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stability and performance

Stéphane Velut Per Hagander
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Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
{svelut,per}@control.lth.se

Abstract— An extremum controller based on a
pulse technique is examined. Plants consisting of the
cascade of a piecewise linear static function and a
LTI system are considered. Numerical methods for
stability and performance analysis of the closed-loop
systems are derived. Performance is measured by
the ability to track a time-varying optimal point. An
illustrative example where it is desirable to control
the process to a saturation instead of an extremum
is finally presented.

I. INTRODUCTION

In most control problems the objective is to regu-
late the output around a desired reference value. In
extremum control, the optimal setpoint is not known
and is often given by the extremum of a static input-
output map. The classical approach to this problem
consists in adding a known time-varying signal to
the process input and correlating the output with
the perturbation signal to get information about the
nonlinearity gradient. The controller adjusts continu-
ously the control signal towards the optimum. A good
overview of extremum control is given in [11].

In [9], the authors presented the stability analy-
sis of an extremum seeking scheme for a general
nonlinear dynamical system. Stability of the seek-
ing scheme was proven under restrictive conditions:
small adaptation gain and fast plant dynamic. In [8]
they developped a tighter analysis where the process
was modelled by a Wiener-Hammerstein system. No
stability region was provided.

In [1] and [2] a probing controller based on a pulse
technique is described. The main difference with the
classical scheme is the separation in time of the
correlation phase and the control phase. Pulses are
periodically introduced at the process input and a
control action is taken at the end of every pulse. This
also allows the regulation of the process output by
manipulation of a second control variable between
two successive pulses. The control algorithm has been
implemented and tested on real plants where good

performance could be achieved, see for instance [3]
or [5]. Although the control strategy is simple, it
results in a complex closed-loop system that is nonlin-
ear, time-varying with continuous as well as discrete
states. Rigorous analysis of the closed-loop system
would be valuable for a better understanding and
tuning of the probing controller.

In a previous paper [12], we analysed the probing
strategy for Hammerstein systems with a piecewise
affine nonlinearity. Stability analysis could be per-
formed by searching for piecewise quadratic Lya-
punov functions and solving appropriate LMI, as
described in [7] and [6]. The integrator from the con-
troller was however approximated by a pole close to 1
and a time invariant nonlinearity was considered.

In the present paper we derive tools for piecewise
affine systems in discrete time, which can be applied
for rigorous analysis of the probing strategy. A re-
duced set of LMIs is derived to investigate closed-loop
stability using standard optimization routines, such
as the LMI Control toolbox in matlab. Performance
of the probing controller is measured by the ability
to track a time-varying optimum. Using the idea
from [10] a quantitative result is given.

The paper is organized as follows. In section II,
we describe the system to be optimized together with
the probing controller. Section III presents a way to
check global asymptotical stability of piecewise affine
systems with integrator. Tools for performance as-
sessement of the probing controller are also derived.
We will finally illustrate in section IV the proposed
methods with an example inspired by [1] where it
is of interest to control the process to a saturation
instead of an optimum. Tuning guidelines based on
local analysis will also be provided.

II. A PROBING CONTROLLER

The system to be optimized is of Hammerstein type:
a static nonlinearity followed by a stable dynamical
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Fig. 1. Illustration of the probing controller. A pulse in the input
signal v leads to a response in the output z. The size yk of the
pulse response is used to compute the change uk+1 − uk.

linear plant. A state space representation of the
process can be written as:

ẋ = Ax + B f (v) x ∈ Rn

z = Cx
(1)

The control objective is to find and track the optimal
point for which the gradient of f is small. The probing
controller gets information about the nonlinearity
from the response to pulses that are periodically
superimposed to the control signal. The input signal
v to the process is the sum of the control signal uk

and the perturbation signal up(t):

v(t) = uk + up(t) t ∈ [kT , kT + T ] (2)

up(t) is taken to be a pulse train with period T and
amplitude u0

p:

up(t) =

{
0 t ∈ [kT , kT + Tc)

u0
p t ∈ [kT + Tc, (k + 1)T)

(3)

The pulse length is Tp such that

T = Tp + Tc (4)

The piecewise constant control signal uk is adjusted
at the end of every pulse, depending on the size of the
pulse response. Figure 1 illustrates the behavior of
the probing controller. Since the input signal v defined
by (2) and (3) is piecewise constant, equation (1) can
be exactly integrated over one period T . The response
to a pulse is the output yk = z((k + 1)T) − z(kT + Tc)
of a discrete-time system with sample interval T :

xk+1 = Aoxk + Bo

[
f (uk)

f (uk + u0
p)

]

yk = Coxk + Do

[
f (uk)

f (uk + u0
p)

] (5)

where xk = x(kT) and

Ao = eAT Co = C(eAT − eATc)

Bo =
[
(eAT − eATp), (eATp − I)

]
A−1 B

Do = C(eATp − I)
[
(eATc − I), I

]
A−1 B

(6)

In [12], the output z was regulated between two
successive pulses by an auxiliary control variable.
Although the additional loop does not affect the struc-
ture of equation (5), it is not modelled in the present
paper for the sake of simplicity.

For a better understanding of the probing con-
troller, consider now the case of a large period T .
When Tc goes to infinity, the influence of the state xk

vanishes and equation (5) reduces to a static input-
output map:

yk = C(eATp − I)A−1 B ⋅ ( f (uk + u0
p) − f (uk)) (7)

Using the integrating feedback law

uk+1 = uk + K (yk − yr) (8)

with a desired pulse response yr = 0, the equilibrium
point u∞ is such that f (u∞ + u0

p) − f (u∞) vanishes,
ie for a u∞ that makes the gradient small.

This rough analysis indicates that a probing strat-
egy using (8) can converge to the optimal point. What
happens when the pulses are done more frequently?
Do we have convergence to the optimal point when
the dynamics in (5) is taken into account? Is the
probing strategy able to track a time-varying nonlin-
earity? The paper aims at answering those questions.

We will only consider functions f that are piecewise
affine. The closed-loop equations described by (8)
and (5) have consequently a piecewise affine struc-
ture. Stability analysis can be performed by searching
for piecewise quadratic Lyapunov functions. Modifica-
tions of the existing methods are however necessary
to cope with the integrator that the control law (8)
introduces. In the next section, tools for stability
as well as performance analysis of piecewise affine
systems will be derived. Evaluation of the probing
strategy will be performed in section IV using those
tools on an example.

III. PIECEWISE AFFINE SYSTEMS WITH INTEGRATORS

Consider the piecewise affine system

X̄ + = Āi X̄ X̄ ∈ X̄i (9)

where

X̄ =

[
X

1

]
Āi =

[
Ai ai

0 1

]
X̄i ⊆ Rn is a partition of the state space into convex
polyhedral regions.We assume that there is only one
equilibrium point, and that it is located in the region
with index i = 0. The origin is shifted such that
a0 = 0.
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A. Stability analysis

The search for piecewise quadratic Lyapunov func-
tions as in [7] and [6] is a powerful tool for stability
analysis. Let denote by V the Lyapunov function
candidate:

V (X ) =

{
X T Pi X X ∈ Xi i = 0
X̄ T P̄i X̄ X ∈ Xi i �= 0

(10)

For V to be a Lyapunov function, one should have for
i �= 0:

V (X ) = X̄ T P̄i X̄ > 0 X ∈ X̄i

∆V (X ) = X̄ T(Āi
T

P̄j Āi − P̄i)X̄ < 0 X ∈ Xi

X + ∈ X j

(11)

and similarly for i = 0. The search for the matrices
P̄i can be formulated as an optimization problem in
terms of LMIs. The stability conditions (11) take the
form:

P̄i − R̄i > 0

Āi
T

P̄j Āi − P̄i + S̄i j < 0
(12)

where R̄i and S̄i j are matrices used in the S-
procedure. They express the fact that the inequalities
are only required to hold for particular X , e.g.. X in
Xi. More details on how to find such matrices can be
found in [7].

A solution to (12) implies the existence of γ > 0
such that ∆V (X ) < −γ �X �2 for all X . When the
state partition contains an unbounded region with
an integrator, it may not be possible to bound ∆V

quadratically in all directions although it is strictly
negative. Modifications of equations (12) for the re-
gions with an integrator are therefore necessary. Our
approach is similar to that in [4] for linear systems
and consists in deriving a reduced LMI set after
removal of the nullspace of Ai − I.

Consider a region X of the state partition, where
the dynamics contains an integrator. By a change of
coordinates Z = T−1 X , the dynamics equation in X

can be put in the form:

Z̄+ =

⎡
⎣ As 0n−1�1 T−1a

01�n−1 1
01�n−1 0 1

⎤
⎦

︸ ︷︷ ︸
D̄

Z̄ , Z̄ =

⎡
⎣ zs

zu

1

⎤
⎦

where As has all its eigenvalues in the open unit ball.
Defining T̄ = diag{T , 1} and Q̄ = T̄−T P̄T̄ , one can
express ∆V (X ) using the new coordinates Z̄ :

∆V (T̄ Z̄) = Z̄T(D̄T Q̄ D̄ − Q̄)Z̄

=

⎡
⎣ zs

zu

1

⎤
⎦T ⎡

⎣ Mss Msu Ms

M T
su 0 mu

M T
s mu m

⎤
⎦

⎡
⎣ zs

zu

1

⎤
⎦
(13)

The absence of quadratic term in zu is a consequence
of the eigenvalue 1. Application of the S-procedure
can introduce a negative quadratic term in zu only if
the region X is bounded in zu direction. When the
state can pass to infinity along the eigendirection
defined by zu, the cell description can be rewritten
as:

X̄ = {Z � zu <
[
Gj g j

] [
zs

1

]
for j = 1 ⋅ ⋅ ⋅ p} (14)

Define matrices N̄j , j = 1 ⋅ ⋅ ⋅ p such that for all i �= j[
zs

1

]T

N̄j

[
zs

1

]
> 0 when

[
Gi − Gj gi − g j

] [
zs

1

]
≺ 0

The following result should be combined with (12) to
investigate stability of piecewise affine systems

Theorem 1: If there exist Q̄ with Q̄su = 0n−1�1 and
R̄ such that for j = 1 ⋅ ⋅ ⋅ p

T̄T Q̄T̄−1 − R̄ > 0[
Mss Ms + muGj

(Ms + muGj)
T m + mug j

]
+ N̄j < 0

mu > 0

then V (X ) > 0 and ∆V (X ) < 0 in X.
Proof:

The first inequality in the statement guarantees pos-
itivity of V in X.

From equation (13) we have

∆V (Z) =

[
zs

1

]T [
Mss M T

s

Ms m

] [
zs

1

]
+ 2

[
zs

1

]T [
Msu

mu

]
zu

Msu can be easily computed to be of the form:

Msu = (As − I)Q̄su

Since Q is such that Q̄su = 0, the cross-term zuzs in
∆V vanishes:

∆V (Z) =

[
zs

1

]T [
Mss Ms

M T
s m

] [
zs

1

]
+ 2mu zu

By assumption, we have

mu > 0

it follows from (14) that

muzu < mu

[
Gj g j

] [
zs

1

]
, j = 1 ⋅ ⋅ ⋅ p

For less conservative bounds we add the relaxation
term involving N̄j

mu zu < mu

[
Gj g j

] [
zs

1

]
+

[
zs

1

]T

N̄j

[
zs

1

]
, j = 1 ⋅ ⋅ ⋅ p

which leads to p upper-bounds for ∆V

∆V (Z) <

[
zs

1

]T [
Mss Ms + muGj

(Ms + muGj)
T m + mug j

] [
zs

1

]

+

[
zs

1

]T

N̄j

[
zs

1

]
, j = 1 ⋅ ⋅ ⋅ p
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and each of them is negative by hypothesis.
Remark 1: The condition Q̄su = 0 is not restrictive

but actually necessary for ∆V to be negative in the
unbounded region.

Remark 2: Along the zu direction, V is decreasing
linearly and the inequality mu > 0 imposes the
correct sign of the slope to ∆V .

Remark 3: Since the search for Lyapunov functions
is done in terms of Q̄, i.e. in the new coordinate
systems, it is easy to impose Q̄su = 0. Q̄ is used in
equations (12) as P̄i = T̄T Q̄T̄−1 for some i.

B. Servo-problem

The previous result provides a way to check global
stabilty of piecewise affine systems with integrator,
using standard LMI solvers. However, it does not
guarantee a good behavior in presence of distur-
bances.

In [10], the authors propose a way to analyse
the servo-problem for piecewise affine systems in
continuous-time. Performance was evaluated by com-
puting the L2 gain between the derivative of the
exogeneous input ṙ and the error x − xr between the
system trajectory x and a predetermined trajectory
xr .

An extension of the method to piecewise affine
systems in discrete time will be performed. Consider
the following piecewise affine system with input r:

x(k + 1) = Aix(k) + Bir(k) + ai (15)

The reference trajectory is determined by the se-
quence of equilibrium points xr(k):

xr(k) = (I − A0)−1 B0r(k) (16)

and the performance is measured with the following
cost function:

J(x, r) =
∞∑

k=0

(x(k) − xr(k))T Q̄(x(k) − xr(k))

Suppose that for any constant r ∈ R the piecewise
linear system has a unique equilibrium point located
in X0.

Define

Āi =

⎡
⎣Ai ai Bi + (Ai − I)(I − A0)−1 B0

0 1 0
0 0 1

⎤
⎦

B̄i =

⎡
⎣−(I − A0)−1 B0

0
1

⎤
⎦ , Ī = diag(I, 0, 0)

and the matrices S̄i such that⎡
⎣x − xr

1
r

⎤
⎦T

S̄i

⎡
⎣x − xr

1
r

⎤
⎦ > 0 for x ∈ Xi, r ∈ R

−u0
p u

y0 = β u0
p

y

0

Fig. 2. Stationary amplitude of the pulse response y as a function
of u. Small responses indicate that u is close to the saturating point
r = 0.

We have then the following statement:
Theorem 2: If there exist γ > 0 and Pi > 0 such

that P̄i = diag{Pi, 0} satisfies[
Āi

T
P̄j Āi − P̄i + Q̄ + S̄i (B̄i

T
P̄j Āi)

T

B̄i
T

P̄j Āi B̄i
T

P̄j B̄i − γ 2

]
< 0, i, j �= 0

and similarly for i = j = 0, then every trajectory
defined by (15) with x(0) = 0 satisfies

J(x, r) < γ 2
∞∑

k=0

(r(k + 1) − r(k))2

The proof is similar to that in continuous case [10]
and it will not be repeated here.

IV. CASE STUDY

In this section, we will illustrate the performance of
the probing controller on an example inspired by [1].
It is desirable to control the process to a saturation
instead of an extremum. The process is modeled by a
first order system:

ẋ = −ax + f (v) a > 0

v = uk + up(t)

The static nonlinearity f that models the saturation
in the cell respiration system is taken to be a min
function:

f (v) = min(v, rk) =

{
v, v ≤ rk

rk, v > rk

(17)

To start with we assume that the saturating point rk

is constant rk = 0. Time-varying rk will later be con-
sidered for performance evaluation of the controller.
We will also assume that rk does not vary under a
period T .

The stationary amplitude of the pulse response as
a function of uk is plotted in Figure 2 where the
constant β is a function of the plant dynamics:

β = (1 − e−aTp)(1 − e−aTc)(1 − e−aT )−1a−1

The static pulse response indicates that the inte-
grating feedback law (8) with yr > 0 can drive the
input uk close to the saturation r = 0. The reference
value yr for the pulse response affects the stationary
distance to the saturating point.
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The closed-loop system described by (8) and (5) is
a discrete piecewise linear system with a state space
partioned into 3 regions:

X1 = {X ∈ R2, u < −u0
p}

X2 = {X ∈ R2, −u0
p < u < 0}

X3 = {X ∈ R2, u > 0}

, X =

[
x

u

]

The system equations can be written as

Xk+1 = Ai Xk + ai, forXk ∈ Xi, i ∈ I = {1, 2, 3}

where Ai and ai are matrices given in the appendix.
The equilibrium point, if it exists, is located in the
middle region. Integrators are always present in the
extreme regions.

A. Tuning guidelines

The probing control strategy has a few parameters
to be chosen. Some tuning guidelines are necessary
for the strategy to work well. Local analysis of the
closed-loop system can be performed to derive neces-
sary conditions for global stability.

It is easy to derive a necessary condition for A2 to
be Hurwirtz:

0 < K <
2
β

1 + e−aT

1 − e−aT
(18)

The presence of the integrator in the extreme regions
may give rise to situations where the state vector
tends to infinity along the critically stable eigendi-
rections. The vector field should therefore be oriented
towards the middle region on these directions. In-
spection of the vector field leads to the following
inequality:

0 <
yr

u0
p

< β (19)

and

0 < K <
eaTc − 1

β
(20)

Equation (19) relates the size of the desired pulse
response to the dynamics of the open-loop: yr should
not exceed the largest pulse response βu0

p that one
gets at stationarity, see Figure 2. Equations (18)
and (20) give bounds on the controller gain K and
therefore limit the convergence speed to the middle
region.

B. Numerical computations

For numerical computations we take

a = 1, u0
p = 1, Tp = 1

Conditions (18) and (20) impose constraints on K and
Tc. It can be shown that large adaptation gains K

are not allowed when the pulses are performed too
frequently, i.e. when T goes to Tp = 1.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

u

Fig. 3. Phase plane with some level curves of the Lyapunov
function. The solid lines represent the cell borders and the dashed
line are the eigendirections corresponding to the eigenvalue 1.

We choose T = 4 and K = 2 to get a fast
convergence and some robustness margin.

Equation (19) provides an interval in which yr

should be: 0 < yr < 0.612. We choose yr = 0.3 to get a
symmetric behavior above and below the saturation.

The parameters of the probing controllers have now
been chosen such that all necessary conditions are
fulfilled. Local stability alone is however not a sat-
isfactory result. The equilibrium point of the closed-
loop system is indeed located close to a cell border.

1) Global stability: Global stability can be investi-
gated using Theorem 1. The LMIs are implemented
and solved using matlab. Stability of the closed-loop
system can be proved for gains K < 3.1, which is very
close to the upper bound from equation (18) when
T = 4. Level curves of the piecewise quadratic Lya-
punov function as well as the phase plane are shown
in Figure 3. Convergence of u to a neighborhood of the
saturation can be guaranteed for all initial values of
u and x.

2) Performance: For a better understanding of the
probing controller, a simulation with a particular tra-
jectory rk has been performed. The result is shown in
Figure 4. The probing controller succeeds to track the
time-varying saturation by using the pulse responses
for feedback. Theorem 2 from last section can be used
to quantify the performance of the closed-loop system
for all variations of rk ∈ [−5, 5]. It can be checked that
for those rk the equilibrium point is always in the
middle region defined by rk < uk < rk − u0

p. The
integrator in the control law is replaced by a pole
close to 1.

The matrice Q̄ that penalizes the state deviation
x − xr from its equilibrium point is taken to be
Q̄ = diag{1, 1, 0, 0}. The LMIs from theorem 2 turn
out to be feasible. Minimizing γ subject to the con-
straints, one obtains γ = 30.

Minimization of γ has been performed for different
values of the gain K . The result is plotted in Figure 5
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Fig. 4. Simulation of the probing controller with a time-varying
optimal point. Top: The input signal v with superimposed pulses
is tracking the reference trajectory defined by rk. Bottom: Output
signal z and deviation yk − yr of the pulse responses from the
reference value.
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γ

K
Fig. 5. Performance measurement for different values of the
probing controller gain K . The dashed line represents the γ values
obtained by numerical computations whereas the solid line is the
result of simulations.

together with the gain obtained by simulation with a
particular r. A better agreement between the gain
obtained by simulations and γ can be achieved by
looking for a worst case disturbance r. The graph is
however helpful for design purposes. The slow con-
vergence speed for small K values is indicated by the
large γ values. The plot suggests a K value of about
1.5. Larger K do not improve much the performance
and may give poor robustness properties, as it is seen
in simulations.

V. CONCLUSION

A probing strategy has been analysed for plants of
Hammerstein type. When the nonlinearity is piece-
wise affine, the problem can be formulated in a piece-
wise affine framework. Numerical algorithms have
been proposed to study stability and performance of
the closed-loop system. The efficiency of methods have
been illustrated on an example where it is desirable
to track a saturating point.
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APPENDIX

The closed-loop dynamics in the 3 regions of the
state partition is given by the matrices

A1 =

[
eAT (eAT − I)A−1 B

K C(eAT − eATc) 1 + K C(eAT − eATc )A−1 B

]

a1 =

[
0

−K yr

]
+

[
I

K C

]
(eATp − I)A−1 Bu0

p

A2 =

[
eAT (eAT − eATp)A−1 B

K C(eAT − eATc) 1 + K C(eATp − I)(eATc − I)A−1 B

]

a2 =

[
0

−K yr

]

A3 =

[
eAT 0

K C(eAT − eATc) 1

]
a3 =

[
0

−K yr

]
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