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Abslroef- A flexible method for six-degree-of-fmedom 
combined visiodforee control for interaction with a stiff 
uncalibraled environment is prcsented. An edge-based rigid- 
body tracker is used in an observer-based controller, and 
combined with a six-degrre-of-Ircedom force- or impedance 
controller. The e l l e d  of enur sources such as image space 
measummcnt noise and calibration errors am considered. 
Finally, the method is validaled in simulations and a surface 
following experiment using an industrial robot. 

I. INTRODUCTION 

Even in modem robot control systems, there are difficul- 
ties instructing robots how to deal with variations in their 
environment. In order to handle large deviations from the 
nominal sctup, extcmal scnsing capabilities are crucial. In 
particular, force sensing capabilities can he useful when 
robots are required to interact with their environment. 
There has also been a growing interest in vision based 
control, since a lot of information can be obtained from 
visual data. With the increasing computational power avail- 
able today, there is a potential for robust visual servoing 
systems that operate at camera fmme rate. However, the 
nature and limited accuracy of vision based control makes 
it less suitahle for controlling the inleiaction between a 
robot and a potentially stiff environment. Therefore, an 
interesting approach is to combine force control and visual 
servoing in a multi-sensor control system. 

A. Visual conrml 
Position-based visual servoing techniques require some 

type ofpose estimation, since the feedback law is defined in 
the workspace, rather than directly in the image. Accurate 
and robust tracking and cstimation of the position of rigid 
objects using measurements from one or several cameras 
has been an active research topic for many years. Many 
methods for rigid body tracking work by minimizing some 
measure of the image space error as a function of the 
unknown position and orientation parameters, using stan- 
dard non-linear optimization methods, or Kalman filtering 
techniques [I] ,  121. In 131 it was suggested that the output 
from the pose estimation should be used as input for the 
Kalman filter, in order to avoid the high computational 
complexity required when the output is a high-dimensional 
image'-space vector. The position and orientation can be 
parameterized in different ways, such as roll-pitch-yaw 

angles [I] ,  quaternions or dual quaternions [2]. There are 
also various ways to measure the image space e m r ,  the 
most common measurements are the positions of point 
features [ I ] ,  lines, or point-to-contour errors [41, [51. The 
point-to-contour method has a major advantage in that it 
does not require the exact matching of features, only the 
error in  the normal direction at a number of points on a 
contour. This only requires a one-dimensional search for 
features (edges). 

B. Force arid impedance conrrol 
Impedance control aims to achieve a certain dynamical 

behavior of the end-effector position and orientation in 
response to extemal forces [6]. Using an inner motion 
control structure, the motion controller is made to track 
the pose of the so called compliantframe, denoted by &. 
The impedance relation is a relation on the form 

d2x dx  
dr M, p +D,- + K,x = f 

where x is the relative position of the compliant frame with 
respect to the reference frame E,, f is the extemal force, 
and M,, D, and K, are positive definite matrices uzhich can 
be interpreted as the effective mass, damping and stiffness, 
respec tively. 

C. Previous work 
Over the last decade, some work on visionlforce control 

has been presented. In [7] three different strategies are pre- 
sented, traded control, hybrid control, and shared control. 
In [8] the use of visionlimpedance control is proposed, and 
demonstrated in a peg-in-hole insertion experiment. The 
method presented in [91 uses Mason's task frame and a high 
level task description to determine how to use each sensor. 
An application of position-based forcdvision control in 
flexible assembly is presented in [IO], with a demonstration 
of the use of a single eye-in-hand camera for mating of 
moving parts. Other hybrid and adaptive techniques have 
been presented, for instance in [ I l l ,  (121, [13]. 

Problem formularion 
In this paper we demonstrate how to achieve high 

performance six-degree-of-freedom combined visionlforce 
control for interaction with a stiff uncalibrated environ- 
ment. It is shown how a process with linear dynamics in 
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task space, together with a standard formulation for an 
edge-based rigid body tracker, can be used to design an 
observer with linear error dynamics. The effect of e m r  
sources such as image noise and geometrical calibration 
errors are considered and analyzed. Finally, experiments 
and simulations afe used to validate the approach. 

11. CONTROLLER FOR FORCE/VlSION CONTROL 

A. Modeling 
We assume that we have M cameras placed in fixed 

locations, viewing a target object whose position and 
orientation with rcspcct to some fixcd (world) coordinate 
system should be estimated. The position and orientation 
is parameterized as x,, E dp" where typically n = 6. The 
image data is compressed into a vector y E RN, usually 
the image space coordinates of comers, edges and other 
features. If the geometry of the target is known, xp and y 
are related by the projection equations of the cameras 

Y h(xp) (2) 

which is usually a very complex non-linear function. The 
most commonly used camera model is the homogeneous 
form pinhole camera projection equation, which in our case 
becomes 

where K, is a matrix of intrinsic camera parameters, X i  is 
the coordinates of the point in an object-centered coordi- 
nate system, 2, is the depth of the point in the camera, 
and T, and T,,(xp) are the homogeneous coordinate 
transformation matrices between the target object and the 
world coordinate system, and between the world coordinate 
system and the camera, respectively. The parameteriza- 
tion xp of T, is the unknown positiodorientation to be 
estimated. In the following, the camera position T, ,  is 
assumed to be known. This is not a restriction in situations 
where only the relative pose of two tracked objects is to 
be controlled, since the position of the world coordinate 
system is arbitrary. Only the relative positions of the 
cameras need to be accurately calibrated, in order to be 
able to relate measurements from different cameras. 

We assume that the task space dynamics of the motion 
controlled manipulator can be modeled as a linear system, 
which together with the nonlinear measuremenl equation 
give the Wiener-type model 

(4) 

where U is the input, and x is the state vector typically 
consisting of the position xp and velocity of the end- 
effector in the task space, and possibly other stales de- 
pending on the model of the dynamics, For relatively low 
bandwidth systems, such as vision based controllers, the 
approximation of the complex closed loop robot dynamics 
with a linear system of relatively low order is reasonable. 
The output y in Eq. (4) is the vector of image features 

obtained from the images, and h is given by Eq. (31, for 
each point. 

For the pinhole camera, the task space position xp could 
in general be obtained from a pose estimation as 

xp = hK1(y) ( 5 )  

and used in a feedback control law in order to control 
the task space position [31. The pose estimation is typi- 
cally performed using some type of iterative least-squares 
optimization algorithm, using the, previous position as a 
starting point for the iteration. However, near singular 
configurations, where the Jacobian of h loses rank, the 
pose estimation becomes very inaccurate [5]. An example 
of such a situation is when the relative depth of the object 
points is small, for instance when viewing a small ohject 
at a long distance from the camera. In such cases, a very 
accurate estimation of the depth Zi of each point may be 
required in order to maintain stability [14]. 

B.  Vision based observer 
By exploiting the dynamic model in Eq. (4), we could 

obtain extra robustness and noise suppression. Since almost 
all real-time pose estimation algorithms work by updating 
an initial guess or prediction or the state, we use a state 
observer on the form 

(6) 
dP 
- = F T ~  +GU + U+ (y -h(lx)) 
dt 

where J' is the pseudo inverse or the Jacobian J = dhfdx 
from the linearization of the measurement equation. 

Eq. (3) can be diffcrcntiated with rcspcct to x and 
linearized around i, and the equations for multiple feature 
points can be stacked to give the linearized equation 

Ay=y-h(%)*J( t ) (x-P)  (7) 

where J is the Jacobian of the projection equation, which 
can now be used directly in Eq. (6). 

In the case of edge measurements, only the distance be- 
tween the predicted and real edges in the normal direction 
of the contour is measurable. The corresponding equations 
are obtained by projecting the image space errors onto the 
normal as in [4], [SI, giving us the alternative equations 

where N is a block diagonal n x n matrix, where the 
blocks are the edge normal directions at the n different 
measurement points along the contour (Fig. 1). 

It is clear that in general the accuracy of the estimation 
will improve with the number of image measurements N .  
If we assume that the errors in the image measurements E, 
can be modeled as Gaussian, spatially uncorrelated white 
noise naith variance u2, a useful approximation of h e  
effective measurement error covariance &x = Jf+ can be 
obtained as 

M 
E[€,€:] = E[J'g(J'&,)'] = (JTJ)-'02 = ( ~ J ~ J i ) - l U '  

i=l 
(9) 
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Fig. 2. 
normalized intrinsic pumameterr, placed a1 an angle of 0. 

The square mol of Ule =ace of E[&e:] for three cameras with 

Fig. 1. Edge detection in the nomd direction of the predicted edges. 

where the Jacobian has been partitioned into the individual 
Jacobians for M cameras as Jr = [J:: J l , .  . , J;]'. If a large 
number of edge search points are distributed evenly along 
the visible edges of the object, we can approximate Eq. (9) 
with 

where Qi is a positive semidefinite n x n matrix inde- 
pendent of Ni, which shows that the covariance of the 
measurement error is a direct funclion of the number, Ni,  
of edge detection points placed in each camera, giving 
the number of edge searches required to achieve a given 
measurement accuracy [15]. In addition, Eqs. (9) or (IO) 
could he used as approximate covariance matrices in a 
(time-varying) Kalman filter. By performing the estimation 
update in this way, the tracking algorithm can be distributed 
over several processors, each responsible for the image 
processing and Jacobian creation and inversion for one 
camera. The measurements JjAyi are combined in the 
central Kalman filler, using the covariance estimates for 
each camera. 

The dependence of the covariance matrices on the Ja- 
cobian, calculated at ir, is clear from Eq. (9). In general, 
the right singular vectors V of J = USV' will indicate 
the degrees of freedom with the largest error sensitivity. 
At distances significantly larger than the dimension of 
the object, this is usually translation in the 2-direction of 
the camcra. By placing multiple camcras at differcnt ori- 
entations, considerable improvements in the measurement 
covariance can he obtained. This advantage of a multi- 
camera selup is illustrated in Fig. 2, where the trace of the 
resulting covariance matrix is plotted as a iunction of the 
angle 0 between the z-axes of three simulated cameras. 
The three cameras were placed at a distance 5L from 
the object, of dimensions 0.5L x 0.5L x OSL, with 200 
measured edge locations in each camera. In order to obtain 
the same measurement accuracy with a single camera, it 
would he necessary to either decrease CJ by increasing the 
image quality and/or resolution, or to use cameras with 
longer focal length, thereby reducing the field of view. 

C. Force and impedance conrml 
The force controller implemented is a general impedance 

controller with inner motion control [6] .  In the con- 
troller, the impedance equation is divided into translational 
impedance and rorarional impedance as 

where f and T is the force and torque exened by the 
environment on the end-effector, f, and T~ is an optional 
reference forceltorque pair, td, = t, - td is the relative 
translation between the reference frame and the compliant 
frame, and Od, is the Euler XYZ angles extracted from the 
rotation matrix Rdc = RrRd, and T is a Jacobian matrix 
relating the angular velocity to the time derivative of edd,. 
D. Combined visiodfwce controller 

The block diagram for the system under visiodforce 
control is shown in Fig. 3. The desired trajectory of the 
tool is defined relative to the target object, whose position 
is estimated from the image data. The visual feedback con- 
troller generates a reference position and velocities in order 
to follow the desired trajectory, based on the estimated 
relative position of the end-effector and the target. The 
force controller updates the position and velocity according 
to Eqs. ( 1 1 )  and (12), and the new references are sent to 
the built-in robot motion control. 

We assume a decoupled dynamic model of a velocity 
controlled manipulator 

(13) 
X = Fx + Gv, 1 Ay=h(Cx,C%) 'zJ(C%)(Cx-Cf) 

where x = [ x i  is the state vector, v, the commanded 
velocity, Ay is the normal distances between the search 
points and the image edges, ir is the estimated state, and 
the system matrices are given by 

X i ]  
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Fig. 3. Block dia-n showing the swcture of b e  combined forcdvision 
control sysrem. hpnpw are the reference signals Ax, and f, and b e  output 
di~turbance~ e, and E,- 

By assumption ir = x - i is small, and the approximation 
in Eq. (13) holds locally. A state observer on the form of 
Eq. (6) is given by 

d f  
dr - = F ~ + G v , + K F A ~  = F*+Gv,+Kc (x - n) (15) 

where the estimation 3 is assumed to be equal to the 
tmc image Jacobian J, and the difference AG = G - G 
models the calibration errors in the geometric model of the 
manipulator object frame. Using a force controller given by 

= F,x,+G,S,(f-f,) (16) 

together with the hybrid visiodforce controller 

v,=s, .L(x,- i )+sf[o IIX,:  (17) 

where S,. and S, are the hybrid selection matrices, and a 
contact model 

f = -k,Cx, (18) 

we can write down the equations for the closed loop system 

with 

F - GS,.L GS,.L 
-AGS,.L F-KC+AGS,.L AG [0 S,] 

-G,S,k,C 0 
(20) 

(21) 

E. Srabiliry 
When AG = 0 and j = J, for small ir the observer error 

is locally described by the stable system f = (F- KC)P. In 
the force controlled directions, a stable and well-damped 
response in the measured contact force is obtained by 
proper tuning of MI and D,. In practice, the possible 
choices of M, and Dr are also limited by sensor noise, 
unmodeled dynamics, and resonances in the tool and 
workpiece. 

In the case where the estimation of the Jacobian in 
Eq. (15) is not exact, the state observer (15) and the 
resulting closed loop system may become unstable. For a 
purely kinematic robot model x,, = vc with x = xpr F = 0 
and G = I, local stability of theobserver with K = I is 
guaranteed as long as the matrix J'J(1) is positive definite. 
Near singularities, this is satisfied only if a very accurate 
estimation j is available, and small erron in the intrinsic 
camera parameters or point depth distribution can cause 
the system to become unstable [14]. However, an observer 
for the dynamical system in Eq. (13) will need additional 
constraints on J and J for stability, as stability can not be 
guaranteed even if J'J(2) is positive definite. 

,? Intplernenration 
The vision controller and observer are designed as a 

stationary Linear Quadratic controller with Kalman filter, 
based on discretized version of the dynamic model in 
Eq. (13) sampled at 33 ms. The force controller in Eq. (16) 
is discretized at a sampling period of 4 ms. Tbe force 
controller runs on a Power-PC G4 processor, connected 
to the intemal robot motion controller over the PCI bus 
[16]. ?he image processing, and calculation and inversion 
of the image Jacobian m m  on a separate 2 GHz Pentium 4, 
which communicates with the controller on the Power-PC 
using Ethernet. 

The tracking algorithm running on the PC is summarized 
in Fig. 4. ' h o  objects are tracked, the stationary target 
and the manipulator object, assumed to be rigidly attached 
to the robot hand. The tracker states are initialized by 
manually indicating features and using an approximate 
pose estimation algorithm. At each sample time all images 
are read from the cameras, the pre-calculated control signal 
is sent to the main controller using Ethernet, and measure- 
ment vectors and Jacobians are calculated. The total hybrid 
control signal is then read back from the Power-PC, and is 
used to calculate the state estimate and vision-based pan 
of the control signal. A fast hidden-line removal technique 
based on BSP tree representations of the objects is used to 
predict locations of visible edges in the next set of images. 

111. RESULTS 
A. Esiodforce controlled surface following 

By combining force control with visual feedback as de- 
scribed in Section II-D, we could achieve surface following 
that is independent on the workpiece calibration accuracy. 
Experiments with this scenario have been performed using 
an ABB Irb2400 industrial robot equipped with a rolling 
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1) Initialize state and data structures 
2) Send precomputed visual command velocity U,, to 

the main controller on the Power-PC 
3) Capture images from each camera and perform 

image pre-processing 
4) Search for image edges around the predicted edges 

of the manipulator and target, and build measure- 
ment vectors Ay and Ay, 

5 )  For each edge measurement, huild one row of the 
corresponding Jacobian J or J, 

6 )  Read effective control signal from Power-PC, given 
byv,:=S,u,+Sf[O I]x, 

7) Update the state estimate for the manipulator using 
the model 9 := Fd9 + G,v, + KJ'Ay 

8) Update estimated mrget position using one Gauss- 
Newton iteration 9, := 9, + $Ay, 

9) Predict visible cdgcs during thc ncxt sample, by per- 
forming hidden line removal based on the predicted 
positions P and 9, 

IO) Calculate X, =i, +Ax,, and pre-calculate the vision 
based pan of the control signal U,. := L(x,-1) 

I I )  Wait for next sample time and repeat from Step 2) 

Fig. 4. Algorithm for tracking and conml of relative psilion. 

. . .  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

. .  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . .  . .  :-: : . : ; . . .  
.15 ' ' F. . . . . . . . . . . . . . . .  

. . . .  
0 5 lo  15 20 2& 30 35 40 45 M 

-20 

Fig. 6.  Measured con1acl farce during vision guided force control. 

,ginding tool, in contact with a metal box with dimensions 
40 x 40 x I O  cm. Experiments were first performed using 
two Sony digital cameras, and later repeated wirh an extra 
camera, using the resource allocation algorithm presented 
in [IS], see Fig. 5.  

Thc robot makcs stablc contact with the workpiece 
under vision guided impedance control, and when con- 
tact has been established the control switches to parallel 
visionlforce control as described in Section n-D, while 
the tool moves across the surface at around 10 m d s .  
The resulting force can be seen in Fig. 6. At time f = 3 
s the force reference was changed from 15 N to 25 N 
in the x-direction of the tool. At time f = 11 s the tool 
reaches a comer, and the force reference changes to 15 
N in the negative y-direction. 711e combined stiffness of 
the robot and surface was approximately 10 N l m ,  and the 
translational controller parameters were chosen as U = 0.1. 
D = I S a n d K = O .  

02rA o 1  . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  

'= 
.* . . .  
.I 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 
4 4 . 1  

. . .  

. . .  
. .  . . . . . . . . . . . . . . . . . . . . .  . .  . .  . .  . . .  

. . .  . .  . .  
4 2  : I :  ~ . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . .  . . .  

. .  . .  
I 8 3 , C # , I ,  , I  
0 5 10 15 20 30 35 40 45 50 7 s  

Fig. 7. 
Vision guided force control. 

Estimated tool transtalion (solid) and reference (dashed) during 

. . .  0015 
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b 
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Fig. 8. Estimated tool velccily during vision guided force conml. 

Fig. 7 shows the estimated position of the tool with 
respect to the target frame during the same experiment. 
Fig. 8 shows the corresponding estimated velocities. A 
small control error in the force controlled directions is 
caused hy the force control action, which makes the 
position dcviatc from thc nominal trajectory. 

Effecr of calibration errors: In the presence of calibra- 
tion errors AG in Eqs. (19)<21), the system properties will 
change. We assume that the error can be modeled as 

where the rotation matrix RA(S) corresponds to an orien- 
tation error S between the tracked frame and the actuated 
frame. In practice, the stability of the system is preserved 
for a11 reasonably small 6, but the servo propenies of 
the system may degrade considerably. Particularly, in the 
common situation when the position trajectory is a ramp 
along the surface, large force errors may occur in the force 
controlled directions, due to the high surface stiffness. 

We have simulated this effect in a typical scenario, 
where a hybrid controller with handwidth 5 rads in the 
vision controlled direction has been used, together with 
an observer bandwidth of 10 rads. The force controller 
bandwidth was 15 rads,  and the surface stiffness was I O  
Nlmm. Force control is applied in the x-direction, while the 
remaining degrees of freedom are vision controlled. The 
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Fig. 5. Simultaneous uacking of tool and workpiece, using WO Sony DFUV3W and one B a s k  AMlZfc digital cameras. 

calibration ermr R,(S) is given by a rotation of 6 = I"  
around the z-axis. x, was given by a constant velocity of 
v, = I O  m d s  in the ?-direction. The resulting stationary 
force error was 0.18 N, an error that scales approximately 
linearly with 6 and vy. 

IV. DISCUSSION 
The combination of force- and visual feedback is ideal 

for handling envimnments with geometric uncertainties on 
different scales, where the force controller is responsible 
for accurate control of the contact force, while the vi- 
sual control handles of the overall guidance of the tool. 
Experiments show that the system is able to follow low 
speed trajectories with an accuracy of around 1 mm, 
while accurately controlling the contact force. The force 
control achieves tracking .with rise times of under 0.2 s 
in stiff environments, so that the force control can quickly 
compensate for deviations from the nominal geometry. At 
higher speeds along the surface, calibration errors may 
cause large errors in the contact force, and the effects of 
geomcvical dcviations in the workpiccc will increase. 

By tracking multiple objects and controlling the relative 
position, we can theoretically achieve surface following 
with an accuracy that is independent of the calibration 
accuracy of the work cell. The price we pay is the use 
of external sensors such as cameras for position control. 
The robustness of camera sensing is still problematic, 
since phenomena such as occlusions, reflections, poor 
lighting or limited fields of view could cause signal loss, 
or degradation of measurement accuracy. Robustness in- 
creases considerably with the number of cameras 151, and 
using multiple low-cost cameras could be a cost effective 
solution for tasks in uncalibrated environments. 

v. CONCLUSIONS 

In this paper we have demonstrated how to achieve high 
performance six degree-of-freedom combined visiodforce 
control for interaction with a stiff uncalibrated environ- 
ment. A pmcess with linear dynamics in task space, 
is used together with a standard edge-based rizid body 
tracker, which gives a locally stable observer with linear 
error dynamics. The effect of error sources such as image 
measurement noise and geometrical calibration errors are 
considered. Finally, experiments and simulations are used 
to validate the approach. 
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