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Abstract

Diffusion in bone is needed for bone remodeling and bone healing. Understanding the
phenomenon is often important for comprehension bone diseases. Mathematical modeling
of the diffusion processes is a required prerequisite in the study of this important physical
process in living bone tissue. A proper model is crucial in order to obtain realistic results.
An easily accessible method to measure the diffusion coefficient in bovine bone is used
in this work. In short, cortical bovine bone samples, that are saturated with potassium
chloride are put in distilled water. The escaping chloride and potassium ions increase the
conductivity of the water and the increase is registered over time.

In a first model, for simplicity, bone is regarded as a homogeneous material with pos-
ition independent diffusion properties. However, it is well known that the bone structure
in the shafts of the long bones is an in-homogeneous material with higher porosity closer
to the medullary cavity and becomes denser closer to the outer surface. Because of this,
a position dependent diffusion parameter is introduced in a second model. This improves
the simulation model, and provides more realistic results. To determine the diffusion coef-
ficients with good accuracy, an inverse method, a Kalman filter, is used to extract the
diffusion coefficients from experiments for both constant diffusion and position dependent
diffusion. The Kalman filter takes both measurement noise and material parameters noise
into account. The results from the Kalman filter process are sensitive to the selection of
initiation parameters, that have to be chosen carefully to avoid false local attractors or di-
vergence. In this context, a method to determine diffusion coefficients is suggested together
with recommendations on how to select the initiation parameters. To qualify the method a
Kalman filter is applied on generated measurements with added noise . Finally, a method
to determine the diffusion coefficient and the elastic properties of porous bone samples
is derived. The method is based on a superposition principle, that employed dimensional
scaling and established shape factors. The latter are found using finite element calculations
for a few classes of characteristic pore shapes. The method is evaluated regarding both
diffusion and mechanical behaviour on two real cases.
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sammanfattning

I Sverige drabbas arligen sa manga som 100.000 personer av benbrott, hoftfrakturer och
sjukdomar, som kan kopplas till benskérhet. Under normalt aldrande dndras benets struk-
tur och téthet vilket ¢kar risken for benbrott. Man vet att fordndringarna férorsakas av
forandringar i skelettets formaga att ombildas. Under hela livet byts benvivnaden suc-
cessivt ut och ersiitts av ny och balansen regleras den kemisk-fysiska miljon som omger
bencellerna. Nar man blir dldre stérs balansen sa benviivnaden in aterskapas i samma takt
som den gamla dras tillbaka. Den kemiska miljon uppstar och underhalls genom trans-
port av niringsdmnen och signalsubstanser genom benvivnaden. Transporten sker genom
diffusion, som padrivs pa ett eller annat sitt, av gradvisa skillnader sk. gradienter i kon-
centration, mekanisk tojning, elektro-kemi eller temperatur for att nimna de flesta fenomen
som kan vara aktuella. Diffusionen utan nagon annan padrivande mekanism #n koncent-
rationsgradienten har visat sig vara otillricklig atminstone for transport av ndringsdmnen
genom den relativt tdta benvdvnaden.

En padrivande faktor som ligger néra till hands ar de t&jningsgradienter som uppstar
vid mekanisk belastning. Det dr kiint att motion 6kar tdtheten hos benvivnaden och dkar
skelettets hallfasthet. Thardigt tuggande med nya tandimplantat stérker tandens inféstning
i kikbenet. Man har ocksa sett hur felkonstruerade tandimplantat gjort att benet runt im-
plantatet har dragit sig tillbaka och skapat en glugg mellan implantatet och kidkbenet. I
teorier som tagits fram tidigare har vi kunnat visa att diffusionen, som normalt &r riktad
bort fran delar dir koncentrationen dr hég utan sirskild annan riktning, vid mekanisk be-
lastning styrs mot stéllen i skelettet dir belastningen dr hég. Experiment pa motionerande
kalkoner visar att bentillvixten sker pa just dessa stéllen. For att forklara fenomenet har
det framforts en lang rad av forklaringar, fran sadana som &r mer eller mindre vilgrundade
till sadana som &r minst sagt korkade.

En avgorande brist for utveckling och verifiering av ny teori dr franvaron av uppmitta
materialegenskaper. Det dr hir den foreliggande avhandlingen kommer in. Det finns gott
om matematiska modeller som beskriver diffusion men precis som all annan fysik dr model-
lerna empiriskt baserade. dvs modellens parametrar maste bestimmas genom experiment.
Avhandlingen beskriver en relativt enkel metod for att méta diffusionshastigheten i ett
benprov. Metoden baseras pa att man méter joner som diffunderar genom benprovet och
passerar ut i ett omgivande vattenbad. I vattenbadet kan konduktiviteten métas med hog
noggrannhet. Mitningen pagar tills jamvikt har uppnatts.

For att ta fram materialdata fran métningarna har en invers metod, Kalman filtrering,
som har flera fordelar som att den ar rekursiv, kan optimeras for olinjdra material och 14m-
par sig vil for berdkningar av parametrar i olinjira modeller. I det senare fallet anvéinds en
sk Lagrangeinterpollering baserad pa en mindre serie av finita-elementberikningar anvénts.
Diffusionsmodeller for material med diffusionskoefficienter som varierar gradvis mellan be-
nets inner och ytteryta kriver flera parametrar for sin beskrivning. Resultatet visar att
man kan bestdmma hur diffusionskoefficienten varierar inne i benet. I avhandlingen har
ocksa en superpositionsteori for styvhet och diffusion i porésa material tagits fram. Teorin
bygger pa den energifrigérelse som ett en adderad por innebdr. Med hjilp av metoden kan
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man enkelt rdkna ut elasticitetsmodul och diffusionskoefficient for ett material. Teorin ar
begriansad till material som har en volymsandel som dr mindre én ca 20%.
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1 Introduction

The diffusion process is defined as movement of matter such as ions or molecules from
a high concentration area to a low concentration area in the absence of a bulk motion.
The process describes an important physical phenomenon that can be observed in liquid,
gas, and solid phases. In the solid phase, the diffusion process occurs on the atomic or
molecular length scale while liquid and gas phases might involve a variety of length scales
(Glicksman, 2000).

Physically, diffusion in bone is an important process for studying bone functions. In
bone, the diffusion has a clear impact on the transportation of substances from the medullar
cavity to the outer surface of the skeletal bone. Substances that promote bone growth are
possibly among these (Banks-Sills et al., 2011; Lindberg et al., 2013). The diffusion of
substances at, the cellular level also needs to be understood. This is required in studies of
the interactions taking place in the bone structure, and to improve the cellular environment
that is from the medullar cavity to the outer surface of the skeletal bone. Input regarding
diffusion in bone can probably fill a gap in the existing mathematical models for bone
remodeling and bone healing.

There is a large variety of techniques that can be used to study diffusion. Accessibility,
complexity and cost varies. Also the need for sample preparation, specific technician
skills and experience varies. The ability to study different diffusing substances such as,
large molecules, small molecules, atoms, ions also is more or less limited. Among the
more complex but more direct, in the sense that the diffusing substance and its spatial
distribution may be observed, are computed tomography (CT) and different techniques
using magnetic resonance (MR). The fact that these techniques have a focus on producing
high resolution images on the expense of accuracy is disadvantage when precise model
parameters are sought. Measurements using neutron diffraction and synchrotron light can
also be used to study diffusion. A general problem is the accessibility and in many facilities
the resource allocation system is a problem to say the least.

In addition to this, there is also a large variety of inexpensive methods that focuses
on the resolution of measurements. One such method is used in this work. In brief, the
increase of the conductivity when potassium chloride (KCI) ions escape into distilled water
is measured over time. The diffusion coefficients are then determined inversely by using a
mathematical model based on Fick’s law of diffusion.

Experimental results are always related to more or less noise. The noise can be in the
form of measurement noise or parameter noise. The measurement noise might be associated
with, e.g., external influence, instrumentation or calibration while thermal fluctuations
or in-homogeneous structure might be reasons for parameter fluctuations, here termed
as parameter noise. The conventional methods that commonly are used to determine
material parameters, such as non-linear least squares method do not take noise directly
into account. The Kalman filter, a method to determine material parameters from indirect
and uncertain measurements can be effectively used, just because it takes noise of both the
parameters and measurements into consideration (Kalman, 1960). Also, it speeds up the
rate of convergence.



In this thesis, the first paper deals with determination of diffusion coefficients on bovine
bone using conductivity measurements. A Kalman filter is used to obtain the diffusion coef-
ficients. Because of problems with convergence and a sensitivity to initial conditions that
was encountered, the second paper focuses on the Kalman filter description, and presents
a method that improves the stability and robustness of the Kalman filter to determine
diffusion coefficients from uncertain measurements. The third paper presents a model for
linear position dependent diffusion, and successfully uses the Kalman filter to determine
diffusion coefficients at endosteal and periosteal surfaces in bone. The technique from pa-
per two is used and the problem with divergence is found to be almost absent. Finally,
the fourth paper presents a superposition method to compute the diffusion coefficient and
elastic modulus in a bone sample that contains irregular pores. The basis for the method is
a series of finite element calculations of the changed flux or stress due to individual pores.

2 Diffusion theory

A mathematical representation for diffusion as a physical process is extensively helpful. Tt
quantifies the behaviour of the diffusive substance in tissue materials and organs, which
can be helpful for studying and simulating their functions.

The diffusive behaviour in many materials are sufficiently accurately described by Fick’s
laws for diffusion. In these, the rate of matter that passes through a unit area is propor-
tional to the concentration gradient normal to this area, which mathematically represented
the Fick’s first law for diffusion as

J=-DVC (1)

where J is the flux vector that represents the rate of matter transfer per unit area, D is
the diffusion coefficient, C'is the concentration, and V is the gradient vector in a Cartesian
coordinates system,

o 0 0

Mainly, the diffusion process needs time to be completed. The rate of change of the
matter concentration with respect to time is given by Fick’s second law for diffusion as

ac
55 =~V J=v(Dv0) (3)

where t is the time.

The diffusion coefficient in Egs. (3) and (1) may be dependent of position, concentra-
tion, time, etc.

Many solutions to Eq. (3) for homogeneous and in-homogeneous materials for different
initial and boundary conditions were presented over the years (cf. e.g. Crank (1975)).

Both diffusion mobility and solubility may be affected by the material structure. Con-
sequently, the accuracy of Fick’s laws become less accurate and may even not at all be de-
scribed as Fickian diffusion. Collectively these diffusion processes are so called non-Fickian



diffusion. Several authors have studied non-Fickian diffusion using non-linear partial dif-
ferential equations (Peppas and Reinhart, 1983) or statistical mechanics to study the so
called Fokker-Planck diffusivity (Van Milligen et al., 2005). Onsager introduced other
driving forces for diffusion than the concentration gradient (Onsager, 1931). Among other
phenomena, this theory may be used for studies of diffusion driven by mechanical stresses
(Banks-Sills et al., 2011)

3 Diffusion in bone

The transport of substances from the endosteal surface on the inner boundary near the
medullar cavity to the periosteal outer surface of long bones, is here described as a diffusion
process. The transport mechanism is important for the bone metabolism, and creates a
good environment for healthy bone. Bone remodeling, in which old bone tissue is replaced
by new tissue, is a natural process that continuously takes place in living bone tissues.
Also, bone healing, in which repairing of the bone structure after fracture is a process
relaying on a good bone environment. Knowing more about the diffusion process and a
numerical value for the diffusion coefficients is important to build mathematical models of
both bone healing and bone remodeling processes.

Knowledge about diffusion in bone may be useful for understanding diseases that attack
the bone such as metastatic bone cancer, the spread of cancer in bone after triggering in
organs, and myeloma, a cancer that starts in the plasma cells in the bone marrow and
affects the bone tissue. The metastatic and myeloma bone cancer make the bone weak
and susceptible to fracture (Messiou and Desouza, 2010). Osteoporosis is a bone disease,
in which both bone mass and density are decreased, which deteriorate the bone health and
increase the risk of fracture. As for patients with metastatic or myeloma cancer, patients
with osteoporosis show higher diffusivity than normal diffusivity in the bone marrow (Yeung
et al., 2004).

Cortical bone forms around 80% of the bone mass (Wang et al., 2010). Functionally,
it protects the other, cancellous, e.g. more spongy parts of the skeleton and supports
the whole body because cortical bone is dense and strong. Also, a large number of pores
and canals are located in cortical bone, in which blood vessels pass through, which allows
nutrients and oxygen to move from the blood vessels to the bone. The porosity in the
cortical bone, i.e. the volume fraction of the pores, ranges from 5-10% with different pores
shape and size. Fig. 1 shows a CT image for a compact bovine bone sample that taken in
the shaft from a femur bone.

4 Diffusion measurements

An experimental technique where the diffusing matter can be followed in time and space
is required in order to determine the diffusion coefficients. Several techniques can be
found in the literature, some of the them are complex and expensive while others are more



straightforward.

Fig. 1. CT image for a bovine cortical bone shows different pores size and shape (4 ym resolution), c.f.
(Stahle et al., 2013)

Nuclear magnetic resonance (NMR) can be used to investigate the physical and chem-
ical properties of atoms and molecules using the magnetic properties of a specific nuclear
spin (Stejskal and Tanner, 1965). Tt has been used extensively for measuring diffusion
coefficients in biology and biomedical fields (Burstein et al., 1993; Fernandez-Seara et al.,
2002). The NMR measures the atoms motion. The motion is monitored by measuring spa-
tial positions for atoms or molecules with the specific nuclear spin at two different times.
The NMR method can be used for following diffusion processes during a long period of
time but the method is not easily accessible.

Diffusion magnetic resonance imaging (AMRI) is presented as a new application of the
NMR technique (Merboldt et al., 1985). The dMRI technique is based on the character-
ization of water diffusion properties for each pixel in an image. In fact, the diffusivity of
water is quite high in some organs such as the brain. Consequently, the technique can be
used to study the structure properties in specific organs, in addition to measurements of
the diffusion coefficient.

Fluorescence intensity, the escaped light from a substance that absorbed light, is the
core of fluorescence correlation spectroscopy (FCS). It is firstly presented by Magde et al.
(1972). In this technique, a tiny substance emits fluorescence into a solution that contains
small fluorescent particles. The particles randomly move, and consequently fluctuate the
fluorescence intensity. The fluorescence is followed over time. The diffusion coefficient can
be determined from fluorescence time.

A less complex method and for quantitative determination probably more accurate
method is used in this work to measure the diffusion coefficients. The method starts by
putting a bone sample into a solution of potassium chloride for sufficient time to be close to
fully saturated. After that, the samples are quickly rinsed in distilled water, and molded in
polyester to close axial and tangential directions leaving only the radial direction opened.
Finally, the conductivity of the escaped ions from the sample when placed in distilled
water is followed over time. Fig.2 shows three different stages for sample preparations and
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a conductivity measurement.

Fig. 2. (a) Cubic bovine bone sample with around 1 e¢m edge length, (b) the bone sample is hold in a
clamp when the polyester is curing, (c) after the polyester has cured, it is now sealed in the axial and
tangential directions and open in radial direction, (d) conductivity measurement using a SevenEasy S30
conductivity meter from Mettler Toledo.

The diffusion coeflicient in one dimension can be determined by constituting the relation
between the concentration and the conductivity as

L
g_A+§/O C(x,t) (4)

where £ is the conductivity, A and B are two constants that constitute the relation between
the concentration and the conductivity, and L is the bone wall thickness. The concentra-
tion, C, is obtained by solving Eq. (3) with proper initial and boundary conditions. In the
experiment, the initial conditions are

C(z,0) = Cy, for O<z<L at =0, (5)

where Cj is the initial concentration, and ¢ is the diffusion time. The boundary conditions
are

C(0,t) = C(L,t) =0, for ¢>0. (6)
The solution for C(x,t) for constant diffusion is given by Crank (1975) as

40y~ 1 9 9,10y . (2n+ 1wz
Cla,t) = — §2n+1exp{ D(2n + 1)*m*t/L?} sin =————. (7)




The solution for C'(x,t) for linear position dependent diffusion is given in Paper C,
where D(z) is assumed to be linear with

x x

D(z)=D,(1— =)+ D1—, 8
(0) = Dol ~ 7)+ D15 ©

with D, > 0 and D; > 0, where Dy and D; represent the diffusion coefficients at the

endosteal and periosteal surfaces respectively.

5 Kalman filter technique

The technique is obtained by Kalman and presented in 1960 (Kalman, 1960). A Kalman
filter is a competitive computational inverse method to extract variables such as position,
temperature, time, etc from noisy experimental data. Here, the Kalman filter is applied
to extract the diffusion coefficients. Mainly, the Kalman filter consists of two processes,
prediction and correction. A loop starts with the prediction of the parameters and ends
with the correction of the parameters, until convergence, i.e. the corrected parameters are
sufficiently equal to the predicted parameters. The details of the Kalman filter equations
can be found in e.g. Brown (1983).
The corrected parameters are given by

T = o + Ki{z — ((ar) } 9)

where x is an n X 1 vector that represents the sought parameters, z is an N x 1 vector that
contains the measurements, ¢ is an N X 1 vector that introduces predicted measurements
using the predicted parameters, x, k is a time step, and K}, is denoted the Kalman gain
that is derived to minimize the covariance error of the parameters. The Kalman gain is
given by

K, = P.H! (H,P,H + R)™! (10)

where Py is an n X n matrix that introduces the covariance error of the parameters, R
is an IV x N matrix that represents the covariance error of the measurements, Hj, is an
N x n Jacobian matrix that represents variation of predicted measurements with respect
to changes in the desired parameters

% o
o, oz,

Hy=| (11)
oy
0xy o,

The Py is updated as
Pryr = (I — KeHy) P + Q (12)



where @) is the covariance error of the parameters noise. Values of both xy and P, are
initially required. The suggested values for xy and F, is based on the a prior: available
information of the parameters. Values have to be chosen carefully for good convergence.
The initial values of R and @ have to be chosen based on measurements and parameters
noise. The choice is influenced by the initial range of the parameters, x, and affects the
rate of convergence (c.f. Paper B for more details about the Kalman filter description and
derivation).

6 Results and discussions

In this section, a summary for the appended papers are presented. Also, the outcomes of
the papers are introduced and discussed.

6.1 Paper A: Determination of diffusion coefficients in bovine bone
by means of conductivity measurement

In Paper A, the diffusion coefficient in bovine bone is modeled as a constant, using Fickian
diffusion. To measure the diffusion coefficient, an experimental set-up is designed. Us-
ing this set-up, the conductivity of potassium chloride ions that escape from a saturated
bovine bone sample into surrounding distilled water is followed over time. A linear rela-
tion between the conductivity and the concentration is used. The diffusion coefficient is
determined using the Kalman filter technique.

The diffusion coefficient, D, is determined for 14 different bovine bone samples. The
sample size is approximately 10 mm cubic length. The analytical solution for the Fickian
boundary value problem includes two constants A and B apart from the diffusion coefficient
D that have to be experimentally determined (see Eq. (4) ). The two constants A and B
are assumed to be related at ¢ = 0, which means B and D have to be determined. The
Kalman filter is applied to determine the two constants using four different initial suggested
ranges, starting with a large range and ending with a narrow range. (c.f. Paper A for more
details).

Figure 3 shows the convergence of D and B for a bovine bone sample that are extracted
using the Kalman filter and the last initial selected range after 1, 2, 10, and 40 iterations.
It is clearly seen that the initial selected constants converged around a curve after only 1
iteration as in Fig. 3a. Then, it starts to converge to smaller area on this curve as shown
in Fig. 3c, b, and d. It has been confirmed manually that the mean square error between
the measurements and the predicted measurements is located on this curve. The values
of D that are obtained using the Kalman filter are in good agreement with the previous
work.

The analytical results for D and B, obtained using Kalman filter for two bovine bone
samples plotted with the respective experimental data are shown in Fig. 4. The figure
shows a good fitting between the analytical results and the experimental data for both
samples. The values of D and B for the 14 different samples have a large variation. This is
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however not a big surprise since bone is known to have a large scatter of material properties
in general.

An average value the of diffusion coefficients for the 14 samples is found to be 0.011
mm?/min with standard deviation of 0.0069 mm?/min. The obtained diffusion coefficients
agree with previous work taking different methods and mammals into consideration (c.f.
Paper A).

6.2 Paper B: A methodology for using Kalman filter to determine
material parameters from uncertain measurements

In Paper B, the Kalman filter method is further investigated and refined. Focus is on the
initial parameters and the covariance errors of both measurements and parameters that
are required for using the Kalman filter. The first part of the study suggests a method to
choose the initial suggested parameters. The second part results in a method to choose the
covariance errors for both measurements and parameters. The third part is a case study
where the methods from the first and second parts are applied to determine the diffusion
coefficients in bovine bone using the diffusion model that has been presented in Paper A.

The effect of the covariance errors for both measurements, R, and parameters, @, is
investigated using generated data with different noises from 10% to 100%. Large R values
give a small Kalman gain step as expected from Eq. (10), which means that the process
becomes more stable. The effect of changing @) based on convergence, standard deviations
and mean values for the obtained D for large R is shown in Fig. 5. As shown in Fig. 5a the
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iteration. D is the true diffusion coefficient. Generated data with 5% for parameters and 10% noise for
measurements are used, @ is chosen to be p (apriori estimated relative variance) multiplied with a

constant noise . (a) convergent results, (b) standard deviations and mean values.

convergent results increase as the @) increases. Further, the standard deviation decreases as
the @ increases as shown in Fig. 5b, which increase the rate of convergence. One possible
reason is that a large @) gives a large Kalman gain step, and the proposed combination



between large R and large @ leads to a moderate Kalman gain step, which increases the
number of convergent results and increases the rate of convergence.

The determined diffusion coefficients using: (1) the Kalman filter with large R and Q,
values are compared to the values that are obtained by using: (2) the Kalman filter with
@ = 0 and (3) the Kalman filter with a “good guess” for @) based on the generated data.
Also, results are compared with the diffusion coefficients that are obtained by using (4)
the non-linear least squares method (see Paper B for more details). Fig. 6 shows a color
plot of the obtained Dsy/D for the four different methods. Also, it shows the convergence
of Dsy/D and Bsg/B, where the subscript denotes the number of iterations. As shown in
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Fig. 6. Color plot for Dsy/D merged with convergence plot between (Dso/D,Bsg/B) for initial starting
points Do/D and By/B after 50 iterations for: (a) Kalman filter with large R and large @, (b) Kalman
filter with p = 0, (¢) Kalman filter with p = 0.01, and (d) non-linear least square method. All results are
for generated data with a noise of 5% for parameters and £10% for measurements.

the figure, the convergent results of the obtained parameters using the Kalman filter with
large R and @ values (around 92.09%) are larger than those obtained from the methods 2,
3, and 4 (from 40.93% to 80.19%).

Around 98.3% from the obtained parameters using Kalman filter with large R and Q

10



values are converged to the true parameters after 50 iterations, while the 1.7% converged to
the true parameters after 180 iterations. 100% from the converged results is converged to
the true parameters using Kalman filter with p = 0.01 and non-linear least squares method
after 50 iterations. In summation, the Kalman filter with large R and () values can be used
to determine the diffusion coefficients with high probability for convergence and also with
a high rate of convergence in the case of rare information about the searched parameters.
On the other hand, the Kalman filter with the @ that comes from a good assumption of
the value for the parameter noise and the non-linear least squares method could be used
if there is good information about the searched parameters.

6.3 Paper C: Determination of spatially dependent diffusion para-
meters in bovine bone using Kalman filter

In Paper C, a model for Fickian diffusion with position dependent parameters is presented.
Analytical solutions are derived for a diffusion parameter that is linearly dependent on the
coordinate across the bone wall thickness, c¢.f. Eq. (8). The experimental set-up that was
used in Paper A is also used here along with the Kalman filter process to determine the
linear position dependent diffusion coefficients.

The motivation for the study is that in previous studies, linear regressions between
the bone wall thickness and results of how porosity decreases from the endosteal to the
periosteal surface have been shown in the literature (Baron, 2012). In this context, it is
believed that the diffusivity is increasing with the porosity, which means the diffusion rate
is decreasing from the endosteal surface to the periosteal surface.

The diffusion coefficients Dy and D, at the endosteal and the periosteal surfaces re-
spectively are determined using Kalman filter method assuming linear position dependent
diffusion as in Eq. (8) (c.f Paper C for more details). Fig. 7 shows the analytical results
using the converged parameters obtained by the Kalman filter process using three different
assumed initial parameter ranges for one bone sample. As a comparison, the experimental
data for the sample is also presented in Fig. 7. As it can be seen in the figure, the ana-
lytical calculations give a curve closer to the experimental data as the initial range for the
parameters is decreased. A possible reason for that is the using of interpolation function to
predict conductivity using 27 Lagrange interpolation points, is improved when the range is
narrowed in. The Lagrangian interpolation replace the analytical solution in order to save
computer time. A very good fitting between the analytical results and the experimental
data is found.

The convergent results for both Dy and D; obtained by Kalman filter for the final range
are shown in Fig. 8. The figure shows that D, converges to 0.00568 mm?/min, Fig. (8a)
and D; converges to 0.0020 mm?”/min, Fig. (8b) as the number of iterations increases.
It can be seen that D; decreases in the beginning as the number of iterations increases,
then increases again until convergence occurs. This surprising behaviour might be due to
choice of the covariance of the errors of the initial parameters, . Personal experience has
indicated that this might be a reason. Regarding the diffusivity values, it can bee noticed
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that the diffusivity decreases from the endosteal surface to the periosteal surface as it has
been hypothesized in this work.
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Fig. 7. Analytic results using the parameters obtained from Kalman filter using first, second, and fifth
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Figure 9 shows the linear position dependent diffusion that determined by Eq. (8) in
the bone wall thickness, using Dy and D; that are obtained by the Kalman filter for four
bovine bone samples. The figure shows that the diffusivity inside the bone wall thickness
is more accurately modeled as position dependent diffusion. Also, it supports a hypothesis
that the diffusivity correlate directly with the porosity in the bone wall thickness. i.e. the
larger porosity the higher diffusivity and vice versa. The average diffusivity in the middle
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of the bone wall thickness agrees well with the findings for assumed position independent
diffusion coefficients in previous work (c.f. Paper C for more details).
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Fig. 9. Linear position dependent diffusion coefficients versus positions in the bone wall for four
samples. The markers are merely identifying the specified samples.

6.4 Paper D: Superposition principles for calculation of diffusion
and elastic parameters of sparsely porous materials

In Paper D, a method to determine a realistic diffusion coefficient and elastic modulus in
bone in the presence of irregular pores using superposition and finite element calculations
is presented. The method is based on the calculated correction factor for infinitesimal pore
sizes for a few classes of pore shapes.

Figure 10 shows a small region of a bone sample that taken from a bovine cortical bone.
A correction factor is obtained for pores A, B, C, and D using finite element calculations.
The hypotheses assumes that the pores that almost have the same shape have the same
correction factor, it also assumes that the pores do not interact with each other (see Paper
D for more details).

The results show that the correction factor for the diffusion process decreases as the pore
size increases (see Fig. 11a). As shown in Fig. 11b, the correction factor for the mechanical
stiffness part increases as the pore size increases. In both cases, i.e. diffusivity and elastic
modulus, the correction factors show dependent results on the shape of the pore. Here,
the correction factors are obtained in bone related radial, x; direction, and tangential, x5
direction, for different pore sizes with a and b in z; and x5 directions respectively. The a
versus b is the pore side ratio.

The superposition method is applied for a region with pore marked D and 1 to 11 in
Fig. 10 to compute the diffusivity and the elastic modulus as a benchmark example. The
results show that the difference between the change in the calculated diffusivity using finite
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element calculations and the change of the calculated diffusivity using superposition are 9%
and 4% in the radial and the tangential directions respectively. In case of elastic modulus,
6% and 14% in the radial and the tangential directions respectively are the differences.
Here, the change is considered as the difference between the obtained diffusivity or elastic
modulus for the region with pores and the diffusivity or the elastic modulus for the region
without pores.
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Fig. 10. A region from bone sample contains irregular pores. The region constructs a square with 94
pixels length from an image taken by CT technique.
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7 Conclusions

The thesis, shows that a conductivity method can be used to measure the diffusivity of
potassium chloride ions in bovine bone. A postulated relation between the concentration
and the conductivity may be assumed. The diffusion coefficient is modeled both as a
constant and as a linear position dependent parameter with good results. Using the linear
position dependent diffusion parameter even improves the result. The results show that
the position dependent diffusion parameter decreases as the porosity decreases, from the
endosteal surface to periosteal surface. An agreement between the constant diffusion results
and the linear position dependent diffusion results is found.

The thesis demonstrates how the Kalman filter, can be successfully used for extracting
diffusion coefficients from noisy conductivity measurements. A method is suggested of how
to make the initial assumption of the parameters in the Kalman filter procedure. A scheme
is proposed that covers a wide range of initial filter parameters and increases the rate of
convergence.

Finally, an analytical model of diffusion and mechanical deformation of porous materials
are derived to obtain the effect of an infinitesimal pore. A size scaling and interaction is
obtained. The method has been used, with good accuracy, to compute the diffusivity and
the elastic modulus in the bovine bone samples based on the superposition principle and
the finite element calculations for bone sample with irregular pores.
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Abstract

Measuring the diffusivity of various substances in cortical bone is in general diffi-
cult. For instance, making use of micro computed tomography requires agents that
can be separated from bone, blood and other substances that exist in cortical bone.
Here a more easily accessible method is presented. A series of cortical bovine bone
samples were put in a saturated solution of potassium chloride for a time period that
was long enough for the samples to be regarded as saturated. The samples were re-
moved from the solution and molded in polyester leaving only the radial directions
open. In the next step, the bone samples were put in distilled water and the con-
ductivity of the water was registered over time. An analytical model fulfilling Fick's
law was introduced and by means of Kalman filtering an estimation for the diffusion
coefficient of potassium chloride in bovine bone is presented.




1 Introduction

It is well known that bone, like other living tissue, has the function of self-repairing and
can adapt its size and external shape, internal structure and mass density according to me-
chanical environment and hormonal changes. The modelling and remodelling is a dynamic
process that involves removal of old bone tissue, resorption and formation of new tissue.
This process is dominated by the activity of bone cells such as osteoblasts, osteoclast, os-
teocytes and bone lining cells. The cause of activation of these cells is widely discussed,
and several hypotheses exist. A number of studies focus on the shear forces that arise due
to the fluid flow in the bone matrix when exerted to mechanical loading. The hypothesis is
that activation of the bone building osteocytes is directly or indirectly depending on shear
forces, see for instance Weinbaum et al. (1994). The studies of Cardoso et al. (2013) and
Fritton and Weinbaum (2009) nicely summarise some of the research carried out this far. In
a recent published article by Lindberg et al. (2013a) a theory is tested which suggests that
the nutrients which are important for bone building are moved through the bone matrix by
means of stress driven diffusion, here having a special focus on the mathematical modelling
of the process. A similar theory using strain driven diffusion in bone tissue is presented by
Banks-Sills et al. (2011). Tate et al. (2000) hypothesize that load-induced fluid flow en-
hances the transport of key substances for bone remodelling throughout the bone matrix.
Kufahl and Saha (1990) developed a mathematical model to study stress-induced fluid
flow in the lacunar-canalicular system in an osteon, suggesting that it is possible that such
stress-induced flow may be important in bone remodelling, and that lack of such flow may
be one cause for producing osteoporosis due to immobilization. Some investigations show
that molecules with lower molecular weight are dominantly transported through diffusion,
while a pumping effect caused by mechanical load mainly controls the transportation of
higher molecular weight solutes (Bali and Shukla, 2001; Tandon and Agarwal, 1989). In
other studies, it is shown that there is a strong correlation between diffusion coefficients and
healthiness of bone, and it is found that the diffusivity in degenerated bone is significantly
lower than in normal bone, (Kealey et al., 2005).

Because of its complex micro and macro structure, and due to the minute size and
inaccessibility of the lacunar-canalicular system that serves as a transportation network, the
study of diffusion in bone is quite complicated. The mechanisms of diffusion of substances
in the bone matrix, and the effects of mechanical load triggering bone cells to remodel,
are poorly understood. The diffusion based magnetic resonance image (MRI) and nuclear
magnetic resonance (NMR) methods have been used to characterize the structure, and
evaluate the composition of bone (Burstein et al., 1993; Sigmund et al., 2008). Several
studies have investigated the mechanisms of how solutes transport in bone, and how the
removing of the waste products that are stored in skeletal tissue is accomplished. It was
understood that one of the important mechanisms is diffusion, which plays an essential role
in accomplishing these transports and also in the removal of waste products (Fernandez-
Seara et al., 2002; Maroudas, 1979; Maroudas et al., 1992). Better understanding of the
diffusion in bone is needed in biomedical research and medical application in order to
study bone diseases, like osteoporosis, and the degradation of bone and fracture healing.



For the various models that exist, using mechanical loading, the diffusion coefficient for
the nutrient-bone system has to be determined in order to make exact recommendation
of load amplitude and frequency in order to maximize remodelling of bone. What kind of
nutrients that are involved must of course also be determined, and research is ongoing. In
vivo studies by Jee et al. (1990) showed that prostaglandins stimulate osteoblast activity
and Fan et al. (2004) found that nitric oxide can prevent bone resorption since it decreases
the recruitment of bone resorbing osteoclasts.

To directly study transport of matter through the complicated cellular structure of
the bone matrix requires access to technically complicated instruments (e.g. NMR, CT
scanners etc). To make research of such kind more accessible an experiment was set up in
this study to investigate diffusion in bone by measuring electrical conductivity using a more
common equipment, namely a conductivity meter. The diffusion parameters are extracted
from the experimental result by using Kalman filtering, see Kalman (1960). This is a
recursive method, here based on an analytical solution, for extracting values of unknown
parameters from noisy input data. The mathematical analysis assumes that the bone is
homogeneous.

Bone growth takes place at the outer bone surface, the periosteum. This study focuses
on the diffusivity properties in the radial direction going from the nutrient rich bone marrow
inside the bone out to the periosteum. It is believed that the diffusivity parameters of
potassium chloride, KCI, in bovine bone found in this study may serve as an average over
the bone cross-section and may be used to compute the transport in radial direction of the
nutrients trigging bone growth at the periosteum.

2 Method

The right side femur of a 15 month old male bovine of type Charolais was step by step cut
in to small bone cubes approximately of size 1 cm?®, see Table 1, giving a total of 16 pieces.
The femur was cut up four days after slaughter, and up until then it had been stored in a
fridge with the meet not yet removed.

Table 1: The mean values and standard deviations for the side lengths for all samples

Direction Mean value [mm] Standard deviation [mm]
Axial 9.97 0.38
Radial 9.70 0.65
Tangential 9.74 0.84

An important part of the process was, all the time, to keep track of the three axial
directions (axial, radial and tangential) and where exactly on the femur each piece was
taken from. The 16 pieces were taken from four places over the cross-section, see Fig. 1.

At each location two pieces were taken above the midplane and two below the midplane,
see Fig. 1. In each row the samples were numbered from 1 to 4, where 1 is the sample
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closest to the proximal end and 4 closest to the distal end. Eight pieces were taken from
the lateral side (outside), where four of them were located slightly towards the anterior
side (front side) and the other four were located slightly towards the posterior side (back
side). The other eight were taken from the medial side (inside), where four of them were
located slightly towards the anterior side and the other four were located slightly towards
the posterior side. During the process the pieces were kept in a freezer overnight holding
a temperature of minus 2 degrees Celsius, making the bone barley freeze.

On the day of experiment each set of samples was taken from the freezer and kept in
room temperature for an hour, after which each piece was put in a beaker with saturated
KCl1 solution which had been prepared by stirring 37 grams of KCI in 100 grams of distilled
water. KCI was chosen since it has a high ability to conduct electricity, hence being suitable
to use in conductivity measuring giving a strong read, along with the linear relationship
between concentration and conductivity giving an easy mathematical approach. Although
salts may affect the tissue, it is here believed that the mass transfer ability of the bone
samples is not affected. The bone pieces were put in the beakers for 24 hours exposing
them to a very high concentration, after which they were quickly rinsed with distilled
water, lightly wiped with paper and then molded in polyester in order to close the axial
and tangential directions leaving only the radial direction ends opened, see Fig. 2. The
choice of 24 hours was based on the assumption that this was enough to make the samples
saturated. This is discussed further down.

Fig. 2. Polyester closing axial and tangential directions of bone sample

The polyester was left to dry for 60 minutes, after which the measurements started.
The polyester did not give any conductivity increase for water when tested. During the



experiments measurements were taken for samples that had been completely molded in
with polyester after being in the salt solution, i.e. all six sides were closed. After 48 hours
the conductivity had increased about 1 ©S/mm. By that it was decided that the diffusion
through the polyester from the closed sides could be neglected.

To measure the conductivity the instrument SevenEasy S30 from Mettler Toledo was
used along with a cell that had two electrode plates. The samples were put in beakers with
100 ml distilled water where the ions that came from the KCI in each sample diffused into
the water and changed its conductivity. The increased conductivity was registered over
time, and measurements went on for 24 hour for each sample. Before each measurement the
beakers were stirred in order to obtain a homogeneous concentration. During night time
automatic measuring was done for one sample taking values every second. The other three
samples were not measured during night, here assuming that the progress behaves in the
same manner for all samples. An overview of the experimental set-up for the measurements
is shown in Fig. 3.

Fig. 3. The conductivity measurement

In general conductivity is measured in Siemens per length unit, normally pxS/cm where
p is the prefix for 107%. The conductivity ¢ of a solution is determined as

1
=GK=-K
3 K (1)

where G [9] is the conductance of the sample, which is the inverse of the resistance p [Q)].
The cell constant, or probe constant, K [cm™!| is specific for the used cell, and consists of
the ratio of the distance between the electrodes and the area of the electrodes. The cell
constant must be determined which is done by calibrating the base unit for the used cell.

The experiments took place in a temperature controlled room, holding a constant tem-
perature of 22 degrees Celsius. However, to be sure that the measurements did not get
affected by some temporary temperature change, the in-built temperature compensation



was used. Since pre-trials showed that the conductivity would be above 10 uS/cm, except
for in the very beginning, but still not becoming strongly conductive the temperature de-

pendence was assumed to be linear and so the conductivity is determined as (Down and
Lehr, 2005)

B 1 K
Sref = 7 + (a/100)(Tyey —T) p

(2)

Here a is the temperature correction factor, 7.5 is the chosen reference temperature and
T is the actual temperature of the sample. If « is set to zero the actual conductivity of
the sample is given, compare Eq. (1). The correction factor is determined as

~ (&r2 — &11)100
‘- (Ty = Th)ér )

and was for this experiment determined to a=0.021 meaning an error of 2.1% of the relative
correction per centigrade.

3 Theory

3.1 Governing equations

The flux vector J of a selected substance in the bone environment becomes, due to differ-
ences in concentration of matter,

J=—-DVe. (4)

Here D is the diffusion coefficient of the substance-bone system and Ve is the gradient

vector of the concentration where

V=2 ) )
- 02 0y’ 0z

in a Cartesian coordinate system. Matter is assumed to be conserved and therefore the

divergence of the flux J relates to the concentration as

VJ=—¢, (6)

where the dot indicates the derivative with respect to time. If .J is eliminated by using Eq.
(4), the divergence of Eq. (6) becomes

é=V(DVec). (7)

If the diffusion coefficient D is assumed not to be dependent of the current concentration
nor explicitly dependent of spatial coordinates Eq. (7) now changes to

e d’e dQC)

o= (Gt G )



which is the partial differential equation to solve. Here z, y and z are serving as Cartesian
coordinates. There is, of course, an option to choose a polar coordinate description, however
with greater mathematical complexity. The cross-section of the long bone is not a perfect
circle, but rather quite irregular. By that shifting to the standard cylindrical coordinate
system is believed to be irrelevant. The bone pieces were hence chosen to be cut out as cubes
so that the Cartesian coordinate system could be used. For each sample the coordinate
system is placed so that the x-axis runs from the endosteum out to the periosteum, i.e. in
the radial direction. To clarify that, = is replaced by r and Eq. (8) is written as

e dPe d%)

¢=D(ga+ g+ gz (9)

4 Mathematical model

A solution to the one-dimensional Fick’s second law with a constant diffusion coefficient
can be

C(r,t) =X(r)T(¢), (10)

where the most general solution is readily given as (Crank et al., 1975),

C(r,t) = Z (Am sin(Ap,7) + B, Cos()\mr))e“AE"Dt) . (11)

m=1

In the experiment each sample had a volume of 1/100 of the surrounding water. By that
the concentration increase in the water was ignored, and the boundary conditions were
regarded as constant. See Lindberg et al. (2013b) for a comparison with the case where
the increase of concentration at the boundaries is compensated for.

For a one-dimensional slab having an initial concentration of Cyatt =0for 0 <r <a
and the constant boundary conditions C' = 0 at the boundaries r = 0 and r = a, see Fig.
4, the solution becomes

—
LA,

c0,t)=0 | Bt | cdat)=0

77777777
—r

Fig. 4. One-dimensional slab

C(r,t) = Cy i e‘AiDtAn sin [Anr] , (12)

n=1



where

4 1

" T (n—1) (13)
and
A = (20— 1)% . (14)

More details about analytical diffusion problems can be found in e.g. the rigorous book by
Glicksman (2000). The mean value C, of the concentration in the bone sample is given by
taking the integral of Eq. (12) over r and then divide it by the integration length a which
is expressed as

N I e ‘.
Cy(t) = Cboa;e‘A"DtAn/o sin(\,r)dr , (15)

where index b is for bone. Deriving the integral the mean value of the concentration in the
bone sample becomes

[ee]

~ x 8
Co(t) = C y e DD —
(1) w2 ° w2 (2n — 1)

n=1

(16)

From the experiments the conductivity ¢ in the distilled water surrounding the bone sample
was registered over time. The relationship between conductivity and concentration for a
KCI solute is almost ideally linear. The relation between concentration and conductivity
for a KCI solute is described by
§
C=—, 17
- (1)
where V' [I%] is the volume of the solute, ¢ has the unit S/l mole and [ is the used length unit.
The product oV [S I?/mole] is the molar conductivity of the solute. The concentration C
[mole/l?] of matter in the solution may be described by the number of existing moles of
matter m; divided by the volume of the solution. The decrease of the concentration of KCI
in the bone sample once put in the distilled water may hence be described by
~ —Am.:
AC, = —— . 18
= (18)
Since the same amount Am; of KCI has diffused out to the distilled water, the increase of
concentration of KCI in the water becomes

~ Am;
AOw = - )
Va

(19)

where index w is for water. Using Eqs. (17), (18) and (19) the change of conductivity of
the water can be expressed as



_Aéw = Qw%Aéb . (20)

The mean conductivity éw of the distilled water may hence be modelled by

- G x)2 8
i) = A= By e o
n=1

Here A [S/I] is the final value of the conductivity, i.e. the conductivity after infinity of
time, since the dimensionless summation converges towards zero. A — B is the start
value, i.e. &g, since the summation equals 1 for ¢ = 0. It is by that very interesting to
determine the constant B [S/[] as well as the diffusion coefficient D. If B is determined it
can be calculated what the very end value A of the conductivity will be, and by that the
measurements can be much more time effective.

4.1 Kalman filtering

In order to extract the diffusion coefficient a Kalman filter is used. The technique has
several advantages; The random noise from the measurements and other process parameters
is included into the equations and a non-linear behaviour can be included. The technique
has shown very good results, which is obtained due to minimization of the mean square
root of the difference between the measured conductivity and the model.

The Kalman filter is a versatile estimator and the algorithm operates recursively and
results in an incrementally improved estimate of the model parameters D and B, whereas
A — B is obtained directly from a measurement immediately before the experiment starts.
An introduction to the Kalman filter is, e.g., found in Brown (1983). Kalman filter recursive
equations are expressed as

Ty = .f; + Kk[z - h(.f’;)}, (22)
Ky =P.HR™, (23)
and

Po=[(P) '+ HIR'H,] ™"

(24)
Here 2y = [Dy Bk]T is an a posteriori estimate vector of the state that contains the two
unknown parameters D and B at increment k. The vector &, is an a priori estimate vector
for the state at increment k and K. is denoted the optimal Kalman gain. It is introduced
to minimize the error of the a posteriori estimate at increment k. The vector z contains
the measured conductivity at times t;. The vector h(Z, ) is a function that contains the
analytical result, i.e. Eq. (21), using the a priori estimated parameters &, at times ;.
The Kalman gain K}, is defined in Eq. (23) using Py, a matrix containing the a posteriori
estimate of the error, and R, which is a scalar giving the maximum difference between the



measurement z and the predicted result, as explained in more detail below. The matrix
Hy, is the derivatives with respect to B and D of k() at increment &k and at times ;.
The predicted non-linear conductivity function h(z;) is a bi-quadratic form approxi-
mating Eq. (21). The interpolation is performed for D and B in the region DY < D < DB
and BY < B < B®, where DY, D® BY and B® are selected to give a sufficient
span so that the given space includes the expected D and B. The remaining values
D@ = (DW + DB))/2 and B® = (BY 4+ B®)/2. To be able to catch any possibly
present local convergence sets for D and B, the algorithm is executed for many starting
values Zo. The initial state values &y = [Dy BO]T are chosen as 11 x 11 = 121 equidistant
values in the range DM < D < D® and BY < B < B®. The predicted non-linear
conductivity functions are computed using rectangular nine set Lagrange interpolation as

- 2L S S D, — Dm 5 . _ M
[h(a, )L = ZZ l( M) < B(ljl)—B(”)> qu} ; (25)

p=1 ¢=1 m=1#p n=1#q

where [h(fvg)]Z is element 4, for time ¢ = ¢;, of h(Z, ). Further, &,, is the analytically
calculated conductivity for D = D® and B = B, at time t = ¢; according to Eq.
(21). The matrix Hy is obtained by taking the derivative of the interpolated conductivity
function and is expressed as

A single iteration requires hours of computing time on a standard desktop computer using
the analytical derivative of the model for 1000 terms while only a few seconds are required
using the interpolation algorithm in Eq. (25). Therefore, a little decrease of accuracy is
accepted for a considerable saving of computer time.

The quantity R, being a difference between measurement and prediction, is computed
as the largest difference in the entire set of measurements, i.e.

R=mazi—1. (|(z — h(i’a))i’) , (27)

where the index 7 denotes vectorial element ¢, which corresponds to measurement and
prediction at time ¢ = ¢;. The error R is usually an updated quantity. However, in the
present case the result was found to be very insensitive to reasonable variations of R.
Therefore R is chosen as the error according to Eq. (27) as the value for the best out of
all 121 initial state values for Z( that is used for analysing each experiment. The error R
differs from one bone piece to another.

The Kalman filter update equations are given as

Ty = Iy (28)
and
P, =P +Q, (29)
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where @ is selected to be the unit matrix (Brown, 1983).
The initial value of the a posteriori estimate error is selected to be

Py, = (30)

0 100

100 01

The process of extracting the unknown parameters is repeated for different ranges of ini-
tial state values ranging from larger range to smaller range until a good fitting between
the measured conductivity and the model is obtained. The standard deviation o, of the
difference between the experimental data and the obtained approximated Kalman data is
determined according to

o=/ E 3 (= hap)2, (31)

where NV is the number of measurements. In Table 3 the final o, for each sample is shown.

5 Analysis and Results

The determination of the diffusion coefficient D and the constant B for the second bone
sample from the medial posterior side, MP5, is explained but the process for all bone sam-
ples follow the same strategy. The units used during the experiment were for convenience
millimetres and minutes. The initial eleven different state values of Dy were at first placed
in the interval 0.0001 to 0.1001 mm?/min with the midpoint 0.0501. For By the initial
eleven different state values were placed in the interval 10 to 90 pS/mm with the mid-
point 50. These values were chosen to introduce an initially large range, and are based on
experimental and preliminary curve fitting result.

The calculations were repeated with smaller range of initial state values until a suffi-
ciently small standard deviation between the model and measured conductivity was found.
The ranges and results are shown in Table 2.

Table 2: Values of D, B, and o, for four different initial ranges for sample MP4

Range for Dy Range for By D B 0.

0.0001-0.1001 10-90 0.00030 334.86 11.90
0.0010-0.0410 10-90 0.00212 94.087 4.010
0.0010-0.0110 10-90 0.00760 41.911 0.411
0.0060-0.0100 40-48 0.00749 42.805 0.298

The combinations of D and B in Zy converged to one single point after some different
iterations for the first, second, and fourth range but they converged towards two different
points for the third range.

11
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convergence after 10 iterations for MP5 (d) convergence after 40 iterations for MPy (e) convergence after
120 iterations for MPy (f) convergence after 500 iterations for MP5. The initial state borders are marked
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Here 114 combinations of D and B converged to the point that fits well with the
experimental data and seven combinations converged to another one that does not and
can be excluded because it gave negative value for D with no physical meaning. Fig. 5
shows the process of convergence between D and B after 1, 2, 10, 40, 120, and 500 iterations
for sample MP5 for the third range. The rectangle shows the border of the initial state
range.

A study was performed to investigate how many terms n that should be used in the
summation operator in the model, see Eq. (21). Tt showed that consistency can be reached
after 10 000 terms. Extrapolation from this value to infinity of terms showed that the value
for the diffusion coefficient changed by less than 5-107° mm?/min. Hence summation over
10 000 terms are used in this study.

The four different initial state ranges are figured with the experimental data for sample
MP; in Fig. 6.
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Fig. 6. Kalman approximated conductivity versus data for the four different ranges in Table 2 for
sample MP5, (a) model vs exp. data for the first range in Table 2 (b) model vs exp. data for the second
range in Table 2 (c) model vs exp. data for the third range in Table 2 (d) model vs exp. data for the
fourth range in Table 2.

Table 2 along with Fig. 6 show that the best approximated values that were achieved
by the Kalman filter for D and B are 0.0074906 mm?/min and 42.8049 ;S/mm respectively
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for the MP5 sample.

The process was performed in the same way for all samples. For the lateral posterior
sample no 1, LPy, the diffusion coefficient was for instance found to be 0.014360 mm2/min
and for sample no 2 from the lateral anterior side, LA,, it was determined to 0.010660

mm?/min. These results are plotted in Fig. 7 and as can be seen the model has a good
match with the experimental data.

Lateral posterior 1 Lateral anterior 2
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Fig. 7. Experimental data and analytical function for samples from the lateral (a) posterior and (b)
anterior side.

One observation is that the experimental data seems to behave more linear rather than
exponential at the end of the measuring. The reason for this is unclear. It is possible that
the real inhomogeneity of the bone tissue has a greater effect when the concentration in
the bone samples starting to get lower. In Table 3 all the obtained values from the Kalman
filter can be found. The average value and the standard deviation of the bone samples
become D = 0.0110 £ 0.0069 mm?/min. These values are derived using the final diffusion
coefficient D for each sample.

6 Discussion

An experimental study determining the diffusion coefficient for KCI in bovine bone was
performed using easily accessible equipment in form of a conductivity meter. The study was
focused on the diffusion in radial direction, i.e. between the endosteum and the periosteum.
The diffusion was described in mathematical terms using a Fourier series expansion and the
diffusion coefficient was obtained from the experimental data using Kalman filtering. An
average value and a standard deviation of D of the bone samples from the same animal can
be computed from the values in Table 3 and become D = 0.0110 4 0.0069 mm?/min. The
distribution of the value of the diffusion coefficient for the samples is quite large. This can
be explained through both bovine bone being an inhomogeneous material and limitations
in the experimental method. The experiment includes several steps, as described in the
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Table 3: Diffusion coefficient D, the constant B and o, for all series

Sample D [mm? /min] B [uS/mm] oe [1S/mm]
MP1 0.001762 90.892 0.391
MP2 0.007491 42.805 0.298
MP3 0.006860 46.116 0.223
MP4 0.010631 42.551 0.332
MA1 0.020988 39.925 3.300
MA2 0.001666 57.780 0.476
MA3 0.001685 71.022 0.513
MA4 0.015418 23.181 0.323
LA1 0.011802 65.384 0.419
LA2 0.010660 72.713 0.983
LA3 0.008483 86.706 0.835
LA4 0.025767 73.503 1.127
LP1 0.014360 73.573 0.935
LP2 0.016701 61.779 0.862

Method section, which are executed as equally as possible for all samples. But each step is
a possible source for differences between the samples. The solution was stirred before each
measurement but still, the distribution of the KCI might not be homogeneous. This and
any other noise introduced during the measurements such as temperature change or any
inaccuracy of the instrument is captured by the Kalman filter. The standard deviation o,
of the difference between the experimental data and the obtained approximated Kalman
data for each sample, as defined in Eq. (31), is included in Table 3. No significant difference
between the different locations from which the bone samples were taken was achieved in
the study.

The results could be compared to the findings of Patel et al. (2004). They used FRAP,
Fluorescence Recovery After Photobleaching, to measure the diffusion coefficient in bovine
bone. They found that the permeability of cortical bone differs extensively depending on
what length scale and direction that is studied, having values for D in the longitudinal
direction in the range of 94.20 + 5.23 to 6.11 - 107% £ 2.37 - 107" mm?/min. The FRAP
technique was also used by Wang et al. (2005). They measure the diffusion of fluorescein
in cortical bone of mice and present a value of D = 0.0198 + 0.0036 mmZ/min, here using
sodium fluorescein which has a molecular weight of 376 Da. In the study of Li et al.
(2009), further results are presented using the FRAP technique. They report diffusion
coefficients of five different exogenous fluorescence tracers in mice bone. Values range from
D = 0.003940.0013 for Ovalbumin, 43 000 Da, to D = 0.017740.0028 mm? /min for sodium
fluorescein, 376 Da. It is also interesting to notice that they also have quite big standard
deviations. The comparison should be done keeping in mind that the fluorescence tracers
are much bigger molecules than KCI1. The fluorescein tracers have a molecular weight from
376 to 43 000 Da compared to 74 Da for KCI. A summary of the here discussed studies is

15



presented in Table 4.

Table 4: Summary of comparable studies for femoral cortical bone

Study Species Direction Tracer [Da D [mm?®/min]
Patel et al. (2004) Bovine Transverse 300 4.2e-443.6e-7
Patel et al. (2004) Bovine Longitudinal 300 6.0e-6£1.2e-6
Wang et al. (2005) Mice Transverse 376 0.0198+0.0036
Li et al. (2009) Mice Transverse 376 0.0177+0.0028
Li et al. (2009) Mice Transverse 43 000 0.0039+0.0013
Current study Bovine Transverse 74 0.0110£0.0069

The assumption that 24 hours in the KCl solution was enough to make the bone samples
saturated can be easily checked using the calculated diffusion coefficient inserted in Eq.
(12). Although Eq. (12) must first be modified for three dimensions since all sides were
open when the samples were in the KCI solution. If this is done the results show that the
value in the middle of the samples is about 95% of the value of the boundaries after 24
hours. T.e. the samples were close to saturated. As earlier explained the end value of the
conductivity will be the constant A, see Eq. (21). The start value can be expressed as
A — B. Since this study uses distilled water, the start value of the conductivity in each
measurement is very low, close to zero. By that A ~ B, meaning that B can here be
regarded to be the end value. As can be seen in Table 3 the end value differs some from
sample to sample. The reasons for this are several. One reason is that the volume of the
samples differs a few per cent. In general a larger volume indicates a larger amount of KCI
and hence a higher end value of conductivity. For some samples this was not the case. One
explanation for this could be that the density over the bone might vary, indicating that
more or less salt water could be trapped inside the bone samples.

It would be interesting to study samples of different sizes in future studies. A variation
of the dimensions could reveal possible size effects, possible statistical variation, deviation
of the assumed uniaxial flux and end effects that arise when the area of the open ends is
small compared to the length in the direction of the flux.

Besides the 16 samples some measurements were performed for bone pieces that had
not been in the KCl-solution before going into the distilled water. After 24 hours the con-
ductivity in the distilled water had reached about 5.5 uS/mm for these samples, i.e. about
7-13 % of the end values shown in Table 3. By that the diffusion coefficients calculated
here cannot be said to be for purely KCI through bone tissue, but rather KCIl mixed with
a small part of bone substances moving through the bone tissue.

7 Conclusions

The idea of this study is that determination of diffusion coefficients and material constants
in bone tissue will be more easily accessible. Since the calculated values of the diffusion
coefficients are in line with other studies, as discussed in previous section, this method could
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be considered as an option for avoiding using more advanced and expensive equipment.
Even so, the experiment should be further evaluated and developed. More test samples
should be used and it would be interesting to use a mathematical model which considers
the inhomogeneity of bone tissue.
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Abstract

A Kalman filter can be used to determine material parameters using uncertain
experimental data. However, starting with inappropriate initial values for material
parameters might include false local attractors or even divergence. Also, inappropriate
choices of covariance errors of initial state, present state, and measurements might
affect the stability of the prediction. The present method suggests a simple way
to predict the parameters and the errors, required to start Kalman filter based on
known parameters that are used to generate the data with different noises used as
“measurement data”. The method consists of two steps. First, an appropriate range
of parameter values is chosen based on a graphical representation of the mean square
error. Second, the Kalman filter is used based on the selected range and the suggested
parameters and errors. The method of the filter significantly reduces the iteration
time, and covers a wide range of initial suggested values for the parameters compared
with the standard Kalman filter. When the methodology is applied to real data, very
good results are obtained. Diffusion coefficient for bovine bone is chosen to be a case
study in this work.




1 Introduction

The Kalman filter is an inverse method to determine variables or parameters using input
data with more noise and get output data with less noise. It is firstly presented by Kalman
(1960). Kalman filter has the advantages of taking the random noise for state and mea-
surements into consideration, also it is an optimal estimator for linear models because it
minimizes the mean square error between the state. In addition, it converges quickly. A
more complete introduction to the Kalman filter is given by Brown (1983). The Kalman
filter can be found under different updated forms that used in many different fields such
as tracking objects (Siouris et al., 1997; Weng et al., 2006; Antonov et al., 2011), con-
trol systems (Ahn and Truong, 2009; Shi et al., 2009), and weather forecast (Mitchell and
Houtekamer, 2009; Wu et al., 2010; Miyoshi and Kunii, 2012).



Nomenclature

Qg
P, , Py
Qi Q
R,, R
Ty,
H. H,
Ky
v, v
P
vU;
¢(t)

, b
A B, R
D, Dy,
h
L
N,n, M
p
T
t
w, W,
Wp, W
x, T, Tg

elements of covariance matrix of stochastic vectors a, and b.

variance errors of the parameters before and after iterative update at iteration k

covariance error of the parameters at iteration k, constant covariance

covariance error for measurements at iteration k, constant covariance at initial
parameters ¢

vector of estimated state variables at iteration k
matrix of derivatatives of h, at iteration k

n x N matrix represents Kalman gain

mean square error between z and h

vectors of N errors of the measurements, at iteration k
sum of the squared residuals between z and h
elements of noise vectors w, and v

conductivity of escaped ions at time ¢

two stochastic vectors

three constants

diffusion parameter, at iteration &

vector of N predicted measurements

side length of bone sample

number of measurements, state variables, iterations
a priori estimated relative variance

transpose

time

vectors of n perturbations of the state variables, at iteration k
noise of parameters D, and B

vectors of n unknown, perturbed, initial state variables

Z, Zk, Zav vectors with N measurements, at iteration k, avergare z




Kalman filter can be used to determine material parameters from uncertain and inac-
curate measurements. Aoki et al. (1997) used Kalman filter to identify Gurson’s model
constant. They found that the accuracy of parameters prediction is affected by both spec-
imen geometry and measurement type, and the shape of the tested specimen affects the
convergence of the parameters. Also, they noticed that the rate of convergence can be im-
proved by combining measurements of two different specimens in shape. The identification
of Gurson Tvergaard material model parameters via Kalman filtering technique is studied
by Corigliano et al. (2000). They stated that the estimated values of the parameters are
in well agreement with those obtained in previous work, but the initial suggested values
for the seeking parameters affects the estimated parameters.

Nakamura and Gu (2007) implemented Kalman filter to determine elastic —plastic
anisotropic parameters for thin materials using instrumented indentation. They observed
that the initial chosen values for the parameters converged to a specific small area, but
not to one point. Also, based on the convergence intensity, the parameters are determined.
The same findings are obtained by using Kalman filter to determine the nonlinear proper-
ties of thermal sprayed ceramic coatings (Nakamura and Liu, 2007). Bolzon et al. (2002)
used Kalman filter to identify parameters of a cohesive crack model. They reported that
almost a linear correlation between convergent parameters is found, and the reason for the
multiple local minimum might be related to using the linear Kalman filter for non-linear
model.

Vaddadi et al. (2003) used Kalman filter to determine critical moisture diffusion param-
eters for a fiber reinforced composite. They estimated the parameters from the intensity
of the convergence, which found to be in consistent with known values. Another study
made by Vaddadi et al. (2007) to determine hygrothermal properties in fiber reinforced
composite using Kalman filter. The parameters are extracted by reading the intensity of
convergence plot.

Kalman filter is an efficient way to filter noisy experimental data for determination of
material parameters. However, the initial suggested parameters required for Kalman filter
should be chosen carefully, to avoid false local attractor. Also, the covariance error for the
parameters noise almost assumed to be zero, which slow the rate of convergence and might
lead to more than one intensity area for the predicted parameters.

In this study, a methodology will be applied for using Kalman filter to determine
material parameters using uncertain measurements. The methodology starts by a way
based on the mean square error to choose appropriate initial suggested parameters required
for Kalman filter, and followed by a suggested way to choose the covariance errors for both
state and measurements. The determination of diffusion coefficients in bovine bone for
generated data with different noises scatter from known parameters will be applied as a
case study. A real measurements will be used also.



2 Methods

2.1 The Model

Assume that an experiment resulted in N measurements obtained at different times, lo-
cations, temperatures etc. These are collected in a vector, z, with N measurements.
Measurements and all other data are available a priori.

In an attempt to predict the measurements a model, h = h(z) is used, with h being
a vector of N predictions of observations. Further, = is a vector of n unknown parame-
ters defining the model based on variables such as position, temperature, time, etc. The
unknown model parameters may describe the state of the system regarding, material, ge-
ometry or similar. In the present study, x is limited to parameters describing the material.

Measurements always include systematic and non-systematic errors due to instrumen-
tation, indirect observations, gauges sensitive, irrelevant external influence, and similar.
Material parameter is sought but the experimental method may require a state parame-
ters to be determined as well. Further, material parameters contain non-systematic errors
due to thermal fluctuations, unstable structural configurations such as mobile disloca-
tions, impurities, inclusions, unstable chemical composition, etc. Also inevitably, there is
a difference between model and reality while a model never gives an exact description of
the physical processes. Under ideal conditions the model would perfect in the sense that
z = h(x). Here, only non-systematic errors or noise is considered. The model is defined
for measurement i as

z=h(T)+v, (1)

where v is a vector with IV errors due to inaccurate measurements z. The instant parameter
Z corresponding to the individual measurement ¢ includes noise according to

I=r+w, (2)

where w is a vector with n errors caused by the parameter deviations. The elements of v
and w are assumed to be uncorrelated. All elements of w and v are supposed to be random,
having the same respective stochastic distribution and for both a vanishing mean value is
expected, cf. (Brown, 1983).

Assuming that a set of parameters Z; is an estimate in the neighborhood of x, an
improved estimate Zj; may be obtained by using linearized using a Taylor series which
gives

h(Zpr1)=h(2x) + H(Zx) (2 — 2) (3)

where quadratic and higher order terms of z are neglected. On matrix form involved
variables are

ohM ohM
h or, O, !
h)=| i |, Hlx)=] s e= (4)
BN) OhV) oh) T,
0xq o or,



Here, H is an N x n a Jacobian matrix.

2.2 Least-Squares

The system is supposed to be overdetermined, meaning that the number of measurements
N exceeds the number of unknown parameters n. The best fit in the least-squares sense
minimizes the sum of squared residuals with a residual being the difference between an
observations z and the predictions h(z). The unknown z is obtained in a series of iterative
improvements of the approximation x ~ Zj, where k is the iteration number. The initial
parameters zy may be an educated guess based on previous measurements, data from
resembling materials or other similar expectations.

Solutions for non-linear systems (see Appendix A) may be obtained iteratively. As
an example, the Newton-Raphson method applied to these solutions gives the following
recursive scheme,

1 = @+ (HHR) 7 Hy {2 — h(@)}, (5)

where Hy is an N X n matrix and a function of z;. If convergence is reached, a local mini-
mum of the sum of squared residuals has been found. To find global minimum, additional
steps have to be taken. The drawback of the method is that convergence is not necessarily
reached and is less likely if the a prior: information of x is vague, unreliable or even mis-
leading. This is especially accentuated when the measurements are noisy. Further, all data
have to be present a priori. Modifications have been developed that allow an incremental
treatment, which may be useful if data is continuously added, cf. (Plackett, 1950).

2.3 Kalman Filter

The method of least-squares does not take the properties of the noises v and w as regards
expected mean value and distribution into account. Opposed to that, the Kalman filter is
developed to use information about the noise a priori or as the measurements are assem-
bled. The filter is an improvement of the least-squares method as it recursively optimizes
the unknown model parameters in search for least sum of squared errors. The method
is developed with the particular endeavor to effectively handle noisy input data (Brown,
1983). Tt is also operating incrementally so that new may be added as they appear in
during ongoing measurements without loss of accuracy. However, in the present study all
measurements are supposed to be available when the optimization is initiated. The Kalman
method is generally assumed to be an effective method to filter noisy data combined with
a high convergence rate. The derived algorithm is taking the character of the noise into
consideration. The expected vanishing mean values for v and w are explicitly utilized.

Assuming that the measured data is the predicted data based on the optimum material
parameters with the addition of noise, as given by Eq. (1) it is here assumed that the noise
v a distribution with a zero mean value.

Initially a set of parameters x, is selected based on a priori information from other
measurements under same or similar conditions or otherwise known data. From this, the



parameters are iteratively updated using an algorithm on the same form as the least-squares
algorithm (cf. Eq. 5) as follows

.Si’k_;,_l :"%k-f—Kk{Zk —h(i’k)} for k:0,1,2,...M, (6)

where Ky, is an n x N matrix denoted the Kalman gain, and M is the number of iterations.
In Eq. (6). Normally the Kalman algorithm operates on single measurements one by one
so that the Kalman gain is updated for every new measurements. This may be necessary
for interactive processes where the action requires knowledge of the instantaneous state of
the system. In the present study, iterations are simultaneously utilizing all measurements.
The derivation of the Kalman gain (see Appendix B) is based on measurements added
recursively as in the original form of the filter.
The optimal K that minimizes the mean square error is given by

Ky = P H; (H. P H; + Ri)™" (7)

where P, is the variance of the errors of the parameters before the iterative update, and
Ry is N x N matrix introduces the covariance error of the measurements that computed
as

Ry, = Var(vy,). (8)
The Py, is expressed as
w1 = I —KHy) P+ Q. 9)

where @, is an n x n matrix represents the covariance errors for the state parameters that
is computed as

Q). = 2Var(wy,). (10)

The derivation of Ky, P, , Ry, and @), are given in details in Appendix B.

The algorithm involves recursive use of the Eqs. (6), (7) and (9). The measurements
considered in each recursive cycle may be everything from a single measurement to all
measurements. For non-linear problems, each cycle may be repeated until convergent
results are obtained. As an alternative, the entire recursive scheme may be restarted and
the resulting parameters z,, P, , from previous application of the scheme are used as
initial parameters. Also @, and Rj may be adjusted based on the improved information
that is obtained. In the present study, all measurements are placed in a single set with NV
measurements, meaning that z;, = z is a constant vector with N elements. The number
of recursive cycles is M and k = 1,2,..., M where M is prescribed or conditional. The
recycling is performed to achieve a converged result for a non-linear problem. In each
cycle, x, Hy, Py, and therefore K, is updated.

By putting R, = RI in Eq. (7) and then taking the limiting result as R — 0 one
obtains K;, = Hy (H,H; )™ = (H H,)"H;. After inserting this into Eq. (6) it is readily
seen that the result is identical to that of the non-linear least squares method, cf. Eq. (5).
The result is independent of P, and consequently also independent of @,
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3 Methodology

In Aoki et al. (1997), Nakamura and Gu (2007), and Vaddadi et al. (2007), the Ry was
chosen to be a small percentage of the measured data, and the Q) value was chosen to be
zero. In a recent study, the Ry value was chosen as the difference between the measured
data and a predicted data a round the measured data, and the @, was chosen to be unity
(Lindberg et al., 2014).

To use the Kalman filter the parameters @, and Ry, and initial values for &, and
P have to be defined. In the following, different strategies for choosing these values is
described.

For common usage of the Kalman filter, the choice would be R;, = Var(v;) and Q,, =
2Var(wy,) according to Eqgs. (8) and (10). These variations are assumed to be known a
priori, at least approximately. The information may be based on expectation or derived
from the present measurements, using a large variety of hypotheses. When the method
is used recursively, the indices k allow for using @, or Ry or both as functions of time,
position, etc.

The Kalman gain, given by Eq. (7), with the selected @), or Ry, minimizes the squared
error of the estimate 2, of . A condition for the derivation is that h(x) is a linear function
of the parameters z. In the present study, h(z) is a non-linear function of x. The aim is to
formulate a strategy for selecting the free parameters Ry, and @), not necessarily according
to Egs. (8) and (10), so that the square of the error

M(z) = %Var(z ~h(z)), (11)

is minimized. The study does not attempt to be exhaustive and the conclusions are empir-
ical and based on a case study. The selection of method is primarily based on convergence
rate. With a wide range of starting values, occasionally the estimate converges outside
the range of interest and there is also the risk of failure in producing converging results at
all. These, disadvantages are also considered in the selection of a suitable procedure for
selecting Ry, and Q.

In the first part of the study, the initial parameters I, are selected to cover a several
orders of magnitude wide range of values. Under normal circumstances, this cannot be done
for non-linear phenomena or realistic geometries or anything else for which an analytical
solution cannot be found, which may be the general case. When the predictions are based
on non-linear numerical calculations of field problems, e.g., using lengthy finite element
analyses, usually only a few initial parameters Z, can be considered. Here however, a wide
range of initial parameters is examined as regards the mean square error M(Zg). The aim
is to obtain an overall picture of the possibilities of fast convergence or difficulties because
of present local minima, sadle points etc.

The second part is, the using of a suggested method and comparing the resulting conver-
gence rate, the ability of producing convergent results, and the percentage of convergent
results from a range of the initial parameters with three additional methods. All four
methods are described in subsec. 3.1.



3.1 Selecting Q) and R

In the present study, the results of constant
Q. = 2p?zzT  including Q.=0, (12)

are evaluated. The parameter p is an a priori estimated relative variance.

The relative variance p of the state parameters is a quantity that possibly can be
guessed with more or less accuracy. Since the real state parameters x are not known a
priori constant @, may be either too big or too small depending on how accurate initial
guess of xy is. However, since the knowledge of the state variables increases as the iterations
proceed, to stick a constant @, may unnecessarily slow down the convergence rate. As
the iterations proceed, the estimate xj is improved and a better estimate for @, can be
used. Here, an updated @y, is also evaluated. With the variation of = being w; = px, the
unknown z is here assumed to best approximated with x;. The updated value given by
Eq. (10) then becomes

Q, = 20" Var(x) . "
The Ry, taken as
R =097, i=1,2,...U, (14)

which is assumed to be a reasonable approximation of Eq. (8), where measurement noise
v is given by

v = max|Var(zy — hN(i’(()i)mL 1)

where max denoted to the maximum value, and U is the number of initial parameters.

In the suggested method, the @ and RY are chosen for large values based on the
evaluation according to Eqs. (7) and (9), cf. sec.5 for explanation. There are additional two
Kalman filter methods, one method uses p = 0 in Eq. (12), and the another method uses
p = 0.01 that gives the smallest standard deviation and largest percentage of convergence
among different values for p, the mean values are closest to each other (see Fig.4). These

two methods use Ry, as
R = [max|Var(zy — hy(2))|]1 , (16)

so, the R is the largest squared element for the variance of the difference between measured
data, z, and predicted data with noise. Here, @ and R without k index denote constant
covariances during iterations.

The fourth method is the non-linear least squares method, which is obtained by letting
R, — 0 as it is described in subsec. 2.3.



3.2 The Initial Predicted Parameters Error Pa

The initial predicted parameters error P is an n xn matrix that contains the expected val-
ues for the errors between the unknown parameters z;, and the initial predicted parameters
Zo before the first iteration (see Appendix B). Py is chosen as

Py = Var(z§"" — (""", (17)
where 2§ and z{™™ are the two vectors that contain maximum and minimum of the

selected initial values for the parameters. The choice for P is the same in all cases in the
present study. Only one large initial value is tested since the Pg introduces the variance
between the seeking parameters and the initial parameters.

3.3 Summary of Methods

A summary for the four used methods with the percentage of convergent results over total
results (D.N%) for each method is presented in Table 1.

Table 1: Methods used

Method Q R Py D.N%
Kalman filter 1 (suggested N . .

method) Q = Py as in Eq. (23) Eq. (26) Eq. (17) 92.09
Kalman filter 2 Eq. (12) with p=0 Eq. (16) Eq. (17) 80.90
Kalman filter 3 Eq. (12) with p = 0.01 Eq. (16) Eq. (17) 80.19
Non-linear least squares 0 40.93

4 (Case Studies

The determination of the diffusion coefficient of mammal bone using uncertain data is
chosen to be a case study. Diffusion has recently been suggested to play an important
role in transporting substances from the inner boundaries to the outer boundaries of bone.
Therefore, knowing the diffusion coefficients in human bone are important to give required
information for design of individual exercise programs that maximizes bone remodeling
and bone healing.

In the present study, the proposed four methods are applied to several simulated cases
of generated data and the most effective method is applied to a case of real experimental
data. The real experiment measures the amount of ions that leaves bovine bone samples
that were put into a container with distilled water. During elapsing time the conductivity,
((t), of the water increases in proportion to the ionic concentration. The experiment is
reported in Lindberg et al. (2014). Cubic bone samples with the side length L =10.1 mm
from a bovine long bone were used. The concentration were measured using a SevenEasy
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S30 conductivity meter from Mettler Toledo with an accuracy of +0.5% of the measured
value. Further details regarding the experiment is found in Lindberg et al. (2014).
The following model is suggested for the conductivity as a function of time, ¢,

(W=Aa-BY 7T2(2nf_1)2 exp{~(2m — 17?D 13} (18)

where D is the diffusion coefficient, and A and B are unknown constants. The model is
based on Fick’s law using relevant boundary conditions.

The constants A and B provide the relation between the concentration in the bone
sample and the conductivity in the distilled water. Putting ¢ = 0 gives

A=((0)+ B, (19)

where ((0) taken to be the conductivity measured at ¢ = 0. By using h(t) = ((t) — ((0) as
the measured quantity, the following model is obtained,

My =B1-Y 772(275—1)2 exp{~(2m — 1w D)) (20)

The two remaining constants D and B are determined using the Kalman filter. More
details are found in Lindberg et al. (2014).

To the experiment is added a Monte Carlo set of 250 fictive measurements where gener-
ated data is used as measurements. The measured data is generated using the exact model
Egs. (1) and (20) to compute the measurement vector z. To provide realistic conditions,
a variation is added to the state parameters D and B and to the measurements. To this
end, a random noise of 5%, i.e. |wp| < 0.05D and |wg| < 0.05B, is added. In the same
way, noises v of 10%, 50% and 100% are included in the generated measurements z, i.e.

1
z = h(t)+v, where v = 45 Z h(t;) and ¢ equals 0.1, 0.5 and 1. Summation is performed

for the 24 different times of measurement. Further, the wp, wr and v are uncorrelated
and the probability density is constant within the limits of the respective noise. Also the
noises for each measurements are uncorrelated. Thus,

02 if Q=

0 if i#j "’ (21)

COV(’lgi, 19]) = {

where ¥J; and ¥; represent the elements of each noise vector wp, wp and v at individual
measurements ¢ and j.

As observed from Eq. (20), the only available time unit is provided by L?/D. A
typical experiment lasts for around 11.7 time units, i.e., 0 < ¢ < 11.7L?/D with generated
measurements taken in time intervals of around 0.0032L*/D.

In an attempt to obtain less non-linear formulation of Eq. (20), a semi-linear model
that is obtained after simplification and taking log of both sides of Eq. (20) one obtains
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h*(t) = B*+ f(D,t), (22)

where
h(t) =log{h(t)}, B* =log(B),

and

f(D,t) =log ( Zl TG exp{ (2m — 1) QDLQ })

which makes h*(t), a linear function of B* while f(D,t) is known to be rather small. Note
that log(l —e™) — e™* as  — oo and therefore f(D,t) decays exponentially for large
with increasing time which makes the linearization with respect to D undoable.

5 Results and Discussions

The accuracy of the series in Eq. (20) was studied in this work to reduce the computational
time, it showed that the number of terms m may be chosen to be around 200 terms to
obtain an accuracy of 99.9% in the middle of the sample at ¢t = 0. Already at the second
measurement at ¢ = 0.0003L?/D only four terms are required to obtain the same accuracy.
For systems with large amounts of data, a strategy for the selection of the number of
terms in the series could save considerable computation time. However, here this is not
the primary focus and the the calculations where not very much time consuming, which is
why all calculations where made using M = 200 terms.

Measurements are generated from known D and B using wp = 0.1D, wg = 0.1B5,

and v = 0.1z, where z,, is the average of all generated measurements i.e z,, = — E Z;.

Then the Kalman filer was used to obtain approximations of D and B. This was done first
for the non-linear model Eq. (20), and then for the partly linearized model Eq. (22). To
compare the accuracy in finding the least square error of the predicted measurements based
on different state parameters found using model Eq. (20) and model Eq. (22) respectively,
the least square error M(z) was calculated using Eq. (11). The non-linear model gave
M(z) = 15% while the partly linearized model gave 30%. For the reason of this, the partly
linearized model is given up and the model Eq. (20) is used in the continued analysis.

Assuming that the information of the parameters D and B is uncertain, the Kalman
filtering has to converge from initial values that are several orders of magnitudes different
from the true values. To explore what this means, the mean square error is calculated for
a very wide range of initial values. Mean square error here refers to the error of calculated
estimates of the initial guesses Dy and By directly compared with the true values of D and
B. No iterations are made. To cover a large variety of initial values a mesh 101 values
for D and for each 101 values for B are used. The mesh covers values of Dy ranging from
0.001D to 100D and values of By from 0.015 to 1005. Fig.1 shows the mean square error
for the initial values of Dy and By for the constructed mesh.
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Fig. 1. The mean square error of the conductivity predictions for different initial values of the relative
initial parameter values Dy/D and By/B. The noises are in the range +5% for parameters and £10% for
measurements.

Regions with small gradients are found along a line for which Dy/D approximately
equals (By/B) 2. The several local minima along this trajectory correspond to the resolu-
tion of the grid and are merely graphical anomalities. Also in the region of small Dy and
large By the gradient is very small. This makes the convergence rate of any gradient driven
algorithm small. However, no local minimum seems to be present and convergence should
be possible in entire range of initial values even if the convergence may be very slow in the
above describe regions. A clear minimum mean square error is found around the close to
D and B. The result is strongly influenced by the rapid changes due to the exponential
behavior of Eq. (20).

For the study of the Kalman filter measurements z are generated for 250 measurements
in the time interval 0 < ¢t < 11.7L2/D. In this study, D and B are known parameters,
but in a real case they are not known but believed to be in the neighborhood of the a
priori guess. As it is suggested by Fig. 1, a very large variation of convergence rates are
anticipated.

The Kalman filter is studied by gathering 10 generated experiments together, each
experiment has 25 measurements, and each measurement has random noises of +5% for
parameters and £10%, £50%, and +100% for measurements, which constructs a measure-
ment vector z;, i=1,2,3.....,250. The initial selected state variables are chosen from 0.1D
to 10D for Dy and from 0.1B to 108 for By.

The initial parameters error Py is selected according to Eq. (17) as follows

_ 9.92D2 0
Po = l 0 9.92B2 (23)
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The P, is updated using Eq. (9).

5.1 Different R and Q;

First R values are calculated as in Eq. (14). So, RY is the squared largest element of
the variance encountered so far, i.e. so far means before iteration k.
The effect of Q. is studied by using,

2

Q= | P 0 (24)
0 (B, — Bo)

This means that @, increases as the iterations proceed. The expected effect is that the con-

vergence rate increases with increasing Q. Which is selected to speed up the convergence

rate.

Fig.2a shows a color plot of the obtained values for D1 /D, here 1 is number of iterations.
The markers (X) that are included show the obtained values of D;/D and B;/B using
Kalman filter, for 41x41 initial values Dy/D and By/B. The obtained (Dy/D,B;/B)
outside the selected range are excluded from convergence plot to make it in the same range
as the color plot. The white areas in the figure give 21.5% of the obtained D;/D that found
to have negative values with no physical meaning. Consequently, this leads to divergent
results in following iteration since the exponential term in the diffusion model would have
large positive values. A large step for Kalman gain, K, seems to be the reason, which can
be forced to be small by assuming R large, but the rate of convergence would be slow.

10°
DnID

Fig. 2. Color plot of Dy, as a function of Dy and By. The markers (x) show the position of the resulting
Dy, and By, for the 1681 initial starting points in the range. (a) k = 1 iteration, and (b) k = 20 iterations.
Noises are +5% for the parameters and +£10% for the measurements.

Fig. 2b shows the color and convergence plot after 20 iterations. It can be seen that
using larger values for Q,, increases the rate of convergence but the divergent cases increased
from 21.5% to 22.4%.

The effect of R values on the convergent D;/D is shown in Fig. 3a. The figure shows
that the percentage of the number of convergent D;/D over the total number of Dy/D
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almost around 80% as the R value increases from 0.000039 B? to 0.6 32, after that it begins
to increase to 95% as the R increases to 382, then it almost keep around this percentage
with larger values for R. A possible reason is that the Kalman gain step becomes small as
the R value increases.

The effect of R on standard deviations and mean values are shown in Fig. 3b. The
figure shows that the standard deviation decreases as the R increases untill R = 1.5B%,
then it increases slowly, also the mean value decreases as the R increases to 0.025%, and
then increases again. The R/B? (Kalman) in the graph denoted suggested R for ordinary
Kalman filter based on the average value of z and the 10% measurements noise, i.e R =
(0.124,)?, which is not the optimal case. One reason is that standard deviations and mean
values are computed after one iteration, also the negative values of D are included. Slightly
different results are obtained after more iterations, reason should be the non-linear model.
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Fig. 3. Effect of R on D;/D. (a) convergent of Dy/D over total number of Dy/D. (b) standard
deviations and mean values, the standard deviation values over 5 are excluded from the graph. @ = 0.

10

Fig. 4a shows the effect of different values of @ using 0.01 < p <1 and R as given in
Eq. (16) on the convergent numbers of Dj/D over total number of Ds/D. It is clearly
seen that the number of convergent Dj/D decreases as the p increases. Using large @ with
small R affects the Kalman gain stability, this could be a possible reason.

Fig.4b shows the effect of p on the standard deviations and mean values for the obtained
Ds5/D. The figure shows that standard deviation increases as p increases, and mean values
play around 1.7 as the p increases. One reason could be that using large values of @ with
small values for R increases the Kalman gain step. The @ value at p = 0.71, random walk,
cf. (Brown, 1983), and at p = 1 , the suggested variance as in Eq. (13), does not give
significant effect on both standard deviations and mean values. A non-linear model might
be a reason, so it is expected to have effect with more iterations. The p value is chosen for
0.01 that give smallest standard deviation and largest percentage of number of convergent
D over total number of D to be one method (see Table1).
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5.2 Large R and Q

By studying Eqs. (7) and (9), and Fig. 3 it is believed that choosing R large, decreases the
risk of ending up with divergent results for Dj. Fig. ba shows that increasing p for large
values using R large increases the percentage of the number of convergent Ds by 3%, this
is an indication that using p > 0 with R large covers a wide range of initial parameters
that converges.
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Fig. 5. The effect of p on D5/D using R large. (a) convergent of D5/D over total number of D5/D (b)
standard deviations and mean values of D5/D. The large R is chosen as in Eq. (26).

The effect of @ on the standard deviations and mean values of the obtained D5/D are
shown in Fig. 5b. It can be seen that the standard deviation and mean value decrease as
the p increases, untill optimal is obtained with p > 7.8. Also, increasing p speeds the rate
of convergence. Again, this could be the effect of non-linearity of the model.

It can be concluded that using R and @ large increases the possibility of convergence
for a wide range of Dy and B, and speeds the convergence rate of parameters. To choose
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R for large value, a vector v, contains the largest variance value between measurement, z,
and predicted , h(zg), for each initial parameters is chosen as

vy = [vWv® p18UT (25)

where s is the number of initial parameters, i.e s = 1,2,....,1681, and v values are
given by Eq. (15), then the R value is chosen as the maximum value in the whole initial
parameters combinations as

R = max(v,)I. (26)

To choose @ large, the @ is chosen to be equal to Py as in Eq. (23), since the Q
represents the variance between the seeking parameters and instant parameters.

Fig. 6a shows that the divergent results after 1 iteration using large R and Q = 0
decreased to 7.8% compared with the divergent results of 21.5% for different R values as
shown in Fig. 2a. It also decreased to 7.9% after 20 iterations using large R and Q as
shown in Fig. 6b compared to the divergent results of 22.4% for different R and Q values
as shown in Fig. 2b.

10

(a)

BOIB
3

10° 10 10
Do/D DoID

10° 10

Fig. 6. Color plot for Dy merged with convergence plot between (Dy,Bj) for initial starting points Dy
and By after (a) 1 iteration, for large R and @ = 0, and (b) 20 iterations for large R and large Q. Q is
selected to be large and equal to Py as in Eq. (23), while R is chosen as in Eq. (26). Noises are £5% for
the parameters and +10% for the measurements.

It can be discussed that large values of R and @ decreases the percentage of divergent
results of Dy, and also speeds the rate of convergence as shown in Fig. 2 and Fig. 6.

5.3 Different methods

The method with the selections of @Q and R, is compared with the second, the third, and
the fourth methods that are explained in subsec. 3.1, and summarized in Table 1. The R
in the second and third methods is chosen as the maximum difference between generated
data, z, and generated data with the noises, h(x) as in Eq. (16). The Py for the second
and third method is chosen as in Eq. (23), the same as in the suggested method.
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Fig. 7a shows that 92.1% of the initial selected Dy/D and By/B give convergent results
for diffusion coefficients. Around 98.3% of those values are converged to 1.042 after 50
iterations, while the 1.7% left (dark blue area in the color plot) almost converged to the
same point after 180 iterations. The Kalman filter with p = 0.01 gives almost the same
convergent area of Dso/D as the Kalman filter with p = 0 around 80%, but it speeds the rate
of convergence as shown in Fig. 7c, while Kalman filter with p = 0 needs a large number of
iterations for the parameters to converge as shown in Fig. 7b. The non-linear least squares
speeds the rate of convergence but with 40.93% of the initial selected parameters that give
convergent results for diffusion coefficients as shown in Fig. 7d.
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10° 10
D,/D

Fig. 7. Color plot for Dsy/D merged with convergence plot between (Dso/D,Bsg/B) for initial starting
points Dy/D and By/B after 50 iterations for: (a) suggested Kalman filter with large R and large Q, (b)
Kalman filter with p = 0, (¢) Kalman filter with p = 0.01 , and (d) non-linear least squares method. For
generated data with noises of £5% for parameters and £10% for measurements.

0

The suggested Kalman filter covers a wider range of the initial selected values for Dy
and By that give convergent results for diffusion D5y than Kalman filter with p = 0, Kalman
filter with p = 0.01, and non-linear least squares. This makes it an appropriate method to
determine diffusion coefficient if the a priori information is rare or there is a large variation
in the parameters, such as bone as an in-homogeneous material. Also, it speeds the rate
of convergence. The Kalman filter with p = 0.01 might be a good choice if the a prior
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information in the adjacent area of the seeking parameters are enough. Also, the non-linear
least squares might be one choice but for small range of initial selected values for D, and
Bo.

The effect of different ranges for Dy and By against the standard deviations and mean
values for the four methods after 5 iterations is shown in Fig. 8. The ranges are selected
to start from a small range and end with a large range as

1
< selected initial ranges < i D, (27)
i

1 . .
B < selected initial ranges < i B, (28)
i
where s = 1.2,1.6,2, ...... , 10. The figure shows that the standard deviation and mean value

increase as ¢ increases. A reason for that could be that the number of initial parameters
increases as the ranges increase. It can be noticed that Kalman filter with p = 0.01 gives
the smallest standard deviation while the suggested method gives standard deviations
closest to Kalman filter with p = 0. On the other hand, the mean values obtained by
suggested method is found to be the smallest among the other three methods. This is
an indication that the suggested method and Kalman filter with p = 0.01 might converge
around the same speed. On the contrary, the non-linear least squares gives very large
values for standard deviations for ¢ > 1.6, these values are above 2 and excluded from the
graph as shown in Fig. 8a, and gives large mean values for D5/D as shown in Fig. 8b. A
possible reason for that is the divergent result that obtained after 5 iterations, it has some
large negative values for D5/D.

(a)? ' ' ' ' " [~ Suggested Kaman fitter]| (D) “[[=—Suggested Kalman fiter| '
185 -©-Kalman filter, p=0 18] -©-Kalman filter, p=0 N
-B-Kalman filter, p=0.01 -8-Kalman filter, p=0.01
-A-Non-linear least square -A-Non-linear least square
6

el

1 2 3 4 5 6 7 8 9 10

02;4

Fig. 8. Standard deviations and mean values for the obtained D5/D against ranges of selected initial
parameters for the four methods after 5 iterations, (a) standard deviations and (b) mean values. For
generated data with noises of £5% for parameters and £10% for measurements.

Fig.9 shows the standard deviations and mean values of the obtained Dy, k = 1,2,..,100

against number of iterations for large initial range, ¢ = 10, for the four methods. The
standard deviation values for Dy, for the suggested Kalman filter decrease slowly up to 70
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iterations, and the mean values increase as number of iterations increases to 70 iterations,
and almost be stable after that. The reason for that is some of the obtained values of D,
were stuck to small values up to the 70 iterations, moving with small steps of K until
they reached to good predicted values to move with larger steps.

2,
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Fig. 9. Standard deviations and mean values for obtained Dj, against number of iterations for the four
methods after 5 iterations, (a) standard deviations and (b) mean values. For generated data with noises
of £5% for parameters and £10% for measurements. ( points over 2 and less than 0 are excluded from

the graph).

The standard deviations and mean values using the Kalman filter with p = 0 decrease
slowly as the number of iterations increases. This is expected since R in the second method
was chosen to a small value and @ vanishes, which makes the Kalman gain is small. On the
other hand, the standard deviations and mean values of D, for Kalman filter with p = 0.01
and for non-linear least squares converge quicker than the others. This is an indication
that methods 3 and 4 can be used effectivly if the aprior: information fortunately adjacent
to the seeking parameters.

The determination of diffusion coefficients for generated data with +5% parameters
noise and +50%, and +100% measurements noise almost follow the same trend as in +5%
parameters noise and +10% measurements noise. Table 2 shows the standard deviations,
mean values, and the percentage of numbers of convergent Dso/D over total number of
Dso/D (D.N%) for the selected range with i = 10, for the four methods.

The table shows that the suggested Kalman filter gives compromise results compared
with the other methods. The most important difference is the percentage of the obtained
Dso/D that give convergent results (around 92%), that is found to be large compared with
the others, which means high possibilities to determine the diffusion coefficients from the
selected initial range even it was a large range, and for measurements noise up to +100%.
The table also shows that the suggested Kalman filter speeds the rate of convergence as
well as Kalman filter with p = 0.01 and non-linear least squares but with higher D.N%. By
comparing standard deviations and mean values as in the table, the standard deviations
for Kalman filter with p = 0 give the largest values among the other methods, and the
mean values are pretty a way from the convergent parameters. A reason for that is Kalman
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Table 2: Standard deviations, mean values and D.N% for the obtained Djso/D for the four methods
with noises of +5% for parameters and +£10%, £50%, and +£100% for measurements.

Random noise Method Standard deviation Mean value D.N%
+10% Suggested Kalman filter 0.09 1.03 92.09
Kalman filter, p =0 0.49 1.22 80.90

Kalman filter, p = 0.01 0.03 1.04 80.19

Non-linear least squares 8.71x107% 1.04 40.93

+50% Suggested Kalman filter 0.06 0.93 91.96
Kalman filter, p =0 0.54 1.06 80.37

Kalman filter, p = 0.01 0.003 0.94 80.67

Non-linear least squares 6.19%10716 0.94 45.63

+100% Suggested Kalman filter 0.03 1.69 92.03
Kalman filter, p =0 0.66 1.44 85.24

Kalman filter, p = 0.01 0.22 1.66 85.66

Non-linear least squares 0.064 1.69 42.47

filter with p = 0 converges to many different points with small Kalamn gain step, which
means more iterations are needed for convergence. In sum, the suggested method can be
applied effectively for both rare and sufficient information about the seeking parameters,
and can be applied for a wide range of initial parameters.

The behavior of mean square error for a selected real bovine bone sample is found almost
the same as the generated one in Fig. 1. The initial predicted parameters Dy and By are
chosen to be 41 x 41 combinations, with 0.001 < Dy < 0.1 me/min and 6 < By < 600
uS/mm, which construct a large combinations between the initial parameters. The initial
predicted parameters error P, covariance error for the parameters ), and covariance
error for the measurements R are chosen based on both suggested method and these
combinations. Fig. 10 shows the convergence plot for the two parameters D and B that
obtained using the suggested Kalman filter for the real sample after 1, 10, 50, and 250
iterations.

The initial predicted parameters that give convergent results for Dy are found to be
92.2% from the combination, that converged around a specific line after some iterations as
in 10 and 50 iterations (see Fig. 10). Around 92.5% of them converged to the seeking un-
known parameters D = 0.0144 mm?®/min and B = 73.602 uS/mm after 50 iterations, while
the 7.5% left converged to the same place almost after 250 iterations. Small Kalman gain
steps at the 7.5% might be a possible reason for the slowly convergence. The convergence
line is expected since the mean square error has smaller values along this line as shown in
Fig. 1.

The conductivity versus time for analytical model Eq. (20) using D and B obtained by
the suggested Kalman filter and experimental data for the real sample is shown in Fig. 11.
The figure shows that the analytical function fits very well with the experimental data
accompanied with mean square error of 0.85 (uS/mm)?.
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6 Conclusions

Four methods to choose appropriate initial parameters, covariance errors for parameters,
and covariance errors for measurements, required for Kalman filter for determination of
material parameters, is investigated in this work. The methods are applied to generated
data with +5% parameters noise and +10%, +50%, and +100% measurements noise for
known parameters. The suggested method covers a wider range of the initial suggested
values for the parameters than the standard Kalman filters, and non-linear least squares,
which enhances the possibilities of convergence around the seeking parameters. The sug-
gested method speeds the rate of convergence compared with the other methods. Very
good results are obtained for diffusion coefficient in bovine bone as a case study.
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Appendix A Non-linear least squares
The sum of the squared residuals is written
®=(z—h)"(z—h). (A-1)

By putting the derivative of ® with respect to = to zero, a set of n equations is obtained,

o0

—-0 = H(@)"{z—h(x)} =0. (A-2)

Insertion of Eq. (3) into Eq. (A-2) gives the following,
H"{z — h(@p)} ~ H ' H(z — i) (A-3)

Provided that the n x n matrix H"H is non-singular, one obtains the following approxi-
mation,

v~ a4+ (HH) T HY 2 — b)) (A-4)

For linear systems the Jacobian H is independent of z, which makes the solution in Eq.
(A-4) exact.
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Appendix B Kalman filter derivation

The variance of the errors of the parameters before, P, , and after, P}, the iterative update
are

P; = Var(l‘k — £k71)7 and Pk:Var(J;k — .ik) . (B_l)

The function Var(a) is an [ x [ matrix with the elements «;; given by the vector a =
(ay,...a;)" as follows, cf. (Courant and Hilbert, 1953)

ai; = E(zi7;) — E(2:)E(z;), (B-2)

where E(¥) is the statistical mean value of the stochastic variable ¢J. Hence, the matrices
P, and P,_, are symmetric with the dimension n x n.
Using Egs. (B-1) and (2), a relation between P, and Py is obtained as,

P, ., = Var(zpy1 — ) = Var(x + wegr — ) = Var(ay, — wy + Wey1 — Tp) (B-3)
= Var(zy — @) + Var(—wy, + wgy1) = Var(xy, — Zx) + 2Var(wy) = Pr + Q..

where Q, = 2Var(wy) is an n X n matrix. Note that the covariance of the supposedly
uncorrelated quantities (z — &) and wy, respectively vanishes.

On the other hand, substituting 2 in Eq. (B-1) by using Eq. (6), P} can be expressed
as

Pk = Var[xk — (ﬁjk—l + Kk{Zk — h(ik_l)})] .
Replacing z;, according to Eq. (1) leads to
P, = Var(mk — Tpoq1 — Kk{h(l‘k) + v — h(i‘k_l)})
= Var(xk — ik—l) — KkCOV(h([Ek) — h(:%k_l),xk — fﬁk_l)
— COV(%]C — :%k—h h(mk) — h(i‘k_l))Kg + KkVar(h(xk) — h(i‘k_l))Kg
+ K Var(v) K},
(B-4)

where the function Cov(a,b) gives the covariance of the stochastic vectors a and b. The
function Cov(a, b) is an m xm matrix with the elements a;; given by the stochastic variables
a=(ay,..ay)" and b= (by,...b,,)" as follows, cf. (Courant and Hilbert, 1953),

ai; = E(a;bj) — E(a;)E(b)) . (B-5)

It is used that the covariance between the elements of h(x;) and vy for any i and k
vanishes. The Taylor series in Eq. (3) giving h(zy) — h(&—1) = Hi(xg — Zp—1) results in

P, = P, - KH,P, — P H{K| + K;H, P, H; K + K, R/ K], (B-6)
= (I - K:H)P, (I -KH,)" + KR K],
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where Ry, is the covariance error of the measurements and an N x N matrix defined as
follows

Rk = Var(vk) . (B—?)

Since the x; and v, are mutually uncorrelated, Pj becomes a diagonal matrix that
contains errors between the parameters before and after an iteration, the K that minimizes
the error can be obtained by taking the derivative of the trace Tr(P}y) with respect to Ky
and putting it equal to zero. Taking the trace of the first equality in Eq. (B-6) provides

Tr(Py) = Tr(Py) — Tr(KyH Py) — Tr(PLHEK) + Tr(KHy P HK) (B-8)
+ TI'(KkRkK;g)

Using following identities for the matrix trace, cf. (Petersen and Pedersen, 2008)

9Tr(AC) 7 and OTr(AFAT)

Tr(P HK;) = Tr(K,H, Py, A 9A

_2AF . (B-9)

The last equality requires that the matrix F' is symmetric. The derivative of Eq. (B-8)
with respect to K can be written

OTr(Py)

k

The optimal Kj can be obtained by putting the right term in Eq. [B-10] to zero as
next

K, =P, H, (H,P,H +R,)™". (B-11)

The P, associated to the optimal K; can be written as in Eq. [B-12] by substituting
Eq. [B-11] into Eq. (B-6) as next

P, = (I -K,H,)P, +{-P_H} +K,(H,P,H] + R,)}K}.

Using Eq. (B-11) readily gives
P, =(I-KH,)P,_, (B-12)
and consequently

P, = -KH)P, + Q. (B-13)

25



References

Ahn, K., Truong, D., 2009. Online tuning fuzzy pid controller using robust extended kalman
filter. Journal of Process Control 19 (6), 1011-1023.

Antonov, S., Fehn, A., Kugi, A., 2011. Unscented kalman filter for vehicle state estimation.
Vehicle System Dynamics 49 (9), 1497-1520.

Aoki, S., Amaya, K., Sahashi, M., Nakamura, T., 1997. Identification of Gurson’s material
constants by using kalman filter. Computational Mechanics 19 (6), 501 506.

Bolzon, G., Fedele, R., Maier, G., 2002. Parameter identification of a cohesive crack model
by kalman filter. Computer Methods in Applied Mechanics and Engineering 191 (25),
2847-2871.

Brown, R. G., 1983. Introduction to random signal analysis and Kalman filtering. Vol. 8.
Wiley New York.

Corigliano, A., Mariani, S., Orsatti, B., 2000. Identification of Gurson —Tvergaard mate-
rial model parameters via kalman filtering technique. I. theory. International journal of
fracture 104 (4), 349 373.

Courant, R., Hilbert, D., 1953. Methods of Mathematical Physics (Interscience, New York,
1953). Vol. 63.

Kalman, R. E.; 1960. A new approach to linear filtering and prediction problems. Journal
of Fluids Engineering 82 (1), 35—45.

Lindberg, G., Shokry, A., Reheman, W., Svensson, 1., 2014. Determination of diffusion
coefficients in bovine bone by means of conductivity measurement. International Journal
of Experimental and Computational Biomechanics 2 (4), 324 342.

Mitchell, H. L., Houtekamer, P., 2009. Ensemble kalman filter configurations and their
performance with the logistic map. Monthly Weather Review 137 (12), 4325 4343.

Miyoshi, T., Kunii, M., 2012. The local ensemble transform kalman filter with the weather
research and forecasting model: Experiments with real observations. Pure and applied
geophysics 169 (3), 321-333.

Nakamura, T., Gu, Y., 2007. Identification of elastic —plastic anisotropic parameters using
instrumented indentation and inverse analysis. Mechanics of materials 39 (4), 340-356.

Nakamura, T., Liu, Y., 2007. Determination of nonlinear properties of thermal sprayed
ceramic coatings via inverse analysis. International journal of solids and structures 44 (6),
1990 2009.

Petersen, K. B., Pedersen, M. S.; 2008. The matrix cookbook. Technical University of
Denmark, 7-15.

26



Plackett, R. L., 1950. Some theorems in least squares. JSTOR.

Shi, Y., Fang, H., Yan, M., 2009. Kalman filter-based adaptive control for networked
systems with unknown parameters and randomly missing outputs. International Journal
of Robust and Nonlinear Control 19 (18), 1976 1992.

Siouris, G. M., Chen, G., Wang, J., 1997. Tracking an incoming ballistic missile using an
extended interval kalman filter. Aerospace and Electronic Systems, TEEE Transactions
on 33 (1), 232-240.

Vaddadi, P., Nakamura, T., Singh, R. P., 2003. Inverse analysis for transient moisture
diffusion through fiber-reinforced composites. Acta materialia 51 (1), 177-193.

Vaddadi, P., Nakamura, T., Singh, R. P., 2007. Inverse analysis to determine hygrothermal
properties in fiber reinforced composites. Journal of composite materials 41 (3), 309-334.

Weng, S.-K., Kuo, C.-M.; Tu, S.-K., 2006. Video object tracking using adaptive kalman
filter. Journal of Visual Communication and Image Representation 17 (6), 1190 1208.

Wu, C.-C., Lien, G.-Y., Chen, J.-H., Zhang, F., 2010. Assimilation of tropical cyclone track
and structure based on the ensemble kalman filter (EnKF). Journal of the Atmospheric
Sciences 67 (12), 3806 3822.

27






Paper C

A. Shokry, P. Stahle and I. Svensson (2015)

Determination of spatially dependent diffusion parameters in bovine bone

using Kalman filter

Submitted for international publication






Determination of spatially dependent diffusion
parameters in bovine bone
using Kalman filter

Abdallah Shokry® P, Per Stahle® and Ingrid Svensson®
 Division of Solid Mechanics, Lund University, 22100 Lund, Sweden
b]ndustm'al Engineering Department, Fayoum University, 63514 Fayoum, Eqypt
€ Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden

Abstract

Although many studies have been made for homogeneous constant diffusion, bone
is an in-homogeneous material. Tt has been suggested that bone porosity decreases
from the inner boundaries to the outer boundaries of the long bones. The diffusivity
of substances in the bone matrix is believed to increase as the bone porosity increases.
In this study, an experimental set up is used where bovine bone samples, saturated
with potassium chloride (KCl), were put into distilled water and the conductivity
of the water was followed. Chloride ions in the bone samples escaped out in the
water through diffusion and the increase of the conductivity was measured. A one-
dimensional, spatially dependent mathematical model describing the diffusion process
is used. The diffusion parameters in the model are determined using a Kalman
filter technique. The parameters for spatially dependent at endosteal and periosteal
surfaces are found to be (12.8 £4.7) x 10" and (54 3.5) x 10~'* m?/s respectively.
The mathematical model function using the obtained diffusion parameters fits very
well with the experimental data with mean square error varies from 0.06 x 1075 to
0.183 x 1075 (uS/m)?.




1 Introduction

Diffusion can be defined as the process by which matter is transported from one part of a
system to another as a result of random molecular motion (Crank, 1975). The commonly
used mathematical representation of the diffusion process that can be used to find the
diffusion parameter is the so-called Fick’s law. Based on this mathematical representation,
many researchers were able to derive and use models based on diffusion in many different
fields (Margetis, 2009; Yildirim et al., 2011; Cayan et al., 2009; Naceri, 2009).

One of the fields where Fick’s laws can be applied is for representing diffusion in blood
cell membranes. More specifically, such diffusion involves the diffusion of nutrients and
oxygen from high concentrations in the blood vessels to less concentrations in the blood
cells. For example, models including diffusion, have been presented in studies of bone
healing where bone is repaired after fracture (Chou and Miiftii, 2013; Gomez-Benito et al.,
2005; Ambard and Swider, 2006; Adam, 2002; Sapotnick and Nackenhorst, 2012). Other
models have been presented for bone remodeling, in which old bone tissue is replaced by
a new one (Fernandez et al., 2012; Stadelmann et al., 2009; Adachi et al., 2006). Stress or
strain driven diffusion have been suggested to play an important role in the transportation
of substances from the inner surface, endosteal, that covers medullar canal in the long bone
to the outer, periosteal, bone surface. A one-dimensional model for strain driven transport
of bone nutrients has been presented by Banks-Sills et al. (2011). This study was followed
up by another study (Lindberg et al., 2013) where a two-dimensional model describing the
stress driven diffusion was presented.

Several studies have investigated the bone structure and the apparent diffusion coeffi-
cient using magnetic resonance imaging (Balliu et al., 2009; Capuani, 2013; Ababneh et al.,
2009). The latter method is very suitable for obtaining information about the structural
properties of the bone. A less complex method for determining the diffusion coefficient has
been introduced by Lindberg et al. (2014). They used an experimental set up where the
increased conductivity in distilled water due to the diffusing chloride ions escaping from
saturated bone samples was measured over time. Further, the diffusion parameter was
determined from fitting the parameters in an analytical model according to the experimen-
tal data using a Kalman filtering technique. Kalman filters could be used as a recursive
method in order to extract unknown parameters from noisy experimental measurements.
In previous studies, despite the very complex structure of bone, the diffusion parameter
was assumed to be independent of the position in the bone wall. The diffusion of solutes
that promote bone growth are crucial for creating a good environment for bone remod-
eling and bone healing. Therefore, it is important to get a better understanding of the
diffusion process and determine the parameters involved. Bone has been found to have hi-
erarchically decreasing porosity from inner boundaries to outer boundaries of cortical bone
(Cowin, 1999; Cowin et al., 2009). Since it is believed that diffusivity increases as bone
porosity increases, the observed variation in bone porosity supports the hypothesis that
the diffusion parameter may decrease linearly from inner boundaries to outer boundaries
of bone.

In this study, a one-dimensional model for linear diffusion in the radial direction, as-



suming linear spatially dependent diffusivity will be presented. Dominantly, the diffusion
of nutrients and signal substances are transported in the radial direction from the mar-
row and blood vessels to the periosteal bone surface. Two diffusion parameters for the
bone sample based on the new model will be determined from experimental results using
a Kalman filter technique.

2 Materials and Methods

2.1 Experimental Setup

The diffusion of potassium chloride in the mid-shaft of a long bovine bone was studied. The
samples were taken from the central part between the ends of a femur bone of a Holstein-
cattle (marked with black rectangle in Fig. 1a) at scattered angular positions around the
bone cross-section, since previous research has found that the position (anterior, posterior,
medial, lateral) around the periphery of the bone has no significant effect on the diffusion
properties (Lindberg et al., 2014).

(b)

Fig. 1. Tmages of the the Holstein-cattle femur bone. (a) long bone with a black rectangle indicates
position of samples. (b) a midsection of the diaphysis cut along the long axis showing the endosteum and
periosteum . Note the incorporated coordinate system in the picture .

The femur bones were cut into pieces according to Fig. 1b, cut free from flesh and
quickly rinsed in running water. The bone pieces were then cut into smaller samples and
again quickly rinsed in water. The dimensions of the bone samples are given in Table 1.
Note that the size in the radial direction, L, corresponds to the wall thickness of the bone.

The samples were stored at around -4 °C in a freezer for a few days up to a couple
of weeks. Just before the measurements they were placed in room temperature for one



Table 1: Sample dimensions in mm. L, h and b correspond to the sizes in radial, tangential and axial
directions, in respectively.

Sample 1 2 3 4 5

L (mm) 7.0 9.05 7.9 6.6 7.0
h (mm) 19.7 21.2 20.5 22.5 20.1
b (mm) 13.6 16.1 16.5 14.3 15.3

hour. The samples were then submerged into polyester resin for a curing time of one hour.
The endosteal surface and the periosteal surface were covered by a layer of rubber, after
the curing the rubber was peeled off. Thus, the surfaces with axial and tangential normal
directions were sealed, leaving only the periosteal and endosteal surfaces open as shown in
Fig. 2.

Sealed

Open

Fig. 2. Bone sample 1 with polyester closing axial (z) and tangential (y) directions. The radial direction
(z) is kept open. The coordinate system is in accordance with the system shown in Fig. 1b.

The samples were then put in a saturated potassium chloride, KCI, solution for 24
hours, which is supposed to be sufficiently long for the KCI ions to diffuse into the samples
so that a fairly constant concentration is achieved (see Appendix A for details). After
flushing in distilled water for around 5 seconds, the samples were finally submerged in 100
ml of distilled water which allows the potassium and chloride ions to diffuse through the
bone to the surface where they escape into the surrounding water. The conductivity in
the surrounding water was measured once per second using a SevenEasy S30 conductivity
meter from Mettler Toledo. The instrument has an accuracy of +0.5% of the measured
value. The equipment was calibrated at 25 °C but during operation (presumably due to
stirring) the temperature rose a couple of centigrades but remained in the interval 28 +3 °C.

2.2 Analytical Model

Bousson et al. (2001) and Baron (2012) studied the porosity of human long bones from
females of different age. The measurements were taken at three different positions in the
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bone wall: at the periosteal surface, at the endosteal surface and in between the two
surfaces. They found that porosity decreases from the endosteal surface to the periosteal
surface with a linear regression, as shown in Fig. 3.
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endosteum ——— periosteum

Fig. 3. Porosity versus cortical bone thickness in females. Porosity is calculated as the mass of porous
filled with water over the mass of cortical bone (Baron, 2012)

The diffusivity also in bovine cortical bone is believed to be related to the porosity
in a similar way, i.e., that a small porosity gives a low diffusivity and a large porosity
gives a high diffusivity. This motivates the hypothesis of a linear position dependence
of the diffusivity in bovine cortical bone. With a linear dependence is introduced in the
analytical model, a better agreement between calculated values and experimental results
is expected.

For diffusion parameters depending linearly on x the following relation is used,

x

D(x) = D,(1 L)+D1%, (1)

with D, > 0 and D; > 0, where D, and D; are the diffusion parameters at the endosteal
and periosteal surfaces respectively.

The specimen is a rectangular prism placed in a Cartesian coordinate system. The
endosteal and periosteal surfaces are on opposite sides of the specimen with normals along
the z-axis (c.f. the coordinate system shown in Fig.2). The specimen occupies the region
0 < x < L, where x = 0 at the endosteal surface and x = L at the periosteal surface. The
size of the specimen in y- and z-directions, h and b, varies from around 2L to around 3L,
c.f. Table1.

The diffusivity is assumed to be a function of the z-coordinate and insignificantly de-
pending of the position in the y — z plane, i.e., the diffusivity parameters D = D(x). It is



assumed that the ions escape from the specimen through the endosteal and the periosteal
surfaces only. A consequence is that the diffusion becomes uniaxial. Therefore, the con-
centration is a function of x and the time, ¢, only. It is assumed that the change of the
concentration inside the bone follows Fick’s law in its one-dimensional form which states

aa@w_a<m@m276’ (2)

ot ox
where C'(z,t) represents the concentration in the specimen.

Initially, the concentration is supposed to be constant in the interior of the specimen,
ie.,

C(z,0) = Cy, for O<z<L at t=0. (3)
During the measurements, the specimen is placed in a beaker and the potassium chloride
accumulates in the water. Since the ions are diluted in the large volume of water, it is
believed that the concentration in the beaker is very little affected by potassium chloride

so that the concentration at the boundaries of the sample may be assumed to be constantly
zero. The boundary conditions at x = 0 and x = L, therefore, become

C(0,t) =C(L,t) =0, for t>0. (4)

A variable separation is employed to solve the second order linear partial differential
Eq. (2) by assuming that,

Clz,t) = X (2)T(t) . (5)

Inserted into Eq. (2), this gives

10 0X 10T

— (D)= ) === 6
X@:v( (‘T)ax> T ot (6)
Since the right side is a function only of ¢ and the left side is a function only of z, both

sides are represented by a constant, here for convenience, selected to be —\* Eq. (6) is
now split into two ordinary differential Eqgs.:

Lar -,
10 oxX\ .,
Tor (D@5 ) =2 0

where X is an arbitrary real constant. The solution of the first order Eq. (7) is readily
obtained as

T = ke, (9)



where k is an arbitrary constant.
Eq. (8) is of second order and with non-constant parameters. On expanded form it is
written,

d’X dXx

where D'(z) is the derivative of D(z) with respect to x. The coefficient of the leading term
is removed by substituting X (z) with U(&) using

2L
&(x) = =———=—+/D(z) for 0<z<L . (11)
D, — Dy
One obtains from Eqgs. (1) and (11) that, Eq. (10) now becomes

U | 14U(E)

2 —
& £ de +XU(E) =0, (12)
which is identified as Bessel’s differential Eq.. The solution is
U(&) = RiJo (A§) + RaYp (|AE]) - for £(0)<&(x)<€(L), (13)

where R; and R, are two arbitrary real constants, and Jy and Y, represent the zero:th
order Bessel functions of the first and the second kind (Arfken, 2001).
By using the boundary conditions Eq. (4), and the definition Eq. (11), the following

matrix is obtained:
0
_ 7 14
M (1)

Jo (A&(0)) Yo (|AE(0)])
Jo (AS(L)) Yo (A(L)))

with the root A = A\,. A non-trivial solution requires

Jo (A£(0)) Yo (INE(L)]) — Jo (AS(L)) Yo (IA&(0)]) = 0. (15)
The roots A = A, of Eq. (15) are used to generate a complete system of orthogonal

functions in the region 0 < z < L. The solution ¢, for A = \,, using Eqs. (5, 9, 13)
becomes

ca(, 1) = [Jo (M€(0)) Yo (INa&(2)]) = Jo (M) Yo (|Aa(0)])] e (16)

that fulfills the boundary conditions. Without loss of generality, & in Eq. (9) has been put
to unity. Adopting the assumed linearity in Eq. (2), a general solution is obtained as

Ry
Ry

C(z,t) = Z Qnen(z,t), (17)

where (), are arbitrary constants. The initial conditions Eq. (3) require that the Q,
coefficients fulfill the condition



CO = ZQnCn(xa 0) - (18)

An implication of the orthogonality of the functions ¢, (z,¢) is that the integral
L
/ cn(x,t)es(x, t)da vanishes if n # s. Thus, both sides of Eq. (18) are multiplied by
0

¢n(z,0) and integrated over the specimen length, L, which gives
L
ca(n, 0)dn
G = Gyl a0y (19)
f() Cn(n’o)dn
With the complete solution of Eqs. (16, 17, 19) that now is established, the amount,
M, of ions that escape from the specimen may be calculated as follows,

M = bh/0 (Co — C(z,t))dx = thQn/o {cn(x,0) — cp(z, )} da. (20)

Inserting (19) and using that ¢, (z,t) = ¢, (z,0)e " gives

I 2
ooty Betnon)
Mbhnz;@n/o nl@,0)dz (1= e™) =bhCo ) S e (@, 0)de

n=1
where b is the width and A is the height of the specimen cross section. The conductivity of
the liquid in the beaker is assumed to be proportional to the density of dissolved potassium
and chloride ion pairs that has escaped from the sample. Initially, at t=0, there is a small
but measurable conductivity (y present and this is also accounted for. The conductivity,
(, is described as

<:<0+B/M, (22)

where B’ is the conversion factor of the unit of conductivity per mole of ions in the beaker.
The result is evaluated through the Eqs. (16, 21, 22), and the integrals of Eq. (21) are
given in Appendix B.
For convenience, non-dimensional variables are introduced as follows:

2\, L Ds
n = and m=1-— —. 23
P =D, Do (23)
The calculation of eigenvalues fails for small values of m, whereas the argument, \,&(z)
of the Bessel functions become unlimited (see Appendix C for a more detailed description).

The Eq. to be solved is

B & F, p2 D,
Gt T ErR TR P (24)

where (; is the conductivity and ¢; is the time of the i:th measurement, (, is taken as the
initial conductivity at ¢; = 0, B = B'Cybh, p, is given in Appendix C, and the integrals
Fy to Fs are given in Appendix B.

(L—et), (21)




2.3 Kalman Filter Technique

During the experiment, measurements are obtained in a time sequence. The result is
collected in a vector, z = {z1, ...ZN}T, with N measurements of the conductivity.

These measurements may be predicted using Eq. (24), now written in the form of a
vector with a number of N predictions ¢ = {¢1,...Cx}T. The prediction vector is a function
of B, i.e., ¢ = ((B), where 8 = {Dgy, B,m}" are the unknown model parameters, being the
diffusivity constant D, at the endosteal surface, the conductivity parameter B, and the
non-dimensional gradient parameter m, cf. Egs. (1), (23) and (24).

Measurements always include systematic and non-systematic errors due to instrumen-
tation, the indirect observations, probe sensitivity, temperature fluctuations, etc. Also,
inevitably, there is more or less differences between the model and the physical processes.
Under ideal conditions the model would be perfect in the sense that z = (), according to
Eq. (24). However, apart from systematic insufficiency of the model also non-systematic
noise, is expected.

Here an inverse analysis is performed to obtain the material parameters 5. The Eq.
(24) is linear in B but non-linear in Dy and m which complicates the inverse analysis.
Here a Kalman filter is used iteratively to obtain sufficiently accurate estimates of 5. The
method is derived from the method of least-squares with the improved convergence rate
while it takes advantage of an apriori information regarding the non-systematic noise.
Both noise that arise during the measurements and a random variation of the material
parameters are considered by the Kalman filter.

The estimated material parameter vector 3 is updated using the following algorithm:

Brs1 = B + Kip{z — C(Br)}, (25)

where K, is a 3 x N matrix denoted the Kalman gain. The K} is updated at every iteration
cycle as follows,

K, = P.H!(H,P.H; + R)', (26)

where P, is a 3 X 3 matrix that contains the covariance errors for the parameters, which is
updated according to

Pk+1 = (I — Kka)Pk + Q (27)

The parameters ) and R are used to counteract the uncertainty that is introduced by
the noises (Brown, 1983). The general form of the Kalman filter uses a priori available
information regarding the noise to determine () and R. However, in the present analysis
@ and R are used as tuning parameters to streamline the iterations. The matrix H is an
N x 3 Jacobian matrix defined as follows,

0Dy, 0B 0Om
H-| : : : (28)



To simplify calculation of ((f) based on 27 combinations for the initial guess f, =
[Doo By mO]T of 3, a Lagrangian interpolation with equal distances between three dif-
ferent initial values of each of Dy, By and my is used. The following interpolation function
is used to approximate (:

Sh : DO — Dio S B-Bj Som—my par
=22 Z H — Du Bl B I1 | CB)PT
p=1 g=1 r=1 u= 1;ép 00 v=1#q w=1#r 0 0

(29)

where ((50)P"" = ((Dy, B,m) in Eq. (24), and the parameters Dy, B, and m assume the

min min max max mm 1 min max max
values Dy = {Dgg v§(D00 + D), Do}, By = {Bg (Bo + By'**), By}, and

1
mpy = {m5"", = (m"" 4+ my®), mi**} respectively for each of p,q,7 = {1,2,3}.
In the present study non-standard choices @ and R are used for best performance by

choosing

(D&L)aw _ Dg(t)zn)2 0 ‘ 0
Q — 0 (B('Snaw _ B(?)’nm)Z 0 , (30)
0 0 (momaa: _ mgzm)Z

R = max(60")] (31)

c.f. Shokry (2015), where max and min denoted to the maximum and minimum values for
the initial suggested parameters, i.e. D" is the maximum initial suggested value for the
parameter Dy, and #’ is a vector that contains the maximum square differences between
measurements, z, and predictions for the 27 combinations, ((5,), i.e 0" = (z — C(}))*.

The P, is related to the error between the seeking and suggested parameters. Since P
describes the uncertainty of parameters, the initial value of P is selected to be large, equal
to @ in Eq. (30).

3 Results and Discussions

The model is checked by applying initial and boundary conditions as given in Eqs. (3)
and (4). Dy is assumed to a value that agrees with the findings of Lindberg et al. (2014),
while m is tested for three values, close to 0, 0.5 and 0.9. The m ~ 0 means that a
diffusion parameter independent of the position in the bone wall is expected. Fig.4 shows
the concentration inside the specimen as given in Eq. (17) over a unit length for number
of terms n = 1. It can be seen that the model fulfills the initial and boundary conditions
for different m values. Also, it can be noticed that the model with m = 0.5 and 0.9 is not
symmetric as in the independent position model with m = 0.

The initial state values Sy = [Doy By mO]T were selected to be 27 cubic Lagrange
sets that used to obtain the non-linear predicted conductivity, ¢(3), as in Eq. (29).
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Fig. 4. Concentration versus unit length for n—1. (D = 2 x 10~""'m?/s, unit length, ¢ = 0 and
m =107%,0.5, and 0.9). See Appendix C for more information about 7.

Lindberg et al. (2014) found that the average constant diffusion of bovine bone is 0.011 +
0.0069 mm?/min with a good consistency of n equal to 10000 terms. Since the samples in
this study also come from bovine bone, the initial state range of the state values was firstly
suggested to be from 0.001 to 0.101 with mid point 0.051 mm?/min for Dgy and from 80
to 180 with mid point 130 uS/mm for By and from 0.05 to 0.45 with mid point 0.25 for
mg. The mean square error (MSE) between the experimental and the analytical that were
obtained by Kalman filter was computed according to:

N
MSE = 37— C(50),)* (32)
j=1

The 27 combinations between the suggested initial parameters for sample 4 converged
to one place after 60 iterations with MSE of 418.2 (xS/mm)?. A new and smaller initial
state range was suggested according to the converged point, by decreasing the initial state
values of Dy, a better MSE was obtained. Since Kalman filter works well with small ranges
(especially when interpolation is used), a repeated processes of decreasing the initial state
ranges were applied until a good fitting was obtained between the analytical model and
experimental data. Table2 contains all the suggested initial state ranges for sample 4, the
obtained parameters using Kalman filter, the MSE, and the convergence points (CP) for
each initial state range.

Fig.5 shows the derived values from the analytical model using the extracted parameters
that were obtained by using the Kalman filter for the five suggester initial state ranges.
The parameter fitting is done using the experimental data from sample 4 which also is
presented in Fig. 5.

As shown in Table 2 and Fig. 5, the combinations of Dy, B and m were converged
to five different points for the five different ranges. The MSE was found to be large
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Table 2: The suggested initial state ranges for sample 4, obtained Dy, B, m, MSE and CP for each
range using Kalman filter .

Initial ranges Dolmm?/min] B [pS/mm| m MSE [(uS/mm)?| cp
0.001< Dy <0.101
80< By <180 0.00277 197.530 0.762 418.20 1

0.05< mg <0.45

0.001< Doy <0.041
80< B, <180 0.00187 167.110 0.585 67.04 1

0.05< mgo <0.45

0.001< Dy <0.021
80< B, <180 0.00213 138.797 0.501 28.98 1
0.05< mg <0.45

0.001< Dy <0.011
80< By <180 0.00625 80.058 0.682 0.386 1
0.05< mg <0.45

0.004< Dyy <0.008

76< By <86 0.00568 82.377 0.641 0.067 1
0.6< mo <0.7
100
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Fig. 5. Analytical results using the parameters obtained from the Kalman filtering using the five initial
state ranges. Experimental results for sample 4 is also presented in the figure.
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(418.20 (uS/mm)?) for the largest range and to be small (0.067 (uS/mm)?) for the smallest
range. This is expected since interpolation function was used. Fig.6 shows the convergence
of combinations for the fifth initial state range for sample 4 for four different iterations,
which converged to one place after 50 iterations.

Fig. 6. Convergence between Dy [mm?/min|, B [xS/mm]|, and m for the fifth initial state range for
sample 4 after (a) 1 iteration, (b) 3 iterations, (c) 10 iterations, and (d) 50 iterations.

The figure shows that the 27 initial combinations started to converge after the first
iteration as shown in Fig. 6a. The convergence started to be around specific area after a
little iterations as shown in Fig. 6b, and around specific line after more iterations as shown
in Fig. 6¢. Finally, they converged around only one point after 50 iterations as shown in
Fig.6d. A possible reason, is that the Kalman filter minimizes the MSE between the states,
and the value of the MSE started to decrease from the converged area to the converged
point passed with the converged line.

The best fitting between analytical results obtained by Kalman filter and experimental
data accompanied with the least MSE is found to be the point where the 27 sets were
converged in the fifth initial state range, as shown in Fig. 5.

The same processes are repeated for bone samples 1, 2, 3, and 5. Knowing that bone
is an inhomogeneous material, the results obtained for sample 4 suggests that the initial
state ranges start from the fourth range. The combinations of the 27 sets converged to two
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different points for the fourth initial state range for some samples, few numbers of the 27
sets (from 3 to 5 sets) are converged to the wrong place while the rest converged to the
right place. A possible reason for that is some of the sets might converge to a wrong place
due to the interpolation. Fig.7 shows analytical results using the obtained parameters by
Kalman filter and experimental data for samples 1 and 2.
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Fig. 7. Experimental data and results from analytical model and experimental data for spatially
dependent diffusion parameters for samples 1 and 2.

The values of the parameters obtained by Kalman filtering of the experimental data
for the five bovine bone samples are summarized in Table 3. The values of the parameter
D, for the samples are derived using Eq. (23) and they are also presented in the table
together with the MSE of the calculations, cf. Eq. (32).

Table 3: Values of Dy, B, m, D; and MSE that obtained by Kalman filtering

Sample Dy [mm?/min] B [pS/mm| m Dy [mm?/min]  MSE [(4S/mm)?|
1 0.00485 75.329 0.814 0.0009 0.183
2 0.01051 83.372 0.512 0.0051 0.127
3 0.00807 71.073 0.529 0.0038 0.094
4 0.00568 82.377 0.641 0.0020 0.067
b) 0.00949 47.523 0.599 0.0038 0.055

The values of the diffusion parameters Dy and D; vary between the samples and this
can be explained by the inhomogeneity of the bone material. Dy ranges from 0.00485 to
0.01051 mm?®/min while D; ranges from 0.0009 to 0.0051 mm?/min, however, the value of
the diffusion parameter D in the middle of the bone wall, D = (Dy+D;)/2, is in good agree-
ment with the previous work for constant diffusion. In previous work, it has been shown
that the diffusion constant for bone is varying between 2.78 x10™'! and 42.9x 107" m?/s
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based on different studies (Li et al., 2009; Wang et al., 2006; Lindberg et al., 2014). Table 4
contains the range of the values of the diffusion parameter that were obtained in these stud-
ies. However, the values could not be directly compared since different bones and solutes
were used in the studies. Li et al. (2009) measured diffusion coefficients of five exogenous
fluorescent tracers (sodium fluorescein, dextran-3k, dextran-10k, parvalbumin, and oval-
bumin) in murine tibiae in situ. Wang et al. (2006) studied the diffusion coefficients of
fluorescent dye (sodium fluorescein) in mice in situ. Lindberg et al. (2014) calculated the
diffusion coefficient of KCI ions escaped from bovine cortical bone samples into distilled
water.

Table 4: Values of the diffusion parameters from different studies

D [m?/s] (Lietal, 2009) (Wang et al., 2006)  (Lindberg et al., 2014)  Average diffusion for
suggested model

from 4.4%x1071! 27x107 1 2.78x1071! 4.79x10~1

to 34.1x107 1 39x1071! 42.9x107 11 13.01x107%

The distribution of the spatially dependent diffusion parameters for the five samples as
functions of a normalized coordinate in the bone wall could bee seen in Fig.8. The figure
shows that D decreases when the coordinate increase, which may indicate that the bone
becomes more dense and less porous with coming closer to the periosteal surface.

0.012 T
—+Sample 1
-©-Sample 2
& Sample 3
0.01F A Sample 4
--Sample 5
£ 0,008/
£
o~
:
= 0.006-
c
o
)
£
£ 0.004
0.002F

x/IL
endosteal — >  periosteal

Fig. 8. Spatially dependent diffusion parameters versus positions of the bone wall for the five samples.
The markers are merely identifying the specified samples.

The results obtained for spatially dependent diffusion through the bone wall (see Fig.8)
agree well with the findings obtained by Baron (2012) regarding porosity in the bone wall
(see Fig.3), with a strong believe that diffusivity decreases as bone porosity decreases.
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4 Conclusions

A hypothesis based on previous research (Baron, 2012) is suggested as a method for consid-
ering diffusion as spatially dependent parameters in bovine bone. Here, a one-dimensional
model for spatially dependent diffusion parameters is introduced. Diffusion parameters
are introduced using the analytical model Eq. (24), where the material parameters are
determined by Kalman filtering of experimental data. The diffusion parameters are found
to be (12.8 £ 4.7) x 107" and (5 & 3.5) x 107" m?/s at the endosteal and periosteal
surfaces respectively. The average diffusion value in the middle of the bone wall are in
well agreement with previous work (Li et al., 2009; Wang et al., 2006; Lindberg et al.,
2014), taking different bone and solutes into considerations. The mean square error varies
from 0.06 x 107° to 0.183 x 107° (4S/m)?. The suggested one-dimensional model for spa-
tially dependent diffusion parameters succeeded to introduce a complete behavior for the
concentration inside the bovine bone samples with very good accuracy. Also, the results
show that the behavior of concentration inside the bone wall can be considered as linear
dependent position.
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Appendix A Diffusivity of KCI ions

Diffusion parameters were chosen to be in consistent with the values given in Table 4 to
check the concentration content inside the bone samples for different times. Since high
diffusivity takes a smaller time than low diffusivity, the diffusion parameters were selected
to be lower than the lowest value in Table 4, which enhances the required enough time for
ions to diffuse from bone sample. Fig. A-1 shows the concentration inside bone sample for
five different times for only one term (the first term in the series of Eq. (17)) for m ~ 0
and m = 0.9.

The results indicate that 24 hours might be enough time for ions to diffuse from the
bone samples, knowing that a higher value of D will give a faster diffusion and a shorter
time for ions to leave the bone samples.

Appendix B Coefficients Fj, I}, Fy, and Fj

The following assumption is made in order to use the recursive Bessel function properties
that required to solve the integrated parts in the mathematical model:
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Fig. A-1. Concentration content inside bone sample after five different times for unity length,

D =2x10""m?/s, and t = 0, 15, 60, 300 and 720 minutes. (a) m = 107°. (b) m = 0.9. See Appendix
C for more information about 7. Note that the concentration is derived using only one term in the series
expansion.

P, mx
= — 1 — —. B-1
= T (B-1)

Then the final form of the integrated parts can be written as:

( /OLC,L@W):FO (B-2)

where Fj is given by:

P, m m m m P2
(B-3)
and
L
/ A(z,0)dr = F1+ F2+ F3 (B-4)
0
where Fy, F,, and Fj are given by:
2
Fy=- Lm Yy L &\/l—m J3 &\/l—m
P2 m m m (B-5)

()]
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17

b



Y, (B-6)

(575 ()
) (o(2) o (2)

Appendix C Roots of A

r=- () ()

(i)

+

b

The condition of non-trivial solution to find the roots of A can be rewritten in the next
form:

P P P P

() 5 (il v=m) = (=) ([ - ©
m m m m

The roots for A of Eq. (C-1) are obtained numerically. Tt is, however, known that the roots

are 2n7 for a constant D, i.e. for m = 0, cf. (Crank, 1975). With the attempt to find a

first order perturbation of P, for small m the result is written on the form

P, =2nm(1 — %n) (C-2)

where n is the number of the root and 7 is a factor that corrects the result for a constant
diffusion coefficient. The results for n = 1 and 10 and for different degrees of variation of
D(x) with m = 0.9,0.7,0.5,0.1,0.01 are given in Table C-1.

Table C-1: 7 values for different m

m 0.9 0.7 0.5 0.1 0.01
n(n=1) 1.5649 1.3121 1.1819 1.0277 1.0027
n(n = 10) 1.5200 1.2924 1.1717 1.0264 1.0022

The result reveals that the error using a perturbed value according to Eq. (C-2) with
1 =1 leads to an error of less than 18.2% for m < 0.5.
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Abstract

Effective material parameters are calculated using a derived continuum mechanic-
ally based superposition principle. Exact expressions are obtained for materials with
sufficiently low pore densities, ensuring that pore to pore interaction is insignificant.
The superposition method that is obtained, simplifies the calculations which may
be performed manually for a moderate number of pores and are suitable to use in
connection stochastic methods for cases with very many pores.

To establish the method, shape factors that are two for the diffusion coefficient
and one for the elastic modulus, have to be found numerically. The shape factors, that
depend on the individual pore shapes are calculated for a few characteristic pores.

A cross section of bovine bone is taken as an example. In the evaluation the
superposition principle is compared with full scale finite element calculations. The
evaluation shows that pores are sufficiently sparse if the ratio of pore volume to total
volume is less than around 20%. The changes of the material parameters because of
the present pores are compared. The study shows that the superposition methods
predicts the change of the diffusion coefficient with a result differs from that of full
scale numerical calculations with only around 10%. A similar accuracy is obtained
for the elastic modulus.




1 Introduction

Bone is a complex material, with a multiphasic, heterogeneous and anisotropic microstruc-
ture. One of the main goals of this work is to define the relationship between bone porosity
and both diffusion coefficient and elastic modulus. The idea of making computational sim-
ulations is to define the different biomechanical relationships, that are difficult to obtain
experimentally or clinically. The porosity in bone can vary continuously from 5 to 95%,
most, bone tissues have either very low or very high porosity. Accordingly, it is usually dis-
tinguished between two types of bone tissue. The first type is the trabecular or cancellous
bone with 40-95% porosity, usually found in cuboidal bones, flat bones and at the ends of
long bones. The pores are interconnected and filled with marrow, while the bone matrix
has the form of plates and struts called trabeculae. The second type is the cortical or
compact bone with 5-20% porosity and different types of pores (Winkelstein, 2012; Marcus
et al., 2013).

The porosity is related to the diffusivity and the elastic modulus. The diffusivity is
important for maintaining a proper supply of nutrients and for removing waste products,
while the elastic modulus determines the quality and the reliability of bone strength. Some
useful models were presented to study the properties of bone tissues in the presence of
pores based on the poroelasticity theory, in which the mechanical properties of a material
is affected by the movement of the fluid in the pores (Biot, 1941; Rice and Cleary, 1976;
Showalter, 2000; Cowin, 2003). In bone tissue, the transport of fluids and solutes is a
concern for the bone formation and remodelling. The diffusion coefficients of different
solutes in cortical bone of mammals were investigated using different techniques (Patel
et al., 2004; Wang et al., 2005; Li et al., 2009; Lindberg et al., 2014). Further, the diffusion
coefficients of water in tubercular bone tissue for human are studied by Marinozzi et al.
(2014a) and Marinozzi et al. (2014b). Knowing diffusion coefficients in bone is important to
understand the transportation process of substances in the cell level, and to make realistic
models for bone remodelling and bone healing.

The mechanical properties such as elastic modulus of bone are affected by the pore
sizes and densities. To investigate the interrelationships between the pore size and the
bone strength, several experiments are required. The relationship between the pore size
and the elastic modulus may be established analytically or experimentally. The elastic
modulus decreases as the pore size increases (Schaffler and Burr, 1988; Baron et al., 2007;
Grimal et al., 2011). Tt is believed that the different properties of bone, strength and
damage resistance, can be predicted with good accuracies using knowledge of the effect of
both pore size and shape on the bone strength.

In this work, the diffusion coeflicients and the elastic modulus of a mammal bone
sample with irregular pores are analysed by carrying out a superposition principle and
finite element calculations using ABAQUS software (ABAQUS, 2014). A mathematical
formulations relating between the porosity and both of the diffusivity and the elastic mod-
ulus in cortical bone are presented. A correction factor is obtained for a few number of
pores for different pore sizes based on the finite element calculations. Next, a generalisa-
tion of the irregularly distributed pores in a region of the bone sample is carried out to



define the diffusion coefficient and the elastic modulus, based on the correction factor of
the selected pores.

2 Diffusion theory

Bone is a heterogeneous material, and the diffusion coefficient D becomes a function of
the spatial coordinates. In the present study, described in this paper, an effective diffusion
coefficient is determined for a large area of bone containing small pores, which makes it
possible to use the easy accessible Fick’s law with good precision for describing the flow
through the heterogeneous bone structure.

Inside the pores, the diffusion coefficient is set to D,,, where w stands for water, and far
away from the pores, the diffusion coefficient is set to D,, where b is for bone. The flow J
is driven by the concentration gradient. This analytical model describes a one-dimensional
flow, although locally close to the pores the flow will be highly affected in several directions.
This is handled by introducing two parameters, # and s that are determined by finite
element calculations, and with this, the effective flow over the region can be determined.

A Cartesian coordinate system x; = x1,x9,23 is introduced. Tensor notation including
the summation rule is applied. Undefined indicies i, j, etc. = 1,2,3. The flux vector J; of
a selected substance in the bone environment becomes, due to differences in concentration
of matter,

Jl‘ = —DCJ' s (1)
where c; is the gradient vector of the concentration. Indices , ¢ denote partial differentiation

with respect to z;, i.e. ¢; = dc/dz;. The material parameter D is the diffusion coefficient
of the substance-bone system. Also matter is conserved giving that

dc

9 _ g5 2
or — (2)

It is believed that the concentration of matter at the boundaries does not change over
time, and so a steady-state, dc/0t = 0, is assumed. The consequence is that the flux
through the structure will be divergence free, i.e.

(De;);=0. (3)
The governing Eq. (3) are solved for the boundary conditions

co=0 (4)

at 0 < xy < h and 25 = 0 and x5 = w. Further,

c=0 (5)

at z; =0and 0 <z, <w , and



€= (1,C2,Cq,C5 OF Ac (6)

atxy =hand 0 <2y <w .

At first, a thin slice of bone structure is studied, see Fig. 1. The slice contains a
small section (with the height hgy) where a pore, or something else that affects the effective
diffusion coefficient, is located. In this small section, the effective diffusion coefficient is set
to Dy, and becomes a function, e.g., of the relation between the size of the pore and the
section, and of the shape of the pore and the diffusion coefficient D,, inside of it. With D
an effective diffusion coefficient D; for the entire slice can be calculated.

c=cC
F—t111
Dy
hg
Wo c=cp
h .
a i &\Dw
| | D o
T ha ~ Db ....... -
o c=0

Fig. 1. A thin section containing an area hy X wgy with a pore.

The flux through the strip remains constant and according to the conventions used in
Fig. 1, the relations

C
Ji=-Diy (7)
and
A
Jy = —Dy=5 (8)
ho

apply. By combining Eqgs. (7) and (8) D is described as

D, = D, 9)

}L()Cl )

The unknown concentration difference Ac covers the arbitrary located small section con-
taining the pore and is described by

Ac=cg—c, (10)



and it is also seen in Fig. 1 that
h=ho+hy+hs. (11)

The flux over the part of the slice with height hg is described by

C1 —Cp

J=-D 12
=D (12
In the same way the concentration ¢, can be written as
J1he
= — . 13
o= =221 (13)
By using Eqs. (10) and (11), Eq. (12) now looks like
¢ — Ac—c,
J=—-Dy———— 14
' "l —ho — ha (14)
and by replacing ¢, according to Eq. (13), the flux reads
c; — Ac
Ji=-D . 15
= (13

The unknown distances h, and hg together with ¢, and cg are now eliminated. Eq. (15)
can be re-arranged into

If this is inserted into Eq. (9), D; can be written as

h(i]fb(h — ho) + c1>

Dy =Dy hoc
0C1

If Jyh is replaced by —D;¢; according to Eq. (7), then ¢; can be eliminated from Eq. (17)
which then take the appearance of

_Do (—D1
"~ ho \ Dy

D (h — ho) + h) . (18)

After some re-arranging, the final expression for the effective diffusion coefficient for the
thin slice of bone structure is given as

b1 (1-2)%) m

Now a wider part of bone structure is considered, see Fig. 2.
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Fig. 2. Same as Fig. 1 embedded in a larger bone section.

By introducing an effective diffusion coefficient D, for the entire structure, the averaged
flow J, through the structure is described as
Co
JQ = _Deﬁ .
By looking at Fig. 2 it is also obvious that the total amount of matter that passes the
cross-section of the structure is

(20)

sz = —Db%(w — wo) — Dl%wo . (21)

If Egs. (20) and (19) are used to eliminate and Dj, then Eq. (21) reads

1—Db/D0 :|h0’LUO)
1= (1—Dy/Do)ie | hw /)

D, = Db(l + { (22)

The derived scaling hgwg/hw relates the rectangular area, howy, to the area of the full
body, hw. The only relevant quantities defining D, are the height ratio, ho/h, the area
ratio, howg/hw and the ratio of the diffusivity constants, D;/Dy.

A similar relation for non-rectangular shapes as Eq. (22) is assumed as well. By
introducing the area of the pore, A, the howy in Eq. (22) can be replaced with §A,, where
0 is a correction factor. The correction 6 is supposed to cover all remaining interactions
between the bone and the pore, such as shape, orientation of the pore with respect to the
flux etc. Further, the dependence of the height ratio ho/h (cf. Eq. (22)) can be replaced
with a/h using a correction factor k. The pores are assumed to contain a fluid with the
diffusion coefficient, D,,. With the diffusion coefficient Dy replaced with D,,, the following
approximation of the effective diffusion coefficient is obtained as



0s A
D.=Dy(14+ ——-—-F 23
b( +(1—ﬁ5%)hw> (23)
where
s=1—Dy/D,. (24)

The expression in Eq. (23) is expected to be asymptotically exact for infinitesimal values
of A,/hw. The numerical values # and x are established for different pore shapes using
finite element calculations. The obtained result D./Djy is expanded as a power series in

\/ A,/ hw as follows

D, hw AN A A\ A0\

De _pw _ ) ) DY Lo (2 25
(Db )sAp s (hw) g, o (hw) N ((hw) ) ’ (25)

where a; to ay are constants that are fitted to the numerical finite element result for 10
to 11 different pore sizes A,. The last term is big O which gives the limiting behaviour
of remaining terms. Different pore shapes and orientations with respect to the remote
fluxes are computed and the results are, for each shape and orientation, fitted to the series
expansion Eq. (25) to obtain numerical values for the coefficients, «; to ay. By rewriting
Eq. (23) as a power series in xsa/h the expression becomes

D, h
(Fb - 1)% =0(1-— /ﬁs%)*l =0 (1 + ms% + (/-;5%)2 + (ns%)?’ + O((ms%)ﬂ) (26)
and one can now identify 6 and x by comparing Eqgs. (25) and (26) and using the coefficients
ap and as.
The effective diffusion coefficient is defined as
Juh
D, = — 2 27
Ac (27)

where Ac is the prescribed concentration at 27 = h and J, is the average total flux through
the body calculated as

1 w
Ja = */ Jgdl‘g at T = h. (28)
w Jo
The effective diffusivity coefficient D, can be calculated for bodies with large geometries

and multiple pores. It is obvious from the analysis above that as long as the individual
pores do not interact, the result is found using a superposition giving

N NG

s 00 Ay
De=Dy(1+— > ——J;J, 29
b( hw = 1*3’{@%) )

where summation is performed for N pores. The hypothesis here is that 6% and £ can
be taken as the result for a similar shape.



3 Elastic theory

In this section, a method to compute how present pores influence the elastic modulus
of the bone is presented. The same geometries and pores as above, are assumed. To
follow the conventional tensor notation, the stresses are written o;;, the strains €;; and the
displacements wu;. The stresses are given by Hooke’s law as

7E(+1/
Tl T 2w

Uij

)5ij6kk) (30)
and the strains ¢;;, that are assumed to be small, are defined by

1
€j = 5 Uiy + uji) - (31)
The equations of equilibrium, ;;; = 0, after insertion of Eqgs. (30) and (31) give the

equation

1

Uijj +

Eq. (32) governs the linear elastic behaviour of the body. For nominal stress in the x;
direction the boundary conditions are

=0 at 0<ay<w and z1=0 (33)
and
u=Au at 0<azy<w and xz; =h. (34)

Normal tractions on remaining edges o = 0, 0 < 1 < hand o = w, 0 < 1 < h
vanish. Finally, shear tractions on all edges vanish.
The average tractions at x; = h are calculated as

1 w
Oq = */ O'dil"l. (35)
w Jo
The effective modulus of elasticity is defined as
h
E.=0,—. 36
%ang (36)

The presence of pores will weaken the structure, whereas the stiffness of the pore material,
being a fluid, is assumed to be insignificant. Here compressive stresses are assumed to
be insignificant. It seems reasonable that the weakening may be ignored outside a region
surrounding the pore, provided that this region can be selected large enough. It is also
assumed that the linear extent of this region scale with the width of the pore b perpendicular
to the loading direction. The scaling is proposed to be quadratic with the linear extent b
of the pore (cf. Eq. (23)). To include the ability to deal with pure crack the square of the
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linear extent in the direction perpendicular to the remote loading direction is selected as
the scaling parameter. This leads to the hypothetical approximation

2
B, = Eb<1 - eEl%) (37)
for loading in the x; direction. The constant 0g is a shape dependent coefficient that
includes other details apart from the width b into the equation. The expression in Eq. (37)
is supposed to be asymptotically exact for infinitesimal values of b/ Vhw. To obtain the
constant 0, numerical values of E, for single pore geometries for different pore sizes are
calculated using the finite element method. A power expansion for small pores gives the
expression,

E hw b b b\? b\
= -1 =a1+a—— t+az— + —— | +O0||(—= , 38
(B0 =t oo+ (=) (( ﬁhw)) (39)

The values oy to ay are fitted to the numerical values F, for different pore shapes and
orientations in the remote stress. The numerical value 0y is identified as the coefficient «;.

For a large body with multiple pores, the effective modulus of elasticity, E., may be
calculated using the same superposition principle as for the diffusion case. The calculation
is performed as

RN (@) (1,(1))2
Ee—Eb<1—hw;0E (b®) ) (39)

where summation is performed for N pores. Also here the hypothesis is that the Q(é) can
be taken from pores with similar shape.

4 Numerical Analysis

The finite element computations have been performed using the ABAQUS computer pro-
gram (ABAQUS, 2014). The program offers the possibility to compute elastic deformation
and steady-state diffusion. Eq. (3) is the governing equation for diffusion and Eq. (32)
is the governing equation for deformation. The boundary value problem is solved for the
region 0 < z; < h and 0 < 29 < w using a free mesh composed of trilateral 6-node and
quadrilateral 8-node isoparametric elements. Full integration is used. Same element mesh
is used for both the diffusion and the deformation problems. A representative case is shown
in Fig. 3.

The ratio of the linear extent of adjacent elements are never more than 2 and normally
around 1.2. A typical mesh is built up of eight to ten thousand nodes and two to three
thousand six-node and eight-node isoparametric plane elements.



Fig. 3. A typical mesh. Here for pore C’ and with h/a = w/b = 2. The pore is the central grey area.

5 Results and discussions

A single CT scan image of a bone sample is used, see Fig. 4a. The image is produced
by Persson et al. (2013). The image shows a region from an around 1 x 1 x 3 cm® hone
specimen from a bovine ulna. The xj-axis is in the radial direction of an cross section
shaped as an annular ring and the z,-axis is along the tangential direction of the bone
cross section. The longitudinal direction along the ulna is perpendicular to the plane of
the image in Fig. 4a. The x;-axis goes from the endosteum edge towards the periosteum
edge.

The four pores marked A to D are assumed to represent the variety of shapes that are
present in a general segment of the bone cross section. Images showing the geometrical
details of the selected pores are shown in Fig 4b. It may be noted that only the shapes are
considered.

For each shape a series of results for different but small pore sizes are needed. The sizes
are assigned for the different calculations by scaling the available shapes. Around eight to
eleven different sizes are used. Further, each shape is used for two different, perpendicular
orientations of the pore with respect to the remote diffusion and loading. All together
around 80 diffusion cases and equally many elastic cases are calculated.

The linear extent of the pores is b perpendicular to the direction of the nominal that is
in the vertical direction in Fig 4a, and a in the vertical direction and obviously along the
nominal flux. The ratio a/b are from 0.38 for pore A to 0.85 for pore D, see Table 1. The
unit of length is in pixels, where the pixel size is close to 4 um. Table 1 also includes a set
of pores A’ to D’ that are identical to the pores A to D but they are rotated 90° clockwise
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with respect to the direction of the nominal flux with a/b are from 2.67 for pore A’ to 1.17
for pore D’.
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Fig. 4. a) Image of the studied bone sample (Persson et al., 2013). The pores A, B, C, and D are used
as reference cases. Evaluation is then performed on the region with numbered pores in the lower right
corner of the image (marked with a rectangle). b) details of pores A, B, C, and D.

Table 1: Data for the pores A to D and their counterparts A’ to D’ that are rotated 90°. Length scale is
in units of pixel size.

Case a b a/b A,
A 3 8 0.38 12
B 3 6 0.50 15
C 6 9 0.67 21
D 6 7 0.85 24
D’ 7 6 1.17 24
C 9 6 1.50 21
B’ 6 3 2.00 15
A’ 8 3 2.67 12

5.1 Diffusion coefficient results

The calculations are performed for a ratio of the diffusion coefficient in water versus that
in bone of D, /D, = 20000. The distribution of the normalised concentration inside the
computed region is shown in Fig. 5. The geometry corresponds to that one found in Fig.

11



3. The pore is displayed as the dashed curve in Fig. 5. The extent of the geometry is
h x w. The side ratio of the geometry is the same as the ratio of the pore size meaning
that a/b = h/w. Fig. 5 shows the distributed concentration for pore C’. The extent of the
area of the pore versus that of the geometry is A,/hw = 0.09. One readily observes how
the flux in the neighbourhood of the pore diverts from uniaxial flux and approaches the
pore.

The colours represent constant concentration. The increased diffusion rate in the neigh-
bourhood of the pore, reveals itself as an increase of the distances between the colour
contours. The flux direction is perpendicular to the concentration levels as indicated by
the inserted arrows. The nominally vertical diffusion is observed to be diverted towards
the pore. Obviously the increased diffusion rate also increases in a region surrounding the
pore. Closer to the all four edges of the geometry, the diffusion is less affected by the
presence of the pore. The affected region seems to be a few times the extent of the pore
(see Fig. 5).

+
+
+
+
+
+
+
+
+
+
+
+
+

Fig. 5. Distribution of the concentration. The nominal flux is vertical. The dashed region is pore C’
with an around 20000 times larger diffusivity than the surrounding bone.

The calculated normalized average flux, J,h/(DyAc), where Ac is the difference in con-
centration between z; = 0 and x; = h for different flow directions and different pore sizes,

is displayed in Fig. 6. The nominal flux, i.e. the flux for \/A,/hw = 0is Jh/(DyAc) = 1.
Fig. 6 shows that the flux as expected increases with increasing pore sizes. As an example,
when the area of the pore is 30% of the area of the computed area, the flux is in the region
of around 5% to 80% larger than the nominal flux in the absence of a pore. When the area

of the pore is 40% of the computed area, the flux is as much as two times the nominal flux.

_ D, h _ . . .
The quantity 6 = (H - 1)771), where D, is defined according to Eq. (27) is shown in
b SAy
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Fig. 6. Normalised average flux J,h/(DpAc) for pores A (0) , B (o), C (2) and D (x) (solid lines) and
A’ to D’ with markers as the corresponding pores A to D (dashed lines) as a function of the pore size

\/Ap/hw.

Fig. 7 as a function of the pore size, i.e. § = é(\/Ap/hw). As expected the result depends
on the shape of the pore. The parameter 0, according to Eq. (23), is obtained as
0= limé. (40)

Ap
7w 0

To achieve a reliable results, the numerical values for 9~7 that are vitiated with scatter
that is exceptionally strong for small pores, are replaced with the series expansion Eq.
(25). A Matlab function that employs the least square fit is used to find the coefficients,
aq to ay.

The coefficients § = a; and kK = 22 are given in Table 2.

0s

Table 2: 0 and « values for the pores A to D and A’ to D’.

Case A B C D A’ B’ C’ D’

=0 1.60 1.50 3.80 2.00 4.50 3.00 2.20 2.60
Qv

K= 9*; -1.10 -.05 -0.11 -0.11 -0.01 -0.16 -0.02 -0.09

The result is summarized in Fig. 8. A clear trend is observed from the present calcula-
tions. The 6 increases as the aspect ratio a/b increases but with some scatter. The result
from a series of six rectangular pores is examined. As in pores A to D’, The diffusivity
for the rectangular pores is measured in the x; and x5 directions. The series has a smaller
scatter which indicates that there are more influential details regarding the shape than
merely the aspect ratio (c.f. Fig. 8).

13



35 o

3t

M‘A'-AANA__ ______ e

25[9-0--0-0--0- 118 =~-@--III1 10

Ap/hw

Fig. 7. Influence of factor 6 for pores A (o) , B (o), C (a) and D (x) (solid lines) and A’ to D’ with
markers as the corresponding pores A to D (dashed lines) as a function of the pore size /A,/hw.

3.5F o

x>

2,51 1

1.51 X i

X Pores Ato D’

A\ Rectangular pores
0 0.5 1 15 2 25 3
a/b

Fig. 8. 6 versus the shape ratio a/b for pores A to D and A’ to D’ (makers x). The 6 for six rectangular
pores with a/b=2.5,2,1.5,1,0.67,0.5 are also included (markers a).
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5.2 Elastic modulus results

Calculation of the elastic modulus of a region containing a single pore is performed along
the same lines as for the diffusion analysis. The modulus of elasticity of the bone is E} and
Poisson’s ratio is v = 0.3. The displacement difference of two opposed edges, separated
by the distance h, is Au. Plane stress is assumed. The material in the pore is assumed to
lack stiffness, meaning that the body is treated as a hollow section.

The distribution of the normalised largest principal stresses o1h/E,Au for pore C’,
for which a/b = 1.5, is shown in Fig. 9. The figure shows that stresses are high at two
points on the edges of the pore. Here the stress is expected to be high but is probably
overestimated because of the rather course mesh that is used in the vicinity of the pore.
The reason for the course mesh is that the pore geometry is given by only 21 pixels and
therefore the details of the pore geometry are unknown.

The stress distribution along the edges of the body is fairly homogeneous and close to
the nominal value o1h/E,Au = 1, which shows that the disturbance of the remote uniaxial
stress field is more or less localised to a limited region around the pore.

Fig. 9. Distribution of the largest principal stress o1h/EpAu for pore C’ with a/b = 1.5. The nominal
loading is in the z; direction.

The average stress for different loading directions and different pore sizes is shown in
Fig. 10. With the nominal stress o, = E,Au/h, the effective stress versus nominal stress
ratio 0. /o, = E./Fy. The effective stress o, is obtained from the finite element calculations.
As expected, the figure shows that the stress decreases as the pore size increases. For small

pores (y/A,/hw < 0.3) the result seems to follow a power whereas for larger pore sizes the

resulting stress (and stiffness) decays approximately linear towards zero at |/ A,/hw = 1,

15
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Fig. 10. Computed average normalised stress o./o} for pores A (0) , B (o), C (») and D (x) (solid
lines) and A’ to D’ with markers as the corresponding pores A to D (dashed lines) for different pore sizes

\/Ap/hw. oy is the stress in bone without a pore.

i.e. when the pore is crossing the entire computed body.
The obtained 0 for different \/A,/hw values is shown in Fig. 11. As shown in the

figure, the resulting 0 is dependent on the pore shape. Further, 65 decreases as the pore
size increases which is an expected consequence of the switch off behaviour of the stress
size dependence described in previous paragraph.

The obtained  for the eight pores A to D’ versus the ratio a/b is shown in Fig. 12.
A couple of diverging results are observed. Both are for the slender pores A and C when
the nominal stress is along the longest side of the pore, which is b for both. It is known
from crack mechanics that energy released at the introduction of a crack vanishes for a
crack that is parallel with the loading direction and reaches a maximum if the crack is
perpendicular to the loading direction. The exact result for a crack is 0y = 7/2. The
known result 6z = 8/m for a circular pore is added to Fig. 11. The result is obtained by
using the the analytical solution for an infinite stretched plane body with a circular hole cf.
(Muskhelishvili, 1953) For pores with a > b the nominal stress is parallel with the longer
direction a while the Eq. (37), that defines the 6, only involves the side length b. This
inadvertence might influence the results in the way observed.

6 Qualifying examples
The method is qualified by applying the superposition technique on a real cases for diffusion

coefficient and elastic modulus. The porous region of the image in Fig. 4 is chosen. The
region is recognised as the region with numbered pores A and 1 to 11, marked with the
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Fig. 11. Influence factor fg for pores A (o) , B (o), C () and D (x) (solid lines) and A’ to D’ with

markers as the corresponding pores A to D (dashed lines) for different pore sizes /A, /hw.
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) ‘ . ‘ A\ Rectangular pores
0 0.5 1 1.5 2 25 3
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Fig. 12. 0 versus the shape ratio a/b for pores A to D’ with markers (x). The 0 for six rectangular
pores with side ratios a/b = 2.5,2,1.5,1,0.5,0.67 are also presented here with markers (2). The side
length is @ in the direction of the load. The known limit result as a/b —0, i.e. for a pure crack, is

0 = g as indicated.
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rectangle. Regarding diffusion, a finite element calculation was performed using 17682 8-
noded isoparametric elements. The resulting diffusion coefficient was found to be D, rprm =
1.033D, in the radial (z;) direction, and 1.071D, the tangential (z3) direction. This is
compared with the superposition technique represented by the Eq. (29) with the result
D¢ syp = 1.030Dy, and 1.068D, in radial and tangential directions respectively. The focus
here is on the correction of the diffusion coefficient of the bone D,. The relative correction
due to the superposition technique versus the finite element calculations for diffusion in
the radial direction is 0.03/0.033 = 0.91. In the tangential direction the corresponding
figure is 0.068/0.071 = 0.96, i.e. in the radial and tangential directions the superposition
technique gives an 9% and 4% smaller correction than the finite element technique. The
reason might be that there is an interaction between the pores that is not fully captured.

For the elastic modulus part, the finite element calculation was performed using 16579
8-noded isoparametric elements. The resulting elastic modulus was found to be E,ppm =
0.895E), in the radial direction and 0.955F), in the tangential direction. The superposition
technique gives F. g, = 0.889EF; in the radial direction and 0.948E) in the tangential
direction. The ratio of the correction due to the superposition technique is 6% for the
radial direction and 16% for the tangential direction, larger than the correction obtained
from the the finite element method. The reason for these differences regarding diffusion
coefficient and elastic modulus is for the presence somewhat unclear.

The error that is made by assuming that the pores are small leads to an underestimated
0 for the diffusion case and an overestimated 6 for the elastic case. This would lead in
the direction of the obtained result and could at least partly explain the results.

7 Conclusions

Superposition principles are derived that employ dimensional scaling of material parame-
ters. The result, that is asymptotically exact for infinitesimal pores, is used to formulate a
method for simplified calculations of material parameters for diffusion and deformation of
sparsely porous materials. The diffusion coefficient of Fick’s law and the elastic modulus
of Hooke's law are studied.

The method is evaluated on bovine ulnae regarding both the diffusion and deformation.
The superposition results are compared with full scale finite element results. Specifically,
the change of the diffusion coefficient and the change of the elastic modulus because of the
presence of pores, are compared with the corresponding finite element results. The result
of the superposition principle for diffusion deviate from 4 to 9% from the finite element
result. The corresponding deviations for the elastic modulus are 6 to 16%. The method
seems to fulfil the requirements that the pores should be sparse when ratio of pore volume
and total volume is less than 20%.
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