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Preface 

A common feature of cancers is the dysregulation of receptor tyrosine kinases (RTKs), 
caused for example by mutations or chromosomal amplification, or upstream 
dysregulation of factors that take part in regulation of the expression of RTKs, such as 
microRNAs. This thesis will provide an introduction to the Axl RTK and 
microRNAs, and their roles in renal cell carcinoma (RCC) and prostate cancer (PCa). 
Furthermore, the results and findings of my PhD student projects will be summarized 
and discussed. 

  



12 

  



13 

The Axl receptor tyrosine kinase 

Receptor tyrosine kinases 

Signaling through cell surface-bound receptors is an important means for individual 
cells to receive external signals and to respond appropriately to stimuli from the 
extracellular environment. These cell surface receptors are classified into different 
families, primarily based on their mechanism of signal transduction, the main 
receptor families being G protein coupled receptors, receptor tyrosine kinases (RTKs), 
integrins, ion channel receptors, and cytokine receptors (Uings, 2000).  

The RTKs are so-called enzyme-linked receptors, relying on extracellular binding of 
specific ligands and subsequent activation of an intracellular enzymatic domain to 
convey extracellular signals (Alberts, 2002). The most common mechanism of RTK 
activation is that upon binding of a protein ligand, most commonly a growth factor, 
the RTK dimerizes, enabling auto-phosphorylation of tyrosine residues in the 
intracellular kinase domain, which causes conformational changes and thereby enables 
the kinase domain to recruit and interact with downstream signaling mediators 
(Gschwind, 2004).  

Approximately 10 to 15% of all protein kinase genes in metazoan organisms are 
tyrosine kinases, and in humans 58 of the 90 tyrosine kinase genes are RTKs (Hunter, 
2009). The RTKs are regulators of important cellular processes, including survival, 
proliferation, differentiation and migration (Lemmon, 2010), and many RTKs have 
been shown to be key players in development; for example, knockdown of the 
epidermal growth factor receptor (EGFR) is associated with embryonic lethality and 
severe dysfunctions in the epithelial development of the skin, the lungs and the 
gastrointestinal tract (Gschwind, 2004). In the healthy resting cell, RTK activity is 
under tight control, however dysregulation or mutation of RTKs can cause abnormal 
receptor activation, associated with potent oncogenic activities which have been 
shown to play key roles in the development and progression of a large number of 
human cancers (Gschwind, 2004). For example, human epidermal growth factor 
receptor 2 (HER2) has been shown to be overexpressed in 30% of invasive breast 
cancers in humans, and the development of targeted therapies using humanized 
monoclonal antibodies to HER2 has improved the overall outcome for patients with 
HER2-amplified metastatic breast cancer tumors (Gschwind, 2004). 
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The TAM family of RTKs 

The TAM family of RTKs comprises the three receptors Tyro3, Axl and MerTK, 
which have similar domain structures, with two Ig-like domains and two fibronectin 
type III domains, as well as a conserved kinase domain (Graham, 2014). The genes 
coding for the TAM receptors were initially discovered in 1991, in a study using a 
polymerase chain reaction (PCR)-based approach to identify tyrosine kinase genes 
expressed in the developing rat brain (Lai, 1991). The same year, Axl was identified as 
an oncogene in two separate reports (Janssen, 1991, O'Bryan, 1991). Different 
aspects of Axl such as expression, regulation and function will be further discussed in 
the Axl RTK section. 
 

 

 

 

Figure 1 
The structure of the TAM (Tyro3, Axl, and MerTK) receptor tyrosine kinases. Image from Axelrod et. 
al., 2014. Reprinted with the permission of Oncotarget/Impact Journals. 
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MerTK was originally identified as a viral oncogene in an acute oncogenic avian 
retrovirus, and was named v-ryk (Jia, 1992) and its human equivalent MerTK was 
later identified in neoplastic B- and T-cells, and was named Mer due to its expression 
in monocytes, epithelial tissues, and reproductive tissues (Graham, 1994). In addition 
to being expressed in reproductive tissues such as testes, prostate and ovaries, MerTK 
is also expressed in kidneys and lungs, and to a lesser extent in the liver, small 
intestine, thymus, spleen, colon and in the placenta (van der Meer, 2014). MerTK is, 
together with its ligands Protein S and Gas6, involved in the phagocytosis of 
apoptotic cells (Lemke, 2013), and MerTK knockout mice become blind shortly after 
birth due to insufficient phagocytosis of shed rod outer membranes by retinal 
epithelial cells, eventually causing photoreceptor cell death (Duncan, 2003). 
Furthermore, MerTK knockout mice develop systemic lupus erythematosus (SLE)-
like autoimmune disease, possibly due to accumulation of apoptotic materials and 
decreased anti-inflammatory signaling by MerTK (Shao, 2011). Activation of MerTK 
by apoptotic cells has been shown to inhibit NF-κB activation and subsequent 
secretion of pro-inflammatory cytokines such as interleukin (IL)-12, IL-6 and tumor 
necrosis factor α (TNFα) (Graham, 2014, Sen, 2007). The extracellular part of 
MerTK can be shed from the membrane in a metalloproteinase-dependent process, 
yielding a soluble MerTK (sMer) protein which can function as a negative regulator 
of MerTK or TAM receptor activation by acting as a decoy receptor for the TAM 
ligands (Sather, 2007). The shed sMer is capable of inhibiting engulfment of 
apoptotic cells (Sather, 2007) and has been found to be increased in the serum of SLE 
patients, especially in those experiencing SLE flares or lupus nephritis (Wu, 2011). 
MerTK has been found to be overexpressed in a number of human cancers, such as 
melanoma, prostate cancer (PCa), breast cancer and gastric cancer (Verma, 2011). 
Expression of MerTK in a non-neoplastic breast epithelial cell line has been shown to 
stimulate efferocytosis and increase motility and chemoresistance, and it has been 
proposed that activation of MerTK by apoptotic cells could be a mechanism for 
immune suppression in cancer (Nguyen, 2014). Reduced thrombus formation and 
reduced platelet aggregate stabilization have been observed in MerTK knockout mice, 
indicating a role for MerTK in coagulation (van der Meer, 2014). In addition to 
Protein S and Gas6, three novel MerTK ligands involved in phagocytosis have 
recently been identified: Tubby, Tubby-like protein 1 and Galectin-3 (Cummings, 
2013).  

Human Tyro3 was first cloned and identified as an Axl-like RTK from human brain 
RNA, and was initially named Rse (Mark, 1994). Tyro3 is predominantly expressed 
in the central nervous system (Lai, 1994) but is also expressed in kidney, lungs, 
ovaries, testes, breast, retina, platelets, osteoclasts and monocytes and macrophages 
(Pierce, 2014). Like MerTK, Tyro3 is involved in phagocytosis of apoptotic cells, and 
knockdown of Tyro3 is associated with reduced phagocytic capability, especially in 
dendritic cells (DCs) but also in macrophages (Rothlin, 2015). Tyro3 has been shown 
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to be overexpressed in a number of human cancers, including lung cancer, PCa, 
multiple myeloma, and melanoma (Graham, 2014) and in PCa the Tyro3/Axl 
expression axis has been proposed to play a role in regulating dormancy of 
disseminated tumor cells in the bone marrow (Taichman, 2013). 

Gas6 and Protein S 

Upon their discovery, the TAM family receptors were orphan receptors with regard to 
the fact that their ligands remained unknown. In 1995, the Vitamin K-dependent 
proteins Protein S and Gas6 were identified as ligands for Tyro3 and Axl, respectively 
(Stitt, 1995, Varnum, 1995). Gas6 has been found to be able to bind to and 
stimulate all of the TAM receptors, whereas Protein S has yet only been confirmed to 
bind Tyro3 and MerTK (van der Meer, 2014). 

Protein S was originally identified in 1977 (Di Scipio, 1977) and is primarily known 
as an anticoagulant protease regulator, acting as a cofactor to activated Protein C 
which regulates the activity of the procoagulant proteins Factor V and Factor VIII in 
the blood coagulation cascade (Dahlback, 2000). In addition, Protein S has been 
shown to take part in the phagocytosis of apoptotic cells (Anderson, 2003, Prasad, 
2006) as well as regulation of cell survival and proliferation (Benzakour, 1995, Liu, 
2003, Tomobe, 1996), and regulation of the inflammatory response (Lemke, 2008, 
Suleiman, 2013).  

Gas6, or growth-arrest-specific 6, was first identified in 1988 as a gene expressed in 
growth-arrested cells (Schneider, 1988) and was later found to be a Vitamin K-
dependent protein with homology to Protein S (Manfioletti, 1993). Gas6 shares 43% 
sequence homology to Protein S, and the two proteins have the same structure, with 
an N-terminal γ-carboxyglutamic acid (GLA) domain, followed by a loop region, four 
EGF-like repeats, and a sex hormone-binding globulin-like structure which contains 
two laminin G (LG)-like domains (Hafizi, 2006). The GLA domain requires post-
transcriptional γ-carboxylation of glutamate residues, which is a Vitamin K-
dependent process, to form complexes with calcium ions that enable the GLA domain 
to interact with negatively charged phospholipid membranes (Hafizi, 2006). Proper 
γ-carboxylation of the Gas6 GLA domain has been indicated to be essential for Axl 
binding and activation (Hasanbasic, 2005), although the GLA domain does not 
interact directly with the TAM receptors upon binding and activation (Bellido-
Martin, 2008). While most of the Vitamin K-dependent proteins are synthesized in 
the liver, Gas6 is in contrast expressed to a greater extent in heart, kidney, and lungs, 
and in endothelial cells, vascular smooth muscle cells, and in the bone marrow (van 
der Meer, 2014). 
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Gas6 has been indicated to be involved in platelet activation and thrombus 
stabilization (Cosemans, 2010), and Gas6 knockout mice are protected from venous 
and arterial thrombosis (Angelillo-Scherrer, 2001). Gas6 is present in the α-granules 
of mouse platelets and is released upon platelet activation, however human platelets 
do not contain Gas6 (Balogh, 2005) although Gas6 mRNA transcripts have been 
found in human platelets (Angelillo-Scherrer, 2001). Although Gas6 is undetectable 
in human platelets, Gas6 secreted from other sources may take part in coagulation, 
and indeed the plasma levels of Gas6 are increased in patients with venous thrombosis 
(Blostein, 2011). While Protein S is an abundant serum protein, of which 
approximately 70% circulates in complex with the C4-binding protein (Dahlback, 
2000, Hafizi, 2006), Gas6 is present at much lower concentrations, approximately 
0.2 nM (Balogh, 2005), and is complexed to soluble Axl (sAxl) in circulation 
(Ekman, 2010). 

Axl RTK 

Axl, named after the Greek word anexelekto, meaning uncontrolled, was originally 
discovered as a transforming gene in patients with chronic myeloproliferative disorder 
and chronic myeloid leukemia (Janssen, 1991, O'Bryan, 1991). Since its discovery, 
Axl has been shown to be overexpressed in a large number of human cancers, 
including lung cancer, breast cancer melanoma, renal cell carcinoma, prostate cancer, 
osteosarcoma, and pancreatic cancer (Graham, 2014).  

Structure, expression and regulation of Axl 

The Axl gene is located on position q13.2 on chromosome 19, and exists in two 
isoforms due to alternative splicing of exon 10 (O'Bryan, 1991). Axl can be expressed 
in either a partially or a fully glycosylated form, with a molecular weight of 
approximately 120 kDa and 140 kDa, respectively (O'Bryan, 1991).  

The extracellular domain (ECD) of Axl contains two Ig-like domains, which 
primarily take part in binding to Gas6 via the LG domain (Sasaki, 2006), and two 
FNIII domains, which have been attributed adhesive properties as these domains can 
be found in cell adhesion molecules (Axelrod, 2014). However, the adhesive 
properties of Axl seems to be dependent on context, as reports have indicated that Axl 
can mediate cell-to-cell adhesion in some contexts, such as in aggregation of lung 
cancer and myeloid cell lines as well as in schwannoma (Ammoun, 2014, McCloskey, 
1997, Wimmel, 2001), while loss of Axl expression in contrast seems to increase cell-
to-cell adhesion in cutaneous squamous cell carcinoma cell lines (Cichon, 2014). 
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A soluble form of Axl, sAxl, can be formed by extracellular proteolytic cleavage of Axl 
immediately outside of the transmembrane region (O'Bryan, 1995). The sAxl 
fragment contains the full ECD of Axl, while the transmembrane region and the 
intracellular domain remain in the cell membrane, and cleavage of Axl to sAxl has 
been proposed to be a mechanism for down-regulation of the kinase activity of Axl 
(O'Bryan, 1995). Furthermore, the sAxl fragment itself has been shown to be able to 
inhibit Gas6 signaling through Axl (Costa, 1996, O'Bryan, 1995), and sAxl correlates 
inversely with Gas6 in multiple sclerosis lesions (Weinger, 2009). In addition, an Axl-
ECD construct resembling sAxl has been shown to inhibit the cell-to-cell adhesion of 
myeloid cells (McCloskey, 1997). In this context, it is noteworthy that all of the Gas6 
in circulation is complexed to sAxl, indicating that although Gas6 is present in 
circulation, it is not available for TAM receptor stimulation (Ekman, 2010).  

The kinase domain of Axl is highly conserved and homologous to several other RTK 
kinase domains, although it contains an unusual KWIAIES sequence (O'Bryan, 
1991), which also can be found in MerTK, while the isoleucine residues are 
substituted with leucines in Tyro3 (Graham, 1994). 

Axl is ubiquitously expressed and can be found in several human tissues, including 
hematopoietic cells such as platelets, DCs and macrophages as well as hematopoietic 
progenitor cells, and also in the kidneys, heart, endothelium, testis, skeletal muscle, 
endometrium, lungs, gall bladder and in cells of the digestive tract (Angelillo-
Scherrer, 2001, Manfioletti, 1993, Neubauer, 1994, O'Bryan, 1991, Park, 2009, 
Scutera, 2009, Stenhoff, 2004, Uhlen, 2015, Yanagita, 1999, Zahuczky, 2011). In a 
murine study, Axl was found to be broadly expressed in late-stage embryogenesis with 
an onset at day 12.5 after fertilization (Faust, 1992) although Axl expression does not 
seem to be essential for normal embryonic development as homozygous Axl knockout 
mice are viable (Lu, 1999). 

The promoter region of Axl is GC-rich and contains two major transcriptional start 
sites with recognition sites for transcriptional activators such as Sp1, AP-1, myeloid 
zinc finger 1 (MZF1) and the cyclic AMP response-element binding protein 
(Mudduluru, 2008, Mudduluru, 2010, Mudduluru, 2010, Schulz, 1993). Five 
different Sp-binding sites, Sp a/b/c/d/e, have been identified in the Axl promoter, and 
the Sp a and Sp b sites are essential for promoter activation by Sp1 and Sp3 
(Mudduluru, 2008). Furthermore, Axl expression can be epigenetically regulated by 
CpG methylation within and around the Sp1-binding motifs in the promoter region 
(Liu, 2010, Mudduluru, 2008). Sp1 and Sp3 are transcription factors that are 
expressed in all mammalian cells, and are involved in the regulation of a vast array of 
cellular processes (Li, 2010). More than 12,000 Sp1/3 binding sites have been found 
in the human genome, and increased Sp1 and/or Sp3 expression has been observed in 
several human cancers (Li, 2010). Previous reports have revealed that Axl is 
overexpressed in renal cell carcinoma cells deficient in the tumor suppressor Von 
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Hippel-Lindau (VHL) protein, and reconstitution of VHL expression decreases Axl 
expression in a post-transcriptional manner (Gustafsson, 2009). Similarly, the 
hypoxia inducible factor (HIF)-1 transcription factor, which is negatively regulated by 
VHL, can induce Axl expression in the hypoxia response of vascular endothelial cells 
(Manalo, 2005) and both HIF-1 and HIF-2 have been shown to bind to hypoxia-
responsive elements in the promoter region of Axl (Rankin, 2014). Expression of Axl 
has also been shown to be post-transcriptionally regulated by microRNAs 
(Mackiewicz, 2011, Mudduluru, 2011), which will be further discussed in the 
microRNAs section of this thesis. 

Downregulation of Axl can be mediated by the E3 ubiquitin ligase Cbl-b, which tags 
substrate proteins with ubiquitin for subsequent degradation in the proteasome 
(Paolino, 2014). In addition, Gas6-mediated stimulation of Axl has been shown to 
result in downregulation of Axl (Gustafsson, 2009, Mishra, 2012). 

Axl activation and signaling 

The primary activation mechanism of Axl is by binding the LG domains of Gas6, 
resulting in homodimerization, which enables autophosphorylation of the kinase 
domains and subsequent phosphorylation of downstream mediators (Mark, 1996, 
Sasaki, 2002, Tanabe, 1997). Although recombinant truncated Gas6, containing the 
LG domains only, has been shown to be sufficient for binding to Axl (Mark, 1996, 
Sasaki, 2002), γ-carboxylation of the GLA domains seems to be necessary for 
activation of Axl by Gas6 (Hasanbasic, 2005, Tanabe, 1997). Furthermore, binding 
of Gas6 to Axl is facilitated by the LG domains of Gas6 forming a V-shaped structure 
which is stabilized by inter-domain binding of a calcium ion (Sasaki, 2002). Gas6 
binds to Axl with a 2:2 stoichiometry where each Gas6 interacts with Axl at two sites 
which are necessary for Axl activation; the major contact between the LG1 domain of 
Gas6 and the IG1 domain of Axl, and the minor contact where LG1 of Gas6 interacts 
with the IG2 domain of Axl (Sasaki, 2006).  
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Figure 2 
The Gas6-Axl interaction. Image from Sasaki et. al., 2005. Reprinted with the permission of John Wiley 
and Sons/The EMBO Journal.  

In addition to Gas6-mediated Axl homodimerization and activation, Axl has been 
indicated to be capable to form heterodimers with other RTKs such as the type I 
interferon receptor (IFNAR), EGFR, MET, and FLT3 (Meyer, 2013, Park, 2013, 
Rothlin, 2007, Salian-Mehta, 2013). Moreover, co-immunoprecipitation of Axl and 
Tyro3 has been demonstrated in a rodent cell line, indicating that Gas6-mediated 
signaling could be altered by TAM receptor expression on the cell surface (Brown, 
2012). Furthermore, interaction or cross-talk between Axl and other RTKs such as 
HER2, human EGFR-related 3 (HER3), platelet-derived growth factor receptor β 
(PDGFRβ), and c-Kit has been indicated (Meyer, 2013, Park, 2009). 
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Figure 3 
Axl signaling. Image from Linger et. al., 2008. Reprinted with the permission of Elsevier. 

The kinase domain of Axl has been shown to activate the Ras/extracellular signal-
regulated kinases (ERK) pathway via Grb2 and Shc (Fridell, 1996). Moreover, Axl 
kinase has been shown to bind to both p85 subunits of the phosphatidylinositol 3’-
kinase (PI3K), the phospholipase Cγ1 (PLCγ1), c-src and lck (Braunger, 1997, 
Goruppi, 1997). The Axl kinase binding partners are recruited to three tyrosine 
residues within the Axl kinase domain; tyrosine 779 which interacts with the PI3K 
p85 subunits, tyrosine 821 which binds p85 subunits of PI3K, PLCγ1, Grb2, c-src 
and lck, and tyrosine 866 which interacts with PLCγ1 (Braunger, 1997, Weinger, 
2008). Furthermore, Axl has been shown to bind to C1-TEN, the PI3K p55γ 
subunit, suppressor of cytokine signaling 1 (SOCS-1), RanBPM, and Nck1 (Hafizi, 
2002, Hafizi, 2005). The multiple intracellular binding partners enables Axl signaling 
diversity through activation of signaling pathways such as PI3K, Akt, ERK, mitogen-
activated protein kinases (MAPK), NF-κB, and mammalian target of rapamycin 
(mTOR), regulating important cellular processes such as growth and proliferation, 
survival, cell cycle progression, invasion and migration, and oncogenic 
transformation, and the functional outcomes of Axl signaling seems to be context-
dependent (Axelrod, 2014, Graham, 2014).  
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Axl in the immune system 

The TAM receptors are expressed in human myeloid immune cells, such as DCs and 
macrophages, and they play a role in regulating inflammation by limiting the 
immune response, and by taking part in phagocytic events (Rothlin, 2015). Although 
the effects are more profound in triple and double TAM receptor knockout mouse 
models, Axl knockout mice exhibit phenotypes that are linked to dysfunctional 
regulation of inflammation such as hyperactivation of antigen-presenting cells (APCs) 
and production of autoantibodies (Lu, 2001).  

Axl, as well as Tyro3 and MerTK, is essential for late-stage maturation of natural 
killer (NK) cells, and NK cells lacking Axl show severely impaired cytotoxic activity 
(Caraux, 2006). Furthermore, blocking Gas6/Axl signaling decreases the IL-15-
mediated differentiation of hematopoietic progenitor cells to NK cells (Park, 2009). 
Axl is upregulated upon interferon α (IFNα)-mediated differentiation of monocytes 
to DCs, and Gas6/Axl signaling protects DCs from growth factor deprivation-
induced apoptosis and induces chemotaxis towards Gas6 in a dose-dependent manner 
(Scutera, 2009). The Axl-upregulating effect of IFNα-mediated differentiation is 
inhibited by activation of pro-inflammatory toll-like receptors (TLRs) by increasing 
the expression of metalloproteinases that take part in cleaving Axl to sAxl, thereby 
decreasing Gas6/Axl signaling (Scutera, 2009). In mature DCs, knockdown of Axl is 
associated with increased interleukin-6 (IL-6) and TNFα secretion upon activation of 
TLRs, and conversely, Gas6-mediated activation of TAM receptors inhibits the TLR-
induced cytokine production by activation of SOCS1 and SOCS3 via the 
transcription factor STAT1 (Rothlin, 2007). Interestingly, the proinflammatory 
IFNα receptor, IFNAR, colocalizes with Axl in DCs and is essential for the Gas6/Axl-
mediated activation of STAT1 (Rothlin, 2007). In macrophages, Gas6 signaling 
through IFNα-induced Axl induces expression of the transcription factors Twist1 and 
Twist2, which inhibit proinflammatory TNFα secretion (Sharif, 2006). Axl takes part 
in phagocytic events in both macrophages and DCs, most likely in concert with 
MerTK and Tyro3, and the TAM receptors seem to take part in immune homeostasis 
by acting as negative regulators of APC activation upon inflammatory stimuli 
(Lemke, 2003, Seitz, 2007). In the brain, Gas6/Axl signaling has been shown to 
protect oligodendrocytes from TNFα-mediated apoptosis (Shankar, 2006). The levels 
of sAxl are increased in human multiple sclerosis (MS) lesions, and in a mouse model 
of MS with Axl knockdown, autoimmune encephalomyelitis is more severe, fewer 
microglia and macrophages are activated, and the clearance of myelin debris is 
impaired (Weinger, 2009, Weinger, 2011).  
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Axl in the vascular system 

Gas6 and Axl are expressed in endothelial cells (ECs), and have been indicated to take 
part in regulation of the immune response by inhibiting the adhesion of granulocytes 
to activated ECs when high levels of Gas6 are present (Avanzi, 1998, Manfioletti, 
1993). In contrast, Gas6 has been reported to promote inflammation by enhancing 
the interactions between ECs, leukocytes, and platelets, and by promoting 
extravasation of leukocytes, as well as thrombosis (Tjwa, 2008). Gas6 has a well-
established role in thrombus stabilization by increasing platelet aggregation and 
degranulation, which is dependent on TAM receptor expression (Angelillo-Scherrer, 
2005, Cosemans, 2010, Gould, 2005).  

In addition, Gas6/Axl signaling is involved in promoting survival in ECs and vascular 
smooth muscle cells (VSMCs) (D'Arcangelo, 2006, Healy, 2001, Melaragno, 2004, 
Nakano, 1996). In ECs, Axl-mediated activation of PI3K results in subsequent 
phosphorylation and activation of the Akt pathway which promotes cellular survival 
via the transcription factor NF-κB, increased expression of the anti-apoptotic protein 
Bcl-2 as well as inhibition of pro-apoptotic Caspase-3 activation (Hasanbasic, 2004). 
Similarly, survival in VSMCs is mediated through the PI3K/Akt pathway 
(Melaragno, 2004). In a mouse model of vascular injury, Gas6/Axl signaling was 
shown to be increased in vascular neointima, and Axl expression was induced by 
thrombin and angiotensin II (Melaragno, 1998). In a later study, the role of Axl was 
studied in oxidative stress-mediated vascular remodeling, and Axl was shown to be an 
important mediator of intima proliferation by activating the Akt pathway (Konishi, 
2004). Similarly, in a model of flow-induced vascular remodeling, Axl-deficient mice 
were shown to have thinner intima and media, increased apoptosis, and fewer 
VSMCs, macrophages, and neutrophils (Korshunov, 2006). In the context of vascular 
remodeling, Axl seems to protect VSMCs from apoptosis and promotes intima and 
media thickening, and it also plays a role in the increased secretion of 
proinflammatory cytokines and chemokines (Gerloff, 2012). 

The Gas6/Axl system has also been shown to play a role in atherosclerosis (Lutgens, 
2008, Ming Cao, 2001). Gas6/Axl signaling in VSMCs induces expression of the 
class A scavenger receptor (SRA) that mediates the uptake of lipids and thereby 
enables the formation of foam cells and atherosclerotic plaques (Ming Cao, 2001). 
Moreover, Gas6 is expressed in ECs, VSMCs, and macrophages of atherosclerotic 
plaques, and Gas6 deficiency is associated with increased plaque stability, and fewer 
plaque-associated macrophages as well as decreased inflammation (Lutgens, 2008).  

Gas6/Axl signaling has been reported to inhibit vascular endothelial growth factor 
(VEGF) receptor 2-mediated angiogenesis as well as chemotaxis stimulated by VEGF-
A (Gallicchio, 2005). In contrast, Axl has been reported to be an essential mediator of 
VEGF-A-dependent activation of the PI3K/Akt pathway, which induces EC 
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migration, vascular permeability and angiogenesis (Ruan, 2012). Moreover, 
knockdown of Axl in primary human umbilical vein ECs (HUVECs) caused a 
significant decrease in endothelial tube formation, indicating a role for Axl in EC 
morphogenesis (Li, 2009). In addition, lactate has been shown to induce ligand-
dependent stimulation of Axl, VEGF receptor 2 as well as Tie2, resulting in activation 
of the PI3K/Akt pathway, tube formation and vessel sprouting (Ruan, 2013). 

Axl in cancer 

Axl was originally identified as a transforming gene, and its expression has since been 
confirmed in a large number of human cancers (Graham, 2014, O'Bryan, 1991). For 
example, overexpression of Axl has been reported in squamous cell carcinoma, non-
small cell lung cancer (NSCLC), myeloid leukemia, prostate cancer, osteosarcoma, 
and ocular melanoma (Brand, 2015, Linger, 2013, Neubauer, 1994, Paccez, 2013, 
Tian, 2014, van Ginkel, 2004). Moreover, increased Axl expression has been 
associated with worsened prognosis in several cancer types, such as RCC, squamous 
cell carcinoma, and ocular melanoma (Brand, 2015, Gustafsson, 2009, van Ginkel, 
2004). In cutaneous squamous cell carcinoma, Axl expression seems to be associated 
to epithelial-to-mesenchymal transition (EMT), a process involved in the initiation of 
metastasis, and resistance to chemotherapy (Cichon, 2014). In a xenograft study of 
NSCLC, Axl knockdown was associated with reduced tumor growth and improved 
response to chemotherapy (Linger, 2013). High Axl expression has also been reported 
to be associated with decreased survival in breast cancer (Gjerdrum, 2010). 
Chromosomal amplifications and translocations as well as point mutations of Axl 
have been reported, however genetic aberrations of Axl are rather uncommon and 
have not been extensively studied (Graham, 2014). 

The role of Axl in cancer metastasis seems to be linked to its role in EMT and cellular 
migration and invasion. In breast cancer, Axl is induced upon EMT by Vimentin, a 
protein associated to mesenchymal phenotype, and knockdown of Axl inhibited 
metastasis in a xenograft model, and in addition, Vimentin-induced Axl confers a 
migratory phenotype in non-malignant mammary epithelial cells (Gjerdrum, 2010, 
Vuoriluoto, 2011). Moreover, Axl expression seems to be able to induce expression of 
EMT markers in breast epithelial cells (Asiedu, 2014). Similarly, Axl expression is 
associated with migration and invasion in hepatocellular carcinoma in vitro, and 
Gas6/Axl signaling promotes expression of Slug, a protein involved in EMT which 
seems to mediate Axl-dependent invasion(Lee, 2014). In addition, Gas6 signaling 
through Axl has been linked to dormancy in the bone marrow, and resistance to 
chemotherapy-induced apoptosis in PCa (Shiozawa, 2010, Taichman, 2013).  
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As previously mentioned, Axl expression seems to be supported by hypoxic 
conditions. In clear cell RCC (ccRCC) cell lines, Axl expression is associated with loss 
of the VHL tumor suppressor, and the HIF transcription factors, which are negatively 
regulated by VHL, directly activate Axl transcription (Gustafsson, 2009, Rankin, 
2014). Similarly, Gas6-mediated downregulation of Axl has been shown to be 
inhibited in PCa cells under hypoxic conditions (Mishra, 2012). In acute myeloid 
leukemia (AML), AML cells have been shown to induce expression of Gas6 by bone 
marrow-derived stromal cells, and the stroma-derived Gas6 stimulates AML cell 
proliferation, survival, and chemoresistance via Axl (Ben-Batalla, 2013). Axl has also 
been indicated to be involved in regulating the secretion of pro-inflammatory 
mediators from tumor-associated macrophages in a model of breast cancer (Ye, 2010). 

In addition to its roles in tumor growth, apoptosis resistance and metastasis, Axl 
seems to be involved in acquired resistance to targeted therapies in cancer. In 
NSCLC, Axl expression was shown to be increased in cells resistant to Gefitinib and 
Erlotinib treatment, inhibitors of EGFR, and similarly, Axl expression was increased 
in NSCLC and head and neck squamous cell carcinoma with acquired resistance to 
another EGFR inhibitor, Cetuximab (Bae, 2015, Brand, 2014, Zhang, 2012). 
Moreover, Axl expression seems to predict response to EGFR-targeted therapies 
(Byers, 2013, Meyer, 2013). 

The increasing evidence supporting a role for Axl in various human cancers has lead 
to the development of different Axl inhibitors, for experimental use, and also for 
potential use in the clinic. Moreover, recent findings identifying Axl to be involved in 
acquired resistance to targeted therapies in several cancer types, as well as its role in 
mediating responsiveness to chemotherapy, indicate a potential use of targeted Axl 
therapies as a means to overcome drug resistance, and also as a complement to 
chemotherapies (Linger, 2010, Wu, 2014). For example, a monoclonal Axl-targeting 
antibody was shown to reduce tumor growth in xenograft models of breast cancer and 
NSCLC, and in addition the antibody was shown to reduce secretion of 
inflammatory molecules and to improve the effect of anti-VEGF therapy, EGFR 
inhibitor therapy and chemotherapy (Ye, 2010). Similarly, a small molecule inhibitor 
of Axl has been shown to reduce metastasis, angiogenesis, and proinflammatory 
cytokine secretion, and to improve survival in xenograft models of metastatic breast 
cancer (Holland, 2010). An inhibitor of Axl is currently going through clinical trials 
(Sheridan, 2013). 
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microRNAs 

MicroRNAs are short, approximately 23 nucleotides (nt) long, non-coding RNA 
strands, that can act as post-transcriptional regulators of mRNA transcripts (Bartel, 
2009). The first microRNA was identified in 1993 in a study aimed at determining 
the role of the lin-4 gene in regulation of LIN-14 in C. elegans, where the lin-4 gene 
was found to produce two short non-coding RNA transcripts with sequence 
complementarity to the 3’ untranslated region (UTR) of the LIN-14 mRNA 
transcript (Lee, 1993). A few years later, lin-4 was found to also regulate the 
expression of another protein, LIN-28, again by sequence complementarity in the 3’ 
UTR of the LIN-28 mRNA transcript (Moss, 1997). After its discovery, the lin-4 
microRNA remained a unique finding for several years, and it was not until a second 
microRNA, let-7, was discovered in 2000 that microRNAs were recognized as an 
important non-coding part of the genome (Bartel, 2004, Reinhart, 2000). Since then, 
microRNAs have been found to be expressed in plants, viruses and animals, including 
mammals, and they have been shown to take part in many cellular processes such as 
proliferation, apoptosis and differentiation, in the organism development and in the 
pathogenesis of many diseases (Eulalio, 2008). For example, microRNA has been 
shown to play a role in inflammatory bowel disease, myocardial infarction, 
amyotrophic lateral sclerosis (ALS), atherosclerosis, and in a large number of human 
cancers (Boon, 2015, Chapman, 2015, Hata, 2015, Hayes, 2014, Hosin, 2014, 
Volonte, 2015). 

Expression and regulation of microRNAs  

Many microRNAs are evolutionally conserved, and they are expressed in distinct 
patterns during development and play a role in regulation of basic cellular processes as 
well as specialized processes that enable cellular tissue specificity (Lee, 2007). For 
example, the lin-4 microRNA plays a key role in regulating LIN-28 expression in 
specific stages in the development of C. elegans, and removal of the lin-4 
complementary sequence in the 3’ UTR of LIN-28 causes a retarded phenotype 
(Moss, 1997). Similarly, let-7 has been shown to regulate the expression of the LIN-
41 protein in C. elegans, which plays a key role in regulating the developmental 
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timing in order to onset the expression of adult specialization transcription factors in 
the cell (Slack, 2000). In a study using transgenic microRNA reporter zebra fish, 
certain microRNAs were shown to be expressed in specific tissues during embryonic 
development, with overlapping expression of predicted target mRNAs, and with a 
general pattern of decreased target mRNA expression in microRNA-expressing cells, 
although expression of some mRNA targets was found to be increased (Shkumatava, 
2009). It is noteworthy that the appearance of the microRNA pathway seems to be 
simultaneous with the appearance of multicellular organisms in the evolution, and it 
has been proposed that microRNAs could enable diverse cell specialization, as the 
diversity of microRNA expression correlates with cell specitation (Lee, 2007).  

MicroRNAs are encoded in the genome and are expressed in a stepwise process that is 
subject to regulation on multiple levels (Hata, 2015). First, a primary transcript (pri-
miRNA) is transcribed from the microRNA-encoding gene by RNA polymerase II, 
which is then processed in the nucleus by a complex of Drosha, a ribonuclease III 
type enzyme, and its cofactor, DGCR8, into a hairpin precursor microRNA (pre-
miRNA) (Hata, 2015). The pre-miRNA is dependent on the Exportin-5/RanGTP 
complex for transport out of the nucleus into the cytoplasm, where GTP is 
hydrolyzed, the complex is disassembled, and the pre-miRNA is released into the 
cytosol (Ha, 2014). Finally, in the last step of microRNA maturation, another 
ribonuclease, Dicer, cleaves the pre-miRNA into a single-stranded, mature 
microRNA. 

In the cytosolic maturation process, Dicer complexes with a double strand RNA-
binding protein (dsRBD), the TAR RNA-binding protein (TRBP), which seems to 
modulate the efficiency by which the pre-miRNAs are processed into mature 
microRNAs as well as tuning of the length of mature microRNAs (Ha, 2014). Dicer 
has also been shown to bind a dsRBD cofactor, PACT, whose role in microRNA 
processing remains unknown (Ha, 2014). In Drosophila, the TRBP homologs seem to 
be essential for maturation of most microRNAs; in contrast, purified mammalian 
Dicer function has been shown to be comparable to that of Dicer-dsRBD complexes 
(Lee, 2006). Dicer also interacts with the Argonaute 2 (Ago2) protein, and TRBP to 
form the RISC-loading complex (RLC) which is essential for efficient transfer of 
matured microRNA strands to Ago2 (Wang, 2009). In the RLC complex, TRBP has 
been shown to be essential for the transfer of microRNA strands in complex with 
Dicer to Ago2, and the subsequent assembly of the RNA-induced silencing complex 
(RISC) which enables gene regulation by the mature microRNA (Chendrimada, 
2005). 
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Figure 4 
MicroRNA biogenesis. Image from Hata et. al., 2015. Reprinted with the permission of AAAS. 
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Although the exact structure of RISC remains to be elucidated, it is clear that the 
main catalytic activity of the complex resides in the Argonaute proteins, as a complex, 
called the minimal RISC, containing purified Ago2 and a siRNA strand is sufficient 
to cleave target RNAs (Rivas, 2005). Argonaute proteins have numerous binding 
partner proteins and seem to form a variety of complexes, which is supported by the 
variety in size of isolated RISC complexes, ranging from relatively small complexes at 
around 150 kDa, to molecular complexes which can be as large as 8 MDa (Pratt, 
2009). The mechanisms by which microRNAs bind to and regulate target mRNA 
strands will be further discussed below. 

Regulation of microRNAs occurs at several levels. For example, cell fate-determining 
signaling pathways, such as estrogen receptor signaling, transforming growth factor β 
(TGFβ) signaling, the MAPK pathway, and the p53-mediated DNA damage 
response, affect the overall and specific biogenesis of microRNAs (Olive, 2015). In 
addition, expression of microRNAs can be directly induced by transcription factors, 
as with the miR-34 family which is directly transactivated by the tumor suppressor 
p53, and the expression of these microRNAs has been found to be epigenetically 
inactivated by CpG methylation in the promoter region of the microRNA gene in 
cancer (Vogt, 2011). 

Processing of nuclear pri-miRNAs is subject to regulation by RNA-binding proteins 
such as DDX5 and DDX17, which bind to Drosha-DGCR8 to function as restricted 
promoting factors which are important for the processing of specific pri-microRNA 
subsets (Shen, 2015). For example, in p53-mediated damage response and in TGFβ-
mediated responses, DDX5 binds to the Drosha-DGCR8 complex and enhances the 
processing of specific microRNA clusters or a specific microRNA, respectively (Shen, 
2015). In fact, each step in the microRNA processing machinery is subject to post-
translational regulation and/or modulating protein interactions (Hata, 2015). In 
addition, the microRNA molecule itself carries intrinsic regulatory elements such as 
nucleotide sequences and structures that can affect both the biogenesis and the 
stability of the microRNA (Ha, 2014). Examples of such elements are single 
nucleotide polymorphisms (SNPs) which can affect both microRNA biogenesis and 
target repression activity, RNA editing by adenosine deaminases which can disturb 
the interaction between the microRNA and Drosha, RNA methylation, and 
regulation of RNA stability by nucleases that cleave pre-miRNAs or RNA strands that 
bind to and destabilize specific microRNAs (Ha, 2014). 
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MicroRNA – mRNA interactions and post-transcriptional 
regulation 

In humans, more than 400 different microRNAs, and more than 45,000 predicted 
microRNA target sites in human mRNA 3’ UTRs, have been identified, and 
furthermore, each microRNA can potentially regulate a large number of mRNA 
targets (Bartel, 2009, Friedman, 2009, Lim, 2005). Most commonly, microRNAs 
bind to target mRNA transcripts via 5’ canonical seed sequence sites, known as the 
7mer-A1 site, the 7mer-m8 site and the 8mer site (Bartel, 2009). These canonical 
sites rely on complementarity between nucleotides 2-7 in the microRNA and the seed 
match region in the target mRNA, along with additional flanking nucleotide paring 
(Bartel, 2009). Furthermore, another type of seed sequence matching, the marginal 
sites, is characterized by binding to the target mRNA by 6mer-matching of 
nucleotides 2-7 or 3-8 in the microRNA, which generally is less efficient than 7mer or 
8mer sites (Bartel, 2009). Less commonly, microRNAs can bind to mRNAs in so-
called atypical sites, with 7mer, or 7mer with a central mismatch, primary seed match 
sites and a microRNA 3’ supplementary or compensatory site, respectively, which 
increases the efficiency of the functional site (Bartel, 2009). In addition to matching 
of the microRNA-mRNA via seed sequences, the context of the 3’ UTR of the target 
mRNA seems to have impact on the efficacy of regulation by microRNAs, as mRNAs 
containing identical 3’ UTR seed sequences can be differently regulated (Bartel, 
2009).  

Other features that boost site efficiency and thereby translational regulation are AU-
rich elements situated close to the seed sequence, positioning at least 15 nt from the 
3’ UTR stop codon, off-center positioning in long 3’ UTRs, proximity to seed 
sequences of coexpressed microRNAs, and additional pairing to nucleotides 13-16 in 
the microRNA (Grimson, 2007). In addition to the most commonly occurring 
targeting of 3’ UTRs, microRNAs have also been shown to be able to efficiently 
repress expression of mRNAs by binding to target sites introduced in the 5’ UTR, 
and targeting can also occur in the open reading frames (ORFs) of mRNA transcripts 
(Baek, 2008, Lewis, 2005, Lytle, 2007). In addition, interaction of microRNAs with 
gene promoters has been demonstrated (Zardo, 2012). 

The mechanisms by which microRNAs regulate gene expression are diverse; target 
recognition can result in translational repression by inhibition of translation 
elongation, by promoting premature ribosome dissociation, by preventing initiation 
of translation, and by deadenylation of mRNA transcripts (Eulalio, 2008). In 
addition, microRNAs can act in the opposite manner and activate translation (Lee, 
2013). For example, the mouse miR-34a and miR-34b have been shown to be able to 
increase the translational efficiency of an alternatively adenylated β-actin mRNA 



32 

transcript, and mutation or blocking of the 3’ UTR seed sequence markedly reduces 
protein expression (Ghosh, 2008). However, microRNAs are thought to most 
commonly act to repress translation, primarily through destabilization of mRNA 
transcripts (Baek, 2008, Eichhorn, 2014, Guo, 2010). 

Apart from the impacting factors discussed above, the functional outcome of 
microRNA-mediated gene regulation is highly dependent on the cellular context. For 
example, miR-34a, which is primarily known as a tumor suppressor microRNA, 
exerts tumor suppressive functions in neuroblastoma, but in contrast seems to support 
proliferation of rat renal proximal tubule cells and is overexpressed in several cancer 
types (Dutta, 2007). In line with this finding, it was recently reported that 
microRNA-mediated regulation is affected by the abundance of target mRNA 
transcripts (Arvey, 2010). Moreover, in a study analyzing single cells, target repression 
varied dramatically between individual cells and microRNAs were found to establish 
mRNA threshold levels at which protein production can be readily repressed, 
enabling microRNAs to act both as a fine-tuner as well as a switch of gene expression 
(Mukherji, 2011). 

It is noteworthy that some microRNA families exhibit sequential redundancy, 
especially microRNA families involved in development, and revealing the functional 
implications of these microRNA families requires removal of the redundancy, at least 
in part (Olive, 2015). 
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MicroRNAs in cancer 

Dysregulation of microRNAs has been reported in a broad range of human cancers. 
While some microRNAs act as tumor suppressors, other microRNAs are highly 
expressed in cancers and exert pro-oncogenic functions, hence they are called 
oncomiRs (Esquela-Kerscher, 2006, Ma, 2008). Because of their roles as tumor 
suppressor and oncogenes, microRNAs have been identified as potential tools for 
diagnosis and prognosis of human cancers, and also as potential targets for therapeutic 
intervention (Metias, 2009). Some, but not all, microRNAs are released into bodily 
fluids, such as urine and in the bloodstream, and therefore present a potential non-
invasive method of cancer diagnosis and prognosis (Khoury, 2015). For example, in a 
recent report, three different microRNA panels were identified as diagnostic and 
prognostic markers in the serum of human PCa patients and patients with benign 
prostatic hyperplasia (BPH) (Haldrup, 2014). MicroRNAs found in tumor tissue and 
cells have also been found to be useful as prognostic and diagnostic tools, for example 
in PCa where a four-microRNA ratio, the miQ, was shown to be a powerful 
prognostic marker as well as a diagnostic tool to predict tumor aggressiveness, 
metastasis and overall survival (Larne, 2013). Similarly, the expression of a single 
microRNA, miR-21, has been correlated to decreased survival and lymph node 
metastasis, and is an independent prognostic factor in human primary breast cancer 
(Yan, 2008). In addition, tumor microRNAs have been shown to be powerful tools to 
classify cancer tumors (Lu, 2005). 

The miR-34 family 

The miR-34 family comprises three similar microRNAs, miR-34a, miR-34b, and 
miR-34c, which are located at two different sites in the genome; miR-34a is found on 
chromosome 1p36, whereas miR-34b and miR-34c are located on chromosome 
11q23 (Hermeking, 2010). Studies in mice have revealed that miR-34a is 
ubiquitously expressed, whereas miR-34b and miR-34c are primarily expressed in 
lungs, which is the only tissue where miR-34b/c expression exceeds miR-34a 
expression (Misso, 2014). 

The members of the miR-34 family are directly regulated by p53, and function as 
tumor suppressors by regulating the expression of genes that control apoptosis, cell 
cycle and proliferation (Bommer, 2007, Chang, 2007, Corney, 2007). The p53 
transcription factor is activated upon cellular stress, such as DNA damage or hypoxia, 
and initiates expression of a wide array of genes (Sax, 2014). Dysregulation of the p53 
network is frequently found in human cancers, such as mutations that prevent p53 
from binding to specific target DNA sequences, but also aberrations of p53-regulating 
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factors, mislocalization of p53 into the cytoplasm, and viral infections where viral 
oncogenes interfere with p53 (Vogelstein, 2000). Moreover, the miR-34 family has 
been reported to be independently inactivated via methylation of CpG islands in the 
promoter region, rendering these microRNAs irresponsive to transcriptional 
activation by p53 (Lodygin, 2008, Vogt, 2011). Interestingly, the epigenetic 
inactivation of miR-34 family members seems to be mutually exclusive with p53 
mutations, indicating that inactivation of miR-34a/b/c expression could be an 
alternative route to loss of p53-mediated regulation of cellular processes (Vogt, 2011). 
The miR-34 family members have been shown to negatively regulate target genes that 
are anti-apoptotic, such as BCL2 and SIRT1, genes that promote proliferation and 
growth, including E2F3, Notch2 and CREB, genes that are involved in migration 
and invasion, such as MET and SNAIL, as well as stemness-promoting genes like 
NANOG and SOX2 (Agostini, 2014). Moreover, miR-34a has been found to target 
CD24 and Scr, proteins involved in tumorigenesis (Muppala, 2013). Decreased 
expression of miR-34 family members has been observed in several types of cancer, 
for example in pancreatic cancer, NSCLC, bladder cancer, and in PCa (Bommer, 
2007, Catto, 2011, Chang, 2007, Hagman, 2010).  

The implications of the microRNA-34 family in cancer has indicated that miR-34 
mimics potentially could be used in treating human cancers, and in fact, a miR-34 
analog is the first microRNA-based therapeutic to enter phase I clinical trials for liver 
cancer (Agostini, 2014). 

Interestingly, miR-34a has been shown to be a negative regulator of Axl expression by 
direct binding to the 3’ UTR of the Axl mRNA transcript in NSCLC, colorectal 
cancer and breast cancer (Mackiewicz, 2011, Mudduluru, 2011). Moreover, Axl 
expression was shown to correlate inversely with miR-34a expression in NSCLC, 
colorectal cancer and breast cancer cell lines, and in breast cancer tumor tissue 
(Mackiewicz, 2011, Mudduluru, 2011). In addition, miR-34a has recently been 
reported to directly regulate Axl in B-cell chronic lymphocytic leukemia (Boysen, 
2014). 

The role of the miR-34 family members in PCa and RCC will be further discussed in 
the respective sections below. 

miR-21 

The miR-21 is one of the most well-known oncomiRs, and overexpression of miR-21 
has been reported in a large number of human cancers, including lung cancer, 
glioblastoma, breast cancer, PCa, and B-cell lymphoma (Selcuklu, 2009, Zhu, 2014). 
The gene for miR-21 is located within the TMEM49 gene, and is independently 
transcribed from two promoter regions with conserved elements such as binding sites 
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for AP-1 and STAT3 (Kumarswamy, 2011). Expression of miR-21 has been reported 
to be induced by IL-6 via the STAT3 transcription factor, and targets the tumor 
suppressor PTEN and in addition seems to be involved in activating an epigenetic 
switch to activate a positive feedback loop to maintain a transformed state in a 
transformed breast epithelial cell line (Iliopoulos, 2010). Interestingly, miR-21 
expression is triggered by inflammatory stimuli, primarily in bone-marrow derived 
cells, where miR-21 seems to be involved in resolution of the inflammatory response, 
as LPS-induced miR-21 expression in macrophages has been associated with 
decreased pro-inflammatory signaling and resolved inflammation (Sheedy, 2015). 
The complexity of miR-21 function in the regulation of inflammation is further 
illustrated by the fact that miR-21 overexpression has been reported in diseases 
associated with impaired immune responses, such as asthma, psoriasis and chronic 
viral and bacterial infections, as well as with diseases characterized by chronic 
inflammation such as atherosclerosis, SLE, and colitis (Sheedy, 2015). In the 
cardiovascular system, miR-21 is highly expressed, and dysregulated miR-21 
expression has been reported in several cardiovascular diseases such as myocardial 
infarction, and moreover, miR-21 expression in VSMCs is associated with increased 
proliferation and survival (Cheng, 2010). 

High expression of miR-21 is associated with poor prognosis in human cancers 
including NSCLC, breast cancer and RCC (Faragalla, 2012, Markou, 2008, Yan, 
2008). For example, miR-21 is frequently overexpressed in breast cancer tissues and 
experimental inhibition suppresses growth of breast cancer cell lines in vitro as well as 
in tumor xenografts in vivo (Si, 2007). Moreover, reexpression of miR-21 in a breast 
cancer cell line was associated with increased expression of EMT markers, increased 
expression of cancer stem cell surface markers, and increased sphere formation ability, 
which is associated with stem cell characteristics (Han, 2012). 

In cancer, miR-21 has been shown to target tumor suppressor genes, for example 
PTEN in hepatocellular carcinoma and RCC, and the programmed cell death 4 
(PDCD4) gene in breast cancer and colorectal cancer (Asangani, 2008, Dey, 2012, 
Lu, 2008, Meng, 2007). In breast and colon cancer, miR-21 expression has been 
shown to be indirectly induced by the adhesion molecule CD24, an effect that can be 
inhibited by miR-34a-mediated downregulation of CD24 and its mediator Src 
(Muppala, 2013). Moreover, miR-21 seems to be involved metastasis, as 
demonstrated by decreased lung metastasis and intravasation of colorectal cancer cells 
in a chicken embryo metastasis assay where miR-21 had been inhibited (Asangani, 
2008). A role for miR-21 in tumor angiogenesis has also been indicated, as miR-21 
expression in PCa cells has been shown to be associated with increased expression of 
VEGF and HIF1α and increased tumor angiogenesis (Liu, 2011). Further discussion 
of miR-21 and its role in RCC can be found in the section discussing the kidneys and 
RCC. 
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miR-10b 

The miR-10b is most commonly recognized as an oncomiR, and has been found to 
be overexpressed in glioblastoma, NSCLC, breast cancer, and hepatocellular 
carcinoma (Gabriely, 2011, Lu, 2014). The miR-10b gene is located within the 
HOXD cluster on chromosome 2, in-between the HOXD4 and HOXD8 genes 
(Biagioni, 2013). 

Increased expression of miR-10b has been reported in metastatic breast cancer cell 
lines, and overexpression of miR-10b in non-invasive breast cancer cell lines 
promoted invasion and metastasis (Ma, 2007). Furthermore, expression of miR-10b 
correlated with clinical progression in breast cancer patients (Ma, 2007). In contrast, 
another study reported that miR-10b was downregulated in breast cancer (Iorio, 
2005). In addition, downregulation of miR-10b has been shown in primary and 
metastatic colorectal carcinoma (CRC), and in ccRCC (Pizzini, 2013, Wotschofsky, 
2012). Moreover, miR-10b has been indicated to be downregulated by CpG 
methylation in gastric cancer, and miR-10b overexpression was associated with 
reduced migration, invasion and proliferation, and induction of apoptosis, and miR-
10b has been proposed to function as a tumor suppressor in gastric cancer (Kim, 
2014, Li, 2015). Moreover, retinoic acid-induced differentiation of neuroblastoma 
cell lines, resulting in reduced proliferation and less aggressive cell behavior, was 
associated with increased miR-10b expression and furthermore, miR-10b was shown 
to be involved in mediation of the differentiated phenotype (Meseguer, 2011). 

Increased expression of miR-10b has also been associated with congenital heart 
defects, and miR-10b has been shown to negatively regulate the TBX5 transcription 
factor which is involved in cardiac development in the embryo (Wang, 2014). 

Most mRNAs that have been validated as targets of miR-10b are tumor suppressor 
genes, such as KLF4 in esophageal squamous cell carcinoma, HOXD10 in breast 
cancer, and E-cadherin in NSCLC (Ma, 2007, Tian, 2010, Zhang, 2015). In breast 
cancer, miR-10b expression has been reported to be induced by TGFβ, and miR-10b 
seems to take part in mediating EMT induced by TGFβ (Han, 2014). The effects of 
miR-10b expression seem to be cell-type dependent, as miR-10b expression promotes 
invasion and metastasis in breast cancer, while miR-10b-rexpressing glioblastoma cells 
are characterized by increased proliferation and resistance to apoptosis (Gabriely, 
2011). The role of miR-10b in RCC will be further discussed in the respective section 
below. 
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The kidneys and renal cell carcinoma 

The kidneys 

 

Figure 5 
The human kidney. Reprinted with the permission Encyclopaedia Britannica. 

The main functions of the kidneys are removal of waste and foreign materials from 
the blood stream into the urine, to regulate the acid-base balance, electrolyte 
concentration, and blood pressure, and to reabsorb glucose and amino acids from the 
primary urine as well as producing hormones, such as erythropoietin (Epo), and 
Vitamin D production (Cotran, 2005, Widmaier, 2006). The kidneys take up 
approximately 20% of the cardiac blood output and receive blood through the renal 
arteries which branch out form the abdominal aorta (Boron, 2004).  
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Figure 6 
The human renal corpsule and the nephron. Reprinted with the permission Encyclopaedia Britannica. 

The kidneys are protected by the fibrous renal capsule, which in turn is surrounded 
by perirenal fat, forming an adipose capsule, the renal fascia, which encapsulates the 
kidneys and the adrenal glands in connective tissue, and on the outside of the capsule, 
paranephric fat. On the inside, the kidney is divided into two major structures, the 
renal cortex, and the renal medulla. The renal cortex is organized into pyramid-
shaped structures, where the renal corpsule, in which blood ultrafiltration occurs, can 
be found. The renal tubules extend down through the renal medulla, where they are 
connected to the collecting ducts, which lead the urine into the ureter and 
subsequently into the urine bladder. The cortex- and medulla-spanning tubules, 
known as nephrons, form a distinct structure capable of efficient blood filtration, 
removal of waste and reabsorption of nutrients. Blood filtration begins in the 
glomeruli, situated in the Bowman’s capsule inside the renal cortex, where 
approximately 20% of the water in the blood plasma passing the glomeruli is filtrated 
out along with solutes present. The filtrate then passes through the proximal 
convoluted tubule, where the brush border, which is lined with epithelial cells 
specialized in resorption, can be found. Subsequently, the filtrate passes through 
Henle’s loop which helps concentrating the urine using an urea concentration 
gradient which draws out water from the urine filtrate (Widmaier, 2006). Some 
nephrons, known as juxtamedullar nephrons, span deeper into the renal medulla and 
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have collecting blood capillaries, vasa recta, that are intertwined with Henle’s loop 
and are supplied with reabsorbed substances from the nephron. Finally, the filtrate 
passes the distal convoluted tubule, which take part in regulation of pH and 
electrolyte concentration. 

Renal cell carcinoma 

RCC is the most common type of cancer in the kidney, and it accounts for 
approximately 2-3% of all cancer cases in adults (Escudier, 2012). In Europe, more 
than 88,000 individuals are diagnosed with RCC each year, and almost 40,000 
patients die from RCC yearly (Ljungberg, 2010). The prevalence of RCC is slightly 
higher in men than in women, about 60% off RCC cases are in men, and the peak 
age of diagnosis is between 60 and 70 years (Ljungberg, 2010). The incidence of 
RCC in the world has been increasing with approximately 2% yearly until recently 
(Ljungberg, 2010). A small portion, around 2-3%, of all RCC cases are hereditary 
and are caused by inherited mutations in VHL, c-Met, fumarate hydratase, or in the 
folliculin gene (Weikert, 2010). 

RCC is further classified into subtypes, of which clear cell RCC (ccRCC), papillary 
RCC (pRCC), and chromophobe RCC (chRCC) are the most commonly occurring 
(Lopez-Beltran, 2009). Of the RCC subtypes, ccRCC is by far the most common, 
accounting for around 75% of all RCC cases (Cohen, 2005, Lopez-Beltran, 2009). 
Papillary RCC is much more common in men than in women, and has a 5-year 
survival of approximately 90%, however the prognosis of patients with metastatic 
pRCC is poor (Cohen, 2005). Around 75% of all sporadic pRCC cases are 
characterized by duplications of chromosome 7 (Cohen, 2005). Chromophobe RCC 
is thought to arise from a cell type in the collecting ducts called type B intercalated 
cells (Cohen, 2005). Clear cell RCC has overall worse prognosis than pRCC and 
chRCC, and is often characterized by mutations in the tumor suppressor VHL gene 
(Lopez-Beltran, 2009). VHL mutations are found in approximately 60% of ccRCC 
cases, and loss of VHL allows hypoxia-inducible genes to be overexpressed, favoring 
epithelial cell proliferation (Cohen, 2005).  

As of today, surgery is the only curative treatment for RCC, in localized RCC most 
commonly by nephron-sparing procedures aimed at removing the tumor while 
allowing the kidney to remain functional, at least in part (Ljungberg, 2010). Patients 
with metastatic RCC are treated with systemic therapeutics, for example 
immunotherapy with IFNα and IL-2, which have a response rate of around 6-15% 
and 7-27%, respectively (Ljungberg, 2010). In addition, targeted therapies are used, 
including tyrosine kinase inhibitors such as Sorafenib and Sunitinib, as well as anti-
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VEGF therapy with Bevacizumab, and mTOR inhibitors such as Temsirolimus (Abe, 
2013). 

The disease-specific 5-year survival of patients with localized RCC is approximately 
90%, with decreasing survival for patients with more advanced disease (Novara, 
2010). Although targeted therapies have improved the survival of RCC patients, the 
prognosis of patients with metastatic RCC remains poor with a 5-year survival of less 
than 10% (Abe, 2013, Ljungberg, 2010). Approximately 25% of all patients do not 
respond when treated with targeted therapies, and in addition some patients who 
initially respond eventually develop resistance (Bielecka, 2014). 

The main prognostic tool for RCC is the Tumor-Node-Metastasis (TNM) staging 
system (Ljungberg, 2010, Wittekind, 2002). In addition, factors such as histological 
grade, tumor size and presence of necrosis have been shown to be useful in assessing 
the prognosis, and prognostic systems and nomograms that combine different 
independent prognostic factors have been developed, such as the SSIGN score which 
is based on TNM stage, tumor size, grade and necrosis (Frank, 2002, Fuhrman, 
1982, Leibovich, 2003). 

Axl and Gas6 in the kidney and RCC 

Gas6 and Axl are expressed in the kidney, and increased expression of Gas6 and/or 
Axl seems to be associated with several inflammatory renal diseases (Fiebeler, 2004). 
In mesangial cells, specialized kidney VSMCs that often have a proliferative 
phenotype in glomerular disease, Gas6 stimulation of Axl results in Axl 
phosphorylation and cellular proliferation, and this effect seems to be dependent of 
proper γ-carboxylation of Gas6 (Yanagita, 1999). Moreover, in a model of induced 
glomerulonephritis, both Axl and Gas6 were upregulated and were associated with the 
progression of mesangial cell proliferation, an effect that could be inhibited by 
administration of Warfarin, which inhibits Vitamin K-dependent γ-carboxylation, or 
by administration of Axl-Fc (Yanagita, 2001). Later, the same group reported that the 
effects of Gas6 stimulation on mesangial cell proliferation were mediated by the 
STAT3 transcription factor (Yanagita, 2001). In addition, in a mouse model of 
nephrotoxic nephritis, mortality as well as the progression of glomerular disease were 
decreased in Gas6-deficient mice (Yanagita, 2002). Similarly, increased Gas6 and Axl 
expression were observed in the glomeruli of rats with induced diabetic nephropathy, 
but not in Gas6-deficient rats, and Warfarin administration could inhibit mesangial 
and glomerular hypertrophy (Nagai, 2003). Later, it was reported that Gas6 activates 
AKT and mTOR signaling in glomerular hypertrophy, and that high glucose 
treatment could induce Gas6/Axl expression in mesangial cells, resulting in mesangial 
hypertrophy in a Gas6-dependent manner (Nagai, 2005). Increased expression of 
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Gas6 has also been observed in a rat model of chronic renal rejection after kidney 
transplantation, however this was accompanied by high expression of Tyro3 rather 
than Axl (Yin, 2002). In a later study of human specimens of chronic renal transplant 
rejection, Gas6 expression was found to be increased in acute tubular necrosis as well 
as in acute transplant reject, and increased expression of Axl was observed in acute 
tubular necrosis whereas differential expression of the other TAM receptors could not 
be detected (Yin, 2003). Increased Gas6 expression has also been observed in humans 
with chronic kidney disease (CKD), however in a mouse model of CKD, Gas6/Axl 
signaling was reported to a protective mechanism, associated with slower progression 
to renal failure (Hyde, 2014, Lee, 2012).  

In the light of the reported differential expression of Gas6 and Axl in kidney disease, 
it is noteworthy that there is a well-established connection between renal disease and 
the risk of developing kidney cancer (Russo, 2012). 

Axl is expressed in RCC tumors, and high expression of Axl, or low expression of 
Gas6, correlates with poor prognosis in RCC (Chung, 2003, Gustafsson, 2009). 
Moreover, Axl mRNA expression levels in the tumor have been shown to be an 
independent prognostic factor in RCC (Gustafsson, 2009). In VHL-deficient ccRCC 
cell lines, Axl expression is high and seems to be post-transcriptionally regulated by 
VHL, as reconstitution of VHL results in decreased expression of Axl protein, but not 
Axl mRNA (Gustafsson, 2009). Similarly, Axl could be linked to direct 
transcriptional regulation by VHL in a study using proteomic and transcriptional 
profiling approaches to compare VHL-positive and -negative ccRCC cells (Boysen, 
2012). Moreover, HIF1 and HIF2, which are negatively regulated by VHL, have 
been shown to directly bind to the hypoxia-responsive element in the Axl promoter, 
and inactivation of Axl in metastatic ccRCC cells reversed the metastatic phenotype 
in vivo and reduced invasion in vitro (Rankin, 2014). In ccRCC tumors, Axl is 
expressed both in tumor cells and in endothelial cells, and epithelial Axl expression 
correlated with poor prognosis, whereas high endothelial expression of Axl correlated 
with high nuclear differentiation grade (Boysen, 2012). Interestingly, short-term 
stimulation of Axl by Gas6 in ccRCC cell lines is associated with initial Axl 
phosphorylation, followed by downregulation of Axl protein, and Gas6-stimulated 
ccRCC cells exhibit decreased cell viability, and decreased migratory capacity which 
seemed to be dependent on Axl (Gustafsson, 2009). Similarly, siRNA-mediated 
knockdown of Axl been associated with G0/G1 cell cycle arrest, however the effect of 
Gas6 was not studied in this context (Chung, 2003).  
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The miR-34 family in RCC 

As previously mentioned, the miR-34 family members are primarily considered to be 
tumor suppressor microRNAs. However, the reports on miR-34, in particular miR-
34a, expression in RCC are contrasting. In several studies aimed at identifying 
differentially expressed microRNAs in ccRCC, miR-34a was found to be upregulated 
in tumor specimens (Juan, 2010, Jung, 2009, Liu, 2010, Osanto, 2012, White, 2011, 
Wu, 2012). In contrast, epigenetic inactivation of both miR-34a and miR-34b/c has 
been reported in RCC, and decreased expression of miR-34a has also been reported in 
RCC tumors in a study using RT-qPCR (Vogt, 2011, Zhang, 2014). Low miR-34a 
expression has also been reported in RCC cell lines, and miR-34a was shown to 
regulate CD44 in vitro, a cell surface adhesion molecule often upregulated in RCC 
(Yu, 2014). In addition, miR-34a has been indicated to regulate Notch1 and c-Myc, 
c-Met, and Bcl2 in RCC in vitro, however, direct regulation of Notch1 by miR-34a 
was not confirmed by Luciferase assay (Yamamura, 2012, Zhang, 2014). On the 
other hand, high miR-34a expression was observed in the renal tubules of rats in an 
experimental model of oxidative stress-induced renal carcinogenesis, and siRNA-
mediated knockdown reduced proliferation renal carcinoma cells, thus the authors 
proposed that effects of miR-34a could be cell type-dependent (Dutta, 2007). 

It is possible that the contrasting reports on miR-34a expression could be explained 
by differences in sample size, sample preparation and experimental procedures. 
However, most of the reports conducted with human tumor samples seem to indicate 
that miR-34a expression indeed is increased in ccRCC tumors, similar to what we 
have observed (Paper II). In addition, although Luciferase assays could be used to 
efficiently prove miRNA-mRNA interactions, these assays are usually performed 
under relatively synthetic conditions with high concentrations of microRNA and 
Luciferase-mRNA transcripts which may be rather unrepresentative of physiological 
conditions. Thus, proving a potential regulation of a mRNA transcript by a 
microRNA, even if performed in a tissue-specific cell lines, does not automatically 
imply that this interaction is the primary mode of action by the microRNA in that 
cell type. Similarly, experiments performed with microRNA mimics or microRNA 
blockers are usually also conducted at relatively high molecular concentrations, and in 
addition, the fact that each microRNA usually has numerous targets further 
aggravates attempts to elucidate microRNA function in a physiological context. 
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miR-21 in RCC 

High expression of miR-21 in ccRCC has been reported by numerous research 
groups, and miR-21 expression was correlated to worse outcome in the Cancer 
Genome Atlas study (Cancer Genome Atlas Research, 2013, Chow, 2010, Huang, 
2009, Juan, 2010, Jung, 2009, Osanto, 2012, Wotschofsky, 2012, Wu, 2012). In 
RCC, miR-21 has been shown to directly regulate TIMP3, a metalloproteinase 
inhibitor, and Fas ligand, an apoptosis-inducing protein, affecting survival and 
proliferation (Zhang, 2011). Moreover, miR-21 is a direct negative regulator of the 
transcription factor TCF21 which drives expression of a member of the metastasis 
suppressor family, KISS1 (Zhang, 2012). Interestingly, increased levels of miR-21 has 
been observed in the kidneys and serum of patients with renal fibrosis, which is the 
end stage for many chronic kidney diseases (Glowacki, 2013, Zarjou, 2011). 
Expression of miR-21 can be induced by TGFβ, which is involved in RCC 
pathogenesis and metastasis (Bostrom, 2013, Glowacki, 2013, Zarjou, 2011). In the 
context of renal fibrosis, it is noteworthy that miR-21 has been indicated to be 
involved in an epigenetic switch linking inflammation to cancer and maintenance of a 
transformed state, as has previously been mentioned (Iliopoulos, 2010). 

miR-10b in RCC 

Unlike miR-21, the reports on miR-10b expression in various human cancers are 
inconsistent. For example, upregulation of miR-10b has been reported in more than 
10 human cancers, while downregulation of miR-10b has been reported in melanoma 
and colon cancer, and in RCCs (Lu, 2014). Similar to our findings (Paper I), 
decreased expression of miR-10b in ccRCC has been observed by others (Cancer 
Genome Atlas Research, 2013, Juan, 2010, Osanto, 2012). Furthermore, decreased 
expression of miR-10b seems to be associated to metastatic disease, early relapse, and 
poor prognosis in ccRCC (Heinzelmann, 2011, Khella, 2012, Slaby, 2012, 
Wotschofsky, 2012, Wu, 2012). 

As previously mentioned, miR-10b has been validated to target tumor suppressor 
genes, and the effects of miR-10b expression are potentially cell-type dependent 
(Gabriely, 2011, Ma, 2007, Tian, 2010). To date, little is known about the role of 
miR-10b in ccRCC, and how decreased expression of miR-10b could contribute to 
the cancer phenotype, however in a recent report, significant downregulation of miR-
10b was reported in renal allograft rejection and inhibition of miR-10b in human 
glomerular cells mimicked the features of allograft rejection (Liu, 2015). 
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The prostate and prostate cancer 

The prostate 

 

Figure 7 
The human prostate. Reprinted with the permission Encyclopaedia Britannica. 

The prostate is an exocrine gland in the male reproductive system, whose main 
function is to secrete an alkaline fluid, that together with spermatozoa and seminal 
vesicle fluid make up the semen (Neil, 2005). The size of the prostate is just larger 
than a walnut, and it sits just below the urinary bladder, with the urethra and the 
ejaculatory ducts passing through. The prostate gland can be divided into zones, the 
peripheral zone, the central zone, which surrounds the ejaculatory ducts, and the 
transitional zone, lateral to the urethra (Myers, 2000). 
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Prostate cancer 

Prostate cancer is the most common neoplasm in men, and has an incidence rate of 
around 214 cases per 1000 men in Europe (Heidenreich, 2014, Jemal, 2008). The 
risk of developing PCa increases over age, which is reflected by the fact that PCa is 
more common in developed countries, as compared to developing countries (Ferlay, 
2010). The 5-year standardized survival of PCa patients is approximately 83%, and 
patients diagnosed with early-stage PCa have even better survival, close to 100% over 
a 5-year period (De Angelis, 2014). However, PCa imposes a great economic burden 
to the healthcare, costing almost 5.5 billion EUR yearly in Europe (Luengo-
Fernandez, 2013). In addition, even though the overall survival of PCa patients is 
high, the 4% of PCa patients that develop metastatic disease face a 5-year survival rate 
of approximately 30% (Fong, 2012). 

PCa can be diagnosed using digital rectal examination, transrectal ultrasound-guided 
biopsy, and analysis of prostate-specific antigen (PSA) concentration in the serum 
(Heidenreich, 2014). In general, high PSA levels are associated with increased 
likelihood of PCa, however not all PCa patients exhibit increased serum PSA 
(Heidenreich, 2014). The PSA has been debated because of the potential false positive 
and negative results, and in a systematic review of two large PCa screening studies, no 
conclusive evidence supporting population-based screening for PCa could be found 
(Ilic, 2007). Increased PSA levels can also occur in BPH (Chang, 2012). In a 
randomized study with more than 160,000 European men, the authors concluded 
that PSA screening does reduce the number of deaths from PCa with 20%, however 
there is a risk of overdiagnosis associated with the PSA test (Schroder, 2009). To 
completely diagnose PCa, histological examination of biopsy samples is needed 
(Heidenreich, 2014). The Gleason scoring system is based on the histological 
appearance of the prostate tissue, where a low score represents well-differentiated 
tumors which still have structure similar to healthy prostate, whereas patients with 
high Gleason score have tumors which in large have lost their glandular structure and 
are poorly differentiated (Cotran, 2005). The Gleason score also has prognostic 
significance (Heidenreich, 2014, Rusthoven, 2014). In addition to the Gleason score, 
TNM staging is used for prognosis and treatment selection, and is based on tumor 
histology, spread, lymph node involvement, and metastasis status (Cheng, 2012). 

For patients with low-risk PCa, therapy may not be needed; instead, active 
surveillance is recommended for patients with a localized disease, few biopsy samples 
with confirmed cancer and a Gleason score of 6 or lower (Heidenreich, 2014). 
Surgical removal of the whole prostate, radical prostectomy (RP), has been found to 
especially beneficial for patients who are 65 years old or younger, and those who have 
intermediate or high risk PCa (Heidenreich, 2014). In addition, radiotherapy is used 
to treat low-risk PCa tumors (Heidenreich, 2014). Treatments for intermediate and 
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high risk PCa tumors include RP as well as different types of radiotherapy 
(Heidenreich, 2014).  

More than 90% of PCa metastases are found in the bone marrow, and cause great 
pain and high risk of skeletal complication (Heidenreich, 2014). For the treatment of 
metastatic PCa tumors, therapeutic androgen deprivation strategies are most 
commonly used. Androgen deprivation can for example be achieved using agonists of 
the luteinizing hormone-releasing hormone, which causes testosterone levels to 
decrease (Heidenreich, 2014). Relapsing PCa after hormone treatment is often 
referred to as castration-resistant PCa (CRPC), and while some of these will respond 
to second line therapy targeting the androgen receptor, others are truly hormone-
resistant and are resistant to all hormone-targeting therapies (Heidenreich, 2014). 
Chemotherapeutic agents, such as Docetaxel, are also used in second line treatment of 
CPRC (Heidenreich, 2014). 

Axl and Gas6 in PCa 

Axl is overexpressed in PCa cell lines as well as in PCa tumor tissue, where increased 
Axl expression seems to be associated with the tumor Gleason score (Jacob, 1999, 
Sainaghi, 2005, Shiozawa, 2010). Gas6 signaling through Axl has been implicated to 
increase the proliferation of PCa cell lines, and knockdown of Axl has been shown to 
decrease tumor weight and IL-6 secretion in tumor xenograft models, and decreased 
cellular growth and survival, migration and invasion in vitro (Paccez, 2013, Sainaghi, 
2005). However, another study has indicated that Annexin II, which is abundantly 
expressed in the bone marrow, induces Axl expression and osteoblast-secreted Gas6, 
which inhibits growth and prevents chemotherapy-induced apoptosis in PCa cells, 
possibly to induce dormancy in the bone marrow niche (Shiozawa, 2010). In line 
with these findings, the same group later presented a report indicating that PCa cells 
express Axl, and that Gas6 signaling through Axl indeed inhibits the growth of a 
human PCa cell line (Taichman, 2013). Furthermore, immunofluorescence staining 
in xenografts indicated that Tyro3 is expressed in primary tumors but not in bone 
marrow-disseminating cells, and is upregulated upon the formation of metastatic 
lesions, and conversely, Axl is primarily expressed in the disseminating cells prior to 
metastasis in vivo (Taichman, 2013). Based on their findings in the xenograft imaging 
experiments, the authors presented the hypothesis that when Tyro3 expression is 
equal to or higher than Axl expression, Gas6-mediated signaling promotes cellular 
proliferation and that possibly, the dynamics in Tyro3/Axl expression could be a 
mechanism to induce dormancy in the bone marrow (Taichman, 2013). In another 
study by the same research group, small interfering RNA (siRNA)-mediated 
knockdown of Axl in PCa cell lines resulted in decreased expression of several markers 
of EMT (Mishra, 2012). Moreover, Gas6 stimulation of PCa cells resulted in 
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downregulation of Axl, similar to what has been observed in RCC cells, and in 
experiments mimicking hypoxic conditions, Gas6-mediated downregulation of Axl 
was inhibited (Mishra, 2012).  

Axl imaging using radiolabeled monoclonal antibodies has also been proposed as a 
potential tool to identify patients that could benefit from targeted Axl therapy 
(Nimmagadda, 2014). 

The miR-34 family in PCa 

Differential expression of all of the microRNA-34 family members has been reported 
in PCa (Ambs, 2008, Hagman, 2010, Walter, 2013). Downregulation of miR-34c in 
PCa correlates with Gleason grade and low expression of miR-34c is associated with 
worsened prognosis (Hagman, 2010, Tsuchiyama, 2013). Furthermore, miR-34c has 
been shown to be a direct negative regulator of E2F3, BCL2, and MET, all of which 
are oncogenes involved in proliferation, survival and metastatic progression, and miR-
34c expression correlated inversely with MET expression in PCa tumor tissue 
(Hagman, 2010, Hagman, 2013). Similar to miR-34c, decreased expression of miR-
34a has also been observed in PCa tumors (Ambs, 2008, Hagman, 2010). In PCa 
miR-34a has been shown to be a negative regulator of SIRT1 expression via 
interaction with the SIRT1 promoter, and ectopic miR-34a expression in a PCa cell 
line was associated with growth inhibition, cell cycle arrest, and decreased resistance 
to apoptosis when the cells were treated with Camptothecin, a drug used in cancer 
therapy (Fujita, 2008). Later, the same group presented evidence that re-expression of 
miR-34a also could attenuate resistance to the chemotherapy drug Paclitaxel in a PCa 
cell line (Kojima, 2010). Moreover, miR-34a has been shown to target CD44, which 
is associated with cancer stemness and metastasis, in PCa, and in addition systematic 
treatment with miR-34a decreased metastasis and increased survival in a xenograft 
study (Liu, 2011). While differential miR-34b expression in PCa has been reported, 
the results are inconsistent; miR-34b has been indicated to be upregulated in one 
study, another study reported that miR-34b was downregulated in PCa (Ambs, 2008, 
Martens-Uzunova, 2012). Also in the case of miR-34a and miR-34c there has been 
controversing reports, as both miR-34a and miR-34c were reported to be upregulated 
in PCa tumors in a recent study (Walter, 2013). 
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The present investigation 

Paper I 

Introduction 

Clear cell renal cell carcinoma is the most common type of cancer in the kidney, and 
while the prognosis of patients with organ-confined disease is relatively good, patients 
who develop metastasis face a poor prognosis with a 5-year survival of less than 10% 
(Cohen, 2005, Novara, 2010, Weikert, 2010). MicroRNAs, short non-coding RNAs, 
act as post-transcriptional regulators of protein expression by binding to target 
mRNAs, and more than 30% of the human genome is thought to be regulated by 
microRNAs (Bartel, 2004, Lewis, 2005). Moreover, dysregulation of microRNA 
expression has been linked to cancer, and in ccRCC microRNAs have been reported 
to be differentially expressed in tumor tissues, and microRNA expression signatures 
have been indicated to be useful prognostic tools (Osanto, 2012, Slaby, 2012, 
Wotschofsky, 2012, Zaman, 2012). Recently, the Cancer Genome Atlas (TCGA) 
presented a report where a large number of ccRCC tumor samples were extensively 
characterized using arrays for mRNA transcripts and microRNAs, as well as protein, 
DNA methylation, and SNP arrays (Cancer Genome Atlas Research, 2013). Our aim 
was to evaluate the prognostic significance of microRNAs identified from the TCGA 
cohort in a large RCC cohort. 

Methods and results 

We used biostatistical methods to identify microRNAs associated to patient outcome 
and disease severity in the TCGA cohort, which is publically available. Candidate 
microRNAs were selected based on their feasibility to be measured by RT-qPCR, and 
four candidate microRNAs were subsequently measured in a cohort of 198 RCC 
tumor samples of which 152 were ccRCC, and 50 normal kidney samples. Using 
SPSS-based statistics, we evaluated the expression of the candidate microRNAs in 
RCC subtypes and their association to survival and disease severity. Importantly, we 
identified a two-microRNA ratio, miR21/10b which correlated significantly with patient 
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survival, and showed that the miR21/10b is an independent prognostic factor for ccRCC 
patients without metastasis at the time of diagnosis. 

Conclusions and future perspectives 

In this report we presented a microRNA ratio which could provide additional 
diagnostic information for metastasis-free ccRCC patients. The concept of a 
microRNA ratio, or a microRNA index quota, is relatively novel and has several 
advantages as it eliminates the need for housekeeping genes in the RT-qPCR reaction, 
it may amplify the prognostic impact of a single microRNA, and meanwhile, 
combining several factors into a prognostic ratio could also increase the prognostic 
robustness with regard to variation in basal expression of single prognostic factors 
between individuals (Larne, 2013). 

In our microRNA ratio, miR-21 is the numerator and seems to be upregulated in 
ccRCC tumor tissue. This finding is supported by previous reports by other research 
groups, as well as by the report presented by the TCGA on their ccRCC cohort 
(Cancer Genome Atlas Research, 2013, Faragalla, 2012, Juan, 2010, Zaman, 2012). 
Moreover, miR-21 expression has been shown to mediate survival, invasion and 
proliferation in ccRCC cells in vitro (Zhang, 2011, Zhang, 2012). In this context, it 
is interesting to note that increased expression of miR-21 has been reported in renal 
fibrosis, and in addition, miR-21 seems to be involved in an epigenetic switch 
induced by inflammatory signaling which enables maintenance of a transformed state 
in mammary cells (Glowacki, 2013, Iliopoulos, 2010, Zarjou, 2011). The role of 
miR-21 in renal inflammation as well as in RCC could be an indication that miR-21 
is involved in malignant transformation in the kidney, as chronic kidney disease and 
renal fibrosis is linked to increased risk of RCC (Russo, 2012). 

Although miR-10b has been reported to be upregulated in several cancer types, our 
finding of decreased miR-10b expression in ccRCC is supported by other reports 
(Cancer Genome Atlas Research, 2013, Juan, 2010, Lu, 2014, Osanto, 2012). The 
targets of miR-10b in the kidney are unknown, however miR-10b has been validated 
to target tumor suppressor genes in other cancers where miR-10b seems to be 
upregulated, and it is possible that effects of miR-10b expression are cell-type 
dependent (Gabriely, 2011, Ma, 2007, Tian, 2010). As previously mentioned, 
decreased expression of miR-10b in ccRCC has been linked to poor prognosis as well 
as metastatic disease and early relapse (Heinzelmann, 2011, Khella, 2012, Slaby, 
2012, Wotschofsky, 2012, Wu, 2012). Similar to miR-21, dysregulation of miR10b 
expression has been linked to renal disease, as miR-10b was recently reported to be 
significantly downregulated in renal allograft rejection (Liu, 2015). Further 
elucidation of the roles of miR-10b and miR-21, either alone or together, in kidney 
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disease and ccRCC could potentially increase the understanding of RCC tumor 
formation and biology. 

Paper II 

Introduction 

In previous reports from our group, high Axl expression has been identified in ccRCC 
cells in vitro, and furthermore, high Axl expression in RCC patients correlates with 
poor survival and is an independent prognostic factor (Gustafsson, 2009, Gustafsson, 
2009). The miR-34 family, known as a family of tumor suppressor microRNAs 
mediating p53-induced cellular stress response, has been shown to be epigenetically 
inactivated in several solid cancers, including RCC, and moreover miR-34a has been 
shown to be downregulated in ccRCC cells in vitro (Lodygin, 2008, Vogt, 2011, Yu, 
2014). However, reports are in conflict as miR-34a also has been reported to be 
upregulated in ccRCC tumors (Liu, 2010). Axl expression correlates inversely with 
miR-34a expression in breast cancer, NSCLC, and colorectal cancer, and in addition, 
miR-34a has been shown to directly bind to the 3’ UTR of Axl to regulate Axl 
expression post-transcriptionally (Mackiewicz, 2011, Mudduluru, 2011). 
In this report, our aim was to elucidate the role of the miR-34 family members, miR-
34a, miR-34b, and miR-34c, in the regulation of Axl expression in ccRCC cells in 
vitro. Furthermore, we sought to determine if Axl expression correlated inversely with 
miR-34a/b/c expression in human ccRCC tumors, and whether any of the miR-34 
family members could predict patient outcome in ccRCC.  

Methods and results 

786-O, a ccRCC cell line, was transiently transfected with miR-34 family members, 
and cells were analyzed for total Axl protein expression using Western Blot (WB), 
surface Axl protein expression using flow cytometry (FCM), as well as for Axl mRNA 
levels using RT-qPCR, and we observed significant downregulation of Axl protein as 
well as decreased Axl mRNA levels in cells transfected with miR-34a or miR-34c. To 
determine if miR-34a/c could directly regulate Axl mRNA by binding to the 3’ UTR, 
we performed Luciferase reporter assay with an Axl 3’ UTR construct and microRNA 
mimics, and showed that both miR-34a and miR-34c bind directly to Axl 3’ UTR. 
The binding of miR-34a and miR-34c to Axl 3’ UTR was seed sequence-specific as 
an introduced mutation in the seed sequence of the Axl 3’ UTR abrogated miR-
34a/c-mediated downregulation of Luciferase activity. 
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Moreover, expression analysis of the miR-34 family members in RCC tumor samples 
using RT-qPCR revealed that miR-34a is upregulated in ccRCC patients, however 
miR-34a does not predict outcome in ccRCC. In addition, expression of miR-34a 
was analyzed with regard to correlation with previously determined Axl mRNA levels 
in tumor, sAxl in patient serum, as well as immunohistochemistry for Axl in tumor 
tissue, however no correlation with Axl expression was found.  

Conclusions and future perspectives 

We concluded that although miR-34a/c has the capability to regulate Axl in vitro, the 
results of our study do not support the hypothesis of miR-34 family members as key 
regulators of Axl expression in ccRCC. In addition, our findings do not support miR-
34a as a tumor suppressor in ccRCC. This finding is in agreement with other reports 
where miR-34a seemed to support cellular proliferation in renal carcinogenesis 
(Dutta, 2007). Interestingly, miR-34a has also been shown to support survival when 
co-expressed with Myc in B-lymphoid cells (Sotillo, 2011). Differential targeting of a 
microRNA in different cell types could be explained by the effects of target mRNA 
abundance on target regulation (Arvey, 2010). In this context, it would be of interest 
to determine the role of miR-34a in ccRCC pathogenesis, and to elucidate which 
targets are regulated by miR-34a in ccRCC. 

Although our study does not support this hypothesis, it is still possible that Axl 
expression is regulated by miR-34a/c in RCC, although the fact that miR-34a 
expression is increased in ccRCC does not strengthen this hypothesis. As tumor RNA 
extracts do not only contain tumor cells but also tumor stroma, it is possible that Axl 
and miR-34a are not expressed in the same cells. This could potentially be elucidated 
using in situ hybridization or animal models utilizing reporter genes to identify 
exactly which cells express Axl and miR-34a, as well as localization of Axl protein or 
mRNA and miR-34a. 

Paper III 

Introduction 

As previously discussed, high expression of Axl has been reported in PCa, and has 
been linked to metastasis and aggressive phenotype (Mishra, 2012, Paccez, 2013, 
Shiozawa, 2010). Similar to RCC, epigenetic inactivation of miR-34a has been 
reported in PCa and has been shown to regulate cellular growth and resistance to 
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chemotherapy (Fujita, 2008, Kojima, 2010, Lodygin, 2008). Moreover, decreased 
expression of miR-34c predicts worsened outcome in PCa, and miR-34c has been 
shown to be a direct regulator of MET and Bcl2 in PCa (Hagman, 2010). As 
previously mentioned, direct regulation of Axl by miR-34a has been reported, and in 
addition, overexpression of miR-34c is associated with decreased Axl expression in 
PCa (Boysen, 2014, Hagman, 2013, Mackiewicz, 2011, Mudduluru, 2011). 

In this report, we sought to elucidate the role of the miR-34 family members in the 
regulation of Axl expression in PCa cell lines in vitro, as well as to determine the role 
of Axl in miR-34-mediated regulation of cellular functions such as growth, apoptosis 
and migration. 

Methods and results 

We performed transient transfection with miR-34 family members in PCa cell lines, 
and analyzed the cells for total Axl protein expression using WB, surface Axl protein 
expression using FCM, and in addition we used RT-qPCR to measure Axl mRNA 
levels. Significant downregulation of Axl protein was observed, as well as decreased 
Axl mRNA levels in PCa cells transfected with miR-34a or miR-34c. Moreover, we 
performed Luciferase reporter assay with an Axl 3’ UTR construct and microRNA 
mimics, and both miR-34a and miR-34c were found to bind directly to the 3’ UTR 
of Axl. We confirmed that binding of miR-34a and miR-34c to Axl 3’ UTR occurred 
at the predicted seed sequence using an introduced mutation in the miR-34 seed 
sequence of the Axl 3’ UTR which inhibited downregulation of Luciferase-Axl 
3’UTR by miR-34a and miR-34c. In addition, we assayed PCa cell lines transiently 
transfected with miR-34a/b/c or Axl siRNA, and found that miR-34a/c-mediated 
inhibition of proliferation in the presence of Gas6 potentially could be mediated by 
Axl. However, transfection with Axl siRNA did not replicate miR-34/c transfection 
with respect to cellular growth or migration, although a similar insignificant trend to 
increased apoptosis in PC3 cells transfected cells with miR-34a/c or Axl siRNA. 

Conclusions and future perspectives 

Similar to our conclusions in Paper II, our conclusion in Paper III was that miR-34 
indeed has the capability to regulate Axl in vitro, however it seems that miR-34a/c-
mediated effects in PCa are most likely primarily mediated by regulation of other 
targets. Surprisingly, we could not completely reproduce previously reported effects of 
miR-34c with regard to proliferation, growth and apoptosis (Hagman, 2010). 
Possibly, this could be explained by experimental differences. Although we could 
show that Axl is directly regulated by miR-34a/c, this does not necessarily have to 
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imply that Axl is regulated by miR-34a/c in PCa in vivo, especially considering the 
complexity of microRNA targeting and how target regulation is dependent on target 
mRNA abundance (Arvey, 2010, Bartel, 2009). As miR-34c regulation of MET in 
PCa has been shown to have impact on tumorigenic processes such as invasion, it is 
possible that miR-34c-MET mRNA interactions, and potentially regulation of other 
targets by miR-34c, are favored in ectopic reexpression of miR-34c in PCa (Hagman, 
2013). To further elucidate whether regulation of Axl by miR-34a/c in PCa has 
physiological relevance, it would be interesting to evaluate if Axl and miR-34a/c are 
coexpressed in PCa tumors, for example by immunohistochemistry and in situ 
hybridization in tumor tissue, or by reporter assays in vivo. In addition, altered 
experimental setups could possibly enable further knowledge regarding Axl-mediated 
effects of miR-34 family dysregulation in PCa. 

Paper IV 

Introduction 

High expression of Axl has been associated with poor prognosis in several human 
cancers including RCC, and in addition, increasing evidence has been presented 
indicating a role for Axl in acquired resistance to targeted therapies in cancer (Brand, 
2014, Gustafsson, 2009, Wu, 2014). Axl is involved in tumorigenesis, for example in 
proliferation and migration, and it also plays a role in immunology and in vascular 
biology (Li, 2009, Verma, 2011). Furthermore, Axl is involved in tumor angiogenesis 
and has been shown to crosstalk with other RTKs such as EGFR and VEGFR 
(Holland, 2005, Korshunov, 2012). Moreover, Axl seems to be involved in acquired 
resistance to targeted therapies, for example EGFR-targeted therapies in breast and 
lung cancer, and resistance to Imatinib, an inhibitor targeting multiple kinases 
including PDGFR, in gastrointestinal stromal tumors (Mahadevan, 2007, Meyer, 
2013, Zhang, 2012). In addition, therapy targeting Axl has been shown to have 
additive effect with VEGFR-targeted therapy in EC tube formation, and targeting Axl 
in xenograft models improves the effect of anti-VEGF therapy in breast cancer and 
NSCLC, and EGFR inhibitor therapy in NSCLC (Li, 2009, Ye, 2010). In RCC, the 
multi-kinase inhibitor Sunitinib which targets RTKs such as VEGFR and PDGFR, is 
often used for therapy of advanced RCCs (Faivre, 2007). However, although targeted 
therapies have been shown to be beneficial, disease progression often occurs in 
patients with metastatic RCC even when treated with targeted therapies (Calvo, 
2014). 
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In this report, we hypothesized that Gas6 and Axl, similar to what has been observed 
in other human cancers, possibly could be involved in resistance to targeted therapy 
in ccRCC. Thus, our aim was to elucidate the role of Gas6/Axl signaling in acquired 
resistance to Sunitinib treatment. 

Methods and results 

Subconfluent and confluent 786-O ccRCC cells were stimulated with Gas6 for up to 
5 days, and Gas6-mediated activation of Axl was evaluated in total cell lysates using 
Axl immunoprecipitation (IP) and subsequent immunblotting for Axl 
phosphorylation. Interestingly, long-term Axl activation by Gas6 was only observed 
in 786-O cell grown to full confluence prior to stimulation, whereas Axl 
phosphorylation in subconfluent cells seemed to be highly induced within 15 
minutes, started to decrease after 30 minutes, and was followed by reduction of total 
Axl expression in the cells. Moreover, IP and WB for phosphorylated Axl and WB for 
phosphorylated Akt revealed that both Axl and Akt are activated even after 14 and 10 
days, respectively, of Gas6 stimulation in confluent 786-O cells. In addition 
CellTiter-Glo 2.0 and CellTox-Green assays revealed that Gas6 could not mediate 
increased viability and growth, or decreased apoptosis, in subconfluent cells, as was 
observed with confluent Gas6-stimulated cells. 

Short-term stimulation of 786-O cells with or without Sunitinib pretreatment 
revealed that Sunitinib does not inhibit Gas6-mediated Axl activation; instead Axl 
phosphorylation was increased in Sunitinib and Gas6 co-treated cells and similarly, 
enhanced phosphorylation of Akt and Erk was observed in the presence of Sunitinib 
and was further enhanced by Gas6. Sunitinib-induced enhancement of Axl 
phosphorylation could be inhibited using the small molecule Axl inhibitor R428, and 
furthermore, R428 could inhibit the Sunitinib-mediated increase of Akt and Erk 
activation even when Gas6 was not present. Similar results were obtained in human 
aortic endothelial cells (HAECs) with respect to enhanced Axl and Akt activation 
when cells were co-treated with Gas6 and Sunitinib. Using a phospho-kinase array, 
we observed increased activation of a downstream target of Akt, PRAS40, which is 
involved in cancer progression, after treatment of 786-O cells with Gas6, and this 
effect was further enhanced with co-treatment of Gas6 and Sunitinib. Interestingly, 
we observed activation of EGFR and HGFR in 786-O cells co-treated with Gas6 and 
Sunitinib, but not in cells stimulated with Gas6 alone, and the Gas6/Sunitinib-
mediated increase in EGFR and HGFR phosphorylation could be partially inhibited 
using the R428 Axl inhibitor. Co-treatment of Gas6 and Sunitinib in 786-O cells was 
associated with increased growth and viability compared to Gas6 or Sunitinib alone, 
and reduced apoptosis similar to what was observed with Gas6 alone. Moreover, 
Gas6-mediated activation of Axl was accompanied by increased secretion of 
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Osteopontin, a protein involved in tumor angiogenesis and stroma adaptation, and 
this effect was further increased in the presence of Sunitinib. 

Conclusions and future perspectives 

The results presented in this preliminary report suggests that in the presence of 
Sunitinib, Gas6/Axl signaling is enhanced and is acting in concert with other RTKs. 
As previously mentioned, Gas6 is expressed in the kidney, and in ccRCC tumors 
(Gustafsson, 2009, Manfioletti, 1993). In RCC, Sunitinib is thought to act primarily 
on ECs (Huang, 2010). The observed enhancement of Akt activation in Gas6 and 
Sunitinib co-treated cells could imply a role for Axl and Gas6 in the resistance to 
Sunitinib treatment. In NSCLC, increased Akt signaling in ECs is associated with 
increased tumor angiogenesis characterized by leaky vessels, causing hypoxia, and 
moreover, hypoxia seems to stabilize Gas6/Axl signaling in PCa (Graves, 2010, 
Mishra, 2012). Furthermore, the observed Gas6-inducible Osteopontin secretion, 
which was shown to be enhanced in the presence of Sunitinib, could indicate a role 
for Gas6/Axl in activating alternative pathways to angiogenesis, thus providing a 
mechanism to restored tumor angiogenesis, as Osteopontin seems to be involved in 
tumor angiogenesis (Anborgh, 2010). 

As this is a project that is still undergoing, future perspectives include repeating 
experiments as well as confirming observations from the protein array experiments. In 
addition, we are currently analyzing the effects of Gas6 and Sunitinib co-treatment on 
786-O cell cycling, and in addition, we are setting up experiments for assaying effects 
on migration and invasion in this context. Furthermore, we would like to evaluate 
functional effects of Gas6/Sunitinib co-treatment in ECs using migration and tube 
formation assays. Moreover, we aim to repeat selected experiments in primary RCC 
tumor cells isolated from patients. 
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Populärvetenskaplig sammanfattning 

I vårt DNA finns det ett stort antal gener, som beskriver för cellen hur den skall 
tillverka de proteiner som behövs för att cellen ska kunna fungera normalt. Olika 
celler uttrycker olika proteiner, och det är viktigt att tillverkningen av proteiner, och 
även mängden av olika proteiner i cellen, är under kontroll och i balans. När en cell 
uttrycker för mycket eller för lite av ett protein, eller om proteinet har förändrats, t.ex. 
genom mutationer i genen, kan olika sjukdomar, t.ex. cancer, uppstå. Det finns 
många sätt för cellerna att kontrollera proteinmängden i sig själva, dels genom 
kontroll av själva processen där generna används för att tillverka proteiner, men också 
genom att påverka processer som styr proteinernas aktivitet eller som gör att proteiner 
bryts ned. Ett sätt att kontrollera tillverkningen av proteiner är med så kallade mikro-
RNA. Mikro-RNA är väldigt korta bitar av RNA, som också finns i vårt DNA, men 
de beskriver inte hur något protein ska tillverkas; istället kan de reglera 
proteintillverkningsprocessen genom att interagera med de meddelanden som bär 
genernas beskrivning av proteinerna. På så sätt kan en mikro-RNA påverka 
tillverkningen av ett visst protein, oftast genom att hindra tillverkningen. I min 
avhandling har jag arbetat med olika mikro-RNA, samt med ett protein som heter 
Axl, som har visats sig finnas i stora mängder i många olika typer av cancerceller. Axl-
proteinet är en receptor som kan ta emot signaler från cellens utsida, och Axl har 
funktioner som kan bidra till egenskaper som ofta kopplas till cancer, som till 
exempel cancercellers förmåga att motstå programmerad celldöd, en viktig process för 
kroppen att ta död på celler som inte beter sig normalt, eller egenskaper som gör att 
cellerna växer snabbare och kan förflytta sig i kroppen.  

I mitt första projekt mätte vi olika mikro-RNA i prover från njurcancertumörer, och 
vi kunde visa att två mikro-RNA, miR-21 och miR-10b, uttrycks olika mycket i 
njurcancertumörer jämfört med i frisk njurvävnad. Dessutom kunde vi visa att det 
förändrade uttrycket av dessa mikro-RNA kan användas för att skilja på patienter som 
har god prognos och de som har sämre prognos, hos patienter som inte har någon 
metastas när de får sin diagnos. Alla funktioner av dessa mikro-RNA är inte helt 
utredda, men man vet att miR-21 ofta uttrycks i större mängd i tumörceller från olika 
typer av cancer, och när det finns mycket miR-21 så verkar cancercellerna vara mer 
aggressiva, t.ex. så är de mer motståndskraftiga mot programmerad celldöd. Uttrycket 
av båda dessa mikro-RNA verkar också förändras i njursjukdomar, på samma sätt som 
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vi sett i njurcancer, vilket är väldigt intressant eftersom det finns en tydlig koppling 
mellan njursjukdomar och ökad risk för njurcancer. 

I det andra projektet undersökte vi om en familj av mikro-RNA, miR-34-familjen, 
kan reglera uttrycket av Axl-proteinet, samt hur dessa mikro-RNA uttrycks i 
njurcancer. Bakgrunden till detta var att vi tidigare kunnat visa att Axl uttrycks i 
njurcancertumörer, och att njurcancerpatienter som har mycket Axl i tumören har 
sämre prognos än de som inte har så mycket Axl. Dessutom har det sedan tidigare 
varit känt att en av de mikro-RNA som ingår i miR-34-familjen, miR-34a, kan 
reglera uttrycket av Axl i andra cancersjukdomar, och man har också kunnat visa att 
ju mer miR-34a man har i tumören, desto mindre Axl finns det. Med hjälp av 
experiment i njurcancerceller kunde vi visa att både miR-34a och miR-34c, en annan 
medlem i miR-34-familjen, kunde reglera mängden Axl i njurceller, men när vi 
undersökte uttrycket av miR-34-familjemedlemmarna i patientprover så visade det sig 
att mängden miR-34a var högre i tumörprover än i prover från frisk njure, något som 
andra också har sett. Eftersom miR-34-familjen oftast brukar vara uttryckt i lägre 
mängd i tumörer än i frisk vävnad, och dessutom verkar kunna motverka egenskaper 
som är viktiga för tumörceller, brukar man beskriva dessa mikro-RNA som en del av 
cellens mekanism för att förhindra att cellen utvecklar tumörliknande egenskaper. I 
njurcancer verkar dock miR-34a ha en omvänd roll. Andra forskargrupper har 
tidigare kunnat vissa att just miR-34a verkar kunna ha olika effekt i olika celltyper, 
och man har också visat att miR-34a kan göra så att celler från njuren växer snabbare. 

I det tredje projektet fortsatte vi vår undersökning av miR-34-familjen, denna gång i 
prostatacancer. Även här ville vi undersöka om miR-34-familjen kan reglera uttrycket 
av Axl-proteinet. I detta projekt var bakgrunden att Axl uttrycks i 
prostatacancertumörer, och uttrycket verkar vara högre ju allvarligare sjukdomen är. 
Det är också känt sedan tidigare att uttrycket av både miR-34a och miR-34c är lägre i 
prostatacancer, och att uttrycket av miR-34c kan användas för att bedöma prognosen 
i prostatacancer. Även i detta projekt gjorde vi experiment i celler, denna gång 
prostatacancerceller, och vi kunde visa att både miR-34a och miR-34c, en annan 
medlem i miR-34-familjen, kunde reglera mängden Axl. Vidare gjorde vi experiment 
för att utröna vilken betydelse regleringen av Axl av dessa mikro-RNA kunde ha, och 
vi undersökte bland annat celltillväxt, rörlighet och programmerad celldöd. Vi kunde 
visa att nedreglering av Axl verkade vara kopplat till minskad celltillväxt, så kallad 
proliferation, när man stimulerar cellerna med Gas6, ett protein som stimulerar Axl. I 
övrigt verkade inte Axl ha så stor inverkan på de egenskaper vi undersökte, och vi 
konstaterade att de effekter som uppstår när uttrycket av miR-34a och/eller miR-34c 
förloras i prostatacancer troligtvis beror i första hand på andra proteiner, som också 
regleras av dessa mikro-RNA. 

I det fjärde och sista projektet, som vi fortfarande arbetar med i vårt labb, har vi 
fokuserat på Axl, och Gas6, proteinet som binder till Axl på cellens utsida och på så 
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sätt kan aktivera Axl, samt vilken roll de har i behandling av njurcancer med ett 
läkemedel som heter Sunitinib. Sunitinib är ett läkemedel som verkar genom att 
förhindra aktiveringen av receptor-proteiner på blodkärlsceller, och på så sätt 
förhindrar nybildning av blodkärl i tumören, en process som ofta sker i 
cancertumörer. Sunitinib har effekt i njurcancer, men tyvärr är det många patienter 
som efter ett tag återfår tumörer. Anledningen tros vara så kallad resistens, det vill 
säga att tumören hittar vägar att fortsätta växa, t.ex. genom att få igång nybildningen 
av blodkärl igen, och i andra cancersjukdomar har man sett att Axl verkar delta i den 
här processen. Genom experiment med både njurcancerceller och blodkärlsceller har 
vi kunnat visa att när man behandlar njurcancerceller med Sunitinib, så verkar de Axl-
aktiverande effekterna av proteinet Gas6 öka. Dessutom aktiveras andra receptorer, 
som kan delta i processer som bidrar till cancer, när man behandlar cellerna med 
Sunitinib, och denna effekt blir starkare när man också har med Gas6 i behandlingen. 
Gas6 verkar också kunna stimulera utsöndringen av ett protein som kan bidra till 
nybildningen av blodkärl, och även denna effekt förstärks när man dessutom 
behandlar med Sunitinib. Detta är väldigt intressant eftersom det sedan tidigare är 
känt att Gas6 uttrycks i njuren, och Axl uttrycks som bekant i njurcancerceller, och 
även i blodkärlsceller. Därför tror vi att Axl och Gas6 deltar i utvecklingen av resistans 
mot Sunitinib-behandling, och vi kommer att utföra ytterligare experiment för att få 
mer information om hur detta skulle kunna gå till. 
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