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Abstract. This paper suggests a number of facts related 
to the modeling and output feedback stabilization of 
the Moore-Greitzer compressor model. It shows how to 
integrate the stall dynamics, and how to use this for further 
output stabilization of the model. 

I. INTRODUCTION 

This note is devoted to revealing some properties of a 
nonlinear control system - the so-called the Moore-Greitzer 
model [3] ,  [2]- which has been extensively used as an 
approximation for describing compressor dynamics 

- (' + ')' - 3R(1 -+ 4) (1) d - 4  = -$J+-'+ 
dt 2 2 

d 
dt 
--R = --eft* - ~ R ( 2 4 +  d2) , R(0) 2 0 (3) 

v = +  (4) 

Here U is the controI variable to be defined, y is available 
measurement, U > 0. The main contribution of the note 
comes from the observation that the dynamics of R-variable 
(the stall variable) in (1 j ( 3 )  could be eliminated, and the 
value of R(t) could explicitly be written as a function of 
d ( t )  and R(0). As a direct consequence of this fact we 
can suggest new sufficient conditions for output feedback 
stabilization of ( l t ( 3 ) .  

Proof - Direct verification in (3). 
The possibility to integrate the stall equation (3) can be 
used in a number of ways. The next statement suggests an 
idea of output feedback stabilization for (1 j ( 3 )  based on 
this integrability 

Theorem 2: Assume that: 
1) (Case R(0) = 0) The output feedback controller 

makes the surge subsystem, that is (1)-(2), globally 
exponentially stable; 

2) (Case R(0) > 0) The controller (6) ensures the 
boundedness of solutions of the closed-loop system 
(1)-(3), (6) and the validity of the following constraint 

along a solution of (1)-(3), (6). 
Then all solutions of the closed-loop system (lf(3), (6) 
tend to the origin of ( l t ( 3 )  as t + 00. U 

The condition (7) could be weakened so that the function 

(8) 
t 

- Jd  (#%) 4- 2 W )  dT 

is allowed to grow to +cm but in a way that the integra1 
of its exponential is growing faster than the exponential of 
this function itself. For example, if 

- .6" { @ ( T )  + 24(7)) d r  = klog(l+ t )  (9) 

with some constant k > 0, then the function (5) is 
11. MAIN RESULTS 

Theorem I: Given a constant R(0) 2 0 and a scalar 
function 4(t), the corresponding solution of the differential 
equation (3), if exists, looks as follows 

R(0) exp(ak)(l + t )  R(t) = 
1 + aR(0) [ exp ( a k )  (1 4- s)ds 

R(0) exp (d) (1 + t )  

1 + aR(O) exp(uk) - 

with lim R(t) = 0, while the conclusions of Theorem 2 
remain valid. In turn, it precludes the cases with linear 
growth'. Indeed, if (8) is growing linearly, that is 

- - 
(1 + t ) 2  

R(O) exP (---(T J 0 {#2(7) + 2#(+)) d7) 2 
t 

R(t) = 
t-+oq l+uR(O)Sexp ( - O ; { $ ~ ( T )  + 2#(7)} dT)ds 

0 0 
(5) 

t 

- / {$*(TI  + 2 w )  d7 = kt  (10) Anton Shiriaev is with the Dept. of Applied Physics and 
Electronics, Umea University, SE901 87 Umei, Sweden, 
anton. shiriaev@tfe .mu. se. Rolf Johansson and 0 
Anders Rokrtsson are with the Dept. of Automatic Conwl, 
LTH. Lund University, Box 118, SE-221 00 Lund, Sweden, 'The function in (8 )  cannot grow faster than tinearly because the 
{Rolf .Johansson/Anders .Robertsson)@control. lth. se. controller ( 6 )  ensures (he boundedness of closed-loop system solutions. 
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with some constant R > 0, then the function (5) is 
R(0) exp (ah!) 

R(t) = 

1 +uR(0)JIexp(uhs)ds  0 

- R(0) exp (ukt )  
- 

Hence, lim R(t) = IC that corresponds to an additional 
equilibrium of the system (1H3) different from the origin. 

As suggested in Theorem 2, output feedback controller 
design for (1)-(3) could be done firstly for the surge 
subsystem (1)-(2). The next statement suggests a range of 
dynamical output controIlers for this purpose. 

Theorem.3: Consider any constants 71-/y4 such that the 
inequalities 

t-+m 

are valid. The set of such parameters 71-4 in (1 1) is not 
empty. Take a dynamical output controller (6) of the form 

= A,$ + x2z + a, (1 - (1  + c& + c z ~ ) 3 )  (12) 

- 2 = A ~ I ~  i x4z -t aZ (1 - (1 t C+TJ + w ) ~ )  (13) 
d 
dt 

with the parameters A2 = yl, a, = y3, c$ = y4, cz = 3 

AI ’7’2+7174 

(14) 
(i ;) Y4” 

3 74 

A3 = -(y1-1)+’7’4 P 
+ 3{Tl - 1) 

- + -  - 1  

A4 = 

Then the closed-loop system (l), (2), (121, (13) with R(t) E 

0 is robustly globally exponentially stable. 

Proof of Theorem 3 follows from the Circle criterion 
applied to the closed-loop system (l), (2), (12), (13) with 
two infinite sector quadratic constraints. As shown, it is 
valid for any parameters A’s, a’s and c’s of dynamical 
controlIer (12), (13) mentioned i n  (111, (14). More details 
could be found in [l]. Below we have put some additional 
details on properties of the dynamical feedback controllers 
(12x13) applied for the Moore-Greitzer model (1)+3). 

Fact I: If a chosen output controller (121413) ensures 
quadratic stability of the surge (+$) subsystem (I) ,  (2), (4), 
then any solution of the closed-loop system (1)-(4) does not 
expire in finite time. 

Fact 2: If a chosen output controller (12)-(13) ensures 
quadratic stability of the surge (#-$I subsystem (l), (2), (4), 
then the variable R is always bounded along any solution 
of the closed-loop system. Furthermore, for any solution 
of the closed-loop system there exists a time T such that 
R ( t )  E [O, I] for all t 2 T.  

Fact 3: If a chosen output controller (12)-(13) ensures 
quadratic stability of the surge (&$) subsystem (l) ,  (2), 
(41, then for any solution 4(t) = # ( t , t O , # D ) ,  $(t) = 

closed-loop system (1)-(4), (12)+13) there exists a time 
TO 2 t o  such that for any TZ > TI 2 TO the following 
inequality holds 

* ( t ,  to,  do),  R ( t )  = w, t o ,  &), &) = 44 to ,  tal of the 

Fact 4: If a chosen output controller (12)-(13) ensures 
quadratic stability of the surge (&$) subsystem (l), (2), 
(4), then any solution of the closed-loop system (1)-(4), 
(12 j ( 1 3 )  is bounded. 

Fact 5: Suppose that a chosen output controller (12)- 
(13) ensures quadratic stability of the surge (&$) subsystem 
(l), (2), (4). Consider a solution [ d ( t ) ,  $(t), R(t), z ( t ) ]  
of the closed-loop system (1)-(4), (12)-(13) with 

lim R(t) = 0, then the limit relations 
t--.tm 

lim 4( t )  = 0, lim $ ( t )  = 0, lim z ( t )  = 0, (16) 
t++m t-++cc t++m 

hold. 

111. CONCLUSIONS 
This note has two contributions. Firstly, it is shown 

how to integrate the stall variable in the Moore-Greitzer 
compressor model, and how this could be helpful for the 
controller design and system stability analysis. Secondly, it 
suggests a new class of dynamical output controllers for the 
surge subsystem, and reveais their properties. 
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Fig. 1. 
for 
exponentially IO the origin in the noise free case). 

Simulation of the closed-loop system [U), (21, (121, (1311 
= 0 with measurement noise added. (The solution converges 
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Member, IEEE 

A~s*Qc~-  Tbi paper presents a new procedure for the 
design of controllers to damp electromechanical oscillations in 
power systems. The new procedure is derived from a 
previously developed methodology, which can simultaneously 
salisfy a number of practical requirements for this type of 
controller, such as robustness, decentralization, zero steady- 
state gain and output feedback structure. However, the 
original methodology eventually yielded controllers with high 
gain in the electromechanical frequency range (due to the 
formulation of the control design as a feasibility probkem). 
Controllers with lower gains (desired for practical reasons) 
are provided by this new procedure, wbich formulates the 
frst stage of the design algorithm as an LQR problem. The 
tests show that the designed controllers are able to provlde 
adequate damping for both local and inter-area modes. 

I. INTRODUCTION 

liNCE the early ~ O ’ S ,  the presence of sustained, low S fiequency electromechanical oscillations in power 
systems has been a mjor  problem for engineers and 
researchers in tbis field. These oscillations usually place 
restrictions in the amount of power that can be transferred 
across strategic transmission lines. For this reason, the use 
of controllers to adequately damp these oscillations is often 
required, as a cost effective alternative to building new 
lines. 

The most used procedure for designing such controllers 
was developed in the late 60’s [I], and has been improved 
since then 121, [3]. This procedure is based on the classical 
control technique of phase compensation, applied over a 
simplified, linearized power system model, know as the 
Heffion-Phillips (HF’) model. Controllers designed by this 
methodology are called Power System Stabilizers (PSSs), 
and t lus technique is referred to as the classical PSS design. 

There are some major disadvantages associated to this 
classical procedure. First of all, as the operating point of 
the power system drifts away from the nominal one, the 
performance.of the classical PSS degrades. The highly 
nonlinear behavior of the system contributes to worsen this 
problem. Besides, the oversimplification of the system 
dynamics involved in the HP model discards some 
important modes of oscillation, such as the inter-area 
modes. To deal with this problem, a procedure called 
tuning is employed aposteriori in the classical PSS design. 

After the controller is designed, its parameters are 
empirically adjusted, aiming to maximize the controller 
phase margm in the fiequency range of interest. Due to its 
empirical nature, the success of this procedure strongly 
depends on the designer’s experience and knowledge of the 
system. 

To avoid these drawbacks of the classical PSS design, 
several alternative methodoIogies have been proposed in 
the past few years, most of them employing recently 
developed robust control techniques [4], [5 1. However, 
such methodologies rarely come to the field, with a few 
exceptions (such as [ti] or [7], for example), because they 
cannot simultaneously satisfy all the practical requirements 
of the oscillation damping problem. 

The methodology presented in [XI (which will be 
referred to as the original methodology, in this paper) was 
developed having this consideration in mind, The 
simultaneous fulfilling of the most important practical 
requirements of the problem was the motivation for the 
development of the design procedure. However, due to its 
formulation of the controller design as a feasibility 
problem, the original methodology eventually provided 
controllers with high gain in the electromechanical 
frequency range. 

This paper presents a new procedure, based on the 
original methodology, where the controller gain issue was 
treated as an LQR problem in the first stage of the design. 
With this new feature, controllers with smaller gains 
(comparing to the ones provided by the original 
methodology) are obtained. Such smaller gains are 
necessary to avoid controller interactions with non- 
modeled dynamics, such as torsional or interplant modes. 

The presentation of the new procedure is structured as 
follows: section I1 brings a summary of the main features 
of the original methodology; section I11 explains in detail 
how the controller gain problem was approached in the 
new procedure; the complete design algorithm is given in 
section IV; finally, section V presents some results 
obtained with the controller tests, and section VI brings a 
few concluding remarks. 

11. SIJMMARY OF THE ORIGINAL. METHODOLOGY 

The main features of the original methodology are 
summarized in this section. This presentation is intended as 
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a succinct explanation of the main points of the 
methodology. A more rigorous and detailed treatment of 
each of these points, as well as the orig i~ l  algorithm, can 
be found in 183 and [9]. 

Since the fulfilling of the practical requirements was the 
driving idea behind the development of the original 
procedure, this explanation will follow a comprehensive 
sequence oriented by the requirements, instead of 
explaining the algorithm flowchart itself. 

A. &@ut Feedback Structure and Zero SteaLjr-State 
Gain 

The implementation of controllers with state feedback 
structure in power systems faces some difficulties, most of 
them related to the need of a common angular reference for 
the rotor angles. For th is  reason, the fmt requirement to be 
considered is a dynamic output feedback structure for the 
controllers, which avoids the cited drawback. 

After a linearization around an operating point, the 
power system can bc modeled by: 

X=Ax+Bu (1) 
y = c x  (2) 

In (I)-@), x E R" is the state vector (in this work, 
composed by the rotor angles, the rotor speeds, the 
quadrature axis voltages and the field voltages), U E RP is 
the input vector (containing the stabilizing signals) and 

y E R' is the output vector (composed by the derivatives 
of the rotor speeds of the selected machines, in this 
particular work). All variables here denote deviations with 
respect to an equilibrium point. 

An output feedback controller for (1)-(2) can be 
described by 

X, = A,x, +BJ (3) 

U = c,x, (4) 

& i z  ( 5 )  

where X, E R" is the state vector of the controller. The 
closed loop connection of (1)-(2) and (3)-(4) is given by 

where 

and % E R2" is a state vector containing both the states of 
the plant (1)-(2) and the controller (3]-(4), respectively. 
With these definitions, the problem of stabilizing (1)-(2) 
with a controller of type (3)-(4) can be solved by hding 

matrices A,, B, , C, h d  > 0 such that 

XTF + K i  < 0 (7) 
As pointed out in 191, the definition of the rotor speed 

derivatives as the output variables is sufficient to gyantee 
zero gain in steady-state conditions. Moreover, these 

derivative terms can be included in the controller transfer 
fuaction, so the actual measured variables will be the rotor 
speeds, rather than accelerations. 

One major disadvantage of this approach is the fact 
that equation (7) is bilinear in the matrix variables 
A,, Bc and C, . In subsection II-C, a differeat formulation 
is presented, allowing the solution of this problem with a 
set of Linear Matrix Inequalities (LMIs). 

B. Robustness with Respect to Variations in the 
Qeruting Conditions 

A power system is subjected to daily, unpredictable 
variations in its operating point. In this sense, it is 
important that the damping controllers behave with similar 
effectiveness, irrespective of the operating conditions. 
However, classical controllers are designed based on a 
linearized model, and therefore their performances are 
guaranteed only in a small neighborhood of their nominal 
equilibrium points. To extend this performance guarantee, 
this methodology employs a technique called polytopic 
modeling. 

The polytopic model uses a set of L models (1)-(2), 
which can be obtained, for example, fiom the load variation 
curves of the respective power system, The models in this 
set constitute the vertices of a convex set, called polytope. 
Expressing the closed loop connections (as shown in item 

a)) by Aj,i = l,...,L, the methodology will then search 

for matrices A,, B, , C, and 9 > 0 such that 

- 

- N -- 
A;P+PA, < O  (9) 

As a benefit, given by the convex structure of the 
polytopic set, the controller described by matrices 
A,,B,and C, will stabilize all the linear models 
contained in this set [lo] (which might correspond to 
intermediate operating points of the power system, not 
considered in the design). This characteristic of the 
polytopic model provides the desired robustness to the 
controllers given by the original methodology. 

C. Decenpalized Structure 
In large power systems, it is common to find 

electrically coupled plants separated by large gwgraphicaI 
distances. This fact turns unfeasible most of the proposals 
for centralized controllers with fast dynamics, due to the 
difficulties for implementing reliable remote feedback 
links. For this reason, decentralization becomes another 
practical requirement, which was treated by the original 
methodology. 

Decentralization constraints can be easily handled in 
formulation (1)-(4) with the imposition of block diagonal 
structures of appropriate dimensions for matrices 
A,,B,andC,. These block diagonal structures will 
ensure that the controller of a particular generator will be 
based ody on its own input and output. 
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As mentioned in subsection U-A, the presented 
formulation involves bilinear matrix inequalities. This fact 
bas discouraged many research proposals based on the 
cited formulation for several years. Recently, however, a 
new parameterization, introduced in 1111 and extended to 
the power system damping problem in [SI, allowed the 
solution of this problem with a set of LMIs. 

To obtain this new formulation fiom equation (7), it is 
necessary to define the following partitions: 

k=[  x u  ],F-'=[ '1 (10) 

UT x, vT Y, 
New variables are also defined 

L = C,VT;F = UBc;M = VAfUT (11) 

(12) 
It is possible to show [ll] that, with these new 

variables, equation (7) can be rewritten in the equivalent 
form 

[ AP + PA +FC + ST ATX t xG+ FC +CTF' 
where 
(see the design algorithm in section rv) by the solution of 

p = y-';S = Y-'M 

PA+ATPtCTFT+S < o  (13) 1 
- 
ATP + PA 

= A + Bc, ,  with c, = LY-' given U priori 

YAT+AY+BL+LTBT < O  (14) 
One can see that the new equations (13) and (14) are 

now LMIs in the matrix variables Y ,L ,XI F , S andP . 
This fact allows the application of LMI solvers to seek for 
solutions of the problem, fiom which the controller 
matrices are obtained. These solvers have already given 
good results for other similar control problems, 

Instead of setting up such equations for a single 
system model, it is possible to write them for all the 
vertices of a polytopic power system model. The 
transformation of each vertex equation (9) to its equivalent 
LMIs (13) and (14) allows the development of a robust 
design methodology. . 

D. Minimum Damping Guarantee 
The most used index to evaluate the small-signal 

stability of a power system is the minimum damping ratio 
among all modes of oscillation. The final performance 
evaIuation of the controllers in such systems is carried out 
by inspection of their effects over this minimum damping, 
calculated for a number of operating conditions. However, 
in the classical PSS design, there is no guarantee that a 
certain overall damping will be achieved. If this criterion is 
not met, the controllers must be redesigned and rechecked, 
in a trial-and-error process that incorporates some 
heuristics from the designer's experience (the tuning 
process). 

One of the great advantages of the original 
methodology over the classical PSS desi@ is the 
possibility to include an overall minimum darnping ratio as 
a design objective, so the designed controliers can 

automatically guarantee a satisfactory small-signal stability 
index. This feature of the original methodology eliminates 
the need for a trial-and-error process. 

In this work, the performance criteria are defined 
based on the concept of D-stability [ 121. According to this 
concept, a matrix Ai is D-stable if all of its eigenvalues 
are contained in the region shown in figure 1, called region 
D (which contains all modes with < I CO, where 6 
stands for the damping ratio and CO is a predefined 

minimum value). In this case, D-stubility of the matrix Ai 

can be assured by the existence of a matrix P > o  
satisfying 

M 

w 

U 

where 8 is the angle defined in figure 1. 

\ \ Th 
Region for 

Figure 1. Minimum damping region for pole placement. 

Recalling the notion of a polytopic model, if we set up 
one equation io the form (1 5 )  for each vertex system in a 
polytope, we can ensure a mini" damping ratio for all 
modes of all system models contained in this polytope. So, 
using this formulation, it is possible to guarantee that, once 
the controllers are found, the desired small-signal stability 
criterion is automatically met. 

m. h&NlMEATION OF THE FEEDBACK GAIN 

As mentioned earlier, the original methodology 
formulates the controller design as a feasibility problem, 
and LMI solver is applied to find a feasible solution to this 
problem. Since any controller satisfjmg all requirements 
provides a feasible solution, there is no way to predict or 
control which solution will be provided by the solver. 
Eventually, controllers with high gains in the low 
fkequency range are provided. However, high gain 
controllers have a bigger probability of interacting with 
non-modeled dynamics, such as torsional modes (torsional 
interactions along the generator shaft) or interplant modes 
(different units of the same facility oscillating against each 
other). 

Modeling these dynamics would significantly increase 
the computational burden of the design, since it would 
involve the addition of many new state variables to the 
system model. The alternative, then, is to modify the 
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original methodology aiming to obtain the controllers with 
smaller gains that still satisfy all practical requirements. 

A careful look at sections 11-A and 11-C reveals some 
insights of the original methodology. In equations (1)-(2) 
and (3)-(4), it is possible to see that matrix c, acts as a 
state feedback matrix, generating the input signal for the 
plant ffom the controller states. This matrix is obtained as a 
solution of equation (14), which comes from a particular 
formulation of the state feedback problem. In other words, 
the frst stage of the design procedure can be considered as 
a conventional state feedback design, while the second 
stage can be viewed as the design of the controller 
dynamics (defined by matrices A, and Bc), to generate 
estimates of the plant states. 

ContruI effort and controller gain are closely related. 
when solving the well-known Linear Quadratic Regulator 
(LQR) problem, the designer seeks for a state feedback 
matrix that minimizes the control effort, given an arbitrary 
initial state x, [IO]. So, this idea can be adapted to the 
original methodology, generating the new procedure, in 
'which the fmt stage now seeks for a matrix c, that would 
minimize the control effort in a state feedback framework. 

An additional difficulty is the fact that the initial state 
(consisting of deviations from an equilibrium point) is not 
usually known in advance. Nevertheless, the LQR problem 
can be extended to the case where X, is known to belong 

to an ellipsoid @ = kTw$ 5 I), with a proper definition 

of matrix W. This extended LQR problem can then be 
formulated as [lo]: 

minimize h 
subiect to 

L T ] < O  (17) 
YAT +AY+BL+LTBT 

L - I  
So, adding a couple of restrictions in the form (16)- 

(17) for each vertex system A,,i  = l,...yL, and replacing 
the feasibility solver by a linear objective " k t i o n  
solver, it is possible to add a control effort minimization 
feature to the first stage of the procedure. Our results 
indicate thai this approach is effective in reducing the 
controller gain in the desired frequency range. 

The next section rearranges all the previously 
explained concepts in an dgorithm, constituting the 
proposed new design procedure. 

- 

w, ALGORTTHM OF THE NEW DESIGN PROCEDURE 

The following general stages and steps constitute the 
algorithm of the new design procedure; 
STAGE I 
Step 1-1: Build equations of type (16) and (17) for each 
vertexsystem Ajyi=ly. .+,L; 
Step 1-2: Choose a value for the desired minimum damping 
ratio <, and calculate 8 = arccOS<O ; 
Step 1-3: With the calculated value of 8 ,  build one 
equation of type (15) for each vertex system 

Ajy i= l ,  ...,L, and transform them to their equivalent 
LMIs in the form (14); 
Step 14: By a minimization of h , find Y and L that 
satisfy all equations in the form (1 4), ( 16) and ( 17); 
Step 1-5: Calculate the controller matrix C, = LY-' . 

- 

U 

STAGE II 
Step U-1: Calculate Ai = Ai + B,C, for i = 1, ..., L ; 
Step II-2: With the same 8 calculated in step 1-2, build 
one equation of type (15) for each vertex system 

A,,i = l,,,.yL and transfom them to their equivalent 

LMIs in the form ( 1  3) (using the respective Ai ); 
Step IL-3: Find X , F , s and P satisfymg all equations in 
the form (13); 
Step II-4: Calculate the controller matrices 
B, = (P - X)-'F and A, = (P - X)-'P-'sP. 

- 

The calculations in steps 1-5 and 11-4 foIlow ftom the 
definitions given in equations (10)-(12). Matrices 
A, , B, and c, define all the damping controllers for the 
system. Each local controller can be then converted to the 
form of a transfer function. 

v. TESTSANDRESVLTS 

To test the ability of the controllers to provide 
damping for both local and inter-area modes, a benchmark 
system (where both types of modes are clearly 
distinguishable) was used. This system can be viewed in 
figure 2, and complete data for its model can be obtained 
ftom [13]. 

Area i Area 2 
t 

Figure 2. Diagram of the test system. 

4470 



Changes of f10% in the load levels L1 and L2 were 
used to vary the operating point of the system, generating 
the vertices of the polytopic model for this system, In all 
the operating points, generator 3 was considered as an 
infinite bus, to provide an angular reference for the system. 
This procedure generated the vertex systems shown in table 
I, where the base case was also taken as a vertex. In this 
table, PHe represents the real power flowing across the 
double-circuit line 7-9, in MW. Bus 8 is fictitious, and was 
included to facilitate the simulation of a short circuit in the 
middle point of the lower circuit of line 7-9. 

Table I. characteristics of the vertex systems 

Load Level 1 pa, I Inter-area k I % l  I 
\ 1 

I 
I -  - I Mode 

Base Case 1391 I -0,0068~jI1,9310 10,0035 
\ 
\ 
\ 
1 

', 

The algorithm given in section 4 was applied to the 
polytopic model described in Table I, with c,, = 5% 
chosen as the required minimum damping ratio, To defme 
the ellipsoids of initial conditions, the following limits were 
specified for the deviations with respect to the equilibrium 
values, expressed in the state variables: 

AS, S 0.1745 rad ; Am, 50.01 ra&s (18) 

mii 5 0.1 p.u. ; mm S 2.5 p.u. (19) 

The whole design process took approximately 4 
minutes and 17 seconds (in a computer equipped with a 
Pentium III 750 MHZ processor and 64 MEi of RAM) and 
yelded the following transfer functions for the robust 
damping controllers (called RDCs from now on): 

s (s +155.30) (s* + 38.03s + 39850) 
(s + 0.12) (s + 157.40) (s + 91.95)(s+ 14.95) 

RDC,(S)  = 224.14- 

1 

S (S + 133.60) (S - 25.15)(~ + 20.83) RDC,(s) = -733.26- 
(S + 0.11) (S -+ 88.71) (s' +170.90s + 11400) 

s (~+176.60) (~-29.58)(~+21.17) 
RDC,(s) = -229214- 

(s+ 0.19) (s+48.42) (s* +702.10~+198200) 

The evaluation of the design results started with a 
linear analysis of the closed loop system. The eigenvalues 
of the closed loop vertex systems, plus other 12 
intermediate operating conditions (combing variations of 
+2.5%, f5% and f7.5% in both loads), were calculated and 
plotted in figure 3. Vertex system poles are highlighted in 
red. The transversal lines represent the loci of the modes 
with CO = 5%.  It can be seen that the required minimum 

damping was achieved in all operating conditions 
considered in this test. 

To evaluate the performance improvement given by 
the designed controllers, classical PSSs were tuned 
(according to the guidelines given in [Z]) for the test 
system. Equal PSSs were used for all generators, due to the 
symmetric structure of this system. The transfer function of 
the tuned PSSs is given in equation (201, and figure 4 
presents a comparison between the Bode diagrams of the 
designed RDC (in blue) and the tuned PSS (in green) for 
generator 4. 

s (S + 2.86) (S f 2.86) (20) PSS(S) = 40.00 
(s 4- 0.10) (s + 3.45) (s i- 3.45) 

4 t  'l, I i 

-5 -4 3 -2 .I 0 
Real 

Figure 3. Poles of the test system (closed loop). 

The Bode diagram of an RDC designed by the original 
methodology (identified as ORDC, in red) is also shown in 
figure 4. It can be seen that the gain of the RDC designed 
by the new procedure is smaller. It must be remembered, 
however, that the RDCs have to fulfill some robustness 
requirements, so their gains cannot be arbitrarily reduced in 
the minimization process. 

Bode Diagram 
,wr ' ' " I 

n I  I 

roo 1 0' 
Frequency (radlscc) 

Figure 4. Comparison of controller Bode diagrams. 

Nonlinear simulations were then carried out to 
validate the results of the linear analyses. Figure 5 shows a 
comparison between the responses of the system, when 
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controlled by classical PSSs or by the proposed RDCs. A 
three-phase short circuit was applied to bus 8, in t=2s, and 
isolated from the system by the protection relays in 
F2.032~. After 20Oms, the short circuit is removed and the 
lines are reconnected to the system in e2.232~. The small 
duration of this perturbation ensures that the operating 
point of the system does not drift too far away fiom its 
original equilibrium. In t b i s  simulation, the system was 
operating with +7.5% of power in both loads, with respect 
to the base Case Ievels (which defined the nominal 
operating point €or the PSS design). Although the 
performances of the system with PSSs and RDCs are quite 
similar, it can be seen that the RDCs provide faster 
stabiIization of the rotor speeds. It must also be remarked 
that the RDCs were designed at once by the new procedure, 
while the design of the PSSs required the trial-and-error 
process involved in the tuning procedure. 

Other tests were carried out to evaluate the 
pdormance of the RDCs in different operating points, 
giving similar satisfactory results. All these tests were not 
shown here due to the limitation of space. 

Roteor speeds of generators 1,2 and 4 [+76% In had8 L? and U) 

I I 377.4 

377.3 

$ 377.2 
e 

PSSS - 
- 
; 377.g 

g 377 
0 

0 376.9 

376.8 

378.7 

h 

376.6l ’ I 
2 3 4 5 6 7 8  

lime(?+) 
Figure 5. Performance comparison of RDCs and PSSs. 

To check the performance of the new procedure with 
respect to computational burden, a second design was 
carried out over the New England system model [5J. The 
whole design process took approximately 66 minutes, in 
the same computer previously described, and the results of 
the linear and nonlinear analysis of the designed controllers 
were also satisfactory. It must also be kept in mind that 
damping controller design is an offline processp in the 
system operational and expansion planning stage. So, a 
large computational time is allowed, as long as it is fits in 
the pIanning schedule. 

VI. CONCLUSIONS 
This paper presented a new procedure for designing 

controllers to damp electromechanical oscillations in power 
systems. The new procedure results from an improvement 
over a previously developed methodology, which was able 

to fulfill several practical requirements of the oscillation 
damping problem. However, this previous methodology 
eventually provided controllers with high gains, which are 
undesirable for practical reasons. The new procedure 
includes a control effort “ k i t i o n  stage, resulting in 
smaller gains in the fkequency range of interest. This is 
achieved via LMI optimization, with an extended 
formulation of the LQR problem. 

The obtained results showed that the new procedure is 
effective in providing controllers able to satisfy all the 
required specifications with smaller gains, when compared 
with the origina1 methodology. A comparison with classical 
PSSs also showed that the performance of the designed 
controllers is satisfactory. Moreover, the trial-and-errot 
process involved in the tuning of classical PSSs is not 
necessary with the new procedure, which constitutes one of 
the main advantages of this approach. Other improvements 
for the procedure are under research. Among them, the 
application of this procedure over reduced order models of 
real-sized systems is the main focus, so the procedure can 
be effectively used in the field. 
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