
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

The Control Server: A Computational Model for Real-Time Control Tasks

Cervin, Anton; Eker, Johan

Published in:
Proceedings 15th Euromicro Conference on Real-Time Systems, 2003.

DOI:
10.1109/EMRTS.2003.1212734

2003

Link to publication

Citation for published version (APA):
Cervin, A., & Eker, J. (2003). The Control Server: A Computational Model for Real-Time Control Tasks. In
Proceedings 15th Euromicro Conference on Real-Time Systems, 2003. (pp. 113-120). IEEE - Institute of
Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMRTS.2003.1212734

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/EMRTS.2003.1212734
https://portal.research.lu.se/en/publications/6c025edc-751a-467b-91aa-c874e095092a
https://doi.org/10.1109/EMRTS.2003.1212734

The Control Server: A Computational Model for Real-Time Control Tasks

Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
anton@control.lth.se

Johan Eker

Research Department
Ericsson Mobile Platforms AB

SE-221 83 Lund, Sweden
johan.eker@emp.ericsson.se

Abstract

The paper presents a computational model for real-time
control tasks, with the primary goal of simplifying the con-
trol and scheduling codesign problem. The model com-
bines time-triggered I/O and inter-task communication with
dynamic, reservation-based task scheduling. To facilitate
short input-output latencies, a task may be divided into sev-
eral segments. Jitter is reduced by allowing communication
only at the beginning and at the end of a segment. A key
property of the model is that both schedulability and control
performance of a control task will depend on the reserved
utilization factor only. This enables controllers to be treated
as scalable real-time components. The model has been im-
plemented in a real-time kernel and validated in a real-time
control application.

1. Introduction

Traditional scheduling models give poor support for code-
sign of multi-threaded real-time control systems. One diffi-
culty lies in the nonlinearity in scheduling mechanisms such
as rate-monotonic (RM) or earliest-deadline-first (EDF)
scheduling: a small change in a task parameter—e.g., pe-
riod, execution time, deadline, or priority—may give rise
to unpredictable results in terms of input-output latency (in
short, latency) and jitter. This is crucial, since the perfor-
mance of a controller depends not only on its sampling pe-
riod, but also on the latency and the jitter. In the control de-
sign, it is straight-forward to account for a constant latency,
while it is difficult to address varying or unknown delays.

In the seminal Liu and Layland paper [17], it is assumed
that I/O is performed periodically by hardware functions,
introducing a one-sample delay in all control loops closed
over the computer. This scheme does provide a quite nice
separation between scheduling and control design. From a
scheduling perspective, the controller can be described by a
periodic task with a period T , a computation time C, and a
deadline D = T . From a control perspective, the controller
will have a sampling period of T and a constant latency
L = T . This allows the control design and the real-time
design to be carried out in relative isolation.

However, the one-sample latency degrades the control
performance and is ultimately a waste of resources (more
on this later). A common alternative implementation is
therefore to perform the I/O requests within the task loop
and output the control signal as soon as possible in each

period (e.g., [14, 4]). At this point, however, the design
problem becomes very complicated. The I/O jitter and
latency of a controller are now affected by variations in
its own execution time as well as interference from higher-
priority tasks (which in turn depend on the variations in the
task execution times, the phasing of the periodic tasks, the
arrival pattern of sporadic tasks, etc.). In the best case, it
may be possible to derive formulas for the worst-case and
best-case response times of the tasks (e.g., [5, 21]), but
this information is still not sufficient to accurately predict
the performance of the controllers. Furthermore, as argued
in [12], with standard RM and EDF scheduling it can
be difficult to map task importance into priorities and/or
deadlines. These algorithms also perform poorly if tasks
deviate from their assumed behavior or if the CPU should
become overloaded.

1.1 Model Overview

The computational model we propose combines elements
from the synchronized I/O model of Giotto [11] with the
CPU resource reservation model of the constant bandwidth
server (CBS) [1]. The primary goal of the model is to facil-
itate simple codesign of flexible real-time control systems.
In particular, the model should provide

(R1) isolation between unrelated tasks,

(R2) short input-output latencies,

(R3) minimal sampling jitter and input-output jitter,

(R4) a simple interface between the control design and the
real-time design,

(R5) predictable control and real-time behavior, also in the
case of overruns, and

(R6) the possibility to combine several tasks (components)
into a new task (component) with predictable control
and real-time behavior.

Requirement (R1) is fulfilled by the use of constant
bandwidth servers. The servers make each task appear as
if it was running on a dedicated CPU with a given fraction
of the original CPU speed. To facilitate short latencies
(requirement (R2)), a task may be divided into a number
of segments, which are scheduled individually. A task may
only read inputs (from the environment or from other tasks)
at the beginning of a segment and write outputs (to the
environment or to other tasks) at the end of a segment. All

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

communication is handled by the kernel and is hence not
prone to jitter (requirement (R3)).

Requirements (R4)–(R6) are addressed by the combina-
tion of bandwidth servers and statically scheduled commu-
nication points. For periodic tasks with constant execution
times, the model creates the illusion of a perfect division of
the CPU, equivalent to the Generalized Processor Sharing
(GPS) algorithm [20]. The model makes it possible to ana-
lyze each task in isolation, from both scheduling and control
points of view. Like ordinary EDF, schedulability of the task
set is simply determined by the total CPU utilization (ig-
noring context switches and the I/O operations performed
by the kernel). The performance of a controller can also be
viewed as a function of its alloted CPU share. These prop-
erties make the model very suitable for feedback scheduling
applications.

Furthermore, the model makes it possible to combine
two or several communicating tasks into a new task. The
new task will consume a fraction of the CPU equal to the
sum of the utilization of the constituting tasks. The new
task will have a predictable I/O pattern, and, hence, also
predictable control performance. Control tasks may thus be
treated as real-time components, which can be combined
into new components.

In the end, we believe that the model will be a suitable
platform for adaptation to varying task sets and CPU loads,
i.e., feedback scheduling. As new control tasks are activated
or old controllers change mode, the computing resources
should be redistributed to provide optimal control perfor-
mance for the overall system. This topic will be treated in
subsequent papers.

1.2 Related Work

Giotto [11] is an abstract programming model for the im-
plementation of embedded control systems. Similar to our
model, I/O and communication are time-triggered and as-
sumed to take zero time, while the computations inbetween
are assumed to be scheduled in real-time. A serious draw-
back with the model is that a minimum of one sample
input-output latency is introduced in all control loops. Also,
Giotto does not address the scheduling problem.

Within the Ptolemy project, a computational domain
called Timed Multitasking (TM) has been developed [18].
In the model, tasks (or actors in the terminology of Ptolemy)
may be triggered by both periodic and aperiodic events.
Inputs are read when the task is triggered and outputs are
written at the specified task deadline. The computations
inbetween are assumed to be scheduled by a fixed-priority
dispatcher. In the case of a deadline overrun, an overrun
handler may be called. Again, the scheduling problem is not
explicitly addressed by the model.

The Constant Bandwidth Server [1] was originally pro-
posed as a means to bound the utilization of soft real-time
tasks with varying or unknown computational demands. A
variant called CBShd was introduced to schedule control
tasks with varying execution times in [7]. The idea was to
extend the sampling period of the controller by adding small

chunks of budget to the task in the event of an overrun. The
problems of I/O jitter and latency were not considered, how-
ever.

The idea of reducing jitter using dedicated, high-priority
tasks or interrupts handlers for input and output operations
has been proposed many times before, e.g., [19, 14, 8, 2].

1.3 Outline

The rest of this paper is outlined as follows. In the next
section, the model is stated in more formal terms. Section 3
deals with the control and scheduling codesign problem.
Section 4 discusses the possibility of viewing control tasks
as real-time components. The model has been implemented
in a real-time kernel and this is reported in Section 5. The
results of some experiments on a control application are
given in Section 6. Finally, Section 7 gives the conclusions
and suggestions for future work.

2. The Model

The Control Server (CS) model assumes preemptive dead-
line scheduling of tasks in a uniprocessor system. To guar-
antee isolation, all tasks in the system must belong to either
one of two categories:

• CS tasks, suitable for control loops and other periodic
activities with high demands for input/output timing
accuracy.

• Tasks served by ordinary CBS servers, including
aperiodic, soft, and non-real-time tasks.

2.1 CS Tasks

A CS task τi is described by

• a CPU share Ui,

• a period Ti,

• a release offset φi,

• a set of ni ≥ 1 segments S1
i ,S

2
i , . . . ,S

ni
i

of lengths

l1
i , l2

i , . . . , lni
i

such that ∑ni
j=1

l j
i
= Ti,

• a set of inputs Ii (associated with physical inputs or
shared variables), and

• a set of outputs Oi (associated with physical outputs
or shared variables).

Associated with each segment S j
i

are

• a subset of the task inputs, I j
i
∈ Ii,

• a code function f j
i

, and

• a subset of the task outputs, O j
i
∈ Oi,

The segments can be thought of as a static cyclic schedule
for the reading of inputs, the writing of outputs, and the
release of jobs. At the beginning of a segment S j

i
, i.e., when

t = φi + ∑ j−1
k=1

lk
i (mod Ti), the inputs I j

i
are read and a job

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

2

0
0 2 4 6 8 10 12

t

t

t
Segments

Job
execution

CBS
budget

S1 S1 S2S2

f 1f 1 f 2 f 2

II OO

Figure 1 Example of a CS task executing alone. The up arrows
indicate job releases and the down arrows indicate deadlines. The
overrun at t = 7 causes the deadline to be postponed to the end of
the next segment.

executing f j
i

is released. At the end of the segment, i.e.,

when t = φi + ∑ j
k=1

lk
i (mod Ti), the outputs O j

i
are written.

The jobs produced by a CS task τi are served on a first-
come, first-served basis by a dedicated, slightly modified
CBS with the following attributes:

• a server bandwidth equal to the CPU share Ui,

• a dynamic deadline di,

• a server budget ci, and

• a segment counter mi.

The server is initialized with ci = mi = 0 and di = φi. The
rules for updating the server are as follows:

• During the execution of a job, the budget ci is de-
creased at unit rate.

• If, at any time, ci = 0, or, if a new job arrives at time r
and di = r, then

– the counter is updated, mi := mod(mi,ni)+ 1,

– the deadline is moved, di := di + lmi
i

, and

– the budget is recharged to ci := Ui lmi
i

.

The rules are somewhat simplified compared to the original
CBS rules [1] due to the predictable pattern of release times
and deadlines. The only real difference from an ordinary
CBS is that here a “dynamic server period”, equal to the
current segment length, lmi

i
, is used.

Figure 1 shows an example of a CS task with two
segments executing alone. This is a typical model of a
control algorithm, which has been split into two parts:
Calculate Output and Update State. The lengths of the
segments are 2 and 4 units respectively, and the task CPU
share is U = 0.5. At the beginning of the first segment, an
input is read, and at the end of the first segment, an output is
written. The two first jobs consume less than their budgets
(which are 1 and 2 units respectively), while the third job
has an overrun at time 7. This causes the deadline to be
moved to the end of the next segment and the budget to
be recharged to 2 units (hence “borrowing” budget from
the fourth job). In this example, the latency is constant and

equal to 2 units (the length of the first segment) despite the
variation in the job execution times.

Note that CS rules allow for budget recharging across
the task period. The server deadline of a task that has con-
stant overruns will be postponed repeatedly and eventually
approach infinity.

2.2 Communication and Synchronization

The communication between tasks and the environment
requires some amount of buffering. When an input is read
at the beginning of a segment, the value is stored in a buffer.
The value in the buffer is then read from user code using
a real-time primitive. The read operation is non-blocking
and non-consuming, i.e., a value will always be present in
the buffer and the same value can be read several times.
Similarly, another real-time primitive is used to write a new
output value. The value is stored in a buffer and is written
to the output at the end of the relevant segment. The write
operation is non-blocking and any old value in the buffer
will be overwritten.

Communication between tasks is handled via shared
variables. If an input is associated with a shared variable,
the value of the variable is copied to the input buffer at the
beginning of the relevant segment. Similarly, if an output is
associated with a shared variable, the value in the output
buffer is copied to the shared variable at the end of the
relevant segment.

If two tasks should write to the same physical output or
shared variable at the same time, the actual write order is
undefined. More importantly, if one task writes to a shared
variable and another task reads from the same variable at the
same time, the write operation takes place first. The offsets
can hence be used to line up tasks such that the output from
one task is immediately read by another task, minimizing
the end-to-end latency.

The use of buffers and non-blocking read and write op-
erations allow tasks with different periods to communicate.
The periods of two communicating tasks need not be har-
monic, even if this makes most sense in typical applications.
However, for the kernel to be able to accurately determine
if a read and write operation really occurs simultaneously,
the offsets, periods, and segment lengths of a set of com-
municating tasks need to be integer multiples of a common
tick size. For this purpose, communicating tasks are gath-
ered into task groups. This is described further in the imple-
mentation section.

2.3 Scheduling Properties

From a schedulability point of view, a CS task with the
CPU share Ui is equivalent to a CBS server with the
bandwidth Ui. By postponing the deadline when the budget
is exhausted, the loading factor of the jobs served by the
CBS can never exceed Ui. The same argument holds for the
modified CBS used in the CS model. A set of CBS and CS
tasks is thus schedulable if and only if

∑Ui ≤ 1. (1)
Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

If the segment lengths of a CS task τi are chosen such
that

l j
i = C j

i /Ui, (2)

where C j
i

denotes the worst-case execution time (WCET)
of the code function f j

i
, overruns will never occur (i.e.,

the budget will never be exhausted before the end of the
segment), and all latencies will be constant. For tasks with
large variation in their execution time, it can sometimes be
advantageous to assign segment lengths that are shorter than
those given by Eq. (2). This means that some deadlines will
be postponed and that the task may not always produce a
new output in time, delaying the output one or more periods.
An example of when this can actually give better control
performance (for a given value of Ui) is given later.

3. Control and Scheduling Codesign

The control and scheduling codesign problem can be infor-
mally stated as follows: Given a set of processes to be con-
trolled and a computer with limited resources, design a set
of controllers and schedule them as real-time tasks such that
the overall control performance is optimized. With dynamic
scheduling algorithms such as EDF and RM, the general de-
sign problem is extremely difficult due to the complex inter-
action between task parameters, control parameters, schedu-
lability, and control performance.

With our model, the link between the scheduling design
and the control design is the CPU share U . Schedulability of
a task set is simply determined by the total CPU utilization.
The performance (or cost) J of a controller executing in a
real-time system can—roughly speaking—be expressed as
a function of the sampling period T , the input-output latency
L, and the jitter j:

J = J(T, L, j). (3)

Assuming that the first segment contains the Calculate
Output part of the control algorithm, and that the segment
lengths are chosen according to Eq. (2), execution under the
Control Server implies

T = ∑ lk = ∑Ck/U,

L = l1 = C1/U,

j = 0.

(4)

The only independent variable in the expressions above is
U . The control performance can thus be expressed as a
function of U only:

J = J(U). (5)

Assuming a linear controller, a linear plant, and a quadratic
cost function, the performance of the controller for different
values of U can easily be computed using, e.g., the Jitterbug
toolbox [15].

The elimination of the jitter has several advantages. First,
it is easy to design a controller that compensates for a con-
stant delay. Second, the performance degradation associated

with the jitter is removed. Third, it becomes possible to ac-
curately predict the performance of the controller.

The disadvantage of eliminating the jitter is that the
latency may increase, and latency also has a negative impact
on the control performance. Our model, however, allows a
control algorithm to be split into segments, and this can be
used to reduce the latency. The importance of this feature is
illustrated in the first example below.

3.1 Example 1: Importance of Reducing Latency

Consider optimal control of the integrator process

dx(t)
dt

= u(t)+ vc(t). (6)

Here, x is the state (which should be controlled to zero), u is
the control signal, and vc is a continuous-time white noise
disturbance with zero mean and unit variance. A discrete-
time controller is designed to minimize the continuous-time
cost function

J = lim
t→∞

1
t

∫ t

0
x2(s)ds. (7)

Dividing the control computations into two segments and
choosing the segment lengths in proportion to WCET of
the parts, the control server model will generate equidistant
sampling with the interval T and a constant latency L. The
cost for the optimal, delay-compensating controller can be
shown to be

J(T, L) =
3 +

√
3

6
T + L (≈ 0.79T + L). (8)

(For details, see [9].) It can be noted that, in this case,
the cost grows linearly with both the sampling interval
and the latency. Furthermore, for a fixed value of J (i.e.,
a specified level of performance), T is determined by L.
This implies that a controller with a short latency will be
less CPU-demanding than a controller with a long latency.
In Table 1, the relative CPU demand of the integrator
controller has been computed for different values of the
relative latency L/T . The case L/T = 1 corresponds to a
Liu and Layland implementation with a one sample delay.
As the latency is reduced (by, e.g., a suitable division of the
control algorithm into a Calculate Output segment and an
Update State segment), the CPU demand of the controller
can be decreased.

Table 1 Relative CPU demand of the integrator controller for
different relative latencies (assuming a fixed level of control
performance).

L/T CPU demand

1 1.00

0.5 0.72

0.25 0.58

0.1 0.50

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

3.2 Example 2: Optimal Period Selection

In this example we study the problem of optimal period
selection for a set of control loops. This type of codesign
problem first appeared in [22]. In that paper, however, the
scheduling-induced latency and jitter was ignored.

Suppose for instance that we want to control three
identical integrator processes (6). The assumed design goal
is to select sampling periods T1, T2, T3 such that a weighted
sum of the cost functions, e.g.,

Jtot = J(T1, L1)+ 2J(T2, L2)+ 3J(T3, L3), (9)

is minimized subject to the utilization constraint

U =
C
T1

+
C
T2

+
C
T3

≤ 1. (10)

Here, C is the (constant) execution time of the control
algorithm. Dividing the algorithm into two segments, our
model will imply the same relative latency a = Li/Ti for
all controllers. Using (8) the objective function (9) can be
written

Jtot =

(
3 +

√
3

6
+ a

)
(T1 + 2T2 + 3T3), (11)

and the solution to the optimization problem is

T1 = b, T2 = b/
√

2, T3 = b/
√

3 (12)

where b = C(1 +
√

2 +
√

3). (For more general problems
numerical optimization must be performed.) Contrary to
[22] (where RM or EDF scheduling is assumed), our model
allows for the latency and the (non-existent) jitter to be
accounted for in the optimization.

3.3 Example 3: Allowing Overruns

For controllers with large variations in their execution time,
it can sometimes be pessimistic to select task periods (and
segment lengths) according to the WCETs. The intuition is
that, given a task CPU share, it may be better to sample often
and occasionally miss an output, than to sample seldom and
always produce an output. With our model, it becomes easy
to predict the worst-case effects (i.e., assuming that the rest
of the CPU is fully utilized) of such task overruns.

Again consider the integrator controller. For simplicity,
it is assumed that the controller is implemented as a single
segment, i.e., we have L = T if no overrun occurs, and that
the assigned CPU share is U = 1. Now assume that the
execution time of the controller is given by the probability
density function in Figure 2. Choosing a period less than
the WCET means that some outputs will be missed and
that the actual latency will vary randomly between T ,
2T , 3T , etc., according to a Markov chain. The resulting
control performance for such a model can be computed
using the Jitterbug toolbox [15]. In Figure 3 the cost (7)
has been computed for different values of the task period.
The optimal cost J = 1.67 is obtained for T = 0.76. For
that period, overruns will occur in 9% of the periods
(introducing a latency of 2T or more). The example shows
that our model can be used to “cut the tail” off execution
time distributions with safe and predictable results.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Execution Time

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 2 Assumed execution time probability density function
of the integrator controller.

0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

Task period T
C

os
tJ

Figure 3 Cost as a function of the task period for the integrator
controller with varying execution time.

4. CS Tasks as Real-Time Components

As argued in the previous section, given a control algorithm
with known execution time C (divided into one or several
segments), the sampling period T , the latency L, and the
control performance J can be expressed as functions of
the CPU share U . The predictable control and scheduling
properties allows a CS task to be viewed as a scalable real-
time component.

Consider for instance the PID (proportional-integral-
derivative) controller component in Figure 4. The controller
has two inputs: the reference value r and the measurement
signal y, and one output: the control signal u. The U knob
determines the CPU share. An ordinary software component
would only specify the functional behavior, i.e., the PID
algorithm. The specification for our real-time component
includes the resource usage and the timely behavior and
could for instance look like this:

• Algorithm: u = K(r− y)+ . . .

• Parameters: U , K, . . .

r

y
u

U

PID

Figure 4 A PID controller component. The U knob determines
both the schedulability and the control performance.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

Ctrl 1 Ctrl 2 G2 G1

Computer Process

Figure 5 Cascaded controller structure.

r

r
r

y
y

y1

y2

u
uu

U

U/3
2U/3

PID1
PID2

CascPID

m

Figure 6 A cascaded PID controller component.

• C = 1 ms (on a given processor)

• T = C/U

• L = T/4

• J = J(U) (given as function or diagram)

Also remember that our model guarantees that the controller
will have the specified behavior, regardless of other tasks in
the system.

Next, consider the composition of two PID controllers in
a cascaded controller structure, see Figure 5. In this very
common structure, the inner controller is responsible for
controlling the (typically) fast process dynamics G2, while
the outer controller handles the slower dynamics G1. A
cascaded controller component can be built from two PID
components as shown in Figure 6. In this case, it is assumed
that the inner controller should have twice the sampling
frequency of the outer controller (reflecting the speed of
the processes). This is achieved by assigning the shares
U/3 to PID1 and 2U/3 to PID2, U being the CPU share
of the composite controller. The end-to-end latency in the
controller can be minimized by a suitable segment layout,
see Figure 7.

The schedulability and performance of the cascaded
controller will, again, only depend on the total assigned
CPU share U . The controller will have a predictable input-
output pattern, and its performance can be computed using

0

τ1

τ2

S1
1 S1

1 S2
1S2

1

S1
2 S1

2S1
2S1

2 S2
2S2

2S2
2

I

IIII

I

OOOO

OO

φ2

Figure 7 Segment layout in the cascaded PID controller. Task
τ2 is given a phase φ2 = l1

1 such that the value written by S1
1 is

immediately read by S1
2.

data: void*
size: int

SharedVarIn
channel: int
value: double

AnalogOut
data: void*
size: int

SharedVarOut

CBSTaskGroup

Segment Input Output

CSTask

Timer

EDFTask
release: Time
deadline: Time
process: (*)(void)expiry: Time

handler: (*)(void)

ticksize: Duration offset: int

currentSegment: int

bandwidth: double
deadline: Time
budget: Duration
period: Duration

length: int
inputs: int[]
outputs: int[]

1

1

0..1

1..*

1..* 1

0..* 0..*

1..*

channel: int
value: double

AnalogIn

codeFcn: (*)(int, void*)

Figure 8 The various data structures in the implementation.

the Jitterbug toolbox [15, 9]. Note that such composition is
not possible with ordinary threads, i.e., two communicating
threads cannot be treated as one, neither from schedulability
nor control perspectives.

5. Implementation

The task model has been implemented in the STORK real-
time kernel [3], developed at the Department of Automatic
Control, Lund Institute of Technology. The original kernel
is a standard priority-preemptive real-time kernel written in
Modula-2, running on multiple platforms. For this project,
the Motorola PowerPC was chosen because of its high clock
resolution (40 ns on a 100 MHz processor).

The kernel was modified to use EDF as the basic schedul-
ing policy, and high-resolution timers (hardware clock in-
terrupts that trigger user-defined handlers) were introduced.
A number of data structures for CBS servers, CS tasks,
segments, inputs, and outputs, etc., were introduced, see
Figure 8. For synchronization reasons, communicating CS
tasks must share a common timebase and are gathered in
task groups.

5.1 Task Group Timing

Each task group uses a timer to trigger the reading of inputs,
writing of outputs, and release of segments of tasks within
the group. The structure of the task group timer interrupt
handler is shown in Listing 1. The average execution time
of the handler was about 5 µs in the implementation.

Associated with each CS task is a semaphore that is used
to handle the release of the segment jobs. Internally, every
CS task is implemented as a simple loop, see Listing 2.

5.2 API

The kernel provides a number of primitives for defining task
groups, EDF tasks, CS tasks, etc. The code of a CS task is

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

Listing 1 Pseudocode of task group timing.

for (each task in the task group) {

if (current segment is finished) {

Write outputs (if any);

Increase segment counter;

}

}

for (each task in the task group) {

if (new segment should begin) {

Read inputs (if any);

Release segment job (signal semaphore);

}

}

Determine next wakeup time;

Set up timer;

Listing 2 Internal implementation of CS task.

while (true) {

Increase segment counter;

Wait on semaphore;

Call codeFcn(segment,data);

}

written according to a special format illustrated with a PID
controller in Listing 3. The kernel primitives ReadInput

and WriteOutput are used to access the inputs and outputs
associated with the segment.

6. Control Experiments

Some control experiments were performed on the ball and
beam process, see Figure 9. The objective is to move
the ball to a given position on the beam. The input to
the process is the beam motor voltage, and the outputs
are voltages representing the beam angle and the ball
position. The process is regulated with a cascaded PID
controller, implemented as a single task (in order to keep
the example simple). The controller is designed with the
sampling interval T1 = 40 ms and has the execution time
C1 = 20 ms, thus consuming U1 = 0.5 of the CPU. (To

Listing 3 PID controller written in Modula-2.

PROCEDURE PIDTask(segment: CARDINAL; data: PIDData);

VAR r, y, u: LONGREAL;

BEGIN

CASE segment OF

1: r := ReadInput(1);

y := ReadInput(2);

u := PID.CalculateOutput(data, r, y);

WriteOutput(1, u);

|

2: PID.UpdateState(data);

END;

END PIDTask;

Figure 9 The ball and beam process.

(a)

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

Time

P
os

iti
on

(b)

19.5 19.6 19.7 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5
Time

Dist

Ctrl

Figure 10 Control experiment under EDF scheduling: (a) con-
trol performance, and (b) close-up of execution trace at t = 20.

generate a high CPU load, busy cycles were inserted in the
task code). The code is divided into two segments: Calculate
Output (5 ms) and Update State (15 ms).

Also executing in the system is a sporadic task with a
minimum interarrival time of T2 = 20 ms and an assumed
WCET of C2 = 10 ms. Between time 0 and 20, the actual
execution time varies randomly between 5 and 10 ms. At
time t = 20, the disturbance task starts to misbehave and
has an execution time that varies randomly between 5 and
50 ms.

The behavior of the real-time control system under
ordinary EDF scheduling and under CS scheduling was
compared in different experiments. In each experiment, the
execution trace (i.e, the task schedule) was logged, together
with the measurements from the process.

The result of a control experiment under EDF scheduling
is shown in Figure 10. The performance is satisfactory up to
t = 20, when the sporadic task starts to consume a large part
of the CPU time, which disturbs the control task.

In a second experiment, running the tasks under CS
scheduling, both tasks were assigned a CPU share of 50%.
The experimental results are shown in Figure 11. The con-
troller execution is no longer disturbed by the misbehaving
sporadic task, and (not visible in the trace) there is no longer
any I/O jitter. The control performance is identical both be-
fore and after time t = 20.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

(a)

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

Time

P
os

iti
on

(b)

19.5 19.6 19.7 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5
Time

Dist

Ctrl

Figure 11 Control experiment under CS scheduling: (a) control
performance, and (b) close-up of execution trace at t = 20.

7. Conclusion

We have presented the Control Server, suitable for the im-
plementation of control tasks in flexible real-time systems.
Features of the model include small latency and jitter, and
isolation between unrelated tasks.

The present work may be extended in several directions.
The CBS servers used could be modified to use a slack
stealing algorithm such as CASH [6] or GRUB [16]. This
could improve the performance further when the system is
under-utilized.

We do not account for the interrupt time (including the
I/O operation) in the scheduling analysis. Possibilities for
more detailed analysis are found in [17] (“mixed schedul-
ing”) and in [13].

Another topic that needs further investigation is the
overrun handling. How should a controller be designed in
order to cope with postponed outputs? Should segments
sometimes be aborted?

Also, we would like to exploit the codesign properties
of the model in feedback scheduling applications where the
goal is to dynamically distribute the available computing
resources such that the overall control performance is op-
timized. In our previous work [10] we did not account for
the latency and the jitter in the on-line optimization.

References
[1] L. Abeni and G. Buttazzo. “Integrating multimedia applications in

hard real-time systems.” In Proc. 19th IEEE Real-Time Systems
Symposium, Madrid, Spain, 1998.

[2] P. Albertos, A. Crespo, I. Ripoll, M. Vallés, and P. Balbastre. “RT
control scheduling to reduce control performance degrading.” In
Proc. 39th IEEE Conference on Decision and Control, Sydney,
Australia, 2000.

[3] L. Andersson and A. Blomdell. “A real-time programming environ-
ment and a real-time kernel.” In Asplund, Ed., National Swedish
Symposium on Real-Time Systems, Technical Report No 30 1991-
06-21. Dept. of Computer Systems, Uppsala University, Uppsala,
Sweden, 1991.

[4] K. J. Åström and B. Wittenmark. Computer-Controlled Systems.
Prentice Hall, 1997.

[5] N. Audsley, K. Tindell, and A. Burns. “The end of the line for static
cyclic scheduling.” In Proc. 5th Euromicro Workshop on Real-Time
Systems, 1993.

[6] M. Caccamo, G. Buttazzo, and L. Sha. “Capacity sharing for overrun
control.” In Proc. IEEE Real-Time Systems Symposium, Orlando,
Florida, 2000.

[7] M. Caccamo, G. Buttazzo, and L. Sha. “Elastic feedback control.” In
Proc. 12th Euromicro Conference on Real-Time Systems, pp. 121–
128, Stockholm, Sweden, June 2000.

[8] A. Cervin. “Improved scheduling of control tasks.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 4–10,
York, UK, June 1999.

[9] A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis
ISRN LUTFD2/TFRT--1065--SE, Department of Automatic Con-
trol, Lund Institute of Technology, Sweden, April 2003.

[10] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén. “Feedback-
feedforward scheduling of control tasks.” Real-Time Systems, 23:1,
July 2002.

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. “Giotto: A time-
triggered language for embedded programming.” In Proc. First Inter-
national Workshop on Embedded Software, 2001.

[12] K. Jeffay and S. Goddard. “Rate-based resource allocation models
for embedded systems.” In Proc. First International Workshop on
Embedded Software, 2001.

[13] K. Jeffay and D. L. Stone. “Accounting for interrupt handling costs
in dynamic priority systems.” In Proc. 14th IEEE Real-Time Systems
Symposium, 1993.

[14] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Här-
bour. A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic
Publisher, 1993.

[15] B. Lincoln and A. Cervin. “Jitterbug: A tool for analysis of real-time
control performance.” In Proceedings of the 41st IEEE Conference
on Decision and Control, Las Vegas, NV, December 2002.

[16] G. Lipari and S. Baruah. “Greedy reclamation of unused bandwidth
in constant-bandwidth servers.” In Proc. Euromicro Conference on
Real-Time Systems, Stockholm, Sweden, 2000.

[17] C. L. Liu and J. W. Layland. “Scheduling algorithms for multipro-
gramming in a hard-real-time environment.” Journal of the ACM,
20:1, pp. 40–61, 1973.

[18] J. Liu and E. Lee. “Timed multitasking for real-time embedded
software.” IEEE Control Systems Magazine, 23:1, February 2003.

[19] C. D. Locke. “Software architecture for hard real-time applications:
Cyclic vs. fixed priority executives.” Real-Time Systems, 4, pp. 37–
53, 1992.

[20] A. Parekh and R. Gallager. “A generalized processor sharing ap-
proach to flow control in integrated services networks: the single
node case.” IEEE/ACM Transactions on Networking, 1:3, pp. 344–
357, 1993.

[21] O. Redell and M. Sanfridson. “Exact best-case response time analysis
of fixed priority scheduled tasks.” In Proc. 14th Euromicro Confer-
ence on Real-Time Systems, Vienna, Austria, June 2002.

[22] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. “On task schedu-
lability in real-time control systems.” In Proc. 17th IEEE Real-Time
Systems Symposium, pp. 13–21, Washington, DC, 1996.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

Establishing Timing Requirements and Control Attributes for
Control Loops in Real-Time Systems

Iain Bate
1
, Peter Nightingale

1
, Anton Cervin

2

1 Department of Computer Science,

University of York, York, YO10 5DD, UK

{ijb, pwn101}@cs.york.ac.uk

2 Department of Automatic Control

Lund Institute of Technology, Lund, Sweden.

anton@control.lth.se

Abstract

Advances in scheduling theory have given designers

of control systems greater flexibility over their choice of

timing requirements. This could lead to systems

becoming more responsive, more flexible and more

maintainable. However, experience has shown that

engineers find it difficult to exploit these advantages due

to the difficulty in determining the “real” timing

requirements of systems and therefore the techniques

have delivered less benefit than expected. Part of the

reason for this is that the models used by engineers

when developing systems do not allow for emergent

properties such as timing. This paper presents an

approach and framework for addressing the problem of

identifying an appropriate and valid set of timing

requirements and their corresponding control

parameters based on a combination of static analysis

and simulation.

1 Introduction

This paper addresses the perennial problem of how to
identify an appropriate and valid set of timing
requirements for a hard real-time system. Over the
years, research on real-time systems has evolved
techniques which provide greater flexibility in
scheduling whilst still providing a means for
guaranteeing that timing requirements are met [1, 6].
The increased flexibility was expected to give many
benefits, including more efficient use of resources and
simpler maintenance of schedules when changes to the
control software are made. In addition, maintaining
schedules is often a costly and error prone manual
process, so these techniques have the potential to offer
significant economic as well as engineering benefit.

However, experience has shown that engineers find it
difficult to exploit this increased flexibility, and the
techniques have delivered less benefit than expected.
Based on our own experience and that of others in
industry [2, 6, 10], a key reason is an absence of
information about the true timing requirements which
are needed to make best use of the approaches. In many
cases current systems are developed with simple timing
requirements, such as a timing margin to be achieved.
(A timing margin is the amount of usable spare capacity
available.) In other cases the timing requirements are
largely historic, and are simply expressed in terms of
iteration rates which have been proven effective in
previous designs. Despite the changing contexts between
systems, this strategy is normally successful because the
requirements are over conservative, e.g. update rates
specified are much faster than needed. Even where more
modern control law design environments are used (e.g.

Matlab/Simulink [3]), the control models are often
produced assuming a particular computational model.
For example a 50 ms cycle/20Hz bandwidth is chosen
because there is a regular clock tick in the system with a
period of 25 ms (i.e. 40 Hz) and therefore it is easier to
release tasks at a harmonic of this frequency.

Other techniques such as Shannon’s sampling theroem
[5] place an upper bound on the sampling period. When
the sampling theorem is used, an actual sampling period
still needs to be selected as well as other timing
attributes such as the deadline of the sampling task,
period and deadline of the actuator task, and the
maximum separation time between data capture and
sensor actuation.

A major contributor to the situation that has arisen is
because both the research and practical use of control
theory and scheduling theory have largely been carried
out in isolation [4]. Thus for example, work on how
advanced control regimes, such as H [5], might ease
the integration issues between control and software,
have received little attention. Other pressures include the
move towards model-based development that places
greater onus on capturing evidence within the actual
models and including low-level implementation details
within the models, i.e. emergent properties such as
timing.

This paper presents an approach and framework for
addressing the problem of identifying an appropriate and
valid set of timing requirements in order that the best
use can be made of the advances in scheduling theory.
The paper is an extension to previous work [15] that
adds greater traceability back to the system’s objectives
using an argumentation technique to target the
evaluation used in the framework, and for evaluation
purposes using Jitterbug to perform static analysis [11]
and the use of scenario-based assessment to determine
the extent to which the system copes with other
situations - e.g. changes to the system, errors in models
and measurements, and random failures.

The approach taken is to first establish the objectives
of importance (based on argumentation techniques used
in the critical systems domain) and then use component-
based models that allow for emergent properties of
systems (in this case timing) so that the models are more
representative of how an actual system would actually
behave. Then, a genetic algorithm is used to explore the
design space in-order to identify timing requirements
and corresponding control parameters which enable
objectives such as control stability to be achieved, thus
deriving and validating the requirements against more
realistic properties of the control system. When valid
combinations of parameters are found, the framework

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

produces evidence that the solution is appropriate in a
traceable manner via static analysis and test.

The advantage of using genetic algorithms instead of
traditional model-based design approaches, such as
frequency domain loop shaping [5], include it allows
many properties and effects to be considered at the same
time and their demands on the system to be traded-off
against one another [9].

The work presented here is intended for use in a range
of control problems, but is illustrated with the PID
(Proportional Integral Differential) control approach [5].

The rest of the paper is structured as follows. Section 2
gives further background on the control techniques to be
used in the context of this work. It also provides a
technical motivation (as opposed to the “economic”
motivation outlined above) for seeking a systematic
approach to deriving timing requirements. Section 3
gives an overview of an argument that assesses the
desirable properties of a control system scheduled on a
computer and evolves an experimental method to show
the properties are met. Section 4 presents the
framework, and the costs of evaluating the requirements.
Section 5 contains a case study which have been used to
evaluate the approach, as well as presenting a discussion
of how the resulting timing requirements may be used.
Finally, section 6 gives a summary and suggests possible
future developments for the work.

2 Background and Motivation

All scheduling approaches require a minimum set of
information about timing requirements so that an
appropriate scheduler can be produced. For most
scheduling approaches the minimum set of information
is the deadline and period of tasks [6, 7]. This section
explains why these requirements are important in the
context of PID loops and how they can be generated by
considering basic control properties.
2.1 PID Loop

The main purpose of a PID loop is to ensure the
response to inputs is sufficiently fast whilst maintaining
the stability, accuracy and limits on data. Figure 1
depicts a typical PID loop used to control the operation
of a plant as part of a control system. The Figure shows
the key aspects and components of the controller – e.g.
there is only one input and one output.

In its simplest form, a continuous ideal domain
representation, the output of the PID loop is the plant
input. The control system input is the difference between
the input demand (denoted by I), which is the desired
plant state, and the plant’s actual output (denoted by O)
and it is referred to as the error, (denoted by E). The
continuous and discrete forms of the PID loop are given
in Equation 2 and Equation 4 (current sample denoted
by k) respectively.

)()()(tItOtE Equation 1

dt

tdE
KdttEKtEKtO DIP

)(
)()()(Equation 2

)()()(kIkOkE Equation 3

)1()()()()(
1

kEkEKjEKkEKkO D

k

j

IP Equation 4

In the computer-based approach, the Input Demand

(e.g. pilot stick position) and the Actual Plant Output

(e.g. aircraft’s flap position) are usually analogue
signals. The computer performs the rest of the
processing in the digital domain. Converters are used to
sample the analogue signals, e.g. to produce the Error

input, and then converted back to analogue values at the
output. Converting back to an analogue signal is often
referred to as digital to analogue conversion, de-
sampling or actuation. In order to give better control
over jitter, the functionality that needs to be performed
in software is normally split into three separate tasks –
sampling, calculation and actuation [4, 6, 7].

Controller

Plant

T(s)

Integration
Gain

(K
I
)

Gain

(K
p
)

Differentiation
Gain

(K
D
)

+

Plant
Input

Error
(E)

Input

Demand

(I)
+_

Actual
Plant

Output
(O)

+

Load

Disturbance

Sensor

D(s)

Sampling

Signal

+

Measurement

Disturbance

A/D D/A

De-sampling

Signal

Figure 1 – Typical PID Loop

In industrial practice it is common for a controller to be
developed as a continuous system based on the system’s
response in the frequency domain. Often modelling
packages or special purpose plant simulations are used
to validate the requirements. If a computer-based
implementation is to be used, then once the requirements
have been established in the continuous domain they are
converted to the discrete domain. Typically the
conversion involves calculating the PID loop gains (KP,
KI, KD) based on the assumption that a constant
sampling period is used. This means the conversion is
performed based on an idealised model of the computer
system. The conversions for the PID loop gains are give
in Table 1. In other words the conversion uses
unrealistic assumptions, e.g. infinite processing
bandwidth and zero jitter in sampling the inputs (jitter is
the variation in time when an action occurs between one
cycle of the controller and the next). In addition, “real”
systems have errors through effects such as
measurement disturbance, load disturbance and plant
error. These are also represented in Figure 1.

Parameter in

Continuous Domain

Discretisation Formula for a

Sampling Period of T

KP KP

KI T.KI

KD
T

KD

Table 1 – Conversion from Continuous to Discrete

The approach presented in this paper addresses this
shortcoming by taking into account the constraints of
real computer systems, and thus enables valid and
realistic requirements to be produced. To explain how
this is done the rest of this section explains in more
detail the relationship between computational properties
such as jitter and control properties such as stability.
2.2 Scheduling Properties

It is, of course, essential that the sampling, core
functions and de-sampling tasks are executed in that

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

