Text Transfer Protocol (HTTP).

• AS: An AS translates the SOAP requests to Parlay/OSA commands.
This means that the AS is a gateway to a network resource from the
SPs point of view. The AS is owned by the network operator.

• Parlay/OSA gateway: The Parlay/OSA gateway is owned by the net-
work operator and handles all advanced non-abstracted communi-
cation with the network.

• Network: The network can be either a mobile or a fixed telecom-
munication network. Any network that gains from increased ease of
creating new applications can adopt the Parlay/OSA service archi-
tecture.

3.2 Communication from Application to Network

A request for a network resource of any kind is denoted as a message. A
typical request for service starts with some HTTP communication
between an end user and an application (for example click to dial). SOAP
is used to specify what kind of network resource that the application aims
to use. The SOAP message is sent to the AS where the messages are
converted to call the appropriate SCF in the Parlay/OSA gateway. The
processing that really takes place in and with the AS is described in a later
section. A SOAP message arriving at the AS can cause much
communication between the AS and the gateway. The Parlay/OSA
gateway is directly connected with the network. The SCFs are specified by
Parlay/OSA standards, but it depends on the underlying network what
SCFs that are supported. More about the Parlay/OSA gateway can be read
in [15].

To be able to distinguish between different messages, each message has
a call-id which is encapsulated to the SOAP level. As the SOAP messages
are encapsulated by HTTP it is not feasible to see what call-id a message
has without unwrapping, but HTTP supports the ability to see what kind
of SOAP request that is encapsulated.

Overload Control of a Parlay X Application Server

66 Overload Control and Performance Evaluation in a Parlay/OSA Environment

Parlay/OSA and Parlay X is not yet widely used. The operators who
has shown the largest interest so far are operators for the fixed networks.
They see great opportunities in providing application initiated calls.
Applications providing such features would make it feasible to establish
conference calls at a certain time where the initiator has the control to
shut down the conference at any time, or after a predefined time. The ease
of use and the lucidity of the applications will also increase when they are
presented on a monitor and controlled by text input.

3.3 Contracts

Parlay/OSA is a contract driven architecture. There are contracts between
the AS and the Parlay/OSA gateway and between the AS and the SPs. The
contracts include several constraints and restrictions, but we are only
interested in the variables concerning the performance. Each SP that
makes use of an AS must have a contract. Relevant facts included is how
many application calls from a certain SP that at least should be accepted
each time unit, and also a time constraint for the maximal delay. A
maximal number of application calls per time unit from an SP will also be
agreed. If an SP does not fulfil the constraints this will lead to that the
Load Balancer/Admission Controller (LB/AC) do not have to fulfil its
undertakings.

4. The Application Server

A detailed view of an AS is shown in Figure 3. An AS is a distributed
architecture where several Parlay X to Parlay converters (PX-P converters)
are active at the same time. There is also a coexistence of several SPs, each
one with their own contract and constraints that should be fulfilled. To be
able to fulfil the constraints and avoid congestion at the PX-P converters a
Load Balancing / Admission Control (LB/AC) mechanism is used. It is
important to distinguish between the LB and the AC. The aim with the
load balancing is to distribute the messages among the PX-P converters
such that about the same load is reached at each PX-P converter. The aim
with the admission control part is to reject some messages when the PX-P
converters are overloaded. When an application sends a message to the AS
it is received by the LB/AC. The LB/AC decides whether the message
should be rejected or accepted and to which PX-P converter it should be

4. The Application Server

Overload Control and Performance Evaluation in a Parlay/OSA Environment 67

forwarded if accepted. In the PX-P converter the message is mapped to
corresponding Parlay/OSA communication, to serve the SOAP message
request. The architecture of the PX-P converters is built on a Common
Object Request Broker Architecture (CORBA) platform. Internal
communication between the PX-P converters is possible using CORBA
messages. An AS typically consists of 2 to 30 PX-P converters. It is
difficult to predict how many SPs an Parlay/OSA architecture will
embrace, as it is dependent of the size of each SP and the popularity of the
applications.

The case we investigate is when there are messages of three different
kinds and with different priorities supported in the AS. These are

• EndCall (priority 1), ends the ongoing call

• GetCallInfo (priority 2), requests information about the connected
parties etc.

• MakeACall (priority 3), request to create a new call

This is a scenario investigated by demand of the industry. It is
interesting that the MakeACall messages have a lower priority than the
others, because the contracts only concerns the rate of accepted
MakeACall messages. The explanation is simply that all accepted calls
should be taken cared of. We will later on investigate and discuss the ratio
of the different messages.

 In the considered architecture the application calls are session based.
This means that the same PX-P converter must take care of the
GetCallInfo messages and EndCall message corresponding to the same

Application

Application

Application

Application

Application

Service Providers

LB/AC 1

PX - P
converter

PX - P
converter

PX - P
converter

Pa
rl

ay
/O

SA
 G

W

SP 1

SP 2
LB/AC 2

Application Server

Figure 3. Detailed view of the AS

Overload Control of a Parlay X Application Server

68 Overload Control and Performance Evaluation in a Parlay/OSA Environment

application call. Therefore the call-id is the same for all messages
belonging to the same call. The call-id for an application call is assigned
by the PX-P converter at the arrival of a MakeACall request. Each PX-P
converter is dedicated an interval of call-ids to choose among. If the call-
id is accessible in the LB/AC part, a list is maintained over which call-ids
that should be served by which PX-P converter. The calls can also be
ended from the network side (e.g. the parties hang up), without noticing
the AS.

4.1 Load Control Mechanism

The load control mechanism can be described by Figure 4. The LB/AC
consists of a gate/controller and a monitor. The monitor performs the
measurements of the load at the PX-P converters. Each time a message
(request) is sent from the LB/AC to any of the PX-P converters a thread is
used. The same thread is later used for the response of the request, see
next section. Exactly one thread is used for each request and therefore it is
feasible to measure the time between request and response to get an
estimate of the current load. It must be observed that the measured time
does not give a precise measure of the current load condition. Instead we
get information about the load when the served message was sent. It is in
the gate/controller the algorithms for the load balancing and admission
control is implemented. Based on the information the gate/controller gets
from the monitor it decides whether or not the gate/controller should
reject a new message of a certain kind. More about the algorithms
implemented in the gate/controller in a later section.

Parlay X to
Parlay converter

Parlay X to
Parlay converter

Parlay X to
Parlay converterGate /

Monitor

LB/AC

Rejected messages

Figure 4. The load control mechanism

ne
w

 m
es

sa
ge

s

Controller

4. The Application Server

Overload Control and Performance Evaluation in a Parlay/OSA Environment 69

4.2 Example of a MakeACall Request

In Figure 5 the sequence diagram for a MakeACall message is shown.
The first message (1) is a makeACall.

When the LB/AC receives the MakeACall message it decides whether
to accept or reject the new call. If the call is accepted a MakeACall
message (2) is sent to PX-P converter. The message is unwrapped and the
converter sends a message (3) to inform the LB/AC that the request now
is processed. The LB/AC forwards the message (5) to the SP. When this
message is received the SP might at any time send GetCallInfo and
EndCall messages with the same call-id. The processing in the PGW
involves different amount of communication dependent of how many
participants the SOAP message attend to connect by the MakeACall
message. The communication with the PGW consist of calling
appropriate Service Capability Features (SCFs).

The sequence diagram for a GetCallInfo message is almost the same as
shown in Figure 5 excluding message (4). An EndCall message has a
sequence diagram identical to Figure 5.

SP LB/AC PX-P PGW

(1)

(2)

(4)(3)

(5)

SP: Service Provider
LB/AC: Load Balancer / Admission Control
PX-P: Parlay X to Parlay converter
PGW: Parlay Gateway

Figure 5. Sequence diagram of MakeCall

Overload Control of a Parlay X Application Server

70 Overload Control and Performance Evaluation in a Parlay/OSA Environment

5. Objectives of This Paper

The objectives are to investigate how different overload control
algorithms can be implemented to maximize the throughput and to get a
robust system at the same time as the constraints are fulfilled. Another
important issue is to investigate how the constraints of hardware for the
LB/AC part can be minimized. The most time consuming job is
wrapping and unwrapping of the SOAP requests and therefore it is
interesting from the hardware point of view to investigate whether it is
feasible to avoid unwrapping the SOAP requests in the LB/AC part. If the
SOAP messages are not unwrapped it is not feasible to reach the call-id
and thereby there will be no information about which PX-P converter
that should treat the GetCallInfo and EndCall messages.

6. Model of a Distributed Application
Server System

The modelled AS system consists of SPs and PX-P converters where
converter i has the capacity . Each SP might include several
applications but as the contracts are agreed between the SPs and the AS,
the number of applications is not important. As each SP is connected to
their own LB/AC, see Figure 3, a single SP is the traffic generator to the
LB/AC and thereby the AS. There are reasons to believe that the traffic to
ASs will be rather bursty, since the ASs can be reached from the Internet.
It is actually the arrival process at the web servers hosting the applications,
which consequently will be the arrival process of new service calls for the
AS. In the context of web servers the arrival process is often modelled as a
Markov Modulated Poisson Process (MMPP), see Chen et al. [16]. We
believe that MMPP is a good assumption also in the context of ASs.

Our model can bee seen in Figure 6. As we investigate the problem of
overload in the PX-P converters we assume that there is no overload at the
SPs or in the Parlay/OSA GW. Therefore the SPs and the Parlay/OSA
GW are modelled as delays, as there is assumed to be enough capacity for
instant service. The LB/ACs are modelled as single server FIFO queues.
The service times in the LB/AC are assumed to be deterministic as the
same decisions and processing should be performed independent of
message. We denote the service times or dependent on

n m

Ci

xwrapped xunwrapped

7. Overload Control

Overload Control and Performance Evaluation in a Parlay/OSA Environment 71

if the SOAP messages are unwrapped or not. The PX-P converters are also
modelled as single server FIFO queues. In the case when the LB/ACs do
not unwrap the SOAP messages it may occur that the GetCallInfo and
EndCall messages are sent to the wrong PX-P converter. As the
application calls are session based the wrong PX-P converter cannot
complete the requests without consulting the converter handling messages
with the specific call-id. Therefore CORBA messages are used for this
purpose. The processing time for handling a SOAP message in a PX-P
converter depends on the capacity and is denoted for converter i. The
processing time for handling a CORBA message is .

We assign CORBA messages higher priority than the SOAP messages
in the converter queues, since the messages sent to wrong converter
otherwise must wait in the queues too long.

7. Overload Control

In this section we will propose a Load Balancing and Admission control
mechanism for robust protection of an AS. Two cases will be considered,
the unwrapped and the wrapped SOAP case. Depending on which case

SPs LB/ACs PX-P Parlay/OSA
converters GW

Figure 6. The model of an AS

D
el

ay
D

el
ay

D
el

ay
D

el
ay

D
el

ay

ti

ti 4⁄

Overload Control of a Parlay X Application Server

72 Overload Control and Performance Evaluation in a Parlay/OSA Environment

that is considered the call-id can be used or not. We define overload as
when the waiting times for the users are too long. The waiting time for a
user is defined as the time between message (1) and (5) in Figure 5. The
time constraint for the applications is denoted . The load control
mechanism must also consider that each SP k has a guaranteed rate of
MakeACall messages per second. To explain the complete load control
mechanism, four stages are used, see Figure 7.

7.1 Rough Admission Control (Stage 1)

To protect the LB/AC node from overload a rough admission controller is
used. The stage 1 mechanism rejects messages without treating them if
the arrival rate is too high. In the contracts a maximal number of messages
sent per second, denoted will be agreed for PX-P converter i. If more
than messages are sent during a second the LB/AC does not have to
fulfil the constraints against the SP. We propose that the value of is
chosen such that

τ
dk

SP

L
oa

d
ba

la
nc

er

Protect LB/AC

If bucket not
empty, message is
accepted

Fulfil guarantees

If the message is
a MakeACall
and bucket not
empty, the mess-
age is assigned
priority 1

According to the algorithm
presented in the stage 4 section
messages are accepted or
rejected dependent of their
priority

Stage 1 Stage 2 Stage 3 Stage 4

pconverter1

pconverter2

pconverter3

Figure 7. Overview of the different stages in the LB/AC

ri

ri

ri

7. Overload Control

Overload Control and Performance Evaluation in a Parlay/OSA Environment 73

(EQ 2)

to be able to serve all accepted messages and their potential responses
returned to the LB/AC. To control that the number of messages do not
exceed messages per second we propose the use of a token bucket of size

, with pace . If there is no token when a message arrives it is rejected
without informing the SP.

7.2 Constraint Control (Stage 2)

When the LB/AC has explored which category an arriving message
belongs to, the LB/AC must control that the constraint of accepted
MakeACall messages per second is fulfilled. To fulfil the guaranteed
number of accepted MakeACall messages for SP k we use a token bucket
of size and tokens arriving with rate . If there is a token in the bucket
when a MakeACall message arrives the message is given priority 1, the
same priority as the EndCall messages, and will always be accepted at later
stages. Notice that each LB/AC only have one bucket for controlling the
guaranteed rate of MakeACall messages. If the bucket is empty when a
MakeACall message arrives, it is just forwarded to the next stage with the
original priority, 3. Also the GetCallInfo and EndCall messages are
forwarded with their original priorities 2 and 1.

7.3 Load Balance (Stage 3)

We propose the use of weighted round robin algorithm for load
balancing, since it is known to be robust. The amount of messages a PX-P
converter receives should be weighted by the capacity of the PX-P
converters according to Equation 1. However, the algorithm should not
be adopted to all messages (i.e. all messages should not be load balanced),
as a consequence of the session based nature. In the case when the SOAP
messages are unwrapped we have a feasibility to distinguish which
message that correspond to which session. Therefore the wrapped and the
unwrapped case result in different actions.

ri 2 x un()wrapped⋅ 1<⋅

ri

ri ri

dk

dk dk

Overload Control of a Parlay X Application Server

74 Overload Control and Performance Evaluation in a Parlay/OSA Environment

Unwrapped Case

Since the application calls are session based only the MakeACall messages
are distributed with the round robin algorithm. The GetCallInfo and
EndCall messages can only be served by a specific PX-P converter.
Therefore it is not optimal to send a message to the wrong PX-P converter
as this would result in extra processing and waste of total processor
capacity. In the unwrapped case the information about which call-id that
should be served by which PX-P converter is maintained in a table. There
is no information on how many active application calls there are at the
moment since the LB/AC is not noticed when a session ends from the
network side. An assumption is that each application call correspond to
about the same utilization of the capacity.

Wrapped Case

Just as in the unwrapped case the MakeACall messages will be distributed
by the round robin algorithm. The call-ids are not accessible in the
wrapped case so it is unknown which PX-P converter the GetCallInfo and
the EndCall messages should be sent to. Therefore the round robin
algorithm is used to distribute these messages as well. This is not the most
effective algorithm from the hardware in converters point of view as they
will have to process extra CORBA messages for percent of the
GetCallInfo and the EndCall messages.

7.4 Admission Control (Stage 4)

During overload situations in the converters some kind of action must be
taken. The admission control mechanism should choose which messages
to serve and which to reject. Overload is defined as when the messages
cannot be served within the time constraint. If a message is not served
within the time constraint it is said to be an expired message. Notice that
the measurements are performed of the time from request to response in
the LB/AC, denoted . However, an expired message is defined as
when the duration between request and response at the SP, denoted ,
is larger than . The aim for the controller is to keep

(EQ 3)

m 1–() m⁄

∆tmeasured

∆tuser

τ

∆tuser τ<

7. Overload Control

Overload Control and Performance Evaluation in a Parlay/OSA Environment 75

In the context of admission control we do not distinguish between the
cases if the SOAP messages are unwrapped or not. This can be made as it
is feasible to distinguish between SOAP messages at the HTTP level.

Proposed admission control algorithm

If a message is accepted at the first stage the message is unpacked and sent
to the load balancer. The load balancer decides which PX-P converter that
should treat the message. Each LB/AC has a buffer queue for each PX-P
converter. When a message is load balanced it is sent to the end of the
buffer queue for a certain PX-P converter. Statistics are then maintained
on how many messages of priority i that are present in a certain queue and
this number is denoted . To regulate the load at the PX-P converters
we choose to regulate on the pace that messages are sent from the queue
to the converter. A higher load will result in a lower pace. To predict the
load in the converters we use the measured times , and express
the current load as a load level. We introduce a number of threshold
values, , which are used for comparisons with . Based on the
measured times the LB/ACs maintains a load-table where the load level is
set to k according to the formula

(EQ 4)

 is actually expressing the load status when the message was sent
to the converter, but it can be predicted that load level k is close to the real
load condition. Each load level k then correspond to a certain pace . To
avoid the LB/ACs from sending too many messages during a short time
interval, which could lead to that the load conditions in the PX-P
converters change too fast, the values of the paces should be set in such
way that

(EQ 5)

 is the capacity of the converter i and adopts a maximal delay,
, that should not be exceeded if the threshold does not exist.

should be expressed as how many messages that is served in mean per
second during full utilization. With the pace for the largest k, , it
must be fulfilled that

N i()

∆tmeasured

thk ∆tmeasured

thk ∆tmeasured thk 1+≤ ≤()

∆tmeasured

pk

n thk 1+ pk Ci thk 2+⋅<⋅ ⋅

Ci thk 2+

thmax Ci

pmax

Overload Control of a Parlay X Application Server

76 Overload Control and Performance Evaluation in a Parlay/OSA Environment

(EQ 6)

However, as we try to fulfil Equation 3 the converter cannot always
serve all of the messages in the buffer queue. Messages cannot be queued
too long as includes both the time in the LB/AC and . To
decide whether a message should be accepted to the converter or rejected
the following comparison is performed

(EQ 7)

to decide which is the largest j when the equation is fulfilled. If the first
message in the queue is of lower priority than j the message is rejected and
the comparison is repeated until the first message is accepted.

8. Simulation Parameters

In the simulations 8 SPs and 3 PX-P converters have been used and the
value of was set to 140 ms. New MakeACall messages were generated
according to a four state MMPP with the means 0, 50, 100, 150 calls per
second. Changes between the different states occurred according to a
poisson process with mean 4 seconds. Two scenarios of arrivals of
GetCallInfo messages were investigated, one heavy loaded and one light
loaded case. In the heavy loaded case an assumption was made that during
a session, the time intervals between generated GetCallInfo messages were
exponentially distributed with mean 30 and in the light loaded case the
mean was set to 130. The time between the MakeACall and the EndCall
message of a session were exponentially distributed with mean 300
seconds. The duration before a call was ended by the network was
exponentially distributed by mean 144 seconds.

All PX-P converts were assigned the same capacity of serving 400
SOAP messages per second, which means that ms. Consequently
the service time for a CORBA message was 2.5/4 ms in the converters
which means that in the unwrapped case but in the
wrapped case as a consequence of the processing of the CORBA messages.
We set = =2,5 ms, which means that the capacity of the

n pmax⋅ Ci<

∆tuser ∆tmeasured

N i()
i 1=

j

∑
pk

-------------------- τ thk 1+–<

τ

ti 2 5,=

Ci 400= Ci 300≈

xwrapped xunwrapped

9. Results and Discussion

Overload Control and Performance Evaluation in a Parlay/OSA Environment 77

LB/AC has been decreased by approximately 75% in the wrapped case.
The processing time between arrival of a message to the LB/AC until it
was queued was set to 1.5 ms. The processing time to send a message
from the buffer queue was set to 1 ms independent if it was rejected or
accepted.

Three threshold values were used in the LB/AC to decide load level.
These were 0.02, 0.06 and 0.08. The maximal value that should not be
exceeded, , was set to 100 ms. The paces that the load levels resulted
in were set to 150, 65, 40 and 30 messages per second in the unwrapped
case and 115, 50, 40 and 30 when the wrapped case was considered.

The bucket size and pace were set to 200. The constraints of
accepted MakeACall messages per second, was set to 20 for all SPs.

9. Results and Discussion

Of fairness aspects it is important that all LB/ACs accept about the same
amount of messages, which means that the LB/ACs must have the same
predictions of the load. Our simulations have shown that the different
LB/ACs have a rather equal estimate of the current load in the converters.
Figure 8 shows a typical comparison of four LB/ACs estimate of the load
in a PX-P converter during 50 seconds. It is seen in Figure 8 that when
the LB/ACs disagree the estimate about load level is often almost equal.
The load levels in the realization shown in the Figure 8 equals in about
75% of the measured points.

Table 1 concludes the outcome from typical simulations of some
interesting scenarios. Since the capacity is lower in the wrapped case
the load is higher since the same arrival process is used during the
simulations independent of whether or not messages are wrapped. It is
shown that during heavy load the predicted load levels are equal less
often. The high utilization in the scenarios of heavy load that the overload
mechanism did not reject more messages than necessary. The reason for
the low utilization in the light load scenarios was that there were not
messages enough to fully utilize the PX-P converters.

In spite of the overload control mechanism, some of the completed
messages were expired. This was mainly caused by the MakeACall
messages that were guaranteed. When there was a change from low to
high rate of arriving MakeACall messages, the bucket in stage 2 was full.
Therefore messages had to be accepted during a very short time

thmax

ri

dk

Ci

dk

Overload Control of a Parlay X Application Server

78 Overload Control and Performance Evaluation in a Parlay/OSA Environment

interval and overload occurred when the converters already were exposed
to a high load.

Dependent of how the values of the guarantees is set, we propose
that either the contracts should use a shorter time basis or the contracts
should be reconsidered to be able to have a complete protection against
expired messages.

There are no statistics about the frequencies of the different messages,
but predictions by people conversant with the area say that there will be
several more GetCallInfos than MakeACall messages. If this is the case
and the amount of GetCallInfo messages gets too large, then only the
guaranteed amount of MakeACall messages will be accepted as the
GetCallInfo messages with higher priority will pad out all other available
capacity. Notice in Table 1 how the number of accepted MakeACall
messages were decreasing as the relative utilization of the PX-P converters
increased.

Figure 8. Comparison of four LB/ACs opinion of the predicted load level in a PX-P
converter

300 305 310 315 320 325 330 335 340 345 350
0

1

2

3

es
tim

at
e

1

300 305 310 315 320 325 330 335 340 345 350
0

1

2

3

es
tim

at
e

2

300 305 310 315 320 325 330 335 340 345 350
0

1

2

3

es
tim

at
e

3

300 305 310 315 320 325 330 335 340 345 350
0

1

2

3

time

es
tim

at
e

4

dk

10. Conclusions

Overload Control and Performance Evaluation in a Parlay/OSA Environment 79

A rate of expired messages around 1% is quite low when the converters
are almost fully utilized. This implies that the proposed algorithms where
messages are queued in the LB/ACs part instead of queued in the
converters is quite effective when considering the aspect of utilization.
The common solution of overload control is to make a decision upon the
arrival of a message, but we have succesfully proposed an algorithm which
tries to delay the decision of admission as long as possible.

The simulations also showed that it was feasible to achieve a functional
overload control mechanism without unwrapping the messages to SOAP
level in the LB/AC. The constraints for hardware in the LB/ACs could be
greatly decreased but instead the constraints for hardware in the PX-P
converters increased to be able to achieve the same performance as in the
unwrapped case.

10. Conclusions

In this paper we have described a Parlay X application server and its
environment and also proposed and evaluated an overload control
algorithm for the application server. The overload control mechanism
could handle constraints of guaranteed amount of application calls,
messages of different priorities and constraints of maximal delay from

Table 1. Comparison of the outcome of four different scenarios

Expired
messa-
ges (%)

Utilization
of PX-P
converters
(%)

Predicted
load equals
between
different SPs
(%)

Mean accepted
MakeACall
messages per SP
during 100 s

SOAP
unwrapped
heavy load

1.5 99 83 3490

SOAP
wrapped heavy
load

0.8 100 50 2730

SOAP
unwrapped

light load

0.8 84 86 4400

SOAP
wrapped light
load

0.4 88 75 3690

Overload Control of a Parlay X Application Server

80 Overload Control and Performance Evaluation in a Parlay/OSA Environment

request to response. Our results show that it is feasible to achieve overload
control at less constraints for hardware if the SOAP messages remains
wrapped in the Load Balancing / Admission Control part. The
disadvantage is that instead the constraints of hardware in the PX-P
converters increase. The rate of expired messages was low, despite the high
utilization of the PX-P converters.

The performance seems to be much dependent of the formulations of
the contracts. For example will the time base used in the contracts to
express the constraints have great impact of the number of served
messages with too long delay.

REFERENCES

[1] I. Faynberg; L.R. Gabuzda; M.P. Kaplan and N.J. Shah, “The Intelli-
gent Network Standards: Their Application to Services”, 1st edition,
McGraw-Hill, 1996

[2] TINA Consortium, http://www.tinac.com

[3] Parlay Group, http://www,parlay.org

[4] JAIN, http://java.sun.com/products/jain/index.html

[5] 3GPP, http://www.3gpp.org

[6] ETSI, http://www.etsi.org

[7] M Kihl, N Widell, C Nyberg, "Load Balancing Strategies for TINA
Networks", In Proceedings of 16th International Teletraffic Con-
gress, Edinburgh, Scotland, June 1999

[8] A W Berger, "Overload control using rate control throttle: selecting
token bank capacity for robustness to arrival rates", IEEE Transac-
tions on Automatic Control, vol. 36, 1991

[9] Pham X H, Betts R, "Congestion Control for Intelligent Networks",
In proceedings of 1992 international Zurich Seminar On Digital
Communications, 1992

[10] M Dahlin, "Interpreting Stale Load Information", IEEE Transac-
tions on parallel and distributed systems, vol. 11, no 10, 2000

[11] Bakshi Y, Diaz A H, Meier-Hellstern K, Milito R A, Skoog R,
"Overload control in a distributed system", ITC 15, 1997

10. Conclusions

Overload Control and Performance Evaluation in a Parlay/OSA Environment 81

[12] Stallings W, Data and Computer Communications, Prentice-Hall,
NJ, 2000

[13] ETSI standard 202 915-1 V1.2.1, "Open Service Access (OSA): API;
Part 1: Overview", 2003

[14] White paper, "Parlay APIs 4.0; Parlay X Web Services", http://
www.parlay.com, Dec., 2002

[15] A Moerdijk, L Klostermann, "Opening the networks with PARLAY/
OSA APIs: standards and aspects behind the APIs", IEEE Network
Magazine, Vol. 17 Nbr. 3, May, 2003

[16] Chen X, Mohapatra P and Chen H, “An Admission Control Scheme
for Predictable Server Response Time for Web Accesses”, In proceed-
ing of 10th WWW Conference, Hong Kong, 2001

Overload Control of a Parlay X Application Server

82 Overload Control and Performance Evaluation in a Parlay/OSA Environment

Reports on Communication Systems

101 On Overload Control of SPC-systems
Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.
CODEN: LUTEDX/TETS- -7133- -SE+80P

102 Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.
ISRN LUTEDX/TETS- -1010- -SE+32P

103 Priorities in Circuit Switched Networks
Åke Arvidsson, Ph.D. thesis, 1990.
ISRN LUTEDX/TETS- -1011- -SE+282P

104 Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1012- -SE+76P

105 Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1013- -SE+90P

106 Software Reliability and Performance Modelling for Telecommunication Systems
Claes Wohlin, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1014- -SE+288P

107 Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1015- -SE+200P

108 Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1016- -SE+78P

109 On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1017- -SE+48P

110 Enhancements of Communication Resources
Johan M. Karlsson, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1018- -SE+132P

111 On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1019- -SE+140P

112 Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.
ISRN LUTEDX/TETS- -1020- -SE+104P

113 Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.
ISRN LUTEDX/TETS- -1021- -SE+145P

114 End to End Transport Protocols over ATM
Thomas Holmström, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1022- -SE+76P

115 An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1023- -SE+90P

116 Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1024- -SE+136P

117 Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1025- -SE+142P

118 On Overload Control in Intelligent Networks
Maria Kihl, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1026- -SE+80P

119 Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1027- -SE+120P

120 Hierarchical Use Case Modelling for Requirements Engineering
Björn Regnell, Lic. thesis, September 1996.
ISRN LUTEDX/TETS- -1028- -SE+178P

121 Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.
ISRN LUTEDX/TETS- -1029- -SE+96P

122 On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1030- -SE+130P

123 Network Oriented Load Control in Intelligent Networks Based on Optimal Decisions
Stefan Pettersson, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1031- -SE+128P

124 Impact Analysis in Software Process Improvement
Martin Höst, Lic. thesis, December 1996.
ISRN LUTEDX/TETS- -1032- -SE+140P

125 Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.
ISRN LUTEDX/TETS- -1033- -SE+132P

126 Models for Estimation of Software Faults and Failures in Inspection and Test
Per Runeson, Ph.D. thesis, January 1998.
ISRN LUTEDX/TETS- -1034- -SE+222P

127 Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.
ISRN LUTEDX/TETS- -1035- -SE+138P

128 Switch Performance and Mobility Aspects in ATM Networks
Daniel Søbirk, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1036- -SE+91P

129 VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1037- -SE+65P

130 On TCP/IP Traffic Modeling
Pär Karlsson, Lic. thesis, February 1999.
ISRN LUTEDX/TETS- -1038- -SE+94P

131 Overload Control Strategies for Distributed Communication Networks
Maria Kihl, Ph.D. thesis, March 1999.
ISRN LUTEDX/TETS- -1039- -SE+158P

132 Requirements Engineering with Use Cases – a Basis for Software Development
Björn Regnell, Ph.D. thesis, April 1999.
ISRN LUTEDX/TETS- -1040- -SE+225P

133 Utilisation of Historical Data for Controlling and Improving Software Development
Magnus C. Ohlsson, Lic. thesis, May 1999.
ISRN LUTEDX/TETS- -1041- -SE+146P

134 Early Evaluation of Software Process Change Proposals
Martin Höst, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1042- -SE+193P

135 Improving Software Quality through Understanding and Early Estimations
Anders Wesslén, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1043- -SE+242P

136 Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.
ISRN LUTEDX/TETS- -1044- -SE+76P

137 Controlling Software Quality through Inspections and Fault Content Estimations
Thomas Thelin, Lic. thesis, May 2000
ISRN LUTEDX/TETS- -1045- -SE+146P

138 On Fault Content Estimations Applied to Software Inspections and Testing
Håkan Petersson, Lic. thesis, May 2000.
ISRN LUTEDX/TETS- -1046- -SE+144P

139 Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.
ISRN LUTEDX/TETS- -1047- -SE+121P

140 Dynamic traffic Control in Multiservice Networks – Applications of Decision Models
Ulf Ahlfors, Ph.D. thesis, October 2000.
ISRN LUTEDX/TETS- -1048- -SE+183P

141 ATM Networks Performance – Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.
ISRN LUTEDX/TETS- -1049- -SE+104P

142 Improving Product Quality through Effective Validation Methods
Tomas Berling, Lic. thesis, December 2000.
ISRN LUTEDX/TETS- -1050- -SE+136P

143 Controlling Fault-Prone Components for Software Evolution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.
ISRN LUTEDX/TETS- -1051- -SE+218P

144 Performance of Distributed Information Systems
Niklas Widell, Lic. thesis, February 2002.
ISRN LUTEDX/TETS- -1052- -SE+78P

145 Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.
ISRN LUTEDX/TETS- -1053- -SE+112P

146 Elicitation and Management of User Requirements in Market-Driven Software Development
Johan Natt och Dag, Lic. thesis, June 2002.
ISRN LUTEDX/TETS- -1054- -SE+158P

147 Supporting Software Inspections Through Fault Content Estimation and Effectiveness Anal-
ysis
Håkan Petersson, Ph.D. thesis, September 2002
ISRN LUTEDX/TETS- -1055- -SE+237P

148 Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for Software
Inspections
Thomas Thelin, Ph. D. thesis, September 2002.
ISRN LUTEDX/TETS- -1056- -SE+210P

149 Software Information Management in Requirements and Test Documentation
Thomas Olsson, Lic. thesis, October 2002.
ISRN LUTEDX/TETS- -1057- -SE+122P

150 Increasing Involvement and Acceptance in Software Process Improvement
Daniel Karlström, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1058- -SE+125P

151 Changes to Processes and Architectures; Suggested, Implemented and Analyzed from a
Project viewpoint
Josef Nedstam, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1059- -SE+124P

152 Resource Management in Cellular Networks -Handover Prioritization and Load Balancing
Procedures
Roland Zander, Lic. thesis, March 2003.
ISRN LUTEDX/TETS- -1060- -SE+120P

153 On Optimisation of Fair and Robust Backbone Networks
Pål Nilsson, Lic. thesis, October 2003
ISRN LUTEDX/TETS- -1061- -SE+116P

154 Exploring the Software Verification and Validation Process with Focus on Efficient Fault
Detection
Carina Andersson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1062- -SE+134P

155 Improving Requirements Selection Quality in Market-Driven Software Development
Lena Karlsson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1063- -SE+132P

156 Fair Scheduling and Resource Allocation in Packet Based Radio Access Networks
Torgny Holmberg, Ph.D. thesis, November 2003.
ISRN LUTEDX/TETS- -1064- -SE+187P

157 Increasing Product Quality by Verification and Validation Improvements in an Industrial
Setting
Thomas Berling, Ph.D. thesis, December 2003.
ISRN LUTEDX/TETS- -1065- -SE+208P

158 Some Topics in Web Performance Analysis
Jianhua Cao, Lic. thesis, June 2004.
ISRN LUTEDX/TETS- -1066- -SE+99P

159 Overload Control and Performance Evaluation in a Parlay/OSA Environment
Jens K Andersson, Lic. thesis, August 2004.
ISRN LUTEDX/TETS- -1067- -SE+100P

